JP2007183855A - Control method and controller - Google Patents

Control method and controller Download PDF

Info

Publication number
JP2007183855A
JP2007183855A JP2006002173A JP2006002173A JP2007183855A JP 2007183855 A JP2007183855 A JP 2007183855A JP 2006002173 A JP2006002173 A JP 2006002173A JP 2006002173 A JP2006002173 A JP 2006002173A JP 2007183855 A JP2007183855 A JP 2007183855A
Authority
JP
Japan
Prior art keywords
state quantity
value
follow
coefficient
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006002173A
Other languages
Japanese (ja)
Other versions
JP4611896B2 (en
Inventor
Masahito Tanaka
雅人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2006002173A priority Critical patent/JP4611896B2/en
Publication of JP2007183855A publication Critical patent/JP2007183855A/en
Application granted granted Critical
Publication of JP4611896B2 publication Critical patent/JP4611896B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve both of the controllability in transient state relative quantity and stability in steady state control. <P>SOLUTION: A specific state quantity is defined as a reference state quantity, and a state quantity controlled so as to maintain a specified value of relative quantity to the reference quantity is defined as a tracking state quantity. A calculation part 6-1 to 6-3 converts a set value of the tracking state quantity into an internal input value by obtaining the internal input value by summing a first element for the reference state quantity with a second element for the relative quantity, an element of the input value for control operation for the reference state quantity to be the first element, and a value obtained by multiplying the element of the input value for control operation for the relative quantity by a coefficient Bi to be the second element. A coefficient Bi switching determination part 10 selects a first value as the coefficient Bi when a measured value PVi of the tracking state quantity is far from the set value SPi of the tracking state quantity, and selects a second value lower than the first value in trackability of the measured value PVi to a measured value PVm of the reference state quantity when the measured value PVi is near the set value SPi. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プロセス制御技術に関するものであり、特に少なくとも2個の制御ループを有する制御系において計測される状態量差などの相対量を制御対象とする制御方法および制御装置に関するものである。   The present invention relates to a process control technique, and more particularly, to a control method and a control apparatus that control a relative quantity such as a state quantity difference measured in a control system having at least two control loops.

図5(a)に、従来の制御装置である温度調節計の構成を示す(例えば特許文献1参照)。炉1001内には、熱処理ワーク1016が搬入され、またヒータ1011と、制御温度TC1を検出する検出手段1012と、ワーク1016の表面温度TC2を検出する検出手段1013と、ワーク1016の最深温度TC3を検出する検出手段1014とが配設されている。1002は電力調整器を示している。制御部1003は、制御温度TC1と実行プログラムパターン設定値1033とを比較する比較器1031と、比較器1031の出力により制御されるPID等の制御演算部1032と、ワーク1016の表面温度TC2と最深温度TC3との差を検出する温度差検出器1034と、予め定められた温度差を設定する温度差設定器1035と、温度差検出器1034の出力と温度差設定器1035の出力とを比較する比較器1036と、最深温度TC3の温度変化率を検出する変化率検出器1038と、変化率検出器1038の出力と予め定められた温度変化率を設定する変化率設定器1039の出力とを比較する比較器1040と、比較器1036の出力と比較器1040の出力に基づいて傾斜演算し実行プログラムパターン設定値1033を制御する傾斜演算器1037とを有している。   FIG. 5A shows the configuration of a temperature controller that is a conventional control device (see, for example, Patent Document 1). A heat treatment work 1016 is carried into the furnace 1001, and the heater 1011, detection means 1012 for detecting the control temperature TC 1, detection means 1013 for detecting the surface temperature TC 2 of the work 1016, and the deepest temperature TC 3 of the work 1016. Detection means 1014 for detecting is arranged. Reference numeral 1002 denotes a power regulator. The control unit 1003 includes a comparator 1031 that compares the control temperature TC1 and the execution program pattern set value 1033, a control calculation unit 1032 such as PID controlled by the output of the comparator 1031, and the surface temperature TC2 of the workpiece 1016 and the deepest surface temperature TC2. A temperature difference detector 1034 that detects a difference from the temperature TC3, a temperature difference setter 1035 that sets a predetermined temperature difference, and an output of the temperature difference detector 1034 and an output of the temperature difference setter 1035 are compared. The comparator 1036, the change rate detector 1038 for detecting the temperature change rate of the deepest temperature TC3, and the output of the change rate detector 1038 are compared with the output of the change rate setter 1039 for setting a predetermined temperature change rate. The comparator 1040 to perform, the inclination calculation based on the output of the comparator 1036 and the output of the comparator 1040, and the execution program pattern set value 103 And an inclined calculator 1037 for controlling.

温度差設定器1035には許容可能な最大の温度差が設定され、また変化率設定器1039には許容可能な最大の温度変化率が設定される。図5(a)の構成により、熱処理ワーク1016内の温度差、温度変化率の一方もしくは両方が指定された温度許容値以内に入るように、実行プログラムパターン設定値1033中の傾斜が常時修正される。
図5(a)中の破線で囲まれている部分に着目すると、計測された複数の温度TC1,TC2,TC3に基づき温度差(TC2−TC3)および温度変化率dTC3/dtを算出する状態量変換が行なわれていることが理解できる。すなわち、図5(a)の温度調節計は、温度差(TC2−TC3)および温度変化率dTC3/dtを算出する状態量変換部1041を備えていることになる(図5(b))。
The maximum allowable temperature difference is set in the temperature difference setting unit 1035, and the maximum allowable temperature change rate is set in the change rate setting unit 1039. With the configuration of FIG. 5A, the gradient in the execution program pattern set value 1033 is constantly corrected so that one or both of the temperature difference and the temperature change rate in the heat-treated workpiece 1016 are within the specified temperature tolerance. The
Focusing on the portion surrounded by the broken line in FIG. 5A, the state quantity for calculating the temperature difference (TC2-TC3) and the temperature change rate dTC3 / dt based on the measured temperatures TC1, TC2, TC3. You can see that the conversion is taking place. That is, the temperature controller of FIG. 5A includes the state quantity conversion unit 1041 that calculates the temperature difference (TC2−TC3) and the temperature change rate dTC3 / dt (FIG. 5B).

図6(a)に、従来の他の制御装置である温度調整装置の構成を示す(例えば特許文献2参照)。図中の2002は縦型熱処理装置2020の反応管であり、この反応管2002の内部には、ウエハボ−ト2021に搭載された半導体ウエハの近傍の温度を検出する温度センサAが設けられると共に、反応管2002の外面の温度を検出する温度センサBが設けられている。偏差回路部2031は、温度センサAの目標値から後述する補正値を引いた偏差、すなわち温度センサBの目標値を出力する。偏差回路部2032は、温度センサBの目標値から温度センサBの検出値を引いた偏差をPID調節部2004に出力する。PID調節部2004は、入力された偏差に基づいてPID演算を行い、その演算結果を電力制御部2005に出力し、電力制御部2005は、PID調節部2004の出力値に基づいて縦型熱処理装置2020の加熱源であるヒ−タ2006への電力供給量を制御する。一方、補正値出力部2007は、温度センサBの検出値が目標値に収束したとき、この収束した時点の温度センサAの検出値と温度センサBの検出値との差(A−B)を補正値とし、温度センサBの目標値を補正値分だけ修正する。図6(a)の構成により、温度センサAの検出値が目標値に収束する。   FIG. 6 (a) shows a configuration of a temperature control device which is another conventional control device (see, for example, Patent Document 2). In the figure, reference numeral 2002 denotes a reaction tube of the vertical heat treatment apparatus 2020. Inside the reaction tube 2002, a temperature sensor A for detecting the temperature in the vicinity of the semiconductor wafer mounted on the wafer board 2021 is provided. A temperature sensor B that detects the temperature of the outer surface of the reaction tube 2002 is provided. The deviation circuit unit 2031 outputs a deviation obtained by subtracting a correction value described later from the target value of the temperature sensor A, that is, the target value of the temperature sensor B. The deviation circuit unit 2032 outputs a deviation obtained by subtracting the detection value of the temperature sensor B from the target value of the temperature sensor B to the PID adjustment unit 2004. The PID adjustment unit 2004 performs PID calculation based on the input deviation and outputs the calculation result to the power control unit 2005. The power control unit 2005 uses the vertical heat treatment apparatus based on the output value of the PID adjustment unit 2004. The power supply amount to the heater 2006, which is a heating source of 2020, is controlled. On the other hand, when the detected value of the temperature sensor B converges to the target value, the correction value output unit 2007 calculates the difference (A−B) between the detected value of the temperature sensor A and the detected value of the temperature sensor B at the time of convergence. As a correction value, the target value of the temperature sensor B is corrected by the correction value. With the configuration of FIG. 6A, the detection value of the temperature sensor A converges to the target value.

図6(a)中の破線で囲まれている部分に着目すると、計測された複数の温度A,Bに基づき温度差(A−B)を算出する状態量変換が行なわれていることが理解できる。すなわち、図6(a)の温度調整装置は、温度差(A−B)を算出する状態量変換部2008を備えていることになる(図6(b))。
以上のように、実際の状態量そのものだけではなく、複数の状態量間の差を制御系に取り込む努力は従来から行なわれている。
When attention is paid to a portion surrounded by a broken line in FIG. 6A, it is understood that state quantity conversion for calculating a temperature difference (A−B) based on a plurality of measured temperatures A and B is performed. it can. That is, the temperature adjustment device in FIG. 6A includes the state quantity conversion unit 2008 that calculates the temperature difference (A−B) (FIG. 6B).
As described above, efforts have been conventionally made to incorporate not only the actual state quantity itself but also the difference between a plurality of state quantities into the control system.

さらに、本発明の発明者は、コントローラの操作量と実際のアクチュエータの出力とが1対1に対応する形式で、状態量差のような相対的な状態量を優先的に制御しながら、状態量平均値のような基準となる絶対的な状態量も同時に制御できる制御方法を提案した(特許文献3、特許文献4、特許文献5参照)。この特許文献3、特許文献4、特許文献5に開示された制御方法(以下、先行出願の制御方法と呼ぶ)の原理を説明する。   Furthermore, the inventor of the present invention controls the state quantity while preferentially controlling the relative state quantity such as the state quantity difference in a form in which the controller operation amount and the actual actuator output correspond to each other on a one-to-one basis. A control method that can simultaneously control a reference absolute state quantity such as a quantity average value has been proposed (see Patent Document 3, Patent Document 4, and Patent Document 5). The principle of the control method disclosed in Patent Document 3, Patent Document 4, and Patent Document 5 (hereinafter referred to as the control method of the prior application) will be described.

まず、先行出願と本発明では、状態量平均値のような基準となる絶対的な状態量を基準状態量、基準状態量との相対量(例えば状態量差)が予め規定された値を維持するように制御される状態量を追従状態量と称する。また、基準状態量に対する設定値を基準状態量設定値、基準状態量の計測値を基準状態量計測値、追従状態量に対する設定値を追従状態量設定値、追従状態量の計測値を追従状態量計測値、基準状態量と追従状態量との相対量に対する設定値を追従状態量相対設定値、基準状態量と追従状態量との相対量の計測値を追従状態量相対計測値、基準状態量に対してコントローラの内部に設定される内部設定値を基準状態量内部設定値、追従状態量に対してコントローラの内部に設定される内部設定値を追従状態量内部設定値と称する。状態量としては、例えば温度、圧力、流量などがある。   First, in the prior application and the present invention, the absolute state quantity serving as a reference, such as an average value of the state quantity, is a reference state quantity, and a relative quantity (for example, a state quantity difference) from the reference state quantity is maintained at a predetermined value. The state quantity controlled to do so is referred to as a follow-up state quantity. Also, the setting value for the reference state quantity is the reference state quantity setting value, the measurement value for the reference state quantity is the reference state quantity measurement value, the setting value for the tracking state quantity is the tracking state quantity setting value, and the tracking state quantity measurement value is the tracking state Measured value, set value for the relative amount of the reference state amount and the tracking state amount is the tracking state amount relative setting value, and the measured value of the relative amount of the reference state amount and the tracking state amount is the tracking state amount relative measured value, the reference state An internal set value set inside the controller with respect to the quantity is referred to as a reference state quantity internal set value, and an internal set value set inside the controller with respect to the follow-up state quantity is referred to as a follow-up state quantity internal set value. Examples of the state quantity include temperature, pressure, and flow rate.

先行出願の制御方法では、外部から与えられる状態量設定値SPとは別に、コントローラの内部に設定される状態量内部設定値SP’を用いて、操作量MVを算出する。このとき、状態量内部設定値SP’は、基準状態量に対する要素SPmと、基準状態量と追従状態量との相対量に対する要素ΔSPとに分離しておく(SP’=SPm+ΔSP)。また、先行出願の制御方法では、状態量計測値との内挿外挿演算(SP’=ASP+(1−A)PV)により、実際に与えられている設定値SPmやΔSPをそのまま適用する場合よりも、実質的にコントローラの特性を低感度側にシフトさせたり、高感度側にシフトさせたりできることに着目し、基準状態量の感度と、基準状態量と追従状態量との相対量の感度とを、各々個別にシフトできる状態量内部設定値SP’に変換する。   In the control method of the prior application, the manipulated variable MV is calculated using the state quantity internal set value SP ′ set inside the controller, separately from the state quantity set value SP given from the outside. At this time, the state quantity internal set value SP ′ is separated into an element SPm for the reference state quantity and an element ΔSP for the relative quantity of the reference state quantity and the follow-up state quantity (SP ′ = SPm + ΔSP). Further, in the control method of the prior application, when the set values SPm and ΔSP that are actually given are applied as they are by the interpolation / extrapolation calculation (SP ′ = ASP + (1−A) PV) with the state quantity measurement values. Focusing on the fact that the characteristics of the controller can be shifted to the low sensitivity side or the high sensitivity side, the sensitivity of the reference state quantity and the sensitivity of the relative quantity of the reference state quantity and the tracking state quantity. Are converted into state quantity internal set values SP ′ that can be individually shifted.

このように、先行出願の制御方法では、状態量内部設定値SP’を基準状態量に対する要素SPmと基準状態量と追従状態量との相対量に対する要素ΔSPとに分離し、この状態量内部設定値SP’を状態量設定値SPと状態量計測値PVとの内挿外挿演算により求めて操作量MVの算出に用いる構成とする。これにより、先行出願の制御方法では、状態量平均値のような基準状態量については応答特性を低感度側にシフトさせ、状態量差のような、基準状態量と追従状態量との相対量については応答特性を高感度側にシフトさせれば、基準状態量計測値PVmが基準状態量設定値SPmに追従するよりも前に、追従状態量相対計測値ΔPVが追従状態量相対設定値ΔSPに追従するようになるので、基準状態量と追従状態量との相対量を所望の値に維持しながら、基準状態量を所望の値に変更するような制御が可能になる。   As described above, in the control method of the prior application, the state quantity internal setting value SP ′ is separated into the element SPm with respect to the reference state quantity and the element ΔSP with respect to the relative quantity between the reference state quantity and the follow-up state quantity. The value SP ′ is obtained by interpolation / extrapolation between the state quantity set value SP and the state quantity measurement value PV, and is used to calculate the operation amount MV. Thus, in the control method of the prior application, the response characteristic of the reference state quantity such as the average value of the state quantity is shifted to the low sensitivity side, and the relative amount of the reference state quantity and the tracking state quantity such as the state quantity difference is changed. If the response characteristic is shifted to the high sensitivity side, the follow-up state quantity relative measurement value ΔPV becomes the follow-up state quantity relative set value ΔSP before the reference state quantity measurement value PVm follows the reference state quantity set value SPm. Therefore, it is possible to perform control to change the reference state quantity to a desired value while maintaining the relative amount between the reference state quantity and the following state quantity at a desired value.

また、先行出願の制御方法の構成によれば、通常の制御系との相違点は、状態量設定値SPが状態量内部設定値SP’に変換されることだけになる。すなわち、コントローラの操作量と実際のアクチュエータの出力とが1対1に対応する形式で、基準状態量と追従状態量との相対量を優先的に制御しながら、基準状態量も同時に制御する制御方法を提供することができる。   Further, according to the configuration of the control method of the prior application, the only difference from the normal control system is that the state quantity set value SP is converted into the state quantity internal set value SP '. That is, a control that controls the reference state quantity at the same time while preferentially controlling the relative quantity between the reference state quantity and the follow-up state quantity in a form in which the operation amount of the controller and the actual actuator output have a one-to-one correspondence. A method can be provided.

ここで、上記の2つの着眼点のうち、状態量設定値SPと状態量計測値PVとの内挿外挿演算による状態量内部設定値SP’の算出(以下、第1の着眼点と呼ぶ)について説明する。状態量設定値SPと状態量計測値PVとを参照し、特定の係数Aを用いて、以下の数式によりコントローラの内部に設定される状態量内部設定値SP’に変換することを考える。
SP’=ASP+(1−A)PV ・・・(1)
ただし、係数Aは0より大きい実数とする。このとき、A=1とすれば、SP’=SPとなり、状態量設定値SPは全く変換されないことを意味する。
Here, of the above two points of interest, calculation of the state amount internal set value SP ′ by interpolation / extrapolation between the state amount set value SP and the state amount measured value PV (hereinafter referred to as the first point of interest). ). With reference to the state quantity set value SP and the state quantity measurement value PV, it is considered to convert to a state quantity internal set value SP ′ set in the controller by the following formula using a specific coefficient A.
SP ′ = ASP + (1-A) PV (1)
However, the coefficient A is a real number larger than 0. At this time, if A = 1, SP ′ = SP, which means that the state quantity set value SP is not converted at all.

式(1)において係数Aの値を0<A<1とすれば、変換された状態量内部設定値SP’は、元の状態量設定値SPと状態量計測値PVとの間の数値(内挿関係)になる。したがって、例えばPIDコントローラなどで偏差を算出する場合、状態量設定値SPと状態量計測値PVとの偏差Er=SP−PVよりも、状態量内部設定値SP’と状態量計測値PVとの偏差Er’=SP’−PVの方が、絶対値が小さい値になる。その結果、コントローラが偏差Erに基づいて操作量MVを算出する場合よりも、偏差Er’に基づいて操作量MV’を算出する場合の方が、操作量の変化は緩くなる。すなわち、係数Aの値を0<A<1とすれば、コントローラの応答特性は安定性重視の方向(低感度)の特性にシフトする。   If the value of the coefficient A is 0 <A <1 in the equation (1), the converted state quantity internal setting value SP ′ is a numerical value between the original state quantity setting value SP and the state quantity measurement value PV ( Interpolation). Therefore, for example, when the deviation is calculated by a PID controller or the like, the difference between the state quantity set value SP and the state quantity measurement value PV is larger than the deviation Er = SP−PV between the state quantity set value SP and the state quantity measurement value PV. Deviation Er ′ = SP′−PV has a smaller absolute value. As a result, the change in the operation amount is more gradual when the operation amount MV ′ is calculated based on the deviation Er ′ than when the controller calculates the operation amount MV based on the deviation Er. That is, if the value of the coefficient A is 0 <A <1, the response characteristic of the controller shifts to a characteristic in which stability is emphasized (low sensitivity).

一方、係数Aの値をA>1とすれば、変換された状態量内部設定値SP’は、元の状態量設定値SPよりも更に状態量計測値PVから離れた数値(外挿関係)になる。したがって、例えばPIDコントローラなどで偏差を算出する場合、状態量設定値SPと状態量計測値PVとの偏差Er=SP−PVよりも、状態量内部設定値SP’と状態量計測値PVとの偏差Er’=SP’−PVの方が、絶対値が大きい値になる。その結果、コントローラが偏差Erに基づいて操作量MVを算出する場合よりも、偏差Er’に基づいて操作量MV’を算出する場合の方が、操作量の変化は激しくなる。すなわち、係数Aの値をA>1とすれば、コントローラの応答特性は即応性重視の方向(高感度)の特性にシフトする。   On the other hand, if the value of the coefficient A is A> 1, the converted state quantity internal setting value SP ′ is a numerical value that is further away from the state quantity measurement value PV than the original state quantity setting value SP (extrapolation relationship). become. Therefore, for example, when the deviation is calculated by a PID controller or the like, the difference between the state quantity set value SP and the state quantity measurement value PV is larger than the deviation Er = SP−PV between the state quantity set value SP and the state quantity measurement value PV. Deviation Er ′ = SP′−PV has a larger absolute value. As a result, the change in the operation amount becomes more severe when the operation amount MV ′ is calculated based on the deviation Er ′ than when the controller calculates the operation amount MV based on the deviation Er. In other words, if the value of the coefficient A is A> 1, the response characteristic of the controller shifts to a characteristic in which the responsiveness is emphasized (high sensitivity).

次に、上記の2つの着眼点のうち、状態量内部設定値SP’を基準状態量に対する要素と基準状態量と追従状態量との相対量に対する要素とに分離する点(以下、第2の着眼点と呼ぶ)について説明する。基準状態量と、基準状態量と追従状態量との相対量とを同時に制御する場合、状態量設定値SPは、次式のように、基準状態量に対する要素SPmと、基準状態量と追従状態量との相対量に対する要素ΔSPmとに分離できる。
SP=SPm+ΔSPm ・・・(2)
Next, of the above two points of interest, the state quantity internal set value SP ′ is separated into an element for the reference state quantity and an element for the relative quantity of the reference state quantity and the follow-up state quantity (hereinafter referred to as the second quantity). Will be described). When simultaneously controlling the reference state quantity and the relative quantity of the reference state quantity and the follow-up state quantity, the state quantity set value SP is expressed by the element SPm with respect to the reference state quantity, the reference state quantity, and the follow-up state as shown in the following equation. It can be separated into the element ΔSPm with respect to the relative amount to the amount.
SP = SPm + ΔSPm (2)

また、状態量設定値SPに合わせて、状態量計測値PVについても、次式のように、基準状態量計測値PVmと、追従状態量相対計測値ΔPVmとに分離できる。
PV=PVm+ΔPVm ・・・(3)
Further, according to the state quantity set value SP, the state quantity measurement value PV can also be separated into a reference state quantity measurement value PVm and a follow-up state quantity relative measurement value ΔPVm as in the following equation.
PV = PVm + ΔPVm (3)

ここで、第1の着眼点と第2の着眼点とをまとめると、式(1)〜式(3)より以下のようになる。
SP’=A(SPm+ΔSPm)+(1−A)(PVm+ΔPVm)
=ASPm+(1−A)PVm+AΔSPm+(1−A)ΔPVm
・・・(4)
Here, the first focus point and the second focus point are summarized as follows from the formulas (1) to (3).
SP ′ = A (SPm + ΔSPm) + (1-A) (PVm + ΔPVm)
= ASPm + (1-A) PVm + AΔSPm + (1-A) ΔPVm
... (4)

このとき、式(4)中のASPm+(1−A)PVmは基準状態量に関する要素であり、AΔSPm+(1−A)ΔPVmは基準状態量と追従状態量との相対量に関する要素である。すなわち、両者は各々個別に内挿関係と外挿関係を与える線形結合式に分離されている形になるので、以下のように個別の係数A,Bにより、内挿関係と外挿関係を与えることが可能になる。
SP’=ASPm+(1−A)PVm+BΔSPm+(1−B)ΔPVm
・・・(5)
At this time, ASPm + (1-A) PVm in the equation (4) is an element relating to the reference state quantity, and AΔSPm + (1-A) ΔPVm is an element relating to the relative quantity between the reference state quantity and the follow-up state quantity. That is, since both are separated into linear combination equations that give an interpolating relationship and an extrapolating relationship, respectively, the interpolating relationship and the extrapolating relationship are given by individual coefficients A and B as follows. It becomes possible.
SP ′ = ASPm + (1-A) PVm + BΔSPm + (1-B) ΔPVm
... (5)

式(5)において、Aは基準状態量に関する係数、Bは基準状態量と追従状態量との相対量に関する係数となる。複数の制御ループがある場合、基準状態量と追従状態量との相対量に関する係数Bは特に各制御ループ個別に与えられることが好ましく、その場合、複数の制御ループにおけるi(iは1,2,3・・・・)番目の追従状態量について、以下のような状態量設定値SPiの変換を実施すれば良い。
SPi’=AmSPm+(1−Am)PVm+BiΔSPim
+(1−Bi)ΔPVim ・・・(6)
In Expression (5), A is a coefficient related to the reference state quantity, and B is a coefficient related to the relative quantity between the reference state quantity and the follow-up state quantity. When there are a plurality of control loops, the coefficient B relating to the relative amount of the reference state quantity and the follow-up state quantity is preferably given to each control loop individually. In this case, i (i is 1, 2 in the plurality of control loops). , 3,...) The following state quantity set value SPi may be converted for the following tracking state quantity.
SPi ′ = AmSPm + (1−Am) PVm + BiΔSPim
+ (1-Bi) ΔPVim (6)

式(6)において、SPi’はi番目の追従状態量に対する内部設定値、ΔSPimは基準状態量とi番目の追従状態量との相対量の設定値である追従状態量相対設定値、ΔPVimは基準状態量とi番目の追従状態量との相対量の計測値である追従状態量相対計測値、Biは基準状態量とi番目の追従状態量との相対量に関する係数である。なお、基準状態量に関する係数Amは、各制御ループ共通に与えても各制御ループ個別に与えてもかまわない。   In Formula (6), SPi ′ is an internal set value for the i-th tracking state quantity, ΔSPim is a tracking state quantity relative setting value that is a relative value between the reference state quantity and the i-th tracking state quantity, and ΔPVim is A follow-up state quantity relative measurement value, which is a measurement value of a relative quantity between the reference state quantity and the i-th follow-up state quantity, Bi is a coefficient relating to a relative quantity between the reference state quantity and the i-th follow-up state quantity. The coefficient Am related to the reference state quantity may be given to each control loop or may be given to each control loop individually.

また式(6)において、ΔSPim=SPi−SPm、ΔPVim=PVi−PVmであることは言うまでもなく、以下のような等価な置換は容易に可能である。
SPi’=AmSPm+(1−Am)PVm+BiΔSPim
+(1−Bi)(PVi−PVm) ・・・(7)
SPi’=AmSPm+(1−Am)PVm+Bi(SPi−SPm)
+(1−Bi)(PVi−PVm) ・・・(8)
Further, in the equation (6), it is needless to say that ΔSPim = SPi−SPm and ΔPVim = PVi−PVm, and the following equivalent substitution can be easily performed.
SPi ′ = AmSPm + (1−Am) PVm + BiΔSPim
+ (1-Bi) (PVi-PVm) (7)
SPi '= AmSPm + (1-Am) PVm + Bi (SPi-SPm)
+ (1-Bi) (PVi-PVm) (8)

以上の原理により、基準状態量の感度と、基準状態量と追従状態量との相対量の感度とを、各々個別にシフトできる状態量内部設定値SP’が得られる。続いて、基準状態量と追従状態量との相対量を優先的に制御する原理について説明する。式(8)において、基準状態量に関する係数Amと基準状態量と追従状態量との相対量に関する係数Biとの関係をAm=Bi=1とすれば、SPi’=SPiになる。このときの状態量内部設定値SPi’は状態量設定値SPiから全く変化しておらず、感度についても通常の制御と全く変化はない。ここで、特に重要なのは基準状態量と追従状態量との相対量に関する係数Biであり、Bi>1とすることで基準状態量と追従状態量との相対量について特に感度が向上するので、相対量を優先的に制御するように制御装置を動作させることができる。   According to the above principle, the state quantity internal set value SP ′ that can individually shift the sensitivity of the reference state quantity and the sensitivity of the relative quantity of the reference state quantity and the tracking state quantity is obtained. Next, the principle of preferentially controlling the relative amount between the reference state amount and the follow-up state amount will be described. In Expression (8), if the relationship between the coefficient Am related to the reference state quantity and the coefficient Bi related to the relative quantity between the reference state quantity and the follow-up state quantity is Am = Bi = 1, SPi ′ = SPi. At this time, the state quantity internal set value SPi 'is not changed from the state quantity set value SPi at all, and the sensitivity is not changed at all from the normal control. Here, what is particularly important is the coefficient Bi relating to the relative amount between the reference state quantity and the follow-up state quantity. By setting Bi> 1, the sensitivity is particularly improved with respect to the relative quantity between the reference state quantity and the follow-up state quantity. The controller can be operated to preferentially control the amount.

特開平8−095647号公報JP-A-8-095647 特開平9−199491号公報JP-A-9-199491 特開2005−309941号公報JP 2005-309941 A 特開2005−309942号公報JP 2005-309942 A 特開2005−309943号公報JP 2005-309943 A

先行出願の制御方法では、相対量に関する係数Biは予め設定された一定値として扱われている。制御の過渡状態において状態量差を所望の範囲に制御し、かつ整定状態において安定的な挙動を得ることができるならば、係数Biを一定値として扱うことに全く問題はない。しかし、過渡状態において状態量差を高い精度で所望の範囲に制御しようとする場合は、係数Biを十分に大きな値にしなければならないが、係数Biを過度に大きくすると、整定状態での安定性が損なわれやすくなり、状況によっては係数Biを大きな値にしたことが制御の不安定化の要因になることもある。以下、係数Biの増大による制御の不安定化について図を用いて説明する。   In the control method of the prior application, the coefficient Bi relating to the relative amount is handled as a preset constant value. If the state quantity difference can be controlled within a desired range in the transient state of control and a stable behavior can be obtained in the settling state, there is no problem in handling the coefficient Bi as a constant value. However, when the state quantity difference is to be controlled in a desired range with high accuracy in the transient state, the coefficient Bi must be set to a sufficiently large value. However, if the coefficient Bi is excessively increased, the stability in the settling state is increased. However, depending on the situation, a large value of the coefficient Bi may cause the control to become unstable. Hereinafter, control instability due to an increase in the coefficient Bi will be described with reference to the drawings.

図7は、温度制御ループが3個の場合のPID制御によるステップ応答のシミュレーション結果を示す図である。図8、図9は、先行出願の制御方法において、温度制御ループが3個で、基準状態量として3個の制御ループの状態量平均値を採用すると共に追従状態量として3個の制御ループの各状態量を採用し、各制御ループの温度差を小さくすることを目的とした場合のシミュレーション結果を示す図である。図7(a)、図8(a)、図9(a)は、温度設定値SP1,SP2,SP3を0から40に変更したときの制御系のステップ応答を示す図であり、図7(b)、図8(b)、図9(b)は、それぞれ図7(a)、図8(a)、図9(a)を拡大した図である。なお、シミュレーションの詳細な条件については後述する。   FIG. 7 is a diagram illustrating a simulation result of step response by PID control when there are three temperature control loops. FIG. 8 and FIG. 9 show that in the control method of the prior application, the temperature control loop is three, the average value of the three control loops is adopted as the reference state quantity, and the three control loops are used as the follow-up state quantity. It is a figure which shows the simulation result at the time of employ | adopting each state quantity and aiming at making the temperature difference of each control loop small. 7A, FIG. 8A, and FIG. 9A are diagrams showing step responses of the control system when the temperature set values SP1, SP2, and SP3 are changed from 0 to 40. FIG. b), FIG. 8B, and FIG. 9B are enlarged views of FIG. 7A, FIG. 8A, and FIG. 9A, respectively. Detailed conditions for the simulation will be described later.

通常のPID制御は3個の制御ループに相互作用を持たせていないため、図7(a)、図7(b)に示すPID制御のシミュレーション結果では、過渡状態における温度差(温度計測値PV1,PV2,PV3の差)が大きい。
図8(a)、図8(b)に示すシミュレーション結果は、先行出願の制御方法において係数Amの値を1.0に設定し、係数B1,B2,B3の値を3.0に設定したものであり、図7(a)、図7(b)の場合に比べて過渡状態における温度差がかなり小さくなっているが、図8(b)を詳細に見ると温度差を小さくする効果が不十分なことが分かる。
Since normal PID control does not give interaction to the three control loops, the simulation results of PID control shown in FIGS. 7A and 7B show the temperature difference (temperature measurement value PV1 in the transient state). , PV2, PV3) is large.
The simulation results shown in FIGS. 8A and 8B show that the value of the coefficient Am is set to 1.0 and the values of the coefficients B1, B2, and B3 are set to 3.0 in the control method of the prior application. The temperature difference in the transient state is considerably smaller than those in FIGS. 7 (a) and 7 (b). However, when FIG. It turns out that it is insufficient.

図9(a)、図9(b)に示すシミュレーション結果は、先行出願の制御方法において係数Amの値を1.0に設定し、係数B1,B2,B3の値を6.7に設定したものであり、図8(a)、図8(b)の場合に比べて過渡状態における温度差がさらに小さくなっているが、温度差を小さくしようとする作用が強いため、温度計測値PV1,PV2,PV3が温度設定値SP1,SP2,SP3に到達する付近で温度計測値PV1,PV2,PV3に上下動が発生し、制御特性が劣化していることが分かる。   In the simulation results shown in FIGS. 9A and 9B, the value of the coefficient Am is set to 1.0 and the values of the coefficients B1, B2, and B3 are set to 6.7 in the control method of the prior application. Although the temperature difference in the transient state is further smaller than in the cases of FIGS. 8A and 8B, the temperature measurement value PV1, It can be seen that vertical movements occur in the temperature measurement values PV1, PV2, and PV3 in the vicinity of PV2 and PV3 reaching the temperature setting values SP1, SP2, and SP3, and the control characteristics are deteriorated.

本発明は、上記課題を解決するためになされたもので、複数の状態量間の状態量差等の相対量を所望の値に維持しつつ、複数の状態量の平均値等の絶対量を所望の値に変更する制御を行う制御系において、過渡状態における相対量の制御性と整定状態における制御の安定性とを両立させることができる制御方法および制御装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problem, and maintains an absolute amount such as an average value of a plurality of state quantities while maintaining a relative amount such as a state quantity difference between the plurality of state quantities at a desired value. It is an object of the present invention to provide a control method and a control apparatus that can achieve both controllability of a relative amount in a transient state and stability of control in a settling state in a control system that performs control to change to a desired value.

本発明は、少なくとも2個の制御ループを有する制御系の制御方法において、特定の基準となる状態量を基準状態量とし、この基準状態量との相対量が予め規定された値を維持するように制御される状態量を追従状態量としたとき、前記追従状態量を制御するコントローラに入力される複数の制御演算用入力値の一部である追従状態量設定値SPiと追従状態量計測値PViとの偏差に基づいて、前記追従状態量計測値PViの基準状態量計測値PVmへの追従性の度合を規定する第1の係数を切り換える切換判断手順と、前記複数の制御演算用入力値のうち1つを内部入力値に変換した上で前記コントローラに入力する算出手順とを備え、前記算出手順は、前記内部入力値を前記基準状態量に対する第1の要素と前記相対量に対する第2の要素との和とし、前記基準状態量に対する前記制御演算用入力値の要素を前記第1の要素とし、前記相対量に対する前記制御演算用入力値の要素に前記第1の係数を掛けた値を前記第2の要素とすることで、前記内部入力値を算出し、前記切換判断手順は、前記追従状態量設定値SPiから特定の範囲よりも遠いポイントに前記追従状態量計測値PViがあるときは、前記第1の係数として所定の第1の値を選択し、前記追従状態量設定値SPiから前記特定の範囲内の近いポイントに前記追従状態量計測値PViがあるときは、前記追従性の度合が前記第1の値よりも弱い所定の第2の値を前記第1の係数として選択するようにしたものである。   According to the present invention, in a control method of a control system having at least two control loops, a state quantity serving as a specific reference is set as a reference state quantity, and a relative quantity with respect to the reference state quantity is maintained at a predetermined value. When the state quantity controlled by the tracking state quantity is a tracking state quantity, the tracking state quantity set value SPi and the tracking state quantity measurement value, which are a part of a plurality of control calculation input values input to the controller that controls the tracking state quantity Based on the deviation from PVi, a switching judgment procedure for switching a first coefficient that defines the degree of followability of the follow-up state quantity measurement value PVi to the reference state quantity measurement value PVm, and the plurality of control calculation input values A calculation procedure for converting the internal input value into an internal input value and inputting the internal input value to the controller. The calculation procedure includes a first element for the reference state quantity and a second element for the relative quantity. of A value obtained by multiplying the element of the control calculation input value for the relative quantity by the first coefficient, the element of the control calculation input value for the reference state quantity as the first element, By using the second element, the internal input value is calculated, and the switching determination procedure is performed when the follow-up state amount measurement value PVi is at a point farther than a specific range from the follow-up state amount set value SPi. Selects a predetermined first value as the first coefficient, and when the follow-up state quantity measured value PVi is near a point within the specific range from the follow-up state quantity set value SPi, the follow-up performance is A predetermined second value that is weaker than the first value is selected as the first coefficient.

また、本発明の制御方法の1構成例において、前記切換判断手順は、予め設定された判断指標Crを超える前記追従状態量設定値SPiの変化があった時点で、この時点以降は前記追従状態量設定値SPiから前記特定の範囲よりも遠いポイントに前記追従状態量計測値PViがあると判断し、追従状態量毎の前記偏差を代表する値が予め設定された判断指標Csよりも小さくなった時点で、この時点以降は前記追従状態量設定値SPiから前記特定の範囲内の近いポイントに前記追従状態量計測値PViがあると判断するようにしたものである。
また、本発明の制御方法の1構成例において、前記内部入力値に変換される制御演算用入力値は、追従状態量設定値SPiであり、前記内部入力値は、追従状態量内部設定値SPi’である。
また、本発明の制御方法の1構成例において、前記内部入力値に変換される制御演算用入力値は、追従状態量計測値PViであり、前記内部入力値は、追従状態量内部計測値PVi’である。
また、本発明の制御方法の1構成例において、前記内部入力値に変換される制御演算用入力値は、追従状態量偏差Eriであり、前記内部入力値は、追従状態量内部偏差Eri’である。
Further, in one configuration example of the control method of the present invention, the switching determination procedure is performed when the follow-up state amount setting value SPi exceeds a preset determination index Cr, and after this time, the follow-up state is determined. It is determined that the follow-up state amount measurement value PVi is at a point far from the specific range from the amount set value SPi, and a value representing the deviation for each follow-up state amount is smaller than a preset determination index Cs. From this point onward, it is determined that the follow-up state quantity measurement value PVi is at a point close to the specific range from the follow-up state quantity set value SPi.
In one configuration example of the control method of the present invention, the control calculation input value converted into the internal input value is a follow-up state amount set value SPi, and the internal input value is a follow-up state amount internal set value SPi. 'Is.
In one configuration example of the control method of the present invention, the control calculation input value converted into the internal input value is a follow-up state quantity measurement value PVi, and the internal input value is a follow-up state quantity internal measurement value PVi. 'Is.
In one configuration example of the control method of the present invention, the input value for control calculation converted into the internal input value is a tracking state quantity deviation Eri, and the internal input value is a tracking state quantity internal deviation Eri ′. is there.

また、本発明は、少なくとも2個の制御ループを有する制御系の装置において、特定の基準となる状態量を基準状態量とし、この基準状態量との相対量が予め規定された値を維持するように制御される状態量を追従状態量としたとき、追従状態量毎に設けられ、追従状態量を制御するための操作量を算出して、算出した操作量を対応する制御ループの制御対象に出力するコントローラと、追従状態量毎に設けられ、前記前記コントローラに入力される複数の制御演算用入力値のうちの1つを内部入力値に変換した上で、対応する前記コントローラに入力する内部入力値算出部と、前記複数の制御演算用入力値の一部である追従状態量設定値SPiと追従状態量計測値PViとの偏差に基づいて、前記追従状態量計測値PViの基準状態量計測値PVmへの追従性の度合を規定する第1の係数を切り換える係数切換判断部とを備え、前記内部入力値算出部は、前記内部入力値を前記基準状態量に対する第1の要素と前記相対量に対する第2の要素との和とし、前記基準状態量に対する前記制御演算用入力値の要素を前記第1の要素とし、前記相対量に対する前記制御演算用入力値の要素に所定の第1の係数を掛けた値を前記第2の要素とすることで、前記内部入力値を算出し、前記係数切換判断部は、前記追従状態量設定値SPiから特定の範囲よりも遠いポイントに前記追従状態量計測値PViがあるときは、前記第1の係数として所定の第1の値を選択し、前記追従状態量設定値SPiから前記特定の範囲内の近いポイントに前記追従状態量計測値PViがあるときは、前記追従性の度合が前記第1の値よりも弱い所定の第2の値を前記第1の係数として選択するものである。   Further, according to the present invention, in a control system device having at least two control loops, a state quantity serving as a specific reference is set as a reference state quantity, and a relative quantity with respect to the reference state quantity is maintained at a predetermined value. When the state quantity controlled in this way is set as the follow-up state quantity, the operation amount for controlling the follow-up state quantity is calculated for each follow-up state quantity, and the control object of the control loop corresponding to the calculated operation quantity is calculated. Provided for each follow-up state quantity, and one of a plurality of control calculation input values input to the controller is converted into an internal input value and then input to the corresponding controller. The reference state of the follow-up state quantity measurement value PVi based on the deviation between the internal input value calculation unit and the follow-up state quantity set value SPi that is a part of the plurality of control calculation input values and the follow-up state quantity measurement value PVi Quantity measurement A coefficient switching determination unit that switches a first coefficient that defines the degree of follow-up to PVm, and the internal input value calculation unit converts the internal input value into the first element and the relative amount with respect to the reference state quantity. , The element of the control calculation input value for the reference state quantity is the first element, and the element of the control calculation input value for the relative quantity is a predetermined first coefficient The internal input value is calculated by setting the value multiplied by the second element, and the coefficient switching determination unit determines that the tracking state quantity is at a point farther than a specific range from the tracking state quantity setting value SPi. When there is a measured value PVi, a predetermined first value is selected as the first coefficient, and the follow-up state amount measured value PVi is located at a point within the specific range from the follow-up state amount set value SPi. When the follow-up In which the degree of selecting the weaker predetermined second value than the first value as said first coefficient.

また、本発明の制御装置は、特定の基準となる状態量を基準状態量とし、この基準状態量との相対量が予め規定された値を維持するように制御される状態量を追従状態量としたとき、追従状態量iに関する制御系iの構成として、追従状態量iを制御するための操作量を算出して、算出した操作量を対応する制御ループの制御対象に出力するコントローラと、前記追従状態量計測値PViの基準状態量計測値PVmへの追従性の度合を規定する第1の係数Biとして、第1の値と前記追従性の度合が前記第1の値よりも弱い第2の値とを記憶する係数記憶部と、前記コントローラに入力される複数の制御演算用入力値のうちの1つである追従状態量設定値SPiを追従状態量内部設定値SPi’に変換に変換した上で、対応する前記コントローラに入力する追従状態量内部設定値算出部とを、追従状態量i毎に備え、前記基準状態量に関する構成として、追従状態量毎の追従状態量設定値SPiから基準状態量設定値SPmを算出する基準状態量設定値算出部と、追従状態量毎の追従状態量計測値PViから基準状態量計測値PVmを算出する基準状態量計測値算出部とを備え、前記第1の係数Biの切り換えに関する構成として、前記追従状態量設定値SPiと前記追従状態量計測値PViとの偏差の絶対値から追従状態量毎の前記偏差を代表する値である基準偏差Ermを算出する基準偏差算出部と、追従状態量毎の前記追従状態量設定値SPiのうち少なくとも1つに予め設定された判断指標Crを超える変化があった時点で、この時点以降は前記第1の係数Biとして前記第1の値を出力するよう前記係数記憶部に指示し、前記基準偏差Ermが予め設定された判断指標Csよりも小さくなった時点で、この時点以降は前記第1の係数Biとして前記第2の値を出力するよう前記係数記憶部に指示する係数切換判断部とを備えるものである。   In addition, the control device of the present invention uses a state quantity serving as a specific reference as a reference state quantity, and sets the state quantity controlled so as to maintain a predetermined value relative to the reference state quantity as a follow-up state quantity. Then, as a configuration of the control system i related to the follow-up state quantity i, a controller that calculates an operation amount for controlling the follow-up state quantity i and outputs the calculated operation quantity to a control target of a corresponding control loop; As the first coefficient Bi that defines the degree of followability of the follow-up state quantity measurement value PVi to the reference state quantity measurement value PVm, the first value and the degree of followability are weaker than the first value. 2 for converting the tracking state quantity set value SPi, which is one of a plurality of control calculation input values input to the controller, into a tracking state quantity internal setting value SPi ′. After conversion, the corresponding control A tracking state amount internal set value calculation unit that inputs to the tracking state amount i for each tracking state amount i. As a configuration related to the reference state amount, a reference state amount setting value SPm is obtained from the tracking state amount setting value SPi for each tracking state amount. A reference state quantity set value calculation unit for calculating, and a reference state quantity measurement value calculation unit for calculating a reference state quantity measurement value PVm from the follow-up state quantity measurement value PVi for each follow-up state quantity, and the first coefficient Bi As a configuration relating to switching, a reference deviation calculation unit that calculates a reference deviation Erm that is a value representing the deviation for each follow-up state quantity from an absolute value of a deviation between the follow-up state quantity set value SPi and the follow-up state quantity measured value PVi. And when there is a change exceeding a preset judgment index Cr in at least one of the follow-up state quantity set values SPi for each follow-up state quantity, and after this time, the first coefficient Bi is used as the first coefficient Bi. The coefficient storage unit is instructed to output a value of 1, and when the reference deviation Erm becomes smaller than a predetermined determination index Cs, the second coefficient is set as the first coefficient Bi after this point. A coefficient switching determination unit that instructs the coefficient storage unit to output a value.

本発明によれば、少なくとも2個の制御ループを有する制御系において、特定の基準となる状態量を基準状態量とし、この基準状態量との相対量が予め規定された値を維持するように制御される状態量を追従状態量としたとき、追従状態量を制御するコントローラに入力される複数の制御演算用入力値のうち1つを内部入力値に変換した上でコントローラに入力する算出手順を実行し、この算出手順において内部入力値を基準状態量に対する第1の要素と相対量に対する第2の要素との和として算出することにより、基準状態量と追従状態量との状態量差などの相対量を所望の値に維持しつつ、状態量平均値などの基準状態量を所望の値に変更する制御を実現することができる。また、本発明では、コントローラの操作量と実際のアクチュエータの出力とが1対1に対応する制御系を構成することができるので、積分ワインドアップを防止することができ、従来考案されているパラメータ調整方法や自動調整機能などを適用してコントローラを調整することができる。また、内部入力値の第2の要素として、相対量に対する制御演算用入力値の要素に第1の係数を掛けた値を使用することにより、相対量を優先的に制御しながら、基準状態量も同時に制御することができる。さらに、本発明では、追従状態量設定値SPiから特定の範囲よりも遠いポイントに追従状態量計測値PViがあるときは、第1の係数として所定の第1の値を選択し、追従状態量設定値SPiから特定の範囲内の近いポイントに追従状態量計測値PViがあるときは、追従状態量計測値PViの基準状態量計測値PVmへの追従性の度合が第1の値よりも弱い所定の第2の値を第1の係数として選択することにより、過渡状態では相対量が所望の値に追従する効果を強く得ることができ、かつ整定状態に近づいたときは相対量を制御する効果を弱くして、追従状態量計測値の上下動を抑えることができるので、過渡状態における相対量の制御性と整定状態における制御の安定性とを両立させることができる。   According to the present invention, in a control system having at least two control loops, a state quantity serving as a specific reference is set as a reference state quantity, and a relative quantity with the reference state quantity is maintained at a predetermined value. A calculation procedure in which one of a plurality of control calculation input values input to the controller that controls the tracking state quantity is converted into an internal input value and input to the controller when the controlled state quantity is a tracking state quantity In this calculation procedure, the internal input value is calculated as the sum of the first element with respect to the reference state quantity and the second element with respect to the relative quantity, thereby obtaining a state quantity difference between the reference state quantity and the follow-up state quantity, etc. It is possible to realize control for changing the reference state quantity such as the average value of the state quantity to a desired value while maintaining the relative quantity of the desired quantity. Further, in the present invention, since a control system in which the operation amount of the controller and the actual actuator output correspond one-to-one can be configured, integral wind-up can be prevented, and parameters conventionally devised. The controller can be adjusted by applying an adjustment method or automatic adjustment function. Further, by using a value obtained by multiplying the element of the input value for control calculation with respect to the relative quantity by the first coefficient as the second element of the internal input value, the reference state quantity is controlled while preferentially controlling the relative quantity. Can also be controlled simultaneously. Further, in the present invention, when the follow-up state quantity measurement value PVi is at a point far from the specific range from the follow-up state quantity set value SPi, a predetermined first value is selected as the first coefficient, and the follow-up state quantity When the follow-up state quantity measurement value PVi is near a point within a specific range from the set value SPi, the degree of followability of the follow-up state quantity measurement value PVi to the reference state quantity measurement value PVm is weaker than the first value. By selecting the predetermined second value as the first coefficient, the effect that the relative amount follows the desired value can be strongly obtained in the transient state, and the relative amount is controlled when the set value is approached. Since the effect can be weakened and the vertical movement of the follow-up state quantity measurement value can be suppressed, both the controllability of the relative amount in the transient state and the stability of the control in the settling state can be achieved.

また、本発明では、予め設定された判断指標Crと追従状態量設定値SPiの変化とを比較することにより、追従状態量設定値SPiから特定の範囲よりも遠いポイントに追従状態量計測値PViがある否かを判断することができ、追従状態量毎の偏差を代表する値と予め設定された判断指標Csとを比較することにより、追従状態量設定値SPiから特定の範囲内の近いポイントに追従状態量計測値PViがあるか否かを判断することができる。   Further, in the present invention, the tracking state quantity measured value PVi is measured at a point farther than the specific range from the tracking state quantity setting value SPi by comparing a predetermined determination index Cr with a change in the tracking state quantity setting value SPi. By comparing a value representative of the deviation for each follow-up state quantity with a preset determination index Cs, a close point within a specific range from the follow-up state quantity set value SPi can be determined. It can be determined whether or not there is a follow-up state quantity measurement value PVi.

[発明の原理]
過渡状態において、追従状態量設定値SPiから追従状態量計測値PViが比較的離れたポイントにあるときは、状態量差を小さくする効果が強めに働いた方が好ましく、このとき追従状態量計測値PViと追従状態量設定値SPiが離れているために追従状態量計測値PViの上下動は実質的には目立たない。一方、追従状態量設定値SPiから追従状態量計測値PViが比較的近いポイントにあるときは、状態量差を小さくする効果が強めに働く必要性が小さくなるのと同時に、追従状態量計測値PViの上下動が目立つようになる。本発明は、この点に着眼する。すなわち、ステップ応答について言えば、追従状態量設定値SPiから追従状態量計測値PViが比較的離れた応答前半においては図9(a)、図9(b)のような動きが好ましく、追従状態量設定値SPiから追従状態量計測値PViが比較的近い応答後半においては図8(a)、図8(b)のような動きが好ましい。
[Principle of the Invention]
In the transient state, when the follow-up state quantity measurement value PVi is at a relatively distant point from the follow-up state quantity set value SPi, it is preferable that the effect of reducing the state quantity difference works more strongly. Since the value PVi and the follow-up state quantity set value SPi are separated from each other, the vertical movement of the follow-up state quantity measured value PVi is substantially inconspicuous. On the other hand, when the follow-up state quantity measurement value PVi is at a relatively close point from the follow-up state quantity set value SPi, the need for a stronger effect of reducing the state quantity difference becomes smaller, and at the same time, the follow-up state quantity measurement value The vertical movement of PVi becomes noticeable. The present invention focuses on this point. That is, with regard to the step response, in the first half of the response in which the follow-up state quantity measurement value PVi is relatively far from the follow-up state quantity set value SPi, the movements as shown in FIGS. 9A and 9B are preferable. In the second half of the response in which the follow-up state quantity measurement value PVi is relatively close to the quantity setting value SPi, movements as shown in FIGS. 8A and 8B are preferable.

本発明は、上記着眼点に基づき、追従状態量設定値SPiから特定の範囲よりも遠いポイントに追従状態量計測値PViがあるときは、係数Biとして所定の第1の値を選択し、追従状態量設定値SPiから特定の範囲内の近いポイントに追従状態量計測値PViがあるときは、追従状態量計測値PViの基準状態量計測値PVmへの追従性の度合が第1の値よりも弱い所定の第2の値を係数Biとして選択するように切り換えることで、前述の課題を解決する。   The present invention selects a predetermined first value as the coefficient Bi when the follow-up state quantity measurement value PVi is at a point far from a specific range from the follow-up state quantity set value SPi on the basis of the above point of interest. When the follow-up state quantity measurement value PVi is near a point within a specific range from the state quantity set value SPi, the degree of followability of the follow-up state quantity measurement value PVi to the reference state quantity measurement value PVm is higher than the first value. The above-mentioned problem is solved by switching to select a predetermined second value that is also weak as the coefficient Bi.

具体的には、予め設定された判断指標Crを超える追従状態量設定値SPiの変化があった時点で、この時点以降は係数Biとして第1の値を選択するように切り換え、追従状態量毎の偏差を代表する値が予め設定された判断指標Csよりも小さくなった時点で、この時点以降は係数Biとして第2の値を選択するように切り換える形に構成する。追従状態量毎の偏差を代表する値としては、例えば追従状態量設定値SPiと追従状態量計測値PViとの偏差の絶対値の平均値がある。なお、係数Biを第1の値と第2の値の2つに限らず、3つ以上用意して、追従状態量計測値PViの基準状態量計測値PVmへの追従性の度合をさらに細かく切り換えるようにしてもよい。   Specifically, when there is a change in the follow-up state amount setting value SPi exceeding the preset determination index Cr, switching is performed so that the first value is selected as the coefficient Bi after this point. When the value representative of the deviation becomes smaller than the preset determination index Cs, the second value is selected as the coefficient Bi after this point. As a value representative of the deviation for each follow-up state quantity, for example, there is an average value of absolute values of deviations between the follow-up state quantity set value SPi and the follow-up state quantity measurement value PVi. Note that the coefficient Bi is not limited to the first value and the second value, but three or more are prepared, and the degree of followability of the follow-up state quantity measurement value PVi to the reference state quantity measurement value PVm is further detailed. You may make it switch.

本発明では、n個の制御ループに対して、相対量を所望の値に維持する制御、より具体的には状態量差を小さくする制御を想定する。ステップ応答時の過渡状態では、状態量変化の速度が大きいため状態量差が目標水準(あるいは許容水準)に対して外れる確率は当然高くなる。すなわち、例えば2個の状態量があり、ある制御周期(計測周期)において全く同じ状態量値(追従状態量計測値)にあったとき、次の制御周期で観測される2個の状態量変化幅の比が4:3であったとき、状態量変化の速度が大きいほどこの比の差は大きな状態量差として現れる。逆にほぼ整定状態にあるときに、同様に2個の状態量変化幅の比が4:3であっても、状態量変化の速度が小さいのであるから、この比の差が状態量差として現れても小さな状態量差にしかならない。したがって、状態量変化の速度が大きい過渡状態ほど、状態量差を小さくするような作用が強めに働く必要がある。   In the present invention, for the n control loops, control for maintaining the relative amount at a desired value, more specifically, control for reducing the state quantity difference is assumed. In the transient state at the time of step response, the state quantity change speed is large, so the probability that the state quantity difference deviates from the target level (or allowable level) is naturally high. That is, for example, when there are two state quantities, and there is exactly the same state quantity value (following state quantity measurement value) in a certain control period (measurement period), two state quantity changes observed in the next control period When the width ratio is 4: 3, the larger the state quantity change speed, the larger the difference in the ratio appears as a state quantity difference. On the other hand, even when the ratio of the two state quantity change widths is 4: 3 when the state is almost in a settling state, the speed of the state quantity change is small. Even if it appears, there is only a small difference in the state quantity. Therefore, it is necessary to increase the effect of reducing the state quantity difference in the transient state where the state quantity change speed is large.

一方、整定状態あるいは追従状態量計測値PViが全体的に追従状態量設定値SPiから特定の範囲以内に収束した状態では、基本的に状態量差自体も所望の許容範囲内に収束していることになるので、状態量差を小さくしようとする必要性も小さいし、むしろ状態量差を小さくするためにむやみに操作量MViを動かさない方が好ましいぐらいになる。したがって、整定状態あるいはそれに準ずる状態では、状態量差を小さくするような作用が強めに働く必要はない。   On the other hand, in the state where the settling state or follow-up state quantity measurement value PVi converges within a specific range from the follow-up state quantity set value SPi, the state quantity difference itself basically converges within a desired allowable range. Therefore, the necessity to reduce the state quantity difference is small, and it is rather preferable not to move the manipulated variable MVi in order to reduce the state quantity difference. Therefore, in the settling state or a state corresponding thereto, it is not necessary to act strongly to reduce the state quantity difference.

[実施の形態]
図1は本発明の実施の形態となる制御装置の構成を示すブロック図である。本実施の形態は、制御ループが3個で、基準状態量として3個の制御ループの状態量平均値を採用し、追従状態量として3個の制御ループの各状態量を採用する場合の例であるが、2個以上の制御ループであれば同様の原理で、同様の制御系を構成できる。
[Embodiment]
FIG. 1 is a block diagram showing a configuration of a control apparatus according to an embodiment of the present invention. In this embodiment, there are three control loops, an average value of the three control loops is used as the reference state quantity, and each of the three control loops is used as the follow-up state quantity. However, if two or more control loops are used, a similar control system can be configured based on the same principle.

図1の制御装置は、第1の追従状態量に関する第1の制御系の構成として、追従状態量設定値SP1入力部1−1と、追従状態量計測値PV1入力部2−1と、操作量MV1出力部3−1と、PID制御演算部(PIDコントローラ)4−1と、追従状態量計測値PV1の基準状態量計測値PVmへの追従性の度合を規定する係数B1として、第1の値と追従性の度合が第1の値よりも弱い第2の値とを記憶する係数B1記憶部5−1と、追従状態量内部設定値SP1’算出部6−1とを備える。また、図1の制御装置は、第2の追従状態量に関する第2の制御系の構成として、追従状態量設定値SP2入力部1−2と、追従状態量計測値PV2入力部2−2と、操作量MV2出力部3−2と、PID制御演算部(PIDコントローラ)4−2と、追従状態量計測値PV2の基準状態量計測値PVmへの追従性の度合を規定する係数B2として、第1の値と追従性の度合が第1の値よりも弱い第2の値とを記憶する係数B2記憶部5−2と、追従状態量内部設定値SP2’算出部6−2とを備える。また、図1の制御装置は、第3の追従状態量に関する第3の制御系の構成として、追従状態量設定値SP3入力部1−3と、追従状態量計測値PV3入力部2−3と、操作量MV3出力部3−3と、PID制御演算部(PIDコントローラ)4−3と、追従状態量計測値PV3の基準状態量計測値PVmへの追従性の度合を規定する係数B3として、第1の値と追従性の度合が第1の値よりも弱い第2の値とを記憶する係数B3記憶部5−3と、追従状態量内部設定値SP3’算出部6−3とを備える。   The control device of FIG. 1 includes a tracking state quantity set value SP1 input unit 1-1, a tracking state quantity measured value PV1 input unit 2-1, and an operation as a configuration of a first control system related to the first tracking state quantity. The amount MV1 output unit 3-1, the PID control calculation unit (PID controller) 4-1, and the coefficient B1 that defines the degree of followability of the follow-up state quantity measurement value PV1 to the reference state quantity measurement value PVm is the first coefficient B1. And a coefficient B1 storage unit 5-1 for storing a second value whose followability is weaker than the first value, and a tracking state amount internal set value SP1 ′ calculation unit 6-1. In addition, the control device of FIG. 1 includes, as the configuration of the second control system related to the second follow-up state quantity, a follow-up state quantity set value SP2 input unit 1-2, a follow-up state quantity measured value PV2 input unit 2-2, As a coefficient B2 that regulates the degree of follow-up of the follow-up state quantity measurement value PV2 to the reference state quantity measurement value PVm, the operation amount MV2 output part 3-2, the PID control calculation part (PID controller) 4-2, A coefficient B2 storage unit 5-2 that stores a first value and a second value whose followability is weaker than the first value and a tracking state amount internal set value SP2 ′ calculation unit 6-2 are provided. . In addition, the control device of FIG. 1 includes, as the configuration of the third control system related to the third follow-up state quantity, a follow-up state quantity set value SP3 input unit 1-3, a follow-up state quantity measured value PV3 input unit 2-3, As a coefficient B3 that defines the degree of follow-up of the follow-up state quantity measurement value PV3 to the reference state quantity measurement value PVm, the operation amount MV3 output section 3-3, the PID control calculation section (PID controller) 4-3, A coefficient B3 storage unit 5-3 that stores a first value and a second value whose followability is weaker than the first value, and a tracking state amount internal set value SP3 ′ calculation unit 6-3 are provided. .

また、図1の制御装置は、基準状態量に関する構成として、追従状態量設定値SP1とSP2とSP3の平均値を基準状態量設定値SPmとして算出する基準状態量設定値SPm算出部7と、追従状態量計測値PV1とPV2とPV3の平均値を基準状態量計測値PVmとして算出する基準状態量計測値PVm算出部8と、係数Am記憶部9とを備える。   In addition, the control device of FIG. 1 has a reference state quantity setting value SPm calculation unit 7 that calculates an average value of the following state quantity setting values SP1, SP2, and SP3 as the reference state quantity setting value SPm as a configuration related to the reference state quantity. A reference state quantity measurement value PVm calculation unit 8 that calculates an average value of the following state quantity measurement values PV1, PV2, and PV3 as a reference state quantity measurement value PVm, and a coefficient Am storage unit 9 are provided.

さらに、図1の制御装置は、係数Bi(iは追従状態量の個数で、本実施の形態ではi=1,2,3)の切り換えに関する構成として、追従状態量設定値SPiと追従状態量計測値PViとの偏差の絶対値から追従状態量毎の偏差を代表する値である基準偏差Ermを算出し、追従状態量設定値SPiのうち少なくとも1つに予め設定された判断指標Crを超える変化があった時点で、この時点以降は係数Biとして第1の値を出力するよう係数B1記憶部5−1と係数B2記憶部5−2と係数B3記憶部5−3に指示し、基準偏差Ermが予め設定された判断指標Csよりも小さくなった時点で、この時点以降は係数Biとして第2の値を出力するよう係数B1記憶部5−1と係数B2記憶部5−2と係数B3記憶部5−3に指示する係数Bi切換判断部10を備える。この係数Bi切換判断部10は、基準偏差Ermを算出する基準偏差算出部(不図示)を内部に備えている。   Further, the control device of FIG. 1 has a configuration related to switching of the coefficient Bi (i is the number of tracking state quantities, i = 1, 2, 3 in the present embodiment), and the tracking state quantity set value SPi and the tracking state quantity. A reference deviation Erm, which is a value representing the deviation for each follow-up state quantity, is calculated from the absolute value of the deviation from the measured value PVi, and exceeds a judgment index Cr set in advance in at least one of the follow-up state quantity set values SPi. When the change occurs, the coefficient B1 storage unit 5-1, the coefficient B2 storage unit 5-2, and the coefficient B3 storage unit 5-3 are instructed to output the first value as the coefficient Bi after this point, and the reference When the deviation Erm becomes smaller than the preset determination index Cs, the coefficient B1 storage unit 5-1, the coefficient B2 storage unit 5-2, and the coefficient are output so that the second value is output as the coefficient Bi after this point. Coefficient to instruct B3 storage unit 5-3 Comprises i switching judgment unit 10. The coefficient Bi switching determination unit 10 includes a reference deviation calculation unit (not shown) that calculates the reference deviation Erm.

図2は本実施の形態における制御系のブロック線図である。図2において、Er1’は第1の追従状態量の内部設定値SP1’と第1の追従状態量の計測値PV1との偏差、Er2’は第2の追従状態量の内部設定値SP2’と第2の追従状態量の計測値PV2との偏差、Er3’は第3の追従状態量の内部設定値SP3’と第3の追従状態量の計測値PV3との偏差、Amは基準状態量に関する係数、B1は第1の追従状態量と基準状態量との状態量差に関する係数、B2は第2の追従状態量と基準状態量との状態量差に関する係数、B3は第3の追従状態量と基準状態量との状態量差に関する係数、A1は第1の追従状態量を制御するアクチュエータ、A2は第2の追従状態量を制御するアクチュエータ、A3は第3の追従状態量を制御するアクチュエータ、P1は第1の追従状態量に係る制御対象プロセス、P2は第2の追従状態量に係る制御対象プロセス、P3は第3の追従状態量に係る制御対象プロセス、Gp1はアクチュエータA1とプロセスP1とを含むブロックの伝達関数、Gp2はアクチュエータA2とプロセスP2とを含むブロックの伝達関数、Gp3はアクチュエータA3とプロセスP3とを含むブロックの伝達関数である。   FIG. 2 is a block diagram of the control system in the present embodiment. In FIG. 2, Er1 ′ is a deviation between the internal set value SP1 ′ of the first follow-up state quantity and the measured value PV1 of the first follow-up state quantity, and Er2 ′ is an internal set value SP2 ′ of the second follow-up state quantity. The deviation of the second follow-up state quantity from the measured value PV2, Er3 ′ is the deviation between the third follow-up state quantity internal set value SP3 ′ and the third follow-up state quantity measured value PV3, and Am is the reference state quantity. A coefficient, B1 is a coefficient relating to a state quantity difference between the first following state quantity and the reference state quantity, B2 is a coefficient relating to a state quantity difference between the second following state quantity and the reference state quantity, and B3 is a third following state quantity. Is a coefficient relating to the difference between the state quantity and the reference state quantity, A1 is an actuator for controlling the first following state quantity, A2 is an actuator for controlling the second following state quantity, and A3 is an actuator for controlling the third following state quantity. , P1 is a control pair related to the first follow-up state quantity. Process, P2 is a control target process related to the second follow-up state quantity, P3 is a control target process related to the third follow-up state quantity, Gp1 is a transfer function of a block including the actuator A1 and the process P1, and Gp2 is an actuator A2 A transfer function Gp3 of the block including the process P2 is a transfer function of a block including the actuator A3 and the process P3.

追従状態量設定値SP1入力部1−1と、追従状態量計測値PV1入力部2−1と、操作量MV1出力部3−1と、PID制御演算部4−1と、追従状態量内部設定値SP1’算出部6−1と、アクチュエータA1と、プロセスP1とは、第1の制御系(第1の制御ループ)を構成している。追従状態量設定値SP2入力部1−2と、追従状態量計測値PV2入力部2−2と、操作量MV2出力部3−2と、PID制御演算部4−2と、追従状態量内部設定値SP2’算出部6−2と、アクチュエータA2と、プロセスP2とは、第2の制御系(第2の制御ループ)を構成している。そして、追従状態量設定値SP3入力部1−3と、追従状態量計測値PV3入力部2−3と、操作量MV3出力部3−3と、PID制御演算部4−3と、追従状態量内部設定値SP3’算出部6−3と、アクチュエータA3と、プロセスP3とは、第3の制御系(第3の制御ループ)を構成している。   Tracking state quantity set value SP1 input unit 1-1, tracking state quantity measured value PV1 input unit 2-1, operation amount MV1 output unit 3-1, PID control calculation unit 4-1, and tracking state quantity internal setting The value SP1 ′ calculation unit 6-1, the actuator A1, and the process P1 constitute a first control system (first control loop). Follow-up state quantity set value SP2 input section 1-2, follow-up state quantity measured value PV2 input section 2-2, manipulated variable MV2 output section 3-2, PID control calculation section 4-2, and follow-up state quantity internal setting The value SP2 ′ calculating unit 6-2, the actuator A2, and the process P2 constitute a second control system (second control loop). The follow-up state quantity set value SP3 input unit 1-3, the follow-up state quantity measured value PV3 input unit 2-3, the operation amount MV3 output unit 3-3, the PID control calculation unit 4-3, the follow-up state quantity The internal set value SP3 ′ calculating unit 6-3, the actuator A3, and the process P3 constitute a third control system (third control loop).

次に、本実施の形態の制御装置の動作を図3を用いて説明する。まず、追従状態量設定値SP1は、制御装置のオペレータによって設定され、追従状態量設定値SP1入力部1−1を介して追従状態量内部設定値SP1’算出部6−1と基準状態量設定値SPm算出部7と係数Bi切換判断部10とに入力される(図3ステップS101)。追従状態量設定値SP2は、オペレータによって設定され、追従状態量設定値SP2入力部1−2を介して追従状態量内部設定値SP2’算出部6−2と基準状態量設定値SPm算出部7と係数Bi切換判断部10とに入力される(ステップS102)。追従状態量設定値SP3は、オペレータによって設定され、追従状態量設定値SP3入力部1−3を介して追従状態量内部設定値SP3’算出部6−3と基準状態量設定値SPm算出部7と係数Bi切換判断部10とに入力される(ステップS103)。   Next, the operation of the control device of the present embodiment will be described with reference to FIG. First, the follow-up state quantity set value SP1 is set by the operator of the control device, and the follow-up state quantity set value SP1 ′ calculating unit 6-1 and the reference state quantity setting are set via the follow-up state quantity set value SP1 input unit 1-1. The values are input to the value SPm calculation unit 7 and the coefficient Bi switching determination unit 10 (step S101 in FIG. 3). The follow-up state quantity set value SP2 is set by the operator, and follows the follow-up state quantity set value SP2 ′ calculating unit 6-2 and the reference state quantity set value SPm calculating unit 7 via the follow-up state quantity set value SP2 input unit 1-2. And the coefficient Bi switching determination unit 10 (step S102). The follow-up state quantity set value SP3 is set by the operator, and follows the follow-up state quantity set value SP3 ′ calculator 6-3 and the reference state quantity set value SPm calculator 7 via the follow-up state quantity set value SP3 input unit 1-3. And the coefficient Bi switching judgment unit 10 (step S103).

追従状態量計測値PV1は、図示しない第1の検出手段によって検出され、追従状態量計測値PV1入力部2−1を介してPID制御演算部4−1と追従状態量内部設定値SP1’算出部6−1と基準状態量計測値PVm算出部8と係数Bi切換判断部10とに入力される(ステップS104)。追従状態量計測値PV2は、図示しない第2の検出手段によって検出され、追従状態量計測値PV2入力部2−2を介してPID制御演算部4−2と追従状態量内部設定値SP2’算出部6−2と基準状態量計測値PVm算出部8と係数Bi切換判断部10とに入力される(ステップS105)。追従状態量計測値PV3は、図示しない第3の検出手段によって検出され、追従状態量計測値PV3入力部2−3を介してPID制御演算部4−3と追従状態量内部設定値SP3’算出部6−3と基準状態量計測値PVm算出部8と係数Bi切換判断部10とに入力される(ステップS106)。   The follow-up state quantity measurement value PV1 is detected by first detection means (not shown), and the PID control calculation unit 4-1 and the follow-up state quantity internal set value SP1 ′ are calculated via the follow-up state quantity measurement value PV1 input unit 2-1. The data is input to the unit 6-1, the reference state measured value PVm calculation unit 8, and the coefficient Bi switching determination unit 10 (step S104). The follow-up state quantity measurement value PV2 is detected by a second detection unit (not shown), and the PID control calculation unit 4-2 and the follow-up state quantity internal set value SP2 ′ are calculated via the follow-up state quantity measurement value PV2 input unit 2-2. The data is input to the unit 6-2, the reference state quantity measurement value PVm calculation unit 8, and the coefficient Bi switching determination unit 10 (step S105). The follow-up state quantity measurement value PV3 is detected by a third detection unit (not shown), and the PID control calculation unit 4-3 and the follow-up state quantity internal set value SP3 ′ are calculated via the follow-up state quantity measurement value PV3 input unit 2-3. The data is input to the unit 6-3, the reference state quantity measurement value PVm calculation unit 8, and the coefficient Bi switching determination unit 10 (step S106).

係数Bi切換判断部10は、次式に示すように追従状態量設定値SP1と追従状態量計測値PV1との偏差の絶対値|Er1|、追従状態量設定値SP2と追従状態量計測値PV2との偏差の絶対値|Er2|、および追従状態量設定値SP3と追従状態量計測値PV3との偏差の絶対値|Er3|を算出し、さらに偏差の絶対値|Er1|と|Er2|と|Er3|の平均値を基準偏差Ermとして算出する(ステップS107)。
|Er1|=|SP1−PV1| ・・・(9)
|Er2|=|SP2−PV2| ・・・(10)
|Er3|=|SP3−PV3| ・・・(11)
Erm=(|Er1|+|Er2|+|Er3|)/3 ・・・(12)
As shown in the following equation, the coefficient Bi switching determination unit 10 has an absolute value | Er1 | of a deviation between the follow-up state amount set value SP1 and the follow-up state amount measured value PV1, and the follow-up state amount set value SP2 and the follow-up state amount measured value PV2. And the absolute value | Er3 | of the deviation between the follow-up state quantity set value SP3 and the follow-up state quantity measured value PV3, and the absolute values of the deviations | Er1 | and | Er2 | The average value of | Er3 | is calculated as the standard deviation Erm (step S107).
| Er1 | = | SP1-PV1 | (9)
| Er2 | = | SP2-PV2 | (10)
| Er3 | = | SP3-PV3 | (11)
Erm = (| Er1 | + | Er2 | + | Er3 |) / 3 (12)

そして、係数Bi切換判断部10は、追従状態量設定値SP1,SP2,SP3のうち少なくとも1つに1制御周期あたりの変化量が予め設定された判断指標Crよりも大きい変化が生じた時点で、追従状態量設定値SPiから特定の範囲よりも遠いポイントに追従状態量計測値PViがあると判断して、この時点以降は係数B1,B2,B3として所定の第1の値を出力するよう係数B1記憶部5−1と係数B2記憶部5−2と係数B3記憶部5−3に指示する(ステップS108)。また、係数Bi切換判断部10は、基準偏差Ermが予め設定された判断指標Csよりも小さくなった時点で、追従状態量設定値SPiから特定の範囲内の近いポイントに追従状態量計測値PViがあると判断して、この時点以降は係数B1,B2,B3として所定の第2の値を出力するよう係数B1記憶部5−1と係数B2記憶部5−2と係数B3記憶部5−3に指示する(ステップS108)。   Then, the coefficient Bi switching determination unit 10 at the time when the change amount per control cycle is larger than the predetermined determination index Cr in at least one of the follow-up state amount setting values SP1, SP2, SP3. Then, it is determined that the follow-up state quantity measurement value PVi is at a point far from the specific range from the follow-up state quantity set value SPi, and after this time, a predetermined first value is output as the coefficients B1, B2, and B3. The coefficient B1 storage unit 5-1, the coefficient B2 storage unit 5-2, and the coefficient B3 storage unit 5-3 are instructed (step S108). Further, the coefficient Bi switching determination unit 10 detects the tracking state quantity measured value PVi from a tracking state quantity set value SPi to a point within a specific range when the reference deviation Erm is smaller than a preset determination index Cs. After this time, the coefficient B1 storage unit 5-1, the coefficient B2 storage unit 5-2, and the coefficient B3 storage unit 5- are output so as to output predetermined second values as the coefficients B1, B2, and B3. 3 is instructed (step S108).

次に、基準状態量設定値SPm算出部7は、次式のように、追従状態量設定値SP1と追従状態量設定値SP2と追従状態量設定値SP3との平均値を基準状態量設定値SPmとして算出し、この基準状態量設定値SPmを追従状態量内部設定値SP1’算出部6−1と追従状態量内部設定値SP2’算出部6−2と追従状態量内部設定値SP3’算出部6−3とに出力する(ステップS109)。
SPm=(SP1+SP2+SP3)/3 ・・・(13)
Next, the reference state quantity set value SPm calculation unit 7 calculates an average value of the tracking state quantity set value SP1, the tracking state quantity set value SP2, and the tracking state quantity set value SP3 as a reference state quantity set value as shown in the following equation. SPm is calculated, and this reference state quantity set value SPm is calculated as a follow-up state quantity internal set value SP1 ′ calculation section 6-1, a follow-up state quantity internal set value SP2 ′ calculation section 6-2, and a follow-up state quantity internal set value SP3 ′. To the unit 6-3 (step S109).
SPm = (SP1 + SP2 + SP3) / 3 (13)

基準状態量計測値PVm算出部8は、次式のように、追従状態量計測値PV1と追従状態量計測値PV2と追従状態量計測値PV3との平均値を基準状態量計測値PVmとして算出し、この基準状態量計測値PVmを追従状態量内部設定値SP1’算出部6−1と追従状態量内部設定値SP2’算出部6−2と追従状態量内部設定値SP3’算出部6−3とに出力する(ステップS110)。
PVm=(PV1+PV2+PV3)/3 ・・・(14)
The reference state quantity measurement value PVm calculation unit 8 calculates an average value of the tracking state quantity measurement value PV1, the tracking state quantity measurement value PV2, and the tracking state quantity measurement value PV3 as the reference state quantity measurement value PVm as in the following equation. Then, the reference state quantity measurement value PVm is used as the tracking state quantity internal set value SP1 ′ calculation section 6-1, the tracking state quantity internal setting value SP2 ′ calculation section 6-2, and the tracking state quantity internal setting value SP3 ′ calculation section 6-6. 3 (step S110).
PVm = (PV1 + PV2 + PV3) / 3 (14)

係数Am記憶部9は、基準状態量に関する係数Amを予め記憶している。係数B1記憶部5−1は、第1の追従状態量と基準状態量との状態量差に関する係数B1として第1の値と第2の値を記憶しており、この第1の値と第2の値のうち係数Bi切換判断部10から指示された方の値を追従状態量内部設定値SP1’算出部6−1に出力する。追従状態量内部設定値SP1’算出部6−1は、係数Am,B1と基準状態量設定値SPmと基準状態量計測値PVmと追従状態量設定値SP1と追従状態量計測値PV1とに基づき、追従状態量内部設定値SP1’を次式のように算出する(ステップS111)。
SP1’=AmSPm+(1−Am)PVm+B1(SP1−SPm)
+(1−B1)(PV1−PVm) ・・・(15)
The coefficient Am storage unit 9 stores a coefficient Am related to the reference state quantity in advance. The coefficient B1 storage unit 5-1 stores the first value and the second value as the coefficient B1 related to the state quantity difference between the first following state quantity and the reference state quantity. Of the two values, the value instructed by the coefficient Bi switching determination unit 10 is output to the tracking state amount internal set value SP1 ′ calculation unit 6-1. The tracking state quantity internal set value SP1 ′ calculation unit 6-1 is based on the coefficients Am, B1, the reference state quantity setting value SPm, the reference state quantity measurement value PVm, the tracking state quantity setting value SP1, and the tracking state quantity measurement value PV1. Then, the tracking state quantity internal set value SP1 ′ is calculated as shown in the following equation (step S111).
SP1 ′ = AmSPm + (1-Am) PVm + B1 (SP1-SPm)
+ (1-B1) (PV1-PVm) (15)

係数B2記憶部5−2は、第2の追従状態量と基準状態量との状態量差に関する係数B2として第1の値と第2の値を記憶しており、この第1の値と第2の値のうち係数Bi切換判断部10から指示された方の値を追従状態量内部設定値SP2’算出部6−2に出力する。追従状態量内部設定値SP2’算出部6−2は、係数Am,B2と基準状態量設定値SPmと基準状態量計測値PVmと追従状態量設定値SP2と追従状態量計測値PV2とに基づき、追従状態量内部設定値SP2’を次式のように算出する(ステップS112)。
SP2’=AmSPm+(1−Am)PVm+B2(SP2−SPm)
+(1−B2)(PV2−PVm) ・・・(16)
The coefficient B2 storage unit 5-2 stores the first value and the second value as the coefficient B2 related to the state quantity difference between the second follow-up state quantity and the reference state quantity. Of the two values, the value instructed by the coefficient Bi switching determination unit 10 is output to the tracking state amount internal set value SP2 ′ calculation unit 6-2. The tracking state quantity internal set value SP2 ′ calculation unit 6-2 is based on the coefficients Am, B2, the reference state quantity setting value SPm, the reference state quantity measurement value PVm, the tracking state quantity setting value SP2, and the tracking state quantity measurement value PV2. Then, the tracking state quantity internal set value SP2 ′ is calculated as shown in the following equation (step S112).
SP2 ′ = AmSPm + (1-Am) PVm + B2 (SP2-SPm)
+ (1-B2) (PV2-PVm) (16)

係数B3記憶部5−3は、第3の追従状態量と基準状態量との状態量差に関する係数B3として第1の値と第2の値を記憶しており、この第1の値と第2の値のうち係数Bi切換判断部10から指示された方の値を追従状態量内部設定値SP3’算出部6−3に出力する。追従状態量内部設定値SP3’算出部6−3は、係数Am,B3と基準状態量設定値SPmと基準状態量計測値PVmと追従状態量設定値SP3と追従状態量計測値PV3とに基づき、追従状態量内部設定値SP3’を次式のように算出する(ステップS113)。
SP3’=AmSPm+(1−Am)PVm+B3(SP3−SPm)
+(1−B3)(PV3−PVm) ・・・(17)
The coefficient B3 storage unit 5-3 stores the first value and the second value as the coefficient B3 related to the state quantity difference between the third follow-up state quantity and the reference state quantity. Of the two values, the value instructed by the coefficient Bi switching determination unit 10 is output to the tracking state amount internal set value SP3 ′ calculation unit 6-3. The tracking state quantity internal set value SP3 ′ calculating section 6-3 is based on the coefficients Am, B3, the reference state quantity setting value SPm, the reference state quantity measurement value PVm, the tracking state quantity setting value SP3, and the tracking state quantity measurement value PV3. Then, the follow-up state quantity internal set value SP3 ′ is calculated as follows (step S113).
SP3 ′ = AmSPm + (1-Am) PVm + B3 (SP3-SPm)
+ (1-B3) (PV3-PVm) (17)

次に、PID制御演算部4−1は、次式の伝達関数式のようなPID制御演算を行って操作量MV1を算出する(ステップS114)。
MV1=(100/Pb1){1+(1/Ti1s)+Td1s}(SP1’
−PV1) ・・・(18)
式(18)において、Pb1は比例帯、Ti1は積分時間、Td1は微分時間、sはラプラス演算子である。なお、PID制御演算部4−1は、算出した操作量MV1がアクチュエータA1の出力の下限値OL1より小さい場合、操作量MV1=OL1とし、算出した操作量MV1がアクチュエータA1の出力の上限値OH1より大きい場合、操作量MV1=OH1とする操作量上下限処理を積分ワインドアップの対策として行う。
Next, the PID control calculation unit 4-1 performs the PID control calculation as in the following transfer function equation to calculate the manipulated variable MV1 (step S114).
MV1 = (100 / Pb1) {1+ (1 / Ti1s) + Td1s} (SP1 ′
-PV1) (18)
In Expression (18), Pb1 is a proportional band, Ti1 is an integration time, Td1 is a differentiation time, and s is a Laplace operator. When the calculated operation amount MV1 is smaller than the lower limit value OL1 of the output of the actuator A1, the PID control calculation unit 4-1 sets the operation amount MV1 = OL1 and the calculated operation amount MV1 is the upper limit value OH1 of the output of the actuator A1. If larger, an operation amount upper / lower limit process for setting the operation amount MV1 = OH1 is performed as a measure for integral windup.

積分ワインドアップとは、設定値SPに対して状態量計測値PVが低い場合にコントローラがアクチュエータ出力の上限値を無視して必要以上に大きな操作量MVを算出したために、設定値SPが小さい値に変更されたときに操作量MVの降下が遅れる現象であり、コントローラがアクチュエータの物理的な上下限を考慮して操作量を算出しないことに起因する。   Integral windup is a value where the set value SP is small because the controller ignores the upper limit value of the actuator output and calculates an operation amount MV that is larger than necessary when the state quantity measured value PV is lower than the set value SP. This is a phenomenon in which the drop in the operation amount MV is delayed when it is changed to, and this is because the controller does not calculate the operation amount in consideration of the physical upper and lower limits of the actuator.

PID制御演算部4−2は、次式の伝達関数式のようなPID制御演算を行って操作量MV2を算出する(ステップS115)。
MV2=(100/Pb2){1+(1/Ti2s)+Td2s}(SP2’
−PV2) ・・・(19)
式(19)において、Pb2は比例帯、Ti2は積分時間、Td2は微分時間である。なお、PID制御演算部4−2は、算出した操作量MV2がアクチュエータA2の出力の下限値OL2より小さい場合、操作量MV2=OL2とし、算出した操作量MV2がアクチュエータA2の出力の上限値OH2より大きい場合、操作量MV2=OH2とする操作量上下限処理を積分ワインドアップの対策として行う。
The PID control calculation unit 4-2 calculates a manipulated variable MV2 by performing a PID control calculation such as the following transfer function equation (step S115).
MV2 = (100 / Pb2) {1+ (1 / Ti2s) + Td2s} (SP2 ′
-PV2) (19)
In Expression (19), Pb2 is a proportional band, Ti2 is an integration time, and Td2 is a differentiation time. When the calculated operation amount MV2 is smaller than the lower limit value OL2 of the output of the actuator A2, the PID control calculation unit 4-2 sets the operation amount MV2 = OL2, and the calculated operation amount MV2 is the upper limit value OH2 of the output of the actuator A2. If larger, an operation amount upper / lower limit process for setting the operation amount MV2 = OH2 is performed as a measure for integral windup.

PID制御演算部4−3は、次式の伝達関数式のようなPID制御演算を行って操作量MV3を算出する(ステップS116)。
MV3=(100/Pb3){1+(1/Ti3s)+Td3s}(SP3’
−PV3) ・・・(20)
式(20)において、Pb3は比例帯、Ti3は積分時間、Td3は微分時間である。なお、PID制御演算部4−3は、算出した操作量MV3がアクチュエータA3の出力の下限値OL3より小さい場合、操作量MV3=OL3とし、算出した操作量MV3がアクチュエータA3の出力の上限値OH3より大きい場合、操作量MV3=OH3とする操作量上下限処理を積分ワインドアップの対策として行う。
The PID control calculation unit 4-3 calculates a manipulated variable MV3 by performing a PID control calculation such as the following transfer function equation (step S116).
MV3 = (100 / Pb3) {1+ (1 / Ti3s) + Td3s} (SP3 ′
-PV3) (20)
In Expression (20), Pb3 is a proportional band, Ti3 is an integration time, and Td3 is a differentiation time. When the calculated operation amount MV3 is smaller than the lower limit value OL3 of the output of the actuator A3, the PID control calculation unit 4-3 sets the operation amount MV3 = OL3, and the calculated operation amount MV3 is the upper limit value OH3 of the output of the actuator A3. If larger, an operation amount upper / lower limit process for setting the operation amount MV3 = OH3 is performed as a measure for integral windup.

操作量MV1出力部3−1は、PID制御演算部4−1によって算出された操作量MV1をアクチュエータA1に出力する(ステップS117)。アクチュエータA1は、操作量MV1に基づいて第1の追従状態量を制御するために動作する。
操作量MV2出力部3−2は、PID制御演算部4−2によって算出された操作量MV2をアクチュエータA2に出力する(ステップS118)。アクチュエータA2は、操作量MV2に基づいて第2の追従状態量を制御するために動作する。
操作量MV3出力部3−3は、PID制御演算部4−3によって算出された操作量MV3をアクチュエータA3に出力する(ステップS119)。アクチュエータA3は、操作量MV3に基づいて第3の追従状態量を制御するために動作する。
The operation amount MV1 output unit 3-1 outputs the operation amount MV1 calculated by the PID control operation unit 4-1 to the actuator A1 (step S117). The actuator A1 operates to control the first follow-up state amount based on the operation amount MV1.
The operation amount MV2 output unit 3-2 outputs the operation amount MV2 calculated by the PID control calculation unit 4-2 to the actuator A2 (step S118). The actuator A2 operates to control the second follow-up state quantity based on the operation quantity MV2.
The operation amount MV3 output unit 3-3 outputs the operation amount MV3 calculated by the PID control calculation unit 4-3 to the actuator A3 (step S119). The actuator A3 operates to control the third follow-up state quantity based on the operation quantity MV3.

以上のようなステップS101〜S119の処理が例えばオペレータによって制御の終了が指示されるまで(ステップS120においてYES)、制御周期毎に繰り返し実行される。   The processes in steps S101 to S119 as described above are repeatedly executed for each control cycle until the end of control is instructed by the operator (YES in step S120), for example.

図4に本実施の形態の制御装置の動作のシミュレーション結果を示す。図4(a)は追従状態量設定値SP1,SP2,SP3を0から40に変更したときの制御系のステップ応答を示す図であり、図4(b)は図4(a)を拡大した図である。シミュレーションの条件は以下の通りである。   FIG. 4 shows a simulation result of the operation of the control device of the present embodiment. FIG. 4A is a diagram showing a step response of the control system when the follow-up state quantity setting values SP1, SP2, and SP3 are changed from 0 to 40, and FIG. 4B is an enlarged view of FIG. 4A. FIG. The simulation conditions are as follows.

まず、アクチュエータA1とプロセスP1とを含むブロックの伝達関数Gp1、アクチュエータA2とプロセスP2とを含むブロックの伝達関数Gp2、アクチュエータA3とプロセスP3とを含むブロックの伝達関数Gp3を次式のように設定する。ここでは、制御ループ間の干渉はないものとする。
Gp1=3.6exp(−2.0s)/{(1+70.0s)(1+10.0s)}
・・・(21)
Gp2=4.8exp(−2.0s)/{(1+60.0s)(1+10.0s)}
・・・(22)
Gp3=6.0exp(−2.0s)/{(1+50.0s)(1+10.0s)}
・・・(23)
First, the transfer function Gp1 of the block including the actuator A1 and the process P1, the transfer function Gp2 of the block including the actuator A2 and the process P2, and the transfer function Gp3 of the block including the actuator A3 and the process P3 are set as follows: To do. Here, it is assumed that there is no interference between control loops.
Gp1 = 3.6exp (−2.0 s) / {(1 + 70.0 s) (1 + 10.0 s)}
(21)
Gp2 = 4.8exp (−2.0s) / {(1 + 60.0s) (1 + 10.0s)}
(22)
Gp3 = 6.0exp (−2.0 s) / {(1 + 50.0 s) (1 + 10.0 s)}
... (23)

PID制御演算部4−1の操作量下限値OL1を0%、上限値OH1を100%とし、PID制御演算部4−2の操作量下限値OL2を0%、上限値OH2を100%とし、PID制御演算部4−3の操作量下限値OL3を0%、上限値OH3を100%とする。
操作量MV1,MV2,MV3に応じて追従状態量計測値PV1,PV2,PV3は、次式のように定まる。
PV1=Gp1MV1 ・・・(24)
PV2=Gp2MV2 ・・・(25)
PV3=Gp3MV3 ・・・(26)
The operation amount lower limit value OL1 of the PID control calculation unit 4-1 is 0%, the upper limit value OH1 is 100%, the operation amount lower limit value OL2 of the PID control calculation unit 4-2 is 0%, and the upper limit value OH2 is 100%. The operation amount lower limit value OL3 of the PID control calculation unit 4-3 is set to 0%, and the upper limit value OH3 is set to 100%.
The follow-up state quantity measurement values PV1, PV2, and PV3 are determined as follows according to the operation amounts MV1, MV2, and MV3.
PV1 = Gp1MV1 (24)
PV2 = Gp2MV2 (25)
PV3 = Gp3MV3 (26)

PID制御演算部4−1のPIDパラメータである比例帯Pb1を150.0、積分時間Ti1を35.0、微分時間Td1を20.0とし、PID制御演算部4−2のPIDパラメータである比例帯Pb2を200.0、積分時間Ti2を35.0、微分時間Td2を20.0とし、PID制御演算部4−3のPIDパラメータである比例帯Pb3を300.0、積分時間Ti3を35.0、微分時間Td3を20.0とする。なお、前記の図7〜図9についても、以上の条件でシミュレーションを行っている。   The proportional band Pb1, which is the PID parameter of the PID control calculation unit 4-1, is 150.0, the integration time Ti1 is 35.0, the differential time Td1 is 20.0, and the proportionality is the PID parameter of the PID control calculation unit 4-2. The band Pb2 is 200.0, the integration time Ti2 is 35.0, the differential time Td2 is 20.0, the proportional band Pb3 that is the PID parameter of the PID control calculation unit 4-3 is 300.0, and the integration time Ti3 is 35. 0, the differential time Td3 is 20.0. 7 to 9 are also simulated under the above conditions.

図4(a)、図4(b)に示すシミュレーション結果は、本実施の形態においてAm=1.0と設定し、係数Biの第1の値をB1=B2=B3=6.7と設定し、係数Biの第2の値をB1=B2=B3=3.0と設定し、判断指標をCr=Cs=4.0と設定したことにより得られたものである。図4(a)、図4(b)の例では、PVi=36付近(Erm=4.0)のところで第1の値から第2の値に切り換えられている。図4(a)、図4(b)から分かるように、PVi=37付近までは図9(a)、図9(b)と同じように状態量差が小さく、PVi=37付近を通過した以降はPViの上下動が減少しており、図9(a)、図9(b)のような状態量差の大きな乱れは軽減されている。よって、本実施の形態では、過渡状態における状態量差の制御性と整定状態における制御の安定性とを両立できていることが分かる。   In the simulation results shown in FIGS. 4A and 4B, Am = 1.0 is set in this embodiment, and the first value of the coefficient Bi is set as B1 = B2 = B3 = 6.7. This is obtained by setting the second value of the coefficient Bi as B1 = B2 = B3 = 3.0 and setting the determination index as Cr = Cs = 4.0. In the examples of FIGS. 4A and 4B, the first value is switched to the second value at around PVi = 36 (Erm = 4.0). As can be seen from FIGS. 4 (a) and 4 (b), the state quantity difference is small until PVi = 37, as in FIGS. 9 (a) and 9 (b), and it has passed near PVi = 37. Thereafter, the vertical movement of PVi decreases, and the large disturbance of the state quantity difference as shown in FIGS. 9A and 9B is reduced. Therefore, in this Embodiment, it turns out that the controllability of the state quantity difference in a transient state and the stability of the control in a settling state are compatible.

なお、本実施の形態で説明した制御装置は、演算装置、記憶装置およびインタフェースを備えたコンピュータとこれらのハードウェア資源を制御するプログラムによって実現することができる。   Note that the control device described in this embodiment can be realized by a computer including an arithmetic device, a storage device, and an interface, and a program that controls these hardware resources.

また、本実施の形態では、特許文献3に開示された構成に基づいて、PID制御演算部に入力される複数の制御演算用入力値のうち追従状態量設定値SPiを内部入力値である追従状態量内部設定値SPi’に変換した上でPID制御演算部に入力するようにしているが、本発明の原理は他の制御演算用入力値を内部入力値に変換する場合でも適用可能であり、本実施の形態と同じ効果を得ることができる。他の制御演算用入力値としては、特許文献4で用いた追従状態量計測値PViや、特許文献5で用いた追従状態量偏差Eriがある。   Further, in the present embodiment, based on the configuration disclosed in Patent Document 3, the tracking state amount setting value SPi among the plurality of control calculation input values input to the PID control calculation unit is a tracking value that is an internal input value. Although it is converted to the state quantity internal set value SPi ′ and then input to the PID control calculation unit, the principle of the present invention can be applied even when other control calculation input values are converted to internal input values. The same effect as this embodiment can be obtained. Other control calculation input values include the follow-up state quantity measurement value PVi used in Patent Document 4 and the follow-up state quantity deviation Eri used in Patent Document 5.

i番目の追従状態量計測値PViを内部入力値である追従状態量内部計測値PVi’に変換する場合には、次式により変換すればよい。
PVi’=(1−Am)SPm+AmPVm+(1−Bi)(SPi−SPm)
+Bi(PVi−PVm) ・・・(27)
そして、i番目のPID制御演算部に対して、追従状態量内部計測値PVi’を入力すると共に、追従状態量設定値SPiを変換せずにそのまま入力すればよい。このとき、PID制御演算部は、次式により操作量MViを算出する。
MVi=(100/Pbi){1+(1/Tiis)+Tdis}(SPi
−PVi’) ・・・(28)
式(28)において、Pbiは比例帯、Tiiは積分時間、Tdiは微分時間である。
In order to convert the i-th follow-up state quantity measurement value PVi into the follow-up state quantity internal measurement value PVi ′, which is an internal input value, the conversion may be performed according to the following equation.
PVi ′ = (1−Am) SPm + AmPVm + (1−Bi) (SPi−SPm)
+ Bi (PVi-PVm) (27)
Then, the tracking state quantity internal measurement value PVi ′ may be input to the i-th PID control calculation unit, and the tracking state quantity set value SPi may be input as it is without being converted. At this time, the PID control calculation unit calculates the operation amount MVi by the following equation.
MVi = (100 / Pbi) {1+ (1 / Tiis) + Tdis} (SPi
−PVi ′) (28)
In Equation (28), Pbi is a proportional band, Tii is an integration time, and Tdi is a differentiation time.

一方、i番目の追従状態量偏差Eriを内部入力値である追従状態量内部偏差Eri’に変換する場合には、次式により変換すればよい。
Eri’=Am(SPm−PVm)
+Bi{(SPi−SPm)−(PVi−PVm)} ・・・(29)
そして、i番目のPID制御演算部に対して、追従状態量内部偏差Eri’を入力すればよい。このとき、PID制御演算部は、次式により操作量MViを算出する。
MVi=(100/Pbi){1+(1/Tiis)+Tdis}Eri’
・・・(30)
On the other hand, in order to convert the i-th tracking state quantity deviation Eri into the tracking state quantity internal deviation Eri ′, which is an internal input value, the conversion may be performed by the following equation.
Eri '= Am (SPm-PVm)
+ Bi {(SPi-SPm)-(PVi-PVm)} (29)
Then, the follow-up state quantity internal deviation Eri ′ may be input to the i-th PID control calculation unit. At this time, the PID control calculation unit calculates the operation amount MVi by the following equation.
MVi = (100 / Pbi) {1+ (1 / Tiis) + Tdis} Eri ′
... (30)

本発明は、プロセス制御技術に適用することができる。   The present invention can be applied to a process control technique.

本発明の実施の形態となる制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus used as embodiment of this invention. 本発明の実施の形態における制御系のブロック線図である。It is a block diagram of the control system in the embodiment of the present invention. 図1の制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control apparatus of FIG. 図1の制御装置によるステップ応答のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the step response by the control apparatus of FIG. 従来の制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional control apparatus. 従来の他の制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the other conventional control apparatus. 従来のPID制御によるステップ応答のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the step response by the conventional PID control. 先行出願の制御方法によるステップ応答のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the step response by the control method of a prior application. 先行出願の制御方法によるステップ応答のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the step response by the control method of a prior application.

符号の説明Explanation of symbols

4−1,4−2,4−3…PID制御演算部、5−1…係数B1記憶部、5−2…係数B2記憶部、5−3…係数B3記憶部、6−1…追従状態量内部設定値SP1’算出部、6−2…追従状態量内部設定値SP2’算出部、6−3…追従状態量内部設定値SP3’算出部、7…基準状態量設定値SPm算出部、8…基準状態量計測値PVm算出部、9…係数Am記憶部、10…係数Bi切換判断部。   4-1, 4-2, 4-3 ... PID control operation unit, 5-1 ... coefficient B1 storage unit, 5-2 ... coefficient B2 storage unit, 5-2 ... coefficient B3 storage unit, 6-1 ... following state Quantity internal set value SP1 ′ calculating section, 6-2... Tracking state quantity internal setting value SP2 ′ calculating section, 6-3... Tracking state quantity internal setting value SP3 ′ calculating section, 7. 8: Reference state quantity measurement value PVm calculation unit, 9 ... Coefficient Am storage unit, 10 ... Coefficient Bi switching judgment unit.

Claims (7)

少なくとも2個の制御ループを有する制御系の制御方法において、
特定の基準となる状態量を基準状態量とし、この基準状態量との相対量が予め規定された値を維持するように制御される状態量を追従状態量としたとき、
前記追従状態量を制御するコントローラに入力される複数の制御演算用入力値の一部である追従状態量設定値SPiと追従状態量計測値PViとの偏差に基づいて、前記追従状態量計測値PViの基準状態量計測値PVmへの追従性の度合を規定する第1の係数を切り換える切換判断手順と、
前記複数の制御演算用入力値のうち1つを内部入力値に変換した上で前記コントローラに入力する算出手順とを備え、
前記算出手順は、前記内部入力値を前記基準状態量に対する第1の要素と前記相対量に対する第2の要素との和とし、前記基準状態量に対する前記制御演算用入力値の要素を前記第1の要素とし、前記相対量に対する前記制御演算用入力値の要素に前記第1の係数を掛けた値を前記第2の要素とすることで、前記内部入力値を算出し、
前記切換判断手順は、前記追従状態量設定値SPiから特定の範囲よりも遠いポイントに前記追従状態量計測値PViがあるときは、前記第1の係数として所定の第1の値を選択し、前記追従状態量設定値SPiから前記特定の範囲内の近いポイントに前記追従状態量計測値PViがあるときは、前記追従性の度合が前記第1の値よりも弱い所定の第2の値を前記第1の係数として選択することを特徴とする制御方法。
In a control method of a control system having at least two control loops,
When a state quantity that is a specific reference is a reference state quantity, and a state quantity that is controlled so as to maintain a predetermined value relative to the reference state quantity is a tracking state quantity,
The follow-up state quantity measurement value is based on a deviation between the follow-up state quantity set value SPi and the follow-up state quantity measurement value PVi, which are part of a plurality of control calculation input values input to the controller that controls the follow-up state quantity. A switching determination procedure for switching the first coefficient that defines the degree of followability of the PVi reference state quantity measurement value PVm;
A calculation procedure for inputting one of the plurality of control calculation input values into an internal input value and then inputting the internal input value;
In the calculation procedure, the internal input value is a sum of a first element for the reference state quantity and a second element for the relative quantity, and an element of the control calculation input value for the reference state quantity is the first value. The internal input value is calculated by setting the second element to a value obtained by multiplying the element of the input value for control calculation with respect to the relative amount by the first coefficient,
The switching determination procedure selects a predetermined first value as the first coefficient when the follow-up state quantity measurement value PVi is at a point far from a specific range from the follow-up state quantity set value SPi. When the follow-up state quantity measurement value PVi is near a point within the specific range from the follow-up state quantity set value SPi, a predetermined second value whose degree of follow-up is weaker than the first value is set. The control method is characterized in that it is selected as the first coefficient.
請求項1記載の制御方法において、
前記切換判断手順は、予め設定された判断指標Crを超える前記追従状態量設定値SPiの変化があった時点で、この時点以降は前記追従状態量設定値SPiから前記特定の範囲よりも遠いポイントに前記追従状態量計測値PViがあると判断し、追従状態量毎の前記偏差を代表する値が予め設定された判断指標Csよりも小さくなった時点で、この時点以降は前記追従状態量設定値SPiから前記特定の範囲内の近いポイントに前記追従状態量計測値PViがあると判断することを特徴とする制御方法。
The control method according to claim 1,
The switching determination procedure is a point when the follow-up state amount set value SPi changes beyond a preset determination index Cr, and after this point, a point farther from the follow-up state amount set value SPi than the specific range. When the value representing the deviation for each follow-up state quantity becomes smaller than a preset judgment index Cs, the follow-up state quantity setting is made after this point. It is determined that the follow-up state quantity measurement value PVi is near a point within the specific range from the value SPi.
請求項1記載の制御方法において、
前記内部入力値に変換される制御演算用入力値は、追従状態量設定値SPiであり、前記内部入力値は、追従状態量内部設定値SPi’であることを特徴とする制御方法。
The control method according to claim 1,
The control method is characterized in that the input value for control calculation converted into the internal input value is a follow-up state quantity set value SPi, and the internal input value is a follow-up state quantity internal set value SPi ′.
請求項1記載の制御方法において、
前記内部入力値に変換される制御演算用入力値は、追従状態量計測値PViであり、前記内部入力値は、追従状態量内部計測値PVi’であることを特徴とする制御方法。
The control method according to claim 1,
The control method characterized in that the control calculation input value converted into the internal input value is a follow-up state quantity measurement value PVi, and the internal input value is a follow-up state quantity internal measurement value PVi ′.
請求項1記載の制御方法において、
前記内部入力値に変換される制御演算用入力値は、追従状態量偏差Eriであり、前記内部入力値は、追従状態量内部偏差Eri’であることを特徴とする制御方法。
The control method according to claim 1,
The control method is characterized in that the control calculation input value converted into the internal input value is a follow-up state quantity deviation Eri, and the internal input value is a follow-up state quantity internal deviation Eri ′.
少なくとも2個の制御ループを有する制御系の装置において、
特定の基準となる状態量を基準状態量とし、この基準状態量との相対量が予め規定された値を維持するように制御される状態量を追従状態量としたとき、
追従状態量毎に設けられ、追従状態量を制御するための操作量を算出して、算出した操作量を対応する制御ループの制御対象に出力するコントローラと、
追従状態量毎に設けられ、前記前記コントローラに入力される複数の制御演算用入力値のうちの1つを内部入力値に変換した上で、対応する前記コントローラに入力する内部入力値算出部と、
前記複数の制御演算用入力値の一部である追従状態量設定値SPiと追従状態量計測値PViとの偏差に基づいて、前記追従状態量計測値PViの基準状態量計測値PVmへの追従性の度合を規定する第1の係数を切り換える係数切換判断部とを備え、
前記内部入力値算出部は、前記内部入力値を前記基準状態量に対する第1の要素と前記相対量に対する第2の要素との和とし、前記基準状態量に対する前記制御演算用入力値の要素を前記第1の要素とし、前記相対量に対する前記制御演算用入力値の要素に所定の第1の係数を掛けた値を前記第2の要素とすることで、前記内部入力値を算出し、
前記係数切換判断部は、前記追従状態量設定値SPiから特定の範囲よりも遠いポイントに前記追従状態量計測値PViがあるときは、前記第1の係数として所定の第1の値を選択し、前記追従状態量設定値SPiから前記特定の範囲内の近いポイントに前記追従状態量計測値PViがあるときは、前記追従性の度合が前記第1の値よりも弱い所定の第2の値を前記第1の係数として選択することを特徴とする制御装置。
In a control system device having at least two control loops,
When a state quantity that is a specific reference is a reference state quantity, and a state quantity that is controlled so as to maintain a predetermined value relative to the reference state quantity is a tracking state quantity,
A controller that is provided for each follow-up state amount, calculates an operation amount for controlling the follow-up state amount, and outputs the calculated operation amount to a control target of a corresponding control loop;
An internal input value calculation unit that is provided for each follow-up state quantity, converts one of a plurality of control calculation input values input to the controller into an internal input value, and inputs the internal input value to the corresponding controller; ,
The follow-up state quantity measured value PVi follows the reference state quantity measured value PVm based on the deviation between the follow-up state quantity set value SPi and the follow-up state quantity measured value PVi, which are a part of the plurality of control calculation input values. A coefficient switching determination unit that switches a first coefficient that defines the degree of sex;
The internal input value calculation unit sets the internal input value as a sum of a first element for the reference state quantity and a second element for the relative quantity, and sets an element of the control calculation input value for the reference state quantity. The internal input value is calculated by setting the first element as a value obtained by multiplying the element of the control calculation input value with respect to the relative amount by a predetermined first coefficient, as the second element,
The coefficient switching determination unit selects a predetermined first value as the first coefficient when the follow-up state quantity measurement value PVi is at a point far from a specific range from the follow-up state quantity set value SPi. When the follow-up state quantity measurement value PVi is near a point within the specific range from the follow-up state quantity set value SPi, a predetermined second value whose degree of follow-up is weaker than the first value. Is selected as the first coefficient.
少なくとも2個の制御ループを有する制御系の装置において、
特定の基準となる状態量を基準状態量とし、この基準状態量との相対量が予め規定された値を維持するように制御される状態量を追従状態量としたとき、
追従状態量iに関する制御系iの構成として、
追従状態量iを制御するための操作量を算出して、算出した操作量を対応する制御ループの制御対象に出力するコントローラと、
前記追従状態量計測値PViの基準状態量計測値PVmへの追従性の度合を規定する第1の係数Biとして、第1の値と前記追従性の度合が前記第1の値よりも弱い第2の値とを記憶する係数記憶部と、
前記コントローラに入力される複数の制御演算用入力値のうちの1つである追従状態量設定値SPiを追従状態量内部設定値SPi’に変換に変換した上で、対応する前記コントローラに入力する追従状態量内部設定値算出部とを、追従状態量i毎に備え、
前記基準状態量に関する構成として、
追従状態量毎の追従状態量設定値SPiから基準状態量設定値SPmを算出する基準状態量設定値算出部と、
追従状態量毎の追従状態量計測値PViから基準状態量計測値PVmを算出する基準状態量計測値算出部とを備え、
前記第1の係数Biの切り換えに関する構成として、
前記追従状態量設定値SPiと前記追従状態量計測値PViとの偏差の絶対値から追従状態量毎の前記偏差を代表する値である基準偏差Ermを算出する基準偏差算出部と、
追従状態量毎の前記追従状態量設定値SPiのうち少なくとも1つに予め設定された判断指標Crを超える変化があった時点で、この時点以降は前記第1の係数Biとして前記第1の値を出力するよう前記係数記憶部に指示し、前記基準偏差Ermが予め設定された判断指標Csよりも小さくなった時点で、この時点以降は前記第1の係数Biとして前記第2の値を出力するよう前記係数記憶部に指示する係数切換判断部とを備えることを特徴とする制御装置。
In a control system device having at least two control loops,
When a state quantity that is a specific reference is a reference state quantity, and a state quantity that is controlled so as to maintain a predetermined value relative to the reference state quantity is a tracking state quantity,
As a configuration of the control system i regarding the following state quantity i,
A controller that calculates an operation amount for controlling the tracking state amount i and outputs the calculated operation amount to a control target of a corresponding control loop;
As the first coefficient Bi that defines the degree of followability of the follow-up state quantity measurement value PVi to the reference state quantity measurement value PVm, the first value and the degree of followability are weaker than the first value. A coefficient storage unit for storing a value of 2;
A tracking state quantity set value SPi, which is one of a plurality of control calculation input values input to the controller, is converted into a tracking state quantity internal setting value SPi ′ and then input to the corresponding controller. A tracking state quantity internal set value calculation unit is provided for each tracking state quantity i,
As a configuration related to the reference state quantity,
A reference state quantity setting value calculation unit for calculating a reference state quantity setting value SPm from the following state quantity setting value SPi for each following state quantity;
A reference state quantity measurement value calculation unit for calculating a reference state quantity measurement value PVm from the following state quantity measurement value PVi for each following state quantity;
As a configuration relating to the switching of the first coefficient Bi,
A reference deviation calculating unit that calculates a reference deviation Erm that is a value representing the deviation for each follow-up state quantity from an absolute value of a deviation between the follow-up state quantity set value SPi and the follow-up state quantity measured value PVi;
When there is a change exceeding a predetermined judgment index Cr in at least one of the following state quantity setting values SPi for each following state quantity, the first value Bi is used as the first coefficient Bi after this point. Is output to the coefficient storage unit, and the second value is output as the first coefficient Bi when the reference deviation Erm becomes smaller than a preset determination index Cs. And a coefficient switching determination unit for instructing the coefficient storage unit to perform the control.
JP2006002173A 2006-01-10 2006-01-10 Control method and control apparatus Active JP4611896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002173A JP4611896B2 (en) 2006-01-10 2006-01-10 Control method and control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002173A JP4611896B2 (en) 2006-01-10 2006-01-10 Control method and control apparatus

Publications (2)

Publication Number Publication Date
JP2007183855A true JP2007183855A (en) 2007-07-19
JP4611896B2 JP4611896B2 (en) 2011-01-12

Family

ID=38339882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002173A Active JP4611896B2 (en) 2006-01-10 2006-01-10 Control method and control apparatus

Country Status (1)

Country Link
JP (1) JP4611896B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267401A (en) * 1991-02-22 1992-09-24 Yamatake Honeywell Co Ltd Controller
JP2005309941A (en) * 2004-04-23 2005-11-04 Yamatake Corp Control method
JP2005309942A (en) * 2004-04-23 2005-11-04 Yamatake Corp Control method
JP2005309943A (en) * 2004-04-23 2005-11-04 Yamatake Corp Control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267401A (en) * 1991-02-22 1992-09-24 Yamatake Honeywell Co Ltd Controller
JP2005309941A (en) * 2004-04-23 2005-11-04 Yamatake Corp Control method
JP2005309942A (en) * 2004-04-23 2005-11-04 Yamatake Corp Control method
JP2005309943A (en) * 2004-04-23 2005-11-04 Yamatake Corp Control method

Also Published As

Publication number Publication date
JP4611896B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
TWI446127B (en) An energy sum suppression control device, a power sum suppression control device, and a method
JP5627106B2 (en) Control apparatus and control method
KR101561392B1 (en) Control apparatus and control method
US9568897B2 (en) Controller system for variable parameter and related program product
Meenakshipriya et al. Modelling and control of ball and beam system using coefficient diagram method (CDM) based PID controller
JP5813525B2 (en) Apparatus and method for suppressing power consumption
JP5732346B2 (en) Energy sum suppression control device, power sum suppression control device and method
JP4611896B2 (en) Control method and control apparatus
JP4358674B2 (en) Control method
JP5009184B2 (en) Control device and control method
JP5778519B2 (en) Energy sum suppression control device, power sum suppression control device and method
JP4361884B2 (en) Control method and control apparatus
JP4361881B2 (en) Control method and control apparatus
JP4361851B2 (en) Control method
JP6368210B2 (en) Control device and control method
JP6974143B2 (en) Control device and control method
JP6097170B2 (en) Control apparatus and control method
JP2021009544A (en) Flowrate control device and flowrate control method
WO2015045176A1 (en) Control device and control method
JP6585972B2 (en) Power sum suppression control apparatus and method
JP4358675B2 (en) Control method
JP2016066326A (en) Controller and control method
JP2016191981A (en) Feedback control device, feedback control method, and feedback control program
JP6581830B2 (en) Control apparatus and control method
JP5280183B2 (en) Control apparatus and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4611896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150