JP2007183022A - Air conditioning method and device utilizing geothermal heat - Google Patents

Air conditioning method and device utilizing geothermal heat Download PDF

Info

Publication number
JP2007183022A
JP2007183022A JP2006000398A JP2006000398A JP2007183022A JP 2007183022 A JP2007183022 A JP 2007183022A JP 2006000398 A JP2006000398 A JP 2006000398A JP 2006000398 A JP2006000398 A JP 2006000398A JP 2007183022 A JP2007183022 A JP 2007183022A
Authority
JP
Japan
Prior art keywords
heat
air
geothermal
heat exchange
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006000398A
Other languages
Japanese (ja)
Other versions
JP4806260B2 (en
Inventor
Junichi Kurihara
潤一 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Misawa Homes Co Ltd
Original Assignee
Misawa Homes Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Misawa Homes Co Ltd filed Critical Misawa Homes Co Ltd
Priority to JP2006000398A priority Critical patent/JP4806260B2/en
Publication of JP2007183022A publication Critical patent/JP2007183022A/en
Application granted granted Critical
Publication of JP4806260B2 publication Critical patent/JP4806260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning method utilizing geothermal heat and its device capable of effectively utilizing geothermal heat in air conditioning by exchanging heat between the outdoor air and the indoor air. <P>SOLUTION: This air conditioning method comprises a geothermal heat exchanging portion 1, a heat releasing portion 2 disposed inside the room, a circulating passage 3 for circulating a heat medium between the geothermal heat exchanging portion 1 and the heat releasing portion 2, and a heat exchanging/ventilating device 4, and the heat exchanging/ventilating device 4 comprises a first heat exchanging portion 9 exchanging heat between the outdoor air and the indoor air, and a second heat exchanging portion 10 exchanging heat between the outdoor air taken inside the room, and the geothermal heat, in taking the outdoor air into the room, and discharging the indoor air to the outside of the room. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地熱を室内の空調に利用することができる地熱利用空調方法および装置に関する。   The present invention relates to a geothermal air conditioning method and apparatus capable of using geothermal heat for indoor air conditioning.

外気を室内に取り入れるとともに室内の空気を屋外に排気するような空調の際に、前記外気と屋内の空気との間で熱交換を行うようにした技術の一例として特許文献1に記載のものが知られている。この技術では、外気を室内に取り入れる供給側配管と、室内の空気を屋外に排気する排気側配管とを備え、供給側配管を通る空気と排気側配管を通る空気との間で熱交換を行うようになっている。   As an example of a technique in which heat is exchanged between the outside air and the indoor air during air conditioning in which the outside air is taken into the room and the indoor air is exhausted to the outside, the one described in Patent Document 1 is disclosed. Are known. This technology includes a supply-side pipe that takes outside air into the room and an exhaust-side pipe that exhausts indoor air to the outside, and performs heat exchange between the air that passes through the supply-side pipe and the air that passes through the exhaust-side pipe. It is like that.

また、地熱を利用した空調システムの一例として特許文献2に記載のものが知られている。この技術では、水給送用ポンプが介在された水循環経路に、地中に垂直に埋設された第1パイプの内部空間によって形成される第1内部通路と地上に設置された気水熱交換器の水通路とが含まれ、上記気水熱交換器の空気通路を通過中に上記水通路内の水との間で熱交換を行った空気を建物の空調に利用するようになっている。
特許第3059728号公報 特許第3440331号公報
Moreover, the thing of patent document 2 is known as an example of the air-conditioning system using geothermal. In this technology, a water / water heat exchanger installed on the ground and a first internal passage formed by an internal space of a first pipe buried vertically in the ground in a water circulation path in which a water feed pump is interposed The air that has undergone heat exchange with the water in the water passage while passing through the air passage of the air-to-water heat exchanger is used for air conditioning of the building.
Japanese Patent No. 3059728 Japanese Patent No. 3340331

ところで、前記特許文献1に記載の技術では、空調を行う際に外気と屋内の空気との間で熱交換を行うようにしているが、外気と室内の空気との温度差が大きい場合、熱交換されて室内に導入される外気と室内の空気の温度差も比較的大きくなるので、室内の空気を所望の温度に保持するために冷暖房装置が消費するエネルギー(電力等)が大きくなる。
また、特許文献2に記載の技術では、地熱を建物の空調に利用するようになっているが、上記のような外気と屋内の空気との間で熱交換を行うようにした空調には利用されていない。
By the way, in the technique described in Patent Document 1, heat exchange is performed between outside air and indoor air when air conditioning is performed. However, when the temperature difference between outside air and indoor air is large, Since the temperature difference between the outside air exchanged and introduced into the room and the room air becomes relatively large, energy (electric power, etc.) consumed by the air conditioner to keep the room air at a desired temperature is increased.
Moreover, in the technique described in Patent Document 2, geothermal heat is used for air conditioning of a building, but it is used for air conditioning in which heat is exchanged between the outside air and indoor air as described above. It has not been.

本発明は上記事情に鑑みてなされたもので、外気と屋内の空気との間で熱交換を行うようにした空調において、地熱を有効に利用できる地熱利用空調方法および装置を提供することを課題としている。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a geothermal air conditioning method and apparatus that can effectively use geothermal heat in an air conditioner that performs heat exchange between outside air and indoor air. It is said.

上記課題を解決するために、請求項1に記載の発明は、地熱利用空調方法であって、外気を室内に取り入れるとともに室内の空気を屋外に排気する際に、前記外気と屋内の空気との間で熱交換を行いつつ、前記室内に取り入れる外気と地熱との間で熱交換を行うことを特徴とする。   In order to solve the above problem, the invention according to claim 1 is a geothermal air-conditioning method, wherein when the outside air is taken into the room and the room air is exhausted to the outside, the outside air and the room air are Heat exchange is performed between the outside air taken into the room and geothermal heat while performing heat exchange between the two.

ここで、暖期とは夏期〜秋期にかけての期間、冷期とは冬期から春期にかけての期間のことを意味する。
このような地熱利用空調方法は、例えば図1に示すような地熱利用空調装置を用いて行うことができる。
この場合、外気は供給側配管7によって取り入れられ、室内の空気は排気側配管8によって排気される。また、外気と屋内の空気との間での熱交換は第1熱交換部10で行われ、室内に取り入れる外気と地熱との間の熱交換は第2熱交換部10で行われる。そして、第2熱交換部10での熱交換は、熱媒体としての水を介して行われる。
Here, the warm season means a period from summer to autumn, and the cold season means a period from winter to spring.
Such a geothermal air conditioning method can be performed using, for example, a geothermal air conditioning apparatus as shown in FIG.
In this case, outside air is taken in by the supply side pipe 7, and indoor air is exhausted by the exhaust side pipe 8. In addition, heat exchange between the outside air and indoor air is performed in the first heat exchange unit 10, and heat exchange between the outside air and the geothermal heat taken into the room is performed in the second heat exchange unit 10. And heat exchange in the 2nd heat exchange part 10 is performed via water as a heat carrier.

請求項1に記載の発明によれば、室内に取り入れる外気と室内から排気する空気との間で熱交換を行う際に、この外気と地熱との間で熱交換を行う。地熱は1年を通じてほぼ15℃前後で一定であるので、暖期においては前記室内に取り入れる外気の温度が熱交換によって下降し、冷期においては室内に取り入れる外気が熱交換によって上昇するので、室内に取り入れる外気と室内の空気との温度差を小さくでき、よって、室内の空気を所望の温度に保持するために冷暖房装置が消費するエネルギー(電力等)を地熱を利用して抑えることができる。   According to the first aspect of the present invention, when heat exchange is performed between the outside air taken into the room and the air exhausted from the room, the heat exchange is performed between the outside air and the geothermal heat. Since the geothermal heat is constant at around 15 ° C. throughout the year, the temperature of the outside air taken into the room during the warm season falls due to heat exchange, and the outside air taken into the room during the cold season rises due to heat exchange. The temperature difference between the outside air taken into the room and the room air can be reduced, so that the energy (such as electric power) consumed by the air-conditioning apparatus to keep the room air at a desired temperature can be suppressed using geothermal heat.

請求項2に記載の発明は、請求項1に記載の地熱利用空調方法において、
暖期に地熱と室内の空気との間で熱交換を行い、冷期に地熱と室内の空気との間で熱交換を行わないことを特徴とする。
Invention of Claim 2 is the geothermal utilization air-conditioning method of Claim 1,
Heat exchange is performed between geothermal heat and indoor air during the warm season, and heat exchange is not performed between geothermal heat and indoor air during the cold season.

このような熱交換は、例えば図1に示すような地熱利用空調装置の輻射パネル2によって行う。この輻射パネル2に、地中から熱媒体としての水が供給されるようになっている。   Such heat exchange is performed by, for example, the radiation panel 2 of the geothermal air conditioner as shown in FIG. Water as a heat medium is supplied to the radiation panel 2 from the ground.

請求項2に記載の発明によれば、暖期に地熱と室内の空気との間で熱交換を行うことによって、室内の温度を下降できるので、室内の空気を所望の温度に保持するために冷房装置が消費するエネルギー(電力)を抑えることができる。
また、地熱は1年を通じてほぼ15℃前後で一定であるので、冷期に地熱と室内の空気との間で熱交換を行うと、室内を暖房している場合は室内の温度が下降する恐れがある。そこで、冷期に地熱と室内の空気との間で熱交換を行わないことによって、室内を暖房している場合に、室内の温度の下降を防止できるので、室内の空気を所望の温度に保持するために暖房装置が消費するエネルギー(電力等)を抑えることができる。
According to the second aspect of the present invention, the temperature of the room can be lowered by exchanging heat between the geothermal heat and the room air during the warm period, so that the room air can be maintained at a desired temperature. Energy (electric power) consumed by the cooling device can be suppressed.
Also, geothermal heat is constant at around 15 ° C throughout the year, so if heat is exchanged between geothermal heat and indoor air during the cold season, the indoor temperature may drop when the room is heated. There is. Therefore, by not exchanging heat between the geothermal heat and indoor air during the cold season, the indoor temperature can be prevented from falling when the room is heated, so the indoor air is kept at the desired temperature. Therefore, energy (electric power etc.) consumed by the heating device can be suppressed.

請求項3に記載の発明は、請求項2に記載の地熱利用空調方法において、
地中と室内に設けられた熱放出部との間で熱媒体を循環させることによって、地熱と室内の空気との間で熱交換を行うことを特徴とする。
Invention of Claim 3 is the geothermal utilization air-conditioning method of Claim 2,
A heat medium is circulated between the ground and a heat release portion provided in the room, thereby exchanging heat between the geothermal heat and the air in the room.

熱媒体としては水が好適に使用されるが、水以外の油等の液体や空気等の気体を熱媒体としても使用することもできる。   Water is preferably used as the heat medium, but a liquid such as oil other than water or a gas such as air can also be used as the heat medium.

請求項3に記載の発明によれば、地中と室内の熱放出部との間で熱媒体を循環させるので、地熱と室内の空気との間で熱交換を容易にかつ連続的に行うことができる。   According to the invention described in claim 3, since the heat medium is circulated between the underground and the heat release portion in the room, heat exchange can be easily and continuously performed between the geothermal heat and the indoor air. Can do.

請求項4に記載の発明は、例えば図1〜図3に示すように、地熱利用空調装置であって、地中に埋設された地中熱交換部1と、この地中熱交換部1と室内との間で熱媒体(例えば水)を循環させる循環経路3と、熱交換換気装置4とを備え、
前記熱交換換気装置4は、外気を室内に取り入れる供給側配管7と、室内の空気を屋外に排気する排気側配管8と、供給側配管7を通る空気と排気側配管8を通る空気との間で熱交換を行う第1熱交換部9と、前記熱媒体と前記供給側配管7を通る空気との間で熱交換を行う第2熱交換部10とを備えたことを特徴とする。
The invention according to claim 4 is a geothermal air conditioner, for example, as shown in FIGS. 1 to 3, and includes a ground heat exchange unit 1 buried in the ground, and the ground heat exchange unit 1. A circulation path 3 for circulating a heat medium (for example, water) between the room and a heat exchange ventilator 4;
The heat exchange ventilator 4 includes a supply side pipe 7 for taking outside air into the room, an exhaust side pipe 8 for exhausting indoor air to the outdoors, and air passing through the supply side pipe 7 and air passing through the exhaust side pipe 8. It is characterized by comprising a first heat exchanging part 9 for exchanging heat between them and a second heat exchanging part 10 for exchanging heat between the heat medium and the air passing through the supply side pipe 7.

請求項4に記載の発明によれば、熱交換換気装置4の供給側配管7を通して室内に取り入れる外気と、排気側配管8を通して室内から排気する空気との間で、第1熱交換部9によって熱交換を行う際に、この外気と地熱との間で以下のようにして熱交換を行う。
すなわち、熱媒体が地中と室内との間で循環経路3(図1においは分岐経路6を含む)を通って循環し、この循環する熱媒体と前記供給側配管7を通る空気(外気)との間で、第2熱交換部10によって熱交換を行うことによって、外気と地熱との間で熱媒体を介して熱交換を行う。地熱は1年を通じてほぼ15℃前後で一定であるので、暖期においては前記室内に供給側配管7を通って取り入れる外気の温度が熱交換によって下降し、冷期においては室内に供給側配管7を通って取り入れる外気が熱交換によって上昇するので、室内に取り入れる外気と室内の空気との温度差を小さくでき、よって、室内の空気を所望の温度に保持するために冷暖房装置が消費するエネルギー(電力等)を地熱を利用して抑えることができる。
According to the fourth aspect of the present invention, the first heat exchanging unit 9 between the outside air taken into the room through the supply side pipe 7 of the heat exchange ventilator 4 and the air exhausted from the room through the exhaust side pipe 8. When heat exchange is performed, heat exchange is performed between the outside air and geothermal heat as follows.
That is, the heat medium circulates between the ground and the room through the circulation path 3 (including the branch path 6 in FIG. 1), and the air (outside air) passing through the circulation heat medium and the supply side pipe 7. Heat exchange is performed between the outside air and the geothermal heat through a heat medium by performing heat exchange with the second heat exchange unit 10. Since the geothermal heat is constant at about 15 ° C. throughout the year, the temperature of the outside air taken into the room through the supply side pipe 7 during the warm period decreases due to heat exchange, and during the cold period, the supply side pipe 7 Since the outside air taken in through the air rises due to heat exchange, the temperature difference between the outside air taken into the room and the room air can be reduced, and thus the energy consumed by the air conditioning unit to maintain the room air at a desired temperature ( Power) can be suppressed using geothermal heat.

請求項5に記載の発明は、請求項4に記載の地熱利用空調装置において、
室内に熱放出部2が設けられており、この熱放出部2に前記循環経路3の途中が接続されており、
前記循環経路3には、この循環経路3から分岐して再び該循環経路3に至る分岐経路6が接続されており、この分岐経路6の途中に前記第2熱交換部10が設けられており、前記循環経路3と分岐経路6との分岐部には、切替バルブ5が設けられていることを特徴とする。
Invention of Claim 5 is the geothermal utilization air-conditioner of Claim 4,
A heat release part 2 is provided in the room, and the middle of the circulation path 3 is connected to the heat release part 2.
A branch path 6 that branches from the circulation path 3 and reaches the circulation path 3 again is connected to the circulation path 3, and the second heat exchange unit 10 is provided in the middle of the branch path 6. A switching valve 5 is provided at a branch portion between the circulation path 3 and the branch path 6.

請求項5に記載の発明によれば、例えば図2に示すように、暖期に切替バルブ5を操作して分岐経路6に熱媒体が通らないようにしておくことによって、熱媒体は室内に設けられた熱放出部2と地中熱交換部1との間で循環する。したがって、15℃程度の地熱を熱放出部2から放出して、室内の温度を下降できるので、室内の空気を所望の温度に保持するために冷房装置が消費するエネルギー(電力)を抑えることができる。
また、切替バルブ5を操作して分岐経路6と循環経路3との双方に熱媒体が通るようにしておくことによって、地熱を熱放出部2から放出するとともに、循環する熱媒体と前記供給側配管7を通る空気(外気)との間で、第2熱交換部10によって熱交換を行うことによって、外気と地熱との間で熱媒体を介して熱交換を行って、室内に取り入れる外気の温度が下降する。したがって、室内の空気を所望の温度に保持するために冷房装置が消費するエネルギー(電力)を抑えることができる。
地熱は1年を通じてほぼ15℃前後で一定であるので、冷期に地熱と室内の空気との間で熱交換を行うと、室内を例えば20℃前後に暖房している場合は室内の温度が下降する恐れがある。そこで、図3に示すように、冷期に切替バルブ5を操作して熱媒体が熱放出部2に向けて循環経路3を通らないようにしておくことによって、分岐経路6を循環する熱媒体と前記供給側配管7を通る空気(外気)との間で、第2熱交換部10によって熱交換を行うことによって、外気と地熱との間で熱媒体を介して熱交換を行って、室内に取り入れる外気の温度が上昇する。したがって、室内の空気を所望の温度に保持するために冷房装置が消費するエネルギー(電力)を抑えることができる。
According to the fifth aspect of the present invention, for example, as shown in FIG. 2, by operating the switching valve 5 during the warm period so that the heat medium does not pass through the branch path 6, the heat medium is kept indoors. It circulates between the provided heat release part 2 and the underground heat exchange part 1. Therefore, since geothermal heat of about 15 ° C. can be released from the heat release unit 2 and the indoor temperature can be lowered, energy (electric power) consumed by the cooling device to keep the indoor air at a desired temperature can be suppressed. it can.
Further, by operating the switching valve 5 so that the heat medium passes through both the branch path 6 and the circulation path 3, geothermal heat is released from the heat release unit 2 and the circulating heat medium and the supply side By exchanging heat with the air (outside air) passing through the pipe 7 by the second heat exchanging unit 10, heat exchange is performed between the outside air and the geothermal heat via a heat medium, and the outside air to be taken into the room The temperature falls. Therefore, the energy (electric power) consumed by the cooling device to keep the indoor air at a desired temperature can be suppressed.
Since geothermal heat is constant at around 15 ° C throughout the year, if heat is exchanged between geothermal heat and room air during the cold season, the room temperature will increase if the room is heated to around 20 ° C, for example. There is a risk of falling. Therefore, as shown in FIG. 3, by operating the switching valve 5 in the cold season so that the heat medium does not pass through the circulation path 3 toward the heat release unit 2, the heat medium that circulates in the branch path 6. Heat exchange is performed between the outside air and the geothermal heat by performing heat exchange between the air and the air (outside air) passing through the supply side pipe 7 by the second heat exchanging unit 10. The temperature of the outside air taken in increases. Therefore, the energy (electric power) consumed by the cooling device to keep the indoor air at a desired temperature can be suppressed.

本発明によれば、室内に取り入れる外気と室内から排気する空気との間で熱交換を行う際に、この外気と地熱との間で熱交換を行うことによって、室内に取り入れる外気と室内の空気との温度差を小さくでき、よって、室内の空気を所望の温度に保持するために冷暖房装置が消費するエネルギー(電力等)を地熱を利用して抑えることができる。   According to the present invention, when heat exchange is performed between the outside air taken into the room and the air exhausted from the room, the heat exchange between the outside air and the geothermal heat allows the outside air to be taken into the room and the room air. Therefore, the energy (such as electric power) consumed by the air conditioner to keep the indoor air at a desired temperature can be suppressed using geothermal heat.

以下、図面を参照して本発明の実施の形態について説明する。
図1は、本発明に係る地熱利用空調装置の概略構成を示すものである。この地熱利用空調装置は、地中に埋設された地中熱交換部1と、室内設けられた熱放出部2と、この熱放出部2と前記地中熱交換部1とを接続して、該地中熱交換部1と前記熱放出部2との間で熱媒体を循環させる循環経路3と、熱交換換気装置4とを備えて概略構成されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a schematic configuration of a geothermal air conditioning apparatus according to the present invention. This geothermal air-conditioning apparatus connects the underground heat exchange part 1 buried in the ground, the heat release part 2 provided indoors, the heat release part 2 and the underground heat exchange part 1, It is schematically configured to include a circulation path 3 for circulating a heat medium between the underground heat exchange unit 1 and the heat release unit 2 and a heat exchange ventilator 4.

地中熱交換部1は、熱伝導性や耐蝕性、防錆性等に優れた材料、例えばステンレス鋼で形成された円筒状のものであり、その内部には熱媒体としての水が充填されている。また、この地中熱交換部1は、上下に10m程度の長さを有しており、その埋設深さは、1年を通して地熱温度が15℃程度という一定温度になる深さ、例えば5〜10m程度の深さに埋設されている。さらに、地中熱交換部1は、本実施の形態では2本平行離間して埋設されている。なお、地中熱交換部1は必要に応じて3本以上でもよく、また1本でもよい。
そして、この地中熱交換部1,1では、内部の水と地熱とが熱交換されて、該水が約15℃程度に保持されるようになっている。
The underground heat exchanging section 1 is a cylindrical material formed of a material excellent in thermal conductivity, corrosion resistance, rust prevention, etc., for example, stainless steel, and the inside is filled with water as a heat medium. ing. The underground heat exchanging section 1 has a length of about 10 m above and below, and the embedment depth is a depth at which the geothermal temperature reaches a constant temperature of about 15 ° C. throughout the year, for example, 5 to It is buried at a depth of about 10m. Further, in the present embodiment, two underground heat exchanging sections 1 are embedded in parallel with each other. In addition, the number of underground heat exchange parts 1 may be three or more as needed, and may be one.
And in this underground heat exchanging part 1,1, heat | fever exchange of internal water and geothermal heat is carried out, and this water is hold | maintained at about 15 degreeC.

熱放熱部2は、本実施の形態では輻射パネル2であり、建物の室内に設置されている。輻射パネル2はその内部に熱媒体としての水を流す細長いパイプが蛇行して配置されたものであり、表面から輻射熱を放出できるようになっている。このような輻射パネル2は例えば室内の壁や天井に設置されている。   The heat radiation unit 2 is a radiation panel 2 in the present embodiment, and is installed in a room of a building. The radiant panel 2 is formed by meandering long and narrow pipes through which water as a heat medium flows, and can radiate radiant heat from the surface. Such a radiation panel 2 is installed on an indoor wall or ceiling, for example.

循環経路3は、熱放出部2と地中熱交換部1とを接続して、該地中熱交換部1と熱放出部2との間で熱媒体を循環させるものであり、地中熱交換部1,1の水放出口に接続された第1供給経路3a,3aと、この供給経路3a,3aに切替バルブ5を介して接続されて、輻射パネル2に熱媒体としての水を供給する第2供給経路3bと、輻射パネル2から水を地中熱交換部1,1に戻す帰還経路3cとを備えており、帰還経路3cは2つに分岐して地中熱交換部1,1の水取込口に接続されている。
また、前記切替バルブ5には分岐経路6が接続されており、この分岐経路6は再び循環経路3の帰還経路3cに接続されている。
上記のような循環経路3や分岐経路6は断熱対策が講じられたパイプによって構成されている。また、前記一方の第1供給経路3aには、他方の第1供給経路3aが接続されており、一方の第1供給経路3aの途中には、水給送用のポンプPが接続されている。
The circulation path 3 connects the heat release part 2 and the underground heat exchange part 1 and circulates the heat medium between the underground heat exchange part 1 and the heat release part 2. The first supply paths 3a, 3a connected to the water discharge ports of the exchange units 1, 1 are connected to the supply paths 3a, 3a via the switching valve 5 to supply water as a heat medium to the radiation panel 2. And a return path 3c for returning water from the radiant panel 2 to the underground heat exchanging units 1 and 1, and the return path 3c is branched into two, and the underground heat exchanging unit 1 and 1 is connected to the water intake.
Further, a branch path 6 is connected to the switching valve 5, and this branch path 6 is again connected to the feedback path 3 c of the circulation path 3.
The circulation path 3 and the branch path 6 as described above are constituted by pipes that are provided with measures against heat insulation. The other first supply path 3a is connected to the one first supply path 3a, and a water feed pump P is connected to the middle of the first supply path 3a. .

前記熱交換換気装置4は、外気の取り入れと室内空気の排出とを行うとともに、取り入れる外気と排出する空気とで熱交換を行うようにした装置であり、外気を室内に取り入れる供給側配管7と、室内の空気を屋外に排気する排気側配管8と、供給側配管7を通る空気と排気側配管8を通る空気との間で熱交換を行う第1熱交換部9と、前記分岐経路6を通る熱媒体としての水と供給側配管7を通る空気(外気)との間で熱交換を行う第2熱交換部10とを備えている。
供給側配管7は建物の外部の空気を室内に取り入れるために建物の外部から換気ユニット本体11に連通する外部吸入配管7aと、この外部吸入配管7aから吸入された空気を換気ユニット本体11を介して建物の同一フロアの室内に供給する室内供給配管7bとを備えており、室内供給配管7bの先端部は前記室内の天井に設けられた図示しない給気グリル等に接続され、この給気グリル等から新鮮な外気(空気)を室内に供給するようになっている。
排気側配管8は、換気ユニット本体11に設けられた室内吸入口11aから吸入された室内の空気を外部に排気するために換気ユニット本体11から外部まで連通するようにして設けられている。
The heat exchange ventilator 4 is a device that takes in outside air and discharges indoor air, and also performs heat exchange between the outside air to be taken in and the air to be discharged, and a supply side pipe 7 that takes in outside air into the room, A first heat exchanging unit 9 for exchanging heat between the exhaust side pipe 8 for exhausting indoor air to the outdoors, the air passing through the supply side pipe 7 and the air passing through the exhaust side pipe 8, and the branch path 6 And a second heat exchanging unit 10 that exchanges heat between water as a heat medium passing through and air (outside air) passing through the supply side pipe 7.
The supply side pipe 7 has an external suction pipe 7a communicating with the ventilation unit main body 11 from the outside of the building in order to take air outside the building into the room, and the air sucked from the external suction pipe 7a through the ventilation unit main body 11. And an indoor supply pipe 7b for supplying air to the room on the same floor of the building. The front end of the indoor supply pipe 7b is connected to an air supply grill (not shown) provided on the ceiling of the room. Etc., fresh outside air (air) is supplied into the room.
The exhaust side pipe 8 is provided so as to communicate from the ventilation unit main body 11 to the outside in order to exhaust the indoor air sucked from the indoor suction port 11a provided in the ventilation unit main body 11 to the outside.

また、換気ユニット本体11内には、前記第1熱交換部9が設けられている。この第1熱交換部9は、室内側に位置する室内吸入口11aから吸入されて外排気側配管8から室外に排出される空気と、室外側に位置する外部吸入配管7aから吸入されて室内供給配管7bから室内に供給される空気との間で、熱交換をするもの、つまり、室外に排出される空気と室内に供給される空気とで内部の空気を直接、混合させることなく、熱の移動のみを行うことができるものである。具体的には、熱伝導率が大きな金属や樹脂等からなるストロー状の極細薄肉円筒管を多数、配列したものである。そして、室外に排出される空気と室内に供給される空気とのいずれか一方をストロー状の円筒管の内部を通過させ、他方をその円筒管の周囲を通過させるような構造のものである。これにより、室外に排出される空気と、室内に供給される空気とで温度差がある場合に温度が高い方の熱が薄肉円筒管を介して温度が低い方に伝わるように形成されている。
前記第2熱交換部10は、外部吸入配管7aの外周部に設けられており、この第2熱交換部10に前記分岐経路6の途中が接続されている。第2熱交換部10は、例えば第1熱交換部と同様の構成となっている。つまり、分岐経路6を流れる熱媒体としての水と室内に供給される空気とのいずれか一方をストロー状の円筒管の内部を通過させ、他方をその円筒管の周囲を通過させるような構造のものである。これにより、分岐経路6を流れる15℃程度の水と室内に供給される空気とで温度差がある場合に温度が高い方の熱が薄肉円筒管を介して温度が低い方に伝わるように形成されている。
Further, the first heat exchange unit 9 is provided in the ventilation unit main body 11. The first heat exchanging section 9 is sucked from the indoor suction port 11a located on the indoor side and exhausted to the outside from the outer exhaust side pipe 8, and is sucked from the external suction pipe 7a located on the outdoor side and taken indoors. Heat exchange is performed between the supply pipe 7b and the air supplied to the room, that is, the air discharged outside the room and the air supplied to the room are not directly mixed with the air. Can only be moved. Specifically, a large number of straw-like ultrathin cylindrical tubes made of metal, resin or the like having a high thermal conductivity are arranged. And either one of the air discharged | emitted outside or the air supplied indoors is made to pass through the inside of a straw-shaped cylindrical tube, and the other is made to pass the circumference | surroundings of the cylindrical tube. Thereby, when there is a temperature difference between the air discharged to the outside and the air supplied to the room, the heat having the higher temperature is transmitted to the lower temperature through the thin cylindrical tube. .
The second heat exchange unit 10 is provided on the outer periphery of the external suction pipe 7a, and the second heat exchange unit 10 is connected to the middle of the branch path 6. The second heat exchange unit 10 has the same configuration as the first heat exchange unit, for example. That is, the structure is such that either water as the heat medium flowing through the branch path 6 or air supplied to the room passes through the inside of the straw-shaped cylindrical tube and the other passes through the periphery of the cylindrical tube. Is. As a result, when there is a temperature difference between the water of about 15 ° C. flowing through the branch path 6 and the air supplied to the room, the heat having the higher temperature is transferred to the lower temperature through the thin cylindrical tube. Has been.

次に、上記構成の地熱利用空調装置によって空調を行う方法について図1〜図3を参照して説明する。
図2は暖期における地熱利用空調装置の状態を示している。まず、切替バルブ5を操作して分岐経路6に熱媒体としての水が通らないようにしておく。そして、ポンプPを作動すると、水が循環経路3を通って輻射パネル2と地中熱交換部1,1との間で循環する。すなわち、地中熱交換部1,1に充填されている水が第1供給経路3a,3a、切替バルブ5、第2供給経路3bを通って輻射パネル2に供給される。この水の温度は約15℃程度であるので、輻射パネル2から冷熱が輻射されて部屋の温度が下がる。これに伴って水の温度は上昇する。そして、この水が帰還経路3cを通って再び地中熱交換部1,1に戻される。地熱は1年を通してほぼ15℃前後で一定であるので、地中熱交換部1,1に戻された水は地熱との熱交換によって15℃程度に冷却されてこの温度に保持される。そして、熱媒体としての水を上記のようにして輻射パネル2と地中熱交換部1,1との間で循環させることによって、輻射パネル2から連続的に15℃程度の冷熱を輻射して、部屋の空気を冷却する。したがって、室内の空気を所望の温度に保持するために冷房装置が消費するエネルギー(電力)を抑えることができる。
Next, a method of performing air conditioning by the geothermal air conditioning apparatus having the above configuration will be described with reference to FIGS.
FIG. 2 shows the state of the geothermal air conditioner in the warm season. First, the switching valve 5 is operated so that water as a heat medium does not pass through the branch path 6. When the pump P is operated, water circulates between the radiation panel 2 and the underground heat exchange units 1 and 1 through the circulation path 3. That is, the water filled in the underground heat exchange units 1 and 1 is supplied to the radiation panel 2 through the first supply paths 3a and 3a, the switching valve 5 and the second supply path 3b. Since the temperature of this water is about 15 ° C., cold heat is radiated from the radiation panel 2 and the temperature of the room is lowered. Along with this, the temperature of water rises. And this water returns to the underground heat exchange parts 1 and 1 again through the return path 3c. Since the geothermal heat is constant at around 15 ° C. throughout the year, the water returned to the underground heat exchanging units 1 and 1 is cooled to about 15 ° C. by heat exchange with the geothermal heat and maintained at this temperature. Then, water as a heat medium is circulated between the radiation panel 2 and the underground heat exchanging units 1 and 1 as described above to continuously radiate cold at about 15 ° C. from the radiation panel 2. Cool the room air. Therefore, the energy (electric power) consumed by the cooling device to keep the indoor air at a desired temperature can be suppressed.

また、前記熱交換換気装置4では、供給側配管7を通して室内に取り入れる外気と、排気側配管8を通して室内から排気する空気との間で、第1熱交換部9によって熱交換を行っているが、前記循環経路3を通る熱媒体としての水の一部を第2熱交換部10に導いてもよい。この場合、前記切替バルブ5を操作して、水の一部を分岐経路3を通して第2熱交換部10に導く。そして、この水と供給側配管7を通る空気(外気)との間で、第2熱交換部10によって熱交換を行うことによって、外気と地熱との間で水を介して熱交換を行う。すると、室内に供給側配管4を通って取り入れる外気の温度が熱交換によって下降するので、室内に取り入れる外気と室内の空気との温度差を小さくでき、よって、室内の空気を所望の温度に保持するために冷暖房装置が消費するエネルギー(電力等)を地熱を利用して抑えることができる。   In the heat exchange ventilator 4, heat exchange is performed by the first heat exchange unit 9 between the outside air taken into the room through the supply side pipe 7 and the air exhausted from the room through the exhaust side pipe 8. A part of water as a heat medium passing through the circulation path 3 may be guided to the second heat exchange unit 10. In this case, the switching valve 5 is operated to guide part of the water to the second heat exchange unit 10 through the branch path 3. Then, heat exchange is performed between the outside air and the geothermal heat through water by performing heat exchange between the water and air (outside air) passing through the supply side pipe 7 by the second heat exchange unit 10. Then, the temperature of the outside air taken into the room through the supply side pipe 4 is lowered by heat exchange, so that the temperature difference between the outside air taken into the room and the room air can be reduced, and thus the room air is kept at a desired temperature. Therefore, the energy (electric power etc.) consumed by the air conditioner can be suppressed using geothermal heat.

図3は冷期における地熱利用空調装置の状態を示している。
上述したように、地熱は1年を通じてほぼ15℃前後で一定であるので、冷期に地熱と室内の空気との間で熱交換を行うと、つまり輻射パネル2を利用すると暖房している室内の温度が下降する恐れがある。
そこで、冷期では切替バルブ5を操作して熱媒体としての水が熱放出部2に向けて循環経路3の第2循環経路3bを通らないようにしておく。そして、ポンプPを作動すると、水が循環経路3の第1供給経路3a、切替バルブ5、分岐経路6を通って、第2熱交換部10と地中熱交換部1,1との間で循環する。分岐経路6から第2熱交換部10に送り込まれる水の温度は約15℃程度であるので、この水と供給側配管7を通る空気(外気(例えば冷期は0℃〜5℃程度)との間で、第2熱交換部10によって熱交換を行うことによって、外気と地熱との間で水を介して熱交換を行って、室内に取り入れる外気の温度が上昇する。したがって、室内に取り入れる外気と室内の空気との温度差を小さくでき、よって、室内の空気を所望の温度に保持するために暖房装置が消費するエネルギー(電力等)を地熱を利用して抑えることができる。
FIG. 3 shows a state of the geothermal air conditioner in the cold season.
As described above, geothermal heat is constant at around 15 ° C. throughout the year, so that when heat is exchanged between geothermal heat and indoor air in the cold season, that is, when the radiant panel 2 is used, the room is heated. There is a risk that the temperature of the will drop.
Therefore, in the cold season, the switching valve 5 is operated so that water as a heat medium does not pass through the second circulation path 3 b of the circulation path 3 toward the heat release unit 2. When the pump P is activated, water passes between the second heat exchange section 10 and the underground heat exchange sections 1 and 1 through the first supply path 3a of the circulation path 3, the switching valve 5 and the branch path 6. Circulate. Since the temperature of the water sent to the 2nd heat exchange part 10 from the branch path 6 is about 15 degreeC, this water and the air (for example, about 0 degreeC-5 degreeC in the cold season) passing through the supply side piping 7 The heat exchange is performed by the second heat exchange unit 10 between the outside air and the geothermal heat through the water, and the temperature of the outside air taken into the room rises. The temperature difference between the outside air and the room air can be reduced, so that the energy (such as electric power) consumed by the heating device to keep the room air at a desired temperature can be suppressed using geothermal heat.

また、冷期に部屋の温度が例えば10℃以下の低温となっている場合は、前記輻射パネル2を利用してもよい。この場合、切替バルブ5を操作して水の一部を第2供給経路3bに流すようにすると、この水が輻射パネル2に供給される。この水の温度は約15℃程度であるので、輻射パネル2から15℃程度の熱が輻射されて部屋の温度が上昇する。そして、部屋の温度が15℃程度になったら、輻射パネル2の利用を停止する。その後は、暖房装置と熱交換管換気装置4によって部屋の空調を行う。   Further, when the room temperature is a low temperature of, for example, 10 ° C. or less in the cold season, the radiation panel 2 may be used. In this case, when the switching valve 5 is operated so that a part of the water flows through the second supply path 3b, the water is supplied to the radiation panel 2. Since the temperature of this water is about 15 ° C., heat of about 15 ° C. is radiated from the radiation panel 2 and the temperature of the room rises. When the room temperature reaches about 15 ° C., the use of the radiation panel 2 is stopped. Thereafter, the room is air-conditioned by the heating device and the heat exchange tube ventilation device 4.

本発明に係る地熱利用空調装置の一例を示すもので、その概略構成図である。An example of the geothermal utilization air-conditioning apparatus which concerns on this invention is shown, and it is the schematic block diagram. 同、暖期における状態を示す概略構成図である。It is a schematic block diagram which shows the state in a warm season equally. 同、冷期における状態を示す概略構成図である。It is a schematic block diagram which shows the state in a cold season.

符号の説明Explanation of symbols

1 地中熱交換部
2 輻射パネル(熱放出部)
3 循環経路
4 熱交換換気装置
5 切替バルブ
6 分岐経路
7 供給側配管
8 排気側配管
9 第1熱交換部
10 第2熱交換部
1 Ground heat exchange part 2 Radiant panel (heat release part)
DESCRIPTION OF SYMBOLS 3 Circulation path 4 Heat exchange ventilator 5 Switching valve 6 Branch path 7 Supply side piping 8 Exhaust side piping 9 1st heat exchange part 10 2nd heat exchange part

Claims (5)

外気を室内に取り入れるとともに室内の空気を屋外に排気する際に、前記外気と屋内の空気との間で熱交換を行いつつ、前記室内に取り入れる外気と地熱との間で熱交換を行うことを特徴とする地熱利用空調方法。   When taking outside air into the room and exhausting indoor air to the outside, heat exchange is performed between the outside air and the indoor air while exchanging heat between the outside air and the geothermal heat. A featured geothermal air conditioning method. 請求項1に記載の地熱利用空調方法において、
暖期に地熱と室内の空気との間で熱交換を行い、冷期に地熱と室内の空気との間で熱交換を行わないことを特徴とする地熱利用空調方法。
In the geothermal air conditioning method according to claim 1,
A geothermal air conditioning method characterized in that heat exchange is performed between geothermal heat and indoor air during the warm season, and heat exchange is not performed between geothermal heat and indoor air during the cold season.
請求項2に記載の地熱利用空調方法において、
地中と室内に設けられた熱放出部との間で熱媒体を循環させることによって、地熱と室内の空気との間で熱交換を行うことを特徴とする地熱利用空調方法。
In the geothermal air conditioning method according to claim 2,
A geothermal air-conditioning method characterized in that heat is exchanged between geothermal heat and indoor air by circulating a heat medium between the underground and a heat release portion provided indoors.
地中に埋設された地中熱交換部と、この地中熱交換部と室内との間で熱媒体を循環させる循環経路と、熱交換換気装置とを備え、
前記熱交換換気装置は、外気を室内に取り入れる供給側配管と、室内の空気を屋外に排気する排気側配管と、供給側配管を通る空気と排気側配管を通る空気との間で熱交換を行う第1熱交換部と、前記熱媒体と前記供給側配管を通る空気との間で熱交換を行う第2熱交換部とを備えたことを特徴とする地熱利用空調装置。
A ground heat exchanger embedded in the ground, a circulation path for circulating a heat medium between the underground heat exchanger and the room, and a heat exchange ventilator,
The heat exchange ventilator exchanges heat between a supply side pipe for taking outside air into a room, an exhaust side pipe for exhausting indoor air to the outdoors, and air passing through the supply side pipe and air passing through the exhaust side pipe. A geothermal air-conditioning apparatus comprising: a first heat exchange unit that performs heat exchange; and a second heat exchange unit that performs heat exchange between the heat medium and air passing through the supply-side piping.
請求項4に記載の地熱利用空調装置において、
室内に熱放出部が設けられており、この熱放出部に前記循環経路の途中が接続されており、
前記循環経路には、この循環経路から分岐して再び該循環経路に至る分岐経路が接続されており、この分岐経路の途中に前記第2熱交換部が設けられており、前記循環経路と分岐経路との分岐部には、切替バルブが設けられていることを特徴とする地熱利用空調装置。
In the geothermal air conditioning apparatus according to claim 4,
A heat release part is provided in the room, and the middle of the circulation path is connected to the heat release part,
A branch path that branches from the circulation path and reaches the circulation path is connected to the circulation path, and the second heat exchange unit is provided in the middle of the branch path. A geothermal air-conditioning apparatus characterized in that a switching valve is provided at a branch portion with the route.
JP2006000398A 2006-01-05 2006-01-05 Geothermal air conditioner Expired - Fee Related JP4806260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000398A JP4806260B2 (en) 2006-01-05 2006-01-05 Geothermal air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000398A JP4806260B2 (en) 2006-01-05 2006-01-05 Geothermal air conditioner

Publications (2)

Publication Number Publication Date
JP2007183022A true JP2007183022A (en) 2007-07-19
JP4806260B2 JP4806260B2 (en) 2011-11-02

Family

ID=38339272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000398A Expired - Fee Related JP4806260B2 (en) 2006-01-05 2006-01-05 Geothermal air conditioner

Country Status (1)

Country Link
JP (1) JP4806260B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133179A (en) * 2009-12-25 2011-07-07 Tomonori Akiyama Wall interior installation type central air-conditioning apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138636A (en) * 1980-03-31 1981-10-29 Matsushita Seiko Co Ltd Heat exchanging type ventilating device
JPS6454152A (en) * 1987-08-25 1989-03-01 Sapporo Alna Co Ltd Ventilating device for building
JP2001140370A (en) * 1999-11-17 2001-05-22 Daikyo Home Inc Ventilating structure of house
JP2003343884A (en) * 2002-05-29 2003-12-03 Nobuyuki Tomoyasu Circulating type cooling and heating method of building using geothermal power
JP2005098543A (en) * 2003-09-22 2005-04-14 Asahi Kasei Homes Kk Heat using device for air conditioning
JP2005106384A (en) * 2003-09-30 2005-04-21 Sunpot Co Ltd Air conditioning ventilation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138636A (en) * 1980-03-31 1981-10-29 Matsushita Seiko Co Ltd Heat exchanging type ventilating device
JPS6454152A (en) * 1987-08-25 1989-03-01 Sapporo Alna Co Ltd Ventilating device for building
JP2001140370A (en) * 1999-11-17 2001-05-22 Daikyo Home Inc Ventilating structure of house
JP2003343884A (en) * 2002-05-29 2003-12-03 Nobuyuki Tomoyasu Circulating type cooling and heating method of building using geothermal power
JP2005098543A (en) * 2003-09-22 2005-04-14 Asahi Kasei Homes Kk Heat using device for air conditioning
JP2005106384A (en) * 2003-09-30 2005-04-21 Sunpot Co Ltd Air conditioning ventilation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133179A (en) * 2009-12-25 2011-07-07 Tomonori Akiyama Wall interior installation type central air-conditioning apparatus

Also Published As

Publication number Publication date
JP4806260B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP4936726B2 (en) Geothermal air conditioning system
CN106255383B (en) A kind of control master radiating device for electric power dispatching system
JP5601068B2 (en) Air conditioning system and air conditioning system control method
JP2010243129A (en) Radiation cooling/heating system
JP2004301470A (en) Underground heat utilizing system
JP5701583B2 (en) Air conditioning system
CN101182950A (en) A building system
JP4404731B2 (en) Air-conditioning system using geothermal heat
JP4806260B2 (en) Geothermal air conditioner
JP2008304180A (en) Thermal storage system
JP4605759B2 (en) Indoor air conditioning system for buildings
JP2011021417A (en) Cooling device
JP4413838B2 (en) Hot water system
KR20120056014A (en) Heat pump radiant heating ? convection cooling/heating system
CN212841979U (en) Energy-saving heating and ventilation system for building and building with energy-saving heating and ventilation system
JP2008267613A (en) Temperature control device
JP2009250466A (en) Heating and cooling system and building
JP2014059145A (en) Radiant cooling and heating system
JP2012159220A (en) Heat storage type heat exchanger and air conditioning system using the same
JP2009264702A (en) Air conditioning system, unitized building and air conditioning method
KR101265477B1 (en) Thermohygrostat with improved reheating type using geothermal heat
JPS62106237A (en) Air-conditioning machine
JP2012063032A (en) Terrestrial heat utilizing system for air-conditioning
JP2018138850A (en) Heat pump type cold and hot water generating device
KR100795353B1 (en) Air-conditioning equipment using underground air as the heat source

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees