JP2007181880A - Solder, soldering structure, and hole-through ceramic capacitor - Google Patents

Solder, soldering structure, and hole-through ceramic capacitor Download PDF

Info

Publication number
JP2007181880A
JP2007181880A JP2006341097A JP2006341097A JP2007181880A JP 2007181880 A JP2007181880 A JP 2007181880A JP 2006341097 A JP2006341097 A JP 2006341097A JP 2006341097 A JP2006341097 A JP 2006341097A JP 2007181880 A JP2007181880 A JP 2007181880A
Authority
JP
Japan
Prior art keywords
solder
hole
mass
alloy
lead wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006341097A
Other languages
Japanese (ja)
Other versions
JP4412320B2 (en
Inventor
Hidekiyo Takaoka
英清 高岡
Kunihiko Hamada
邦彦 浜田
Koji Kimura
幸司 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2006341097A priority Critical patent/JP4412320B2/en
Publication of JP2007181880A publication Critical patent/JP2007181880A/en
Application granted granted Critical
Publication of JP4412320B2 publication Critical patent/JP4412320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soldering structure having an inner electrode in the hole inner wall of a structural body, which generates no crack on the interface between the inner electrode and the hole inner wall of the structural body or in the inside of the structural body, which has sufficient strength of the inner electrode, and which is environmentally friendly because of containing no lead; and to provide a hole-through ceramic capacitor having a soldering structure like this. <P>SOLUTION: A soldering structure 1 comprises: a structural body 2 provided with a hole 2a, an inner electrode 3 formed on the inner wall of the hole; a leading wire 4 inserted in the hole; and a solder 5, with which the hole is impregnated, which fastens the leading wire to the inner electrode, and which contains no lead. The solder is made of an alloy whose volume does not shrink during solidification. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、構造体の孔内に半田が充填されてなる半田付け構造に関するもので、特に貫通型セラミックコンデンサに関するものである。   The present invention relates to a soldering structure in which solder is filled in holes in a structure, and more particularly to a through-type ceramic capacitor.

従来より構造体の孔内壁に内面電極を有する半田付け構造としては、例えば図4に示すような半田付け構造21があり、孔2aを備える構造体2と、孔2aの内壁に形成された内面電極3と、孔2a内に挿入されたリード線4と、内面電極3とリード線4とを電気的かつ機械的に接合させるために孔2a内に充填された半田15とからなる。このような半田15としては、SnとPbを主成分とする半田や、環境への影響を考慮して、SnとAg、SnとCu、SnとSbを主成分とする半田が一般的に用いられている。
特開昭56−133810号公報
Conventionally, as a soldering structure having an inner surface electrode on the inner wall of the hole of the structure, for example, there is a soldering structure 21 as shown in FIG. The electrode 3 includes a lead wire 4 inserted into the hole 2a, and solder 15 filled in the hole 2a in order to electrically and mechanically join the inner surface electrode 3 and the lead wire 4. As such solder 15, a solder mainly composed of Sn and Pb, or a solder mainly composed of Sn and Ag, Sn and Cu, or Sn and Sb is used in consideration of the influence on the environment. It has been.
JP 56-133810 A

しかしながら、従来の半田付け構造21において内面電極3とリード線4を半田5で接合する場合に、半田5が凝固時に体積収縮して内面電極3と孔2a内壁との界面に収縮応力が集中し、図4に示すように、内面電極3が構造体2の孔2a内壁から剥離した剥離部分15aが生じたり、あるいは構造体2が脆い場合には構造体2自体にクラックが生じるという問題があった。   However, when the inner surface electrode 3 and the lead wire 4 are joined with the solder 5 in the conventional soldering structure 21, the volume of the solder 5 shrinks when solidified, and the shrinkage stress concentrates on the interface between the inner surface electrode 3 and the inner wall of the hole 2 a. As shown in FIG. 4, there is a problem that a peeled portion 15 a where the inner surface electrode 3 is peeled from the inner wall of the hole 2 a of the structure 2 is generated, or when the structure 2 is brittle, the structure 2 itself is cracked. It was.

本発明の目的は、上述の問題点を解消すべくなされたもので、構造体の孔内壁に内面電極を有する半田付け構造において、内面電極と構造体の孔内壁との界面や構造体の内部にクラックが生ぜず、十分な内面電極強度を備え、なおかつ鉛を含まないため環境に優しい半田付け構造、ならびにこのような半田付け構造を備える貫通型セラミックコンデンサを提供することにある。   An object of the present invention is to solve the above-described problems. In a soldering structure having an inner surface electrode on the inner wall of a structure body, the interface between the inner surface electrode and the inner wall of the structure body or the inside of the structure body. It is an object of the present invention to provide an environment-friendly soldering structure that does not cause cracks, has sufficient internal electrode strength, and does not contain lead, and a feedthrough ceramic capacitor having such a soldering structure.

上記目的を達成するために、本発明の半田付け構造は、孔を備える構造体と、孔の内壁に形成された内面電極と、孔に挿入されたリード線と、孔に充填されて内面電極とリード線とを固着させた鉛を含有しない半田とからなり、半田は、凝固時において体積収縮しない合金からなることを特徴とする。   In order to achieve the above object, a soldering structure of the present invention includes a structure having a hole, an inner surface electrode formed on the inner wall of the hole, a lead wire inserted into the hole, and an inner electrode filled in the hole. And solder that does not contain lead to which the lead wire is fixed, and the solder is made of an alloy that does not shrink in volume during solidification.

また、本発明の半田付け構造における孔は構造体の一方面から他方面に貫通する貫通孔であり、リード線は貫通孔内に挿入され、リード線の両端は貫通孔の両端より外部に導出されていることを特徴とする。   Further, the hole in the soldering structure of the present invention is a through-hole penetrating from one surface of the structure to the other surface, the lead wire is inserted into the through-hole, and both ends of the lead wire are led out from both ends of the through-hole. It is characterized by being.

また、本発明の貫通型セラミックコンデンサは、本発明の半田付け構造を備え、構造体はコンデンサとして機能する誘電体組成物からなるセラミック焼結体であることを特徴とする。   The feedthrough ceramic capacitor of the present invention includes the soldering structure of the present invention, and the structure is a ceramic sintered body made of a dielectric composition that functions as a capacitor.

以上のように、本発明の半田付け構造によれば、孔を備える構造体と、孔の内壁に形成された内面電極と、孔に挿入されたリード線と、孔に充填されて内面電極とリード線とを固着させた鉛を含有しない半田とからなり、半田は、凝固時において体積収縮しない合金からなることを特徴とすることにより、内面電極と構造体の孔内壁との界面や構造体の内部にクラックが生ぜず、十分な内面電極強度を備え、なおかつ鉛を含まないため環境に優しい半田付け構造、ならびに貫通型セラミックコンデンサを提供することができる。   As described above, according to the soldering structure of the present invention, the structure including the hole, the inner surface electrode formed on the inner wall of the hole, the lead wire inserted into the hole, the inner electrode filled in the hole, It is composed of solder that does not contain lead to which the lead wire is fixed, and the solder is composed of an alloy that does not shrink in volume during solidification, so that the interface or structure between the inner surface electrode and the hole inner wall of the structure In this case, no cracks are generated inside the electrode, and it has a sufficient inner surface electrode strength and does not contain lead. Therefore, an environment-friendly soldering structure and a feedthrough ceramic capacitor can be provided.

本発明による一つの実施形態について、図1に基づいて詳細に説明する。但し、前述の従来例と同一部分については、同一の符号を付し、詳細な説明を省略する。半田付け構造1は、孔2aを備える構造体2と、孔2aの内壁に形成された内面電極3と、孔2a内に挿入されたリード線4と、内面電極3とリード線4とを電気的かつ機械的に接合させるために孔2a内に充填された鉛を含有しない半田5とからなる。半田5は、半田の凝固時において体積収縮しない合金からなる。   An embodiment according to the present invention will be described in detail with reference to FIG. However, the same parts as those in the above-described conventional example are denoted by the same reference numerals, and detailed description thereof is omitted. The soldering structure 1 electrically connects the structure 2 having the hole 2a, the inner surface electrode 3 formed on the inner wall of the hole 2a, the lead wire 4 inserted into the hole 2a, the inner surface electrode 3 and the lead wire 4. It consists of solder 5 which does not contain lead filled in the hole 2a in order to join it mechanically and mechanically. The solder 5 is made of an alloy that does not shrink in volume when the solder is solidified.

まず、凝固時において体積収縮しない合金としては、凝固時に体積膨張する金属と体積収縮が小さい金属とを組み合わせることが考えられる、凝固時に体積膨張する金属としては、Bi、Gaが挙げられるが、Gaは希少金属であり安定供給の面で不安があり高価であることから半田材料の主成分元素としては不適切である。したがって、半田5の主成分元素はBiが好ましい。   First, an alloy that does not shrink in volume during solidification may be a combination of a metal that expands in volume during solidification and a metal that has a small volume shrinkage. Examples of metals that expand in volume during solidification include Bi and Ga. Is a rare metal, uneasy in terms of stable supply, and expensive, so it is inappropriate as a main component element of a solder material. Therefore, Bi is preferable as the main component of the solder 5.

次に、他方Biのみでは脆化の恐れがあることから、靭性を付与するために合金化する必要がある。   Next, the other Bi alone may cause embrittlement, so it is necessary to alloy it to provide toughness.

添加する元素としては、さまざまな元素の添加が可能であるが、毒性、供給能力、融点や半田付き性といった半田として具備すべき特性等を考慮すれば、添加元素はAg、Au、Cu、In、Sb、Sn、Zn等が好ましい。それぞれの元素の添加量は作業温度や必要強度に応じて調整可能であるが、半田5の合金組成は、好ましくはBi−0.01〜5質量%Ag、Bi−0.01〜25質量%Au、Bi−0.01〜0.5質量%Cu、Bi−0.01〜57質量%In、Bi−0.01〜5質量%Sb、Bi−0.01〜57質量%Sn、Bi−0.01〜5質量%Znである。   Various elements can be added as the element to be added, but considering the characteristics to be provided as solder such as toxicity, supply capability, melting point and solderability, the additive elements are Ag, Au, Cu, In , Sb, Sn, Zn and the like are preferable. The amount of each element added can be adjusted according to the working temperature and required strength, but the alloy composition of the solder 5 is preferably Bi-0.01 to 5 mass% Ag, Bi-0.01 to 25 mass%. Au, Bi-0.01-0.5 mass% Cu, Bi-0.01-57 mass% In, Bi-0.01-5 mass% Sb, Bi-0.01-57 mass% Sn, Bi- It is 0.01-5 mass% Zn.

Bi−Ag合金において、Bi−Ag合金の共晶組成、すなわち40質量%Ag以下であればBi−Ag合金は凝固時に膨張することから、作業温度に制約がなければ40質量%までAgを添加してもよいが、より好ましくはBi−0.01〜5質量%Agである。Agの添加量が5質量%以内であれば、半田5の液相線温度が300℃以下となり作業性が保たれる。他方、Agの添加量が0.01質量%以上であれば、半田5の脆性を抑制する効果が得られ、半田5の接合強度が保たれる。   In a Bi-Ag alloy, if the eutectic composition of the Bi-Ag alloy, that is, 40% by mass or less, the Bi-Ag alloy expands during solidification, so Ag can be added up to 40% by mass if the working temperature is not restricted. However, Bi-0.01 to 5% by mass Ag is more preferable. If the addition amount of Ag is within 5 mass%, the liquidus temperature of the solder 5 will be 300 degrees C or less, and workability | operativity will be maintained. On the other hand, if the addition amount of Ag is 0.01% by mass or more, an effect of suppressing the brittleness of the solder 5 is obtained, and the bonding strength of the solder 5 is maintained.

Bi−Au合金において、Bi−Au合金の共晶組成、すなわち39質量%Au以下であればBi−Au合金は凝固時に膨張することから、作業温度に制約がなければ39質量%までAuを添加してもよいが、より好ましくはBi−0.01〜25質量%Auである。Auの添加量が25質量%以内であれば、半田5の液相線温度が300℃以下となり作業性が保たれる。
他方、Auの添加量が0.01質量%以上であれば、半田5の脆性を抑制する効果が得られ、半田5の接合強度が保たれる。
In a Bi-Au alloy, if the eutectic composition of the Bi-Au alloy, that is, 39% by mass or less, the Bi-Au alloy expands during solidification, so if the working temperature is not restricted, Au is added up to 39% by mass. However, Bi-0.01 to 25% by mass Au is more preferable. If the added amount of Au is within 25% by mass, the liquidus temperature of the solder 5 becomes 300 ° C. or lower, and workability is maintained.
On the other hand, if the added amount of Au is 0.01% by mass or more, the effect of suppressing the brittleness of the solder 5 is obtained, and the bonding strength of the solder 5 is maintained.

Bi−Cu合金において、Bi−Cu合金の共晶組成、すなわち44質量%Cu以下であればBi−Cu合金は凝固時に膨張することから、作業温度に制約がなければ44質量%までCuを添加してもよいが、より好ましくはBi−0.01〜0.5質量%Cuである。Cuの添加量が0.5質量%以内であれば、半田5の液相線温度が300℃以下となり作業性が保たれる。他方、Cuの添加量が0.01質量%以上であれば、半田5の脆性を抑制する効果が得られ、半田5の接合強度が保たれる。   In a Bi-Cu alloy, if the eutectic composition of the Bi-Cu alloy, that is, 44 mass% Cu or less, the Bi-Cu alloy expands during solidification, so if the working temperature is not restricted, Cu is added up to 44 mass%. However, Bi-0.01 to 0.5% by mass Cu is more preferable. If the amount of Cu added is within 0.5% by mass, the liquidus temperature of the solder 5 becomes 300 ° C. or lower, and workability is maintained. On the other hand, if the amount of Cu added is 0.01% by mass or more, an effect of suppressing the brittleness of the solder 5 is obtained, and the bonding strength of the solder 5 is maintained.

Bi−In合金において、好ましくはBi−0.01〜57質量%Inである。Inの添加量が57質量%以内であれば、半田5は凝固時に収縮せず、半田5が構造体2の孔2a内壁に形成された内面電極3から剥離することなく保たれる。他方、Inの添加量が0.01質量%以上であれば、半田5の脆性を抑制する効果が得られ、半田5の接合強度が保たれる。   In the Bi—In alloy, Bi—0.01 to 57 mass% In is preferable. If the amount of In added is within 57% by mass, the solder 5 does not shrink during solidification, and the solder 5 is maintained without being peeled off from the inner surface electrode 3 formed on the inner wall of the hole 2a of the structure 2. On the other hand, when the addition amount of In is 0.01% by mass or more, the effect of suppressing the brittleness of the solder 5 is obtained, and the bonding strength of the solder 5 is maintained.

Bi−Sb合金において、Bi−Sb合金の共晶組成、すなわち78質量%Sb以下であればBi−Sb合金は凝固時に膨張することから、作業温度に制約がなければ78質量%までSbを添加してもよいが、好ましくはBi−0.01〜5質量%Sbである。Sbの添加量が5質量%以内であれば、半田5の液相線温度が300℃以下となり作業性が保たれる。他方、Sbの添加量が0.01質量%以上であれば、半田5の脆性を抑制する効果が得られ、半田5の接合強度が保たれる。   In a Bi-Sb alloy, if the eutectic composition of the Bi-Sb alloy, that is, 78 mass% Sb or less, the Bi-Sb alloy expands during solidification, so Sb is added up to 78 mass% if the working temperature is not restricted. However, Bi-0.01 to 5% by mass Sb is preferable. If the amount of Sb added is within 5% by mass, the liquidus temperature of the solder 5 becomes 300 ° C. or lower, and workability is maintained. On the other hand, when the added amount of Sb is 0.01% by mass or more, the effect of suppressing the brittleness of the solder 5 is obtained, and the bonding strength of the solder 5 is maintained.

Bi−Sn合金において、好ましくはBi−0.01〜57質量%Snである。Snの添加量が57質量%以内であれば、半田5は凝固時に収縮せず、半田5が構造体2の孔2a内壁に形成された内面電極3から剥離することなく保たれる。他方、Snの添加量が0.01質量%以上であれば、半田5の脆性を抑制する効果が得られ、半田5の接合強度が保たれる。   In the Bi—Sn alloy, Bi—0.01 to 57 mass% Sn is preferable. If the added amount of Sn is within 57 mass%, the solder 5 does not shrink during solidification, and the solder 5 is kept without peeling from the inner surface electrode 3 formed on the inner wall of the hole 2a of the structure 2. On the other hand, if the added amount of Sn is 0.01% by mass or more, the effect of suppressing the brittleness of the solder 5 is obtained, and the bonding strength of the solder 5 is maintained.

Bi−Zn合金において、Bi−Zn合金の共晶組成、すなわち32質量%Zn以下であればBi−Zn合金は凝固時に膨張することから、作業温度に制約がなければ32質量%までZnを添加してもよいが、好ましくはBi−0.01〜5質量%Znである。Znの添加量が5質量%以内であれば、半田5の液相線温度が300℃以下となり作業性が保たれる。他方、Znの添加量が0.01質量%以上であれば、半田5の脆性を抑制する効果が得られ、半田5の接合強度が保たれる。   In a Bi-Zn alloy, if the eutectic composition of the Bi-Zn alloy, that is, 32% by mass or less, the Bi-Zn alloy expands during solidification, so Zn is added up to 32% by mass if the working temperature is not restricted. However, Bi-0.01-5 mass% Zn is preferable. If the added amount of Zn is within 5% by mass, the liquidus temperature of the solder 5 becomes 300 ° C. or lower, and workability is maintained. On the other hand, if the added amount of Zn is 0.01% by mass or more, the effect of suppressing the brittleness of the solder 5 is obtained, and the bonding strength of the solder 5 is maintained.

なお、本発明の半田組成は、上述の2元系半田に特に限定されることなく、半田の凝固時において体積収縮しない半田組成、例えば、上述の2元合金をベース組成とする多元系半田であっても構わない。   The solder composition of the present invention is not particularly limited to the above-described binary solder, and is a solder composition that does not shrink in volume when the solder is solidified, for example, a multi-component solder based on the above-described binary alloy. It does not matter.

また、本発明における半田5の半田付け方法は、例えば浸漬半田付け、リフロ−加熱による方法があるが、本発明の半田付け構造ならびに貫通型セラミックコンデンサは、内面電極3とリード線4と半田5とを電気的かつ機械的に接合し得る方法であれば、何れの方法によっても構わない。   In addition, the soldering method of the solder 5 in the present invention includes, for example, immersion soldering and reflow heating. The soldering structure and the through-type ceramic capacitor of the present invention include the inner surface electrode 3, the lead wire 4, and the solder 5. Any method may be used as long as they can be electrically and mechanically joined to each other.

また本発明における構造体2は、例えばAl23やBaTiO3等のセラミック材料からなるセラミック焼結体が挙げられるが、特にこれに限定されることなく、金属や樹脂等の半田付け可能な材料からなる構造体であれば構わない。 The structure 2 in the present invention may be a ceramic sintered body made of a ceramic material such as Al 2 O 3 or BaTiO 3 , but is not particularly limited thereto, and can be soldered with metal or resin. Any structure made of a material may be used.

また、本発明における内面電極3を構成する導電成分としては、例えばAg、Ag/Pd、Ag/Pt、Au、Ni、Cu、Al等が挙げられ、その形成方法としては、スパッタ、蒸着、ペースト印刷の方法が挙げられるが、特に限定されることなく、何れの材料ならびに形成方法によっても構わない。   In addition, examples of the conductive component constituting the inner surface electrode 3 in the present invention include Ag, Ag / Pd, Ag / Pt, Au, Ni, Cu, Al, and the formation method thereof includes sputtering, vapor deposition, and paste. Although the printing method is mentioned, it does not specifically limit and any material and formation method may be used.

また、本発明におけるリード線4は、例えばCu、Fe、Ni、Auなど金属線を芯材とし、必要あればその表面にSn、Pb、Sn−Pb、Pd、Au、Sn−Cu、Sn−Ag、Sn−Ag−Cu、Sn−Biメッキ等を施したものが挙げられるが、半田5と電気的かつ機械的に接合可能な組成であれば、何れの材料によっても構わない。   In addition, the lead wire 4 in the present invention uses, for example, a metal wire such as Cu, Fe, Ni, or Au as a core, and if necessary, Sn, Pb, Sn—Pb, Pd, Au, Sn—Cu, Sn— Examples thereof include Ag, Sn—Ag—Cu, Sn—Bi plated, and the like, but any material can be used as long as the composition can be electrically and mechanically joined to the solder 5.

本発明による他の実施形態について、図2に基づいて詳細に説明する。貫通型セラミックコンデンサ11は、BaTiO3を主成分とする誘電体材料からなり一方面から他方面に貫通する貫通孔12aを備える円筒形のセラミック焼結体12と、貫通孔12aの内壁に形成された内面電極13と、貫通孔12a内に挿入されたリード線14と、内面電極13とリード線14とを電気的かつ機械的に接合させるために貫通孔12a内に充填された鉛を含有しない半田15と、セラミック焼結体12の表面に形成された表面電極16とからなる。 Another embodiment according to the present invention will be described in detail with reference to FIG. The through-type ceramic capacitor 11 is formed on a cylindrical ceramic sintered body 12 made of a dielectric material mainly composed of BaTiO 3 and having a through-hole 12a penetrating from one surface to the other surface, and an inner wall of the through-hole 12a. In order to electrically and mechanically join the inner surface electrode 13, the lead wire 14 inserted into the through hole 12a, and the inner surface electrode 13 and the lead wire 14, lead contained in the through hole 12a is not contained. It consists of solder 15 and a surface electrode 16 formed on the surface of the ceramic sintered body 12.

なお、内面電極13、リード線14、半田15の材料は、何れも前掲の実施形態における内面電極3、リード線4、半田5と同じものを適宜選択して用いることができる。また、表面電極16の材質、形状は何ら限定されるものではない。   In addition, as for the material of the inner surface electrode 13, the lead wire 14, and the solder 15, all can select and use the same thing as the inner surface electrode 3, the lead wire 4, and the solder 5 in above-mentioned embodiment. Further, the material and shape of the surface electrode 16 are not limited at all.

まず、表1に示すような組成からなる半田を準備し、これらをそれぞれ実施例1〜26ならびに比較例1〜5の半田とした。   First, solders having the compositions shown in Table 1 were prepared, and these were used as the solders of Examples 1 to 26 and Comparative Examples 1 to 5, respectively.

次に、BaTiO3を主成分とする誘電体材料からなり、両端面を貫通する3mmφの貫通孔を備える円筒形のセラミック焼結体を準備する。次に、貫通孔の内壁にNiからなる内面電極を無電解めっきによって形成した後、Cuを心材としてSnを溶融メッキしたリード線をセラミック焼結体の貫通孔内に挿入し、これを保持した状態で、図3(a)に示すように実施例1〜26ならびに比較例1〜5の半田を325℃でフロー半田付けして、実施例1〜26ならびに比較例1〜5の評価サンプルをそれぞれ100個ずつ得た。 Next, a cylindrical ceramic sintered body made of a dielectric material containing BaTiO 3 as a main component and having 3 mmφ through holes penetrating both end faces is prepared. Next, an inner surface electrode made of Ni was formed on the inner wall of the through hole by electroless plating, and then a lead wire in which Sn was hot-plated with Cu as a core material was inserted into the through hole of the ceramic sintered body and held there In this state, as shown in FIG. 3A, the solders of Examples 1 to 26 and Comparative Examples 1 to 5 are flow soldered at 325 ° C., and the evaluation samples of Examples 1 to 26 and Comparative Examples 1 to 5 are prepared. 100 pieces of each were obtained.

そこで、実施例1〜26ならびに比較例1〜5の評価サンプルについて、内面電極とセラミック焼結体の界面近傍におけるクラックの発生状況と接合強度を測定し、これらを表1にまとめた。   Then, about the evaluation sample of Examples 1-26 and Comparative Examples 1-5, the generation | occurrence | production condition and joining strength of the crack in the interface vicinity of an inner surface electrode and a ceramic sintered compact were measured, and these were put together in Table 1.

なお、クラック発生率は、評価サンプルの断面をエメリ−紙で面出し、バフで鏡面研磨した後、金属顕微鏡を用いて観察し判定し、クラックが認められた評価サンプルの割合を求めた。   The crack occurrence rate was determined by observing and judging using a metal microscope after the cross section of the evaluation sample was surfaced with emery paper and mirror-polished with a buff, and the ratio of the evaluation sample in which cracks were observed was determined.

また、接合強度は、図3(b)のようにセラミック焼結体をフロー半田付けした側から3mmの位置L1−L2で評価サンプルを切断し、図3(c)のようにセラミック焼結体を穴空きホールド治具に引っ掛け、リード線をくさび型チャッキング治具で保持し、半田フィレットが残存する側方向へリード線を引張ることで引張り強度を求めた。
なお引張り速度は25mm/分とした。
Further, the bonding strength is obtained by cutting the evaluation sample at a position L1-L2 of 3 mm from the side on which the ceramic sintered body is flow soldered as shown in FIG. 3 (b), and as shown in FIG. 3 (c). Was pulled on a perforated holding jig, the lead wire was held with a wedge-shaped chucking jig, and the tensile strength was obtained by pulling the lead wire in the direction in which the solder fillet remains.
The pulling speed was 25 mm / min.

表1から明らかであるように、実施例2,3,6,7,10,11,14,15,17,18,24,25の評価サンプルは、クラックの発生率が何れも0%であり、接合強度も111〜145Nと高く優れ、本発明の最も好ましい範囲内であった。   As is clear from Table 1, the evaluation samples of Examples 2, 3, 6, 7, 10, 11, 14, 15, 17, 18, 24, and 25 all have a crack occurrence rate of 0%. Also, the bonding strength was as high as 111 to 145 N, which was within the most preferable range of the present invention.

また、実施例1,5,9,13,16,23の評価サンプルは、それぞれAg,Au,Cu,In,Sb,Sn,Znの添加量が少ないため、前述の実施例2,3,6,7,10,11,14,15,17,18,24,25の評価サンプルと比べて僅かに接合強度が劣ったが実用可能な範囲内であり、かつクラックの発生が無いことから、本発明の範囲内となった。   In addition, the evaluation samples of Examples 1, 5, 9, 13, 16, and 23 have a small amount of addition of Ag, Au, Cu, In, Sb, Sn, and Zn, respectively. , 7, 10, 11, 14, 15, 17, 18, 24, and 25, the bonding strength was slightly inferior, but within the practical range and no cracks were generated. Within the scope of the invention.

これに対して、実施例4,8,12,19,26はの評価サンプルは、それぞれAg,Au,Cu,In,Sb,Sn,Znの添加量が過剰であるため液相線温度が高くなり、またガラス化せず評価不可能であり、本発明の範囲外となった。   On the other hand, the evaluation samples of Examples 4, 8, 12, 19, and 26 have a high liquidus temperature because the added amounts of Ag, Au, Cu, In, Sb, Sn, and Zn are excessive. Moreover, it was not vitrified and could not be evaluated, and was outside the scope of the present invention.

また、比較例1〜5の評価サンプルは、全てについてクラックが生じ、また接合強度も41〜98Nであり、前述した本発明の範囲内の実施例と比べて低く劣った。   Moreover, the evaluation samples of Comparative Examples 1 to 5 were all cracked and the bonding strength was 41 to 98 N, which was low and inferior to the above-described examples within the scope of the present invention.

また、実施例4,8,12,19,26については、半田の液相線温度が高いために半田が十分に溶融せず、セラミック焼結体の貫通孔内に半田が浸透せず、クラック発生率ならびに接合強度を測定することができず、本発明の範囲外となった。   Further, in Examples 4, 8, 12, 19, and 26, since the liquidus temperature of the solder is high, the solder does not sufficiently melt, the solder does not penetrate into the through hole of the ceramic sintered body, and cracks occur. The occurrence rate and the bonding strength could not be measured, and were outside the scope of the present invention.

本発明に係る一つの実施の形態の半田付け構造の断面図である。It is sectional drawing of the soldering structure of one embodiment which concerns on this invention. 本発明に係る他の実施の形態の半田付け構造である貫通型セラミックコンデンサに関するもので、(a)は縦断面図であり、(b)は横断面図である。The present invention relates to a feedthrough ceramic capacitor which is a soldering structure according to another embodiment of the present invention, wherein (a) is a longitudinal sectional view and (b) is a transverse sectional view. 本発明の実施例における接合強度測定用の評価サンプルの作製方法を示す説明図であり、(a)はフロー半田の縦断面図であり、(b)は評価サンプルのカット方向を示す縦断面図であり、(c)は評価方法を示す縦断面図である。It is explanatory drawing which shows the preparation methods of the evaluation sample for the joint strength measurement in the Example of this invention, (a) is a longitudinal cross-sectional view of flow solder, (b) is a longitudinal cross-sectional view which shows the cutting direction of an evaluation sample (C) is a longitudinal sectional view showing an evaluation method. 従来の半田付け構造の斜視図である。It is a perspective view of the conventional soldering structure.

符号の説明Explanation of symbols

1 半田付け構造
2,12 構造体
2a 孔
3,13 内面電極
4,14 リード線
5,15 半田
11 貫通型セラミックコンデンサ
12 セラミック焼結体
12a 貫通孔
DESCRIPTION OF SYMBOLS 1 Soldering structure 2,12 Structure 2a Hole 3,13 Inner surface electrode 4,14 Lead wire 5,15 Solder 11 Through-type ceramic capacitor 12 Ceramic sintered body 12a Through-hole

Claims (9)

BiとAgとの合金である半田であって、Agが0.01〜5質量%、残部がBiであることを特徴とする半田。 A solder which is an alloy of Bi and Ag, characterized in that Ag is 0.01 to 5% by mass and the balance is Bi. BiとAuとの合金である半田であって、Auが0.01〜25質量%、残部がBiであることを特徴とする半田。 A solder which is an alloy of Bi and Au, wherein Au is 0.01 to 25% by mass and the balance is Bi. BiとCuとの合金である半田であって、Cuが0.01〜0.5質量%、残部がBiであることを特徴とする半田。 A solder which is an alloy of Bi and Cu, wherein Cu is 0.01 to 0.5% by mass, and the balance is Bi. BiとInとの合金である半田であって、Inが0.01〜57質量%、残部がBiであることを特徴とする半田。 A solder which is an alloy of Bi and In, wherein In is 0.01 to 57% by mass and the balance is Bi. BiとSbとの合金である半田であって、Sbが0.01〜5質量%、残部がBiであることを特徴とする半田。 A solder which is an alloy of Bi and Sb, wherein Sb is 0.01 to 5% by mass and the balance is Bi. BiとZnとの合金である半田であって、Znが0.01〜5質量%、残部がBiであることを特徴とする半田。 A solder which is an alloy of Bi and Zn, wherein 0.01 to 5% by mass of Zn and the balance is Bi. 孔を備える構造体と、前記孔の内壁に形成された内面電極と、前記孔に挿入されたリード線と、前記孔に充填されて前記内面電極と前記リード線とを固着させた鉛を含有しない半田とからなり、前記半田は、請求項1ないし請求項6のいずれかの半田からなることを特徴とする、半田付け構造。 A structure including a hole, an inner surface electrode formed on the inner wall of the hole, a lead wire inserted into the hole, and lead filled in the hole to fix the inner surface electrode and the lead wire A soldering structure, wherein the solder is made of any one of claims 1 to 6. 前記孔は前記構造体の一方面から他方面に貫通する貫通孔であり、前記リード線は前記貫通孔内に挿入され、前記リード線の両端は前記貫通孔の両端より外部に導出されていることを特徴とする、請求項7に記載の半田付け構造。 The hole is a through hole penetrating from one surface of the structure to the other surface, the lead wire is inserted into the through hole, and both ends of the lead wire are led out from both ends of the through hole. The soldering structure according to claim 7, wherein: 請求項7または請求項8のいずれかに記載の半田付け構造を備え、前記構造体はコンデンサとして機能する誘電体組成物からなるセラミック焼結体であることを特徴とする、貫通型セラミックコンデンサ。 A feedthrough ceramic capacitor comprising the soldering structure according to claim 7 or 8, wherein the structure is a ceramic sintered body made of a dielectric composition functioning as a capacitor.
JP2006341097A 2006-12-19 2006-12-19 Solder, soldering structure and feedthrough ceramic capacitor Expired - Lifetime JP4412320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341097A JP4412320B2 (en) 2006-12-19 2006-12-19 Solder, soldering structure and feedthrough ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341097A JP4412320B2 (en) 2006-12-19 2006-12-19 Solder, soldering structure and feedthrough ceramic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000015809A Division JP2001205477A (en) 2000-01-25 2000-01-25 Soldering structure and feed-through ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2007181880A true JP2007181880A (en) 2007-07-19
JP4412320B2 JP4412320B2 (en) 2010-02-10

Family

ID=38338369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341097A Expired - Lifetime JP4412320B2 (en) 2006-12-19 2006-12-19 Solder, soldering structure and feedthrough ceramic capacitor

Country Status (1)

Country Link
JP (1) JP4412320B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161495A (en) * 2010-02-12 2011-08-25 Sumitomo Metal Mining Co Ltd Pb-FREE SOLDER ALLOY
JP2011194410A (en) * 2010-03-17 2011-10-06 Sumitomo Metal Mining Co Ltd COATED Pb-FREE Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME
WO2011158668A1 (en) * 2010-06-16 2011-12-22 住友金属鉱山株式会社 Bi-Al-Zn-BASED Pb-FREE SOLDER ALLOY
WO2012002173A1 (en) * 2010-06-30 2012-01-05 千住金属工業株式会社 Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY
WO2012002147A1 (en) * 2010-06-28 2012-01-05 住友金属鉱山株式会社 Pb-FREE SOLDER ALLOY
DE112011105017T5 (en) 2011-03-08 2013-12-19 Sumitomo Metal Mining Co., Ltd. Pb-free solder paste
JP2014195831A (en) * 2013-03-08 2014-10-16 住友金属鉱山株式会社 Coating solder material, and method of manufacturing the same
KR20150046337A (en) 2013-01-28 2015-04-29 니혼한다가부시끼가이샤 Solder alloy for die bonding
JP2022043721A (en) * 2020-09-04 2022-03-16 株式会社新菱 Low-melting-point joint member and method of manufacturing the same, and semiconductor electronic circuit and method of mounting the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161495A (en) * 2010-02-12 2011-08-25 Sumitomo Metal Mining Co Ltd Pb-FREE SOLDER ALLOY
JP2011194410A (en) * 2010-03-17 2011-10-06 Sumitomo Metal Mining Co Ltd COATED Pb-FREE Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME
JP5212573B2 (en) * 2010-06-16 2013-06-19 住友金属鉱山株式会社 Bi-Al-Zn Pb-free solder alloy
WO2011158668A1 (en) * 2010-06-16 2011-12-22 住友金属鉱山株式会社 Bi-Al-Zn-BASED Pb-FREE SOLDER ALLOY
DE112011102028B4 (en) * 2010-06-16 2017-02-09 Sumitomo Metal Mining Co., Ltd. Bi-Al-Zn-based Pb-free solder alloy
GB2494831B (en) * 2010-06-16 2014-03-12 Sumitomo Metal Mining Co Bi-Al-Zn-based Pb-free solder alloy
GB2494831A (en) * 2010-06-16 2013-03-20 Sumitomo Metal Mining Co Bi-Al-Zn-based Pb-free solder alloy
US9211614B2 (en) 2010-06-16 2015-12-15 Sumitomo Metal Mining Co., Ltd. Bi—Al—Zn—based Pb-free solder alloy
DE112011102028T5 (en) 2010-06-16 2013-04-18 Sumitomo Metal Mining Co. Ltd. Bi-Al-Zn-based Pb-free solder alloy
CN103068518A (en) * 2010-06-16 2013-04-24 住友金属矿山股份有限公司 Bi-al-zn-based pb-free solder alloy
WO2012002147A1 (en) * 2010-06-28 2012-01-05 住友金属鉱山株式会社 Pb-FREE SOLDER ALLOY
DE112011102163T5 (en) 2010-06-28 2013-05-16 Sumitomo Metal Mining Co., Ltd. Pb-free solder alloy
GB2494847B (en) * 2010-06-28 2013-06-26 Sumitomo Metal Mining Co Pb-free solder alloy
TWI401132B (en) * 2010-06-28 2013-07-11 Sumitomo Metal Mining Co Pb-free solder alloy
CN103038020A (en) * 2010-06-28 2013-04-10 住友金属矿山股份有限公司 Pb-free solder alloy
GB2494847A (en) * 2010-06-28 2013-03-20 Sumitomo Metal Mining Co Pb-Free solder alloy
US9199339B2 (en) 2010-06-28 2015-12-01 Sumitomo Metal Mining Co., Ltd. Pb-free solder alloy
DE112011102163B4 (en) * 2010-06-28 2015-09-24 Sumitomo Metal Mining Co., Ltd. Pb-free solder alloy
CN103038020B (en) * 2010-06-28 2014-05-14 住友金属矿山股份有限公司 Pb-free solder alloy and electronic circuit board using same
US9205513B2 (en) 2010-06-30 2015-12-08 Senju Metal Industry Co., Ltd. Bi—Sn based high-temperature solder alloy
JP5278616B2 (en) * 2010-06-30 2013-09-04 千住金属工業株式会社 Bi-Sn high temperature solder alloy
WO2012002173A1 (en) * 2010-06-30 2012-01-05 千住金属工業株式会社 Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY
US9227273B2 (en) 2011-03-08 2016-01-05 Sumitomo Metal Mining Co., Ltd. Pb-free solder paste
CN103561902A (en) * 2011-03-08 2014-02-05 住友金属矿山株式会社 Pb-free solder paste
DE112011105017T5 (en) 2011-03-08 2013-12-19 Sumitomo Metal Mining Co., Ltd. Pb-free solder paste
CN103561902B (en) * 2011-03-08 2015-04-01 住友金属矿山株式会社 Pb-free solder paste
DE112011105017B4 (en) * 2011-03-08 2016-07-07 Sumitomo Metal Mining Co., Ltd. Pb-free solder paste
KR20150046337A (en) 2013-01-28 2015-04-29 니혼한다가부시끼가이샤 Solder alloy for die bonding
US10189119B2 (en) 2013-01-28 2019-01-29 Nihon Handa Co., Ltd. Solder alloy for die bonding
DE112014000193B4 (en) 2013-01-28 2021-12-23 Fuji Electric Co., Ltd. Solder alloy for die bonding
JP2014195831A (en) * 2013-03-08 2014-10-16 住友金属鉱山株式会社 Coating solder material, and method of manufacturing the same
JP2022043721A (en) * 2020-09-04 2022-03-16 株式会社新菱 Low-melting-point joint member and method of manufacturing the same, and semiconductor electronic circuit and method of mounting the same
JP7080939B2 (en) 2020-09-04 2022-06-06 株式会社新菱 Low melting point bonding member and its manufacturing method, semiconductor electronic circuit and its mounting method

Also Published As

Publication number Publication date
JP4412320B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP4412320B2 (en) Solder, soldering structure and feedthrough ceramic capacitor
KR100419274B1 (en) Pb-free solder composition and soldered article
JP6281916B2 (en) Solder material and joint structure
JPWO2013132954A1 (en) Bonding method, bonded structure and manufacturing method thereof
JP2001205477A (en) Soldering structure and feed-through ceramic capacitor
KR101986557B1 (en) Sn-Cu-BASED LEAD-FREE SOLDER ALLOY
JP2011156558A (en) Lead-free solder alloy
JP2018023987A (en) Jointing method
JP2010514931A (en) Lead-free solder alloy
JP2001334384A (en) Solder composition and soldered article
JP6247819B2 (en) Aluminum solder and solder joints
JP6165294B2 (en) Aluminum solder and solder joints
JP2009142890A (en) Laminated solder material, soldering method using the same, and solder junction
JP6688417B2 (en) Solder joining method
JP3966554B2 (en) Solder alloy
JP2003062688A (en) Solder for soldering iron
JP2008066493A (en) Lead wire, lead terminal for aluminum electrolytic capacitors, and aluminum electrolytic capacitor
TWI647317B (en) Soldering alloys and electronic parts for electroplating
JP2007111715A (en) Solder alloy
JP2021027196A (en) Electronic component and mounting structure
JP2009010301A (en) Printed wiring board and printed circuit board
JP2007038228A (en) Solder alloy
JP6389553B2 (en) Aluminum solder and solder joints
JP5825265B2 (en) Soldering method for printed circuit boards
KR100424662B1 (en) Alloying compositions of Lead-Free Solder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4412320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

EXPY Cancellation because of completion of term