JP2007179847A - Microporous polyolefin-based diaphragm for secondary battery, and its manufacturing method - Google Patents
Microporous polyolefin-based diaphragm for secondary battery, and its manufacturing method Download PDFInfo
- Publication number
- JP2007179847A JP2007179847A JP2005376371A JP2005376371A JP2007179847A JP 2007179847 A JP2007179847 A JP 2007179847A JP 2005376371 A JP2005376371 A JP 2005376371A JP 2005376371 A JP2005376371 A JP 2005376371A JP 2007179847 A JP2007179847 A JP 2007179847A
- Authority
- JP
- Japan
- Prior art keywords
- surface layer
- sheet
- pores
- diaphragm
- electrode side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000098 polyolefin Polymers 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000011148 porous material Substances 0.000 claims abstract description 44
- 239000002344 surface layer Substances 0.000 claims abstract description 40
- 239000000654 additive Substances 0.000 claims description 16
- 239000001993 wax Substances 0.000 claims description 8
- 239000004698 Polyethylene Substances 0.000 claims description 7
- -1 polyethylene Polymers 0.000 claims description 7
- 229920000573 polyethylene Polymers 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 239000000155 melt Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 150000003377 silicon compounds Chemical class 0.000 claims description 2
- 210000001787 dendrite Anatomy 0.000 abstract description 11
- 230000015572 biosynthetic process Effects 0.000 abstract description 8
- 230000000996 additive effect Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 238000007599 discharging Methods 0.000 description 8
- 239000010408 film Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- 229920013716 polyethylene resin Polymers 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000012982 microporous membrane Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
Abstract
Description
本発明は、2次電池用微多孔性ポリオレフィン系隔膜及びその製造方法に係り、より詳しくは、高性能2次電池用として用いられる隔膜において、負極側表面層に分布された気孔の大きさが正極側表面層の気孔のそれより大きく且つ厚さも広くて電池内部に樹状突起(Dendrite)が形成されることを抑止し、これにより電池の寿命を著しく延長させることができる2次電池用微多孔性ポリオレフィン系隔膜及びその製造方法に関する。 The present invention relates to a microporous polyolefin diaphragm for a secondary battery and a method for producing the same, and more particularly, in a diaphragm used for a high performance secondary battery, the size of pores distributed in the negative electrode side surface layer is large. The secondary battery has a larger thickness than the pores of the positive electrode side surface layer and has a large thickness to prevent dendrite from being formed inside the battery, thereby significantly extending the battery life. The present invention relates to a porous polyolefin diaphragm and a method for producing the same.
近年、電子産業の発達に伴い、リチウムイオン電池やリチウムイオンポリマー電池などのような高性能2次電池への需要が大いに増加しつつある。例えば、携帯電話や携帯用情報端末機器、PDA、デジタルカメラ、ノート型パソコン、ブルートゥース(Bluetooth)などはいずれもこのような高性能2次電池を電源として用いており、今後、医療用、軍事用など多様な分野へと2次電池の応用分野が広がっていくことと見込まれる。 In recent years, with the development of the electronic industry, the demand for high performance secondary batteries such as lithium ion batteries and lithium ion polymer batteries has been greatly increasing. For example, mobile phones, portable information terminal devices, PDAs, digital cameras, notebook computers, Bluetooth, etc. all use such high-performance secondary batteries as power sources. The application field of secondary batteries is expected to expand into various fields.
通常、再充電可能な2次電池は、大きく正極物質、負極物質、電解液、及び隔膜といった4通りの構成要素から構成されている。ここで、隔膜(セパレータ)は、膜の表面及び内部に微細な気孔、即ち微多孔が広く分布されている薄いフィルムであり、正極物質と負極物質とが直接接触して起こる短絡現象を防止し、電解液を媒介としてイオン物質だけを自由に通過させる役割を果たす。また、短絡が生じると、隔膜内の気孔を迅速に遮断する、いわゆるシャットダウン(Shutdown)機能を発揮して温度上昇による発火や爆発の恐れを阻止する。このように隔膜はイオン物質を円滑に通過させると共に、電解液を安定的に保持することにより、電池の安全性及び寿命を向上させる機能をする。 In general, a rechargeable secondary battery is mainly composed of four components such as a positive electrode material, a negative electrode material, an electrolytic solution, and a diaphragm. Here, the separator (separator) is a thin film in which fine pores, that is, micropores are widely distributed on the surface and inside of the membrane, and prevents a short-circuit phenomenon caused by direct contact between the positive electrode material and the negative electrode material. It plays the role of allowing only ionic substances to freely pass through the electrolyte. Moreover, when a short circuit occurs, a so-called shutdown function that quickly shuts off pores in the diaphragm is exhibited to prevent the possibility of ignition or explosion due to temperature rise. In this way, the diaphragm functions to improve the safety and life of the battery by allowing the ionic substance to pass smoothly and maintaining the electrolyte in a stable manner.
現在の技術的なレベルに照らしてみるとき、2次電池の構成要素のうち正極及び負極物質、そして電解液に対しては技術的にほとんど安定化ないし最適化段階に達していると認められるが、隔膜に対しては、まだ多くの部分において品質改善が求められている。よって、現在使用されている高性能2次電池の寿命及び品質を決める最も重要な技術的な要素は、つまり隔膜であると言え、隔膜の性能によって電池の品質及び寿命が左右されているのが現状である。 In light of the current technical level, it is recognized that among the components of the secondary battery, the positive and negative electrode materials and the electrolyte are technically almost stabilized or optimized. However, quality improvement is still required for many parts of the diaphragm. Therefore, it can be said that the most important technical factor that determines the life and quality of high-performance secondary batteries currently used is the diaphragm, and the quality and life of the battery depend on the performance of the diaphragm. Currently.
これまで、2次電池用微多孔性隔膜の主材料としては、電解液に対して安定しており、シャットダウン特性及び絶縁特性に優れているポリオレフィン系樹脂が多用されてきた。特に、湿式工程の製造方法を採択して単層構造の微多孔性隔膜を製造する場合は、ポリオレフィン系高分子樹脂の中でも分子量が極めて大きなポリエチレン樹脂を主に使用している。 Until now, as a main material of a microporous diaphragm for a secondary battery, a polyolefin-based resin that is stable against an electrolytic solution and excellent in shutdown characteristics and insulating characteristics has been frequently used. In particular, when a microporous diaphragm having a single layer structure is manufactured by adopting a wet process manufacturing method, a polyethylene resin having a very large molecular weight is mainly used among polyolefin polymer resins.
従来より知られている微多孔性ポリオレフィン系隔膜の製造方法は、下記の通りである。先ず、主材料、例えば、分子量の高いポリエチレン樹脂に気孔形成添加物として可塑剤やワックス類などを適宜な割合にて加え、これをホッパーを介して押出用スクリュー内に仕込んで溶融させた後、Tダイ(T-die)及びキャストロール(Casting roll)などを通過させて所定の幅及び厚さを有するシート(Sheet)を形成する。次いで、前記シートを縦軸及び横軸方向にそれぞれ延伸して所望の幅及び厚さを有する隔膜フィルムを得た後、このフィルムを溶剤(Solvent)に沈積させて前記気孔形成添加物を除去する。これにより、気孔形成添加物が溶出されながら、その位置に微細な気孔が形成されるようになり、その結果、微多孔性構造を有する隔膜が得られる。前記微多孔性隔膜は、熱固定及びコロナ(Corona)処理などの工程を経て所定の寸法に切断された後、2次電池用隔膜として用いられる。 A conventionally known method for producing a microporous polyolefin diaphragm is as follows. First, after adding a plasticizer or wax as a pore forming additive in an appropriate ratio to a main material, for example, a high molecular weight polyethylene resin, this is charged into an extrusion screw via a hopper and melted. A sheet having a predetermined width and thickness is formed by passing through a T-die and a casting roll. The sheet is then stretched in the vertical and horizontal directions to obtain a diaphragm film having a desired width and thickness, and then the film is deposited in a solvent to remove the pore-forming additive. . As a result, fine pores are formed at the positions while the pore-forming additive is eluted, and as a result, a diaphragm having a microporous structure is obtained. The microporous diaphragm is cut into a predetermined size through processes such as heat fixation and corona treatment, and then used as a secondary battery diaphragm.
一方、2次電池は間断なく充電及び放電による化学反応及び自然的化学反応が起こるため、特に負極部位に所望しない樹状突起が形成される。このように電池内部に樹状突起が形成されると、隔膜の気孔が閉塞されてイオン物質の移動が遮断され、これによって電池の充電及び放電効率が不良になり、つまり2次電池の寿命を短縮させる結果をもたらす。また、あまり多大な樹状突起の形成は隔膜の損傷を引き起こして、短絡の恐れを加重させるという致命的な問題を招く。 On the other hand, since secondary batteries undergo a chemical reaction and a natural chemical reaction due to charging and discharging without interruption, undesired dendrites are formed particularly at the negative electrode portion. When dendrites are formed inside the battery in this way, the pores of the diaphragm are blocked and the movement of ionic substances is blocked, thereby resulting in poor charge and discharge efficiency of the battery, that is, the life of the secondary battery is reduced. Results in shortening. Also, too much dendrite formation can cause damage to the diaphragm, leading to a fatal problem of weighting the risk of a short circuit.
電池の負極部位にて主に発生する樹状突起の生成を抑制するためには、電池の負極部位に挿入される隔膜の気孔の寸法をより大きく形成することが必要であるが、それでも気孔の寸法をやたらに大きくすれば、イオン物質の移動は容易であるものの充電及び放電があまり急速に進行されるので、かえって電池の寿命を短縮させるといった不具合がある。従って、樹状突起の生成を抑制するとともに電池の寿命を延長するためには、隔膜の断面構造によって気孔の大きさ及び分布を精密に制御する必要がある。しかし、従来の方法ではただ気孔形成添加物、即ちパラフィン類やワックス類の投入量に応じて気孔の大きさ及び分布を制御することができるので、隔膜の気孔特性を精密に制御するには限界があった。 In order to suppress the formation of dendrites mainly occurring at the negative electrode part of the battery, it is necessary to form a larger pore size of the diaphragm inserted into the negative electrode part of the battery. If the dimensions are increased to some extent, the movement of the ionic material is easy, but the charging and discharging proceed so rapidly that there is a problem of shortening the battery life. Therefore, in order to suppress the formation of dendrites and extend the life of the battery, it is necessary to precisely control the size and distribution of the pores by the sectional structure of the diaphragm. However, in the conventional method, the pore size and distribution can be controlled according to the amount of pore-forming additives, that is, paraffins and waxes, so that the pore characteristics of the diaphragm cannot be precisely controlled. was there.
そこで、本発明は、上記問題点に鑑みなされたもので、その目的は、負極周辺に樹状突起が形成されることを抑止して究極的に2次電池の充電及び放電効率を改善すると共に、電池寿命を向上できる新たな構造の微多孔性ポリオレフィン系隔膜及びその製造方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and its purpose is to suppress dendrite formation around the negative electrode and ultimately improve the charging and discharging efficiency of the secondary battery. Another object of the present invention is to provide a microporous polyolefin diaphragm having a new structure capable of improving battery life and a method for producing the same.
上記目的を達成するために、本発明に係る2次電池用微多孔性ポリオレフィン系隔膜は、負極側表面層には寸法80nm〜2μmの気孔が90〜97%分布されており、正極側表面層には寸法30nm〜1μmの気孔が90〜97%分布されていることを特徴とする。 In order to achieve the above object, the microporous polyolefin diaphragm for a secondary battery according to the present invention has 90 to 97% of pores having a size of 80 nm to 2 μm distributed in the negative electrode side surface layer, and the positive electrode side surface layer. Is characterized in that 90 to 97% of pores having a size of 30 nm to 1 μm are distributed.
また、本発明は負極側表面層の厚さが正極側表面層の厚さよりも20〜30%程度一層厚くて負極側表面層に一層多くの気孔が分布されていることを特徴とする。 Further, the present invention is characterized in that the thickness of the negative electrode side surface layer is about 20 to 30% thicker than the thickness of the positive electrode side surface layer, and more pores are distributed in the negative electrode side surface layer.
また、本発明に係るポリオレフィン系微多孔性隔膜の製造方法は、溶融指数0.01乃至0.5のポリエチレン混合樹脂に対してパラフィン類或いはワックス類の中で選択された分子量の相異なる2種以上の気孔形成添加物を20〜80重量%混合する段階と、前記混合物を200℃乃至270℃の温度で溶融及び押出して厚さ300μm乃至600μmのシートを形成する段階と、前記シートをキャストロールに投入してその一面は40〜80℃の温度に維持されるキャストロールに直接接触させて強制冷却させ、シートの他面はキャストロールに約5〜15mm程度のバンクを形成させることにより、シートの両面に温度及び移動速度の偏差を付与する段階と、前記シートを縦軸及び横軸方向にそれぞれ4倍乃至7倍延伸させて厚さ10μm乃至25μmのフィルムを製造する段階と、前記フィルムを有機溶媒に沈積させて前記シリコン化合物を取り除く段階と、を含むことを特徴とする。 In addition, the method for producing a polyolefin-based microporous membrane according to the present invention includes two different molecular weights selected from paraffins or waxes with respect to a polyethylene mixed resin having a melt index of 0.01 to 0.5. A step of mixing 20 to 80% by weight of the above pore-forming additive, a step of melting and extruding the mixture at a temperature of 200 ° C. to 270 ° C. to form a sheet having a thickness of 300 μm to 600 μm, and a cast roll of the sheet And the other side of the sheet is forced to cool by bringing it into direct contact with a cast roll maintained at a temperature of 40 to 80 ° C., and the other side of the sheet is formed with a bank of about 5 to 15 mm on the cast roll. Providing a temperature and moving speed deviation on both sides of the sheet, and stretching the sheet 4 to 7 times in the direction of the vertical axis and the horizontal axis, respectively, to a thickness of 10 μm Or to a stage of producing a 25μm film, a step of removing the silicon compound by depositing the film in an organic solvent, comprising a.
本発明によれば、2次電池用微多孔性ポリオレフィン系隔膜の両表面層に分布する気孔の大きさ及び分布を制御することにより、気孔を閉塞する樹状突起の形成を抑止し、究極的には2次電池の充電及び放電特性及び寿命を格段に改善させることができる効果がある。 According to the present invention, by controlling the size and distribution of pores distributed on both surface layers of the microporous polyolefin-based diaphragm for secondary batteries, the formation of dendrites that close the pores is suppressed, and the ultimate Has the effect of significantly improving the charge and discharge characteristics and life of the secondary battery.
以下、本発明についてより詳細に説明する。 Hereinafter, the present invention will be described in more detail.
本発明に係る2次電池用微多孔性ポリオレフィン系隔膜は、負極側表面層と正極側表面層の気孔特性が互いに相異なるように形成されていることを特徴とする。すなわち、負極側表面層に分布された気孔は、寸法80nm〜2μmの気孔が90〜97%以上であり、正極側表面層に分布された気孔は、寸法30nm〜1μmの気孔が90〜97%以上であって、負極側表面層の気孔が正極側表面層の気孔より相対的に大きい。負極側表面層に分布する残りの3〜10%の気孔は寸法80nm未満であり、正極側表面層に分布する残りの3〜10%の気孔は寸法30nm未満である。また、本発明は負極側に位置する表面層の厚さが正極側に位置する表面層の厚さより20〜30%程度一層厚くて正極側表面層より負極側表面層に一層多くの気孔が分布されている。 The microporous polyolefin-based diaphragm for a secondary battery according to the present invention is characterized in that the pore characteristics of the negative electrode side surface layer and the positive electrode side surface layer are different from each other. That is, the pores distributed in the negative electrode side surface layer have a pore size of 80 nm to 2 μm of 90 to 97% or more, and the pores distributed in the positive electrode side surface layer have a pore size of 30 nm to 1 μm of 90 to 97%. Thus, the pores in the negative electrode side surface layer are relatively larger than the pores in the positive electrode side surface layer. The remaining 3 to 10% of the pores distributed in the negative electrode side surface layer have a size of less than 80 nm, and the remaining 3 to 10% of the pores distributed in the positive electrode side surface layer have a size of less than 30 nm. In the present invention, the thickness of the surface layer located on the negative electrode side is about 20 to 30% thicker than the thickness of the surface layer located on the positive electrode side, and more pores are distributed in the negative electrode side surface layer than the positive electrode side surface layer. Has been.
一般に、樹状突起の形成を抑止するためには、気孔のサイズが大きくなければならないが、気孔が無限に大きくなれば充電及び放電があまり急速に進行されるので、かえって電池の寿命を短縮することになる。従って、本発明者は反復的な実験を通じて前記のような気孔の分布及び大きさを有する隔膜を形成すると、樹状突起の形成を抑止すると共に、充電及び放電特性も優れており、その結果電池の寿命を画期的に向上させるという新しい事実が分かった。 In general, in order to suppress dendrite formation, the size of the pores must be large, but if the pores become infinitely large, charging and discharging proceed so rapidly that they shorten the battery life. It will be. Therefore, when the inventor forms a diaphragm having the pore distribution and size as described above through repeated experiments, the inventor suppresses the formation of dendrites and has excellent charge and discharge characteristics. A new fact has been found to dramatically improve the life expectancy of
一方、本発明に係る微多孔性ポリオレフィン系隔膜を製造するためには、まず溶融指数0.01乃至0.5である2種以上のポリエチレン混合樹脂を主材料として使用し、ここに20〜80重量%の気孔形成添加物を混合する。この際、隔膜に気孔を形成するための添加物としては、パラフィン類及びワックス類の中で選択された分子量の相異なる2種以上の化合物を使用する。前記主材料と気孔形成添加物のほかに通常的な酸化防止剤などを加えても良い。 On the other hand, in order to produce the microporous polyolefin diaphragm according to the present invention, first, two or more kinds of polyethylene mixed resins having a melt index of 0.01 to 0.5 are used as main materials, and 20-80 Mix weight percent pore-forming additive. At this time, two or more kinds of compounds having different molecular weights selected from paraffins and waxes are used as additives for forming pores in the diaphragm. In addition to the main material and the pore-forming additive, a usual antioxidant may be added.
本発明では分子量及び物性が互いに相異なる2種以上の気孔形成添加物を使用することで、分子量の大きい気孔形成添加物は主材料であるポリエチレン樹脂と混合及び溶融されるとき、主に隔膜の内部層に混入されて大孔径の気孔を形成し、分子量の小さい気孔形成添加物は、主材料であるポリエチレンと混合及び溶融されるとき、主に隔膜の両表面層に混入されて細孔径の気孔を形成する。 In the present invention, by using two or more pore-forming additives having different molecular weights and physical properties, when the pore-forming additive having a large molecular weight is mixed and melted with the polyethylene resin as a main material, When mixed with the main material polyethylene and melted, the pore-forming additive with a small molecular weight is mixed into the inner layer to form pores with a large pore size. Creates pores.
引き続き、前記混合物を押出用スクリュー内に混入して200℃乃至270℃の温度で溶融し、Tダイを介して押出して厚さ300μm乃至600μmのシートを形成した後、このシートを連続的にキャストロールに通過させる。本発明の特徴の中で1つであるTダイを介して押出されたシートがキャストロールを通過するときシートの一面は40〜80℃の温度に冷却されたキャストロールに直接接触させて直ちに冷却させ、シートの他面に接触するキャストロールには約5〜15mm程度のバンクを形成することにより、シートの両面に温度偏差及び移動速度の差を付与することである。 Subsequently, the mixture is mixed in an extrusion screw, melted at a temperature of 200 ° C. to 270 ° C., extruded through a T die to form a sheet having a thickness of 300 μm to 600 μm, and then the sheet is continuously cast. Pass through the roll. When the sheet extruded through the T-die, which is one of the features of the present invention, passes through the cast roll, one side of the sheet is immediately cooled by being brought into direct contact with the cast roll cooled to a temperature of 40 to 80 ° C. In addition, by forming a bank of about 5 to 15 mm on the cast roll contacting the other surface of the sheet, a temperature deviation and a difference in moving speed are imparted to both surfaces of the sheet.
一般に、射出成形や押出成形により形成される全ての成形物において、両表面層に付与される温度が互いに異なっていると、表面層を構成する物質と内部層を構造する物質との間に互いに流動及び固化される程度に差が生じるので、たとえ同一な原料を用いても表面層と内部層の構造が互いに異なるように形成される。 In general, in all molded products formed by injection molding or extrusion molding, if the temperatures applied to both surface layers are different from each other, the material constituting the surface layer and the material constituting the inner layer are mutually separated. Since there is a difference in the degree of flow and solidification, even if the same raw material is used, the surface layer and the inner layer are formed so as to have different structures.
かかる原理に基づいて、本発明ではTダイを介して形成された高温の円盤シートを直ちにキャストロールに投入してキャストロールによってシートの両面に温度及び移動速度の差を付与することで、負極側表面層及び正極側表面層にそれぞれ相異なる特性を有する気孔を形成させる。つまり、キャストロールによって直接冷却された表面層は直ちに固化されるので、肉厚が薄いながら小さな気孔を有する正極側表面層を形成する。そして、正極側表面層の反対側表面層に接触するキャストロールには約5〜15mm程度のバンクを形成して少しの傾斜勾配を付与することで、移動速度の差によって気孔がより効率よく延伸され、このため正極側表面層に比して相対的に気孔のサイズが大きく、且つ表面層の厚さも厚い負極側表面層を形成する。尚、隔膜の内部は自然的な冷却により最も遅く徐々に固化されてコア(Core)部分を形成する。 Based on this principle, in the present invention, a high-temperature disk sheet formed via a T-die is immediately put into a cast roll, and a difference in temperature and moving speed is imparted to both sides of the sheet by the cast roll. Pores having different characteristics are formed in the surface layer and the positive electrode side surface layer, respectively. That is, since the surface layer directly cooled by the cast roll is immediately solidified, a positive electrode-side surface layer having small pores while being thin is formed. The cast roll contacting the surface layer on the opposite side of the positive surface layer is formed with a bank of about 5 to 15 mm to give a slight gradient so that the pores are more efficiently stretched due to the difference in moving speed. Therefore, a negative electrode side surface layer having a relatively large pore size and a thick surface layer as compared with the positive electrode side surface layer is formed. Note that the inside of the diaphragm is gradually solidified most slowly by natural cooling to form a core portion.
その後、前記シートを連続的に縦方向及び横方向にそれぞれ4倍乃至7倍ずつ二軸延伸させて厚さ10μm乃至25μmであるフィルムを製造し、該フィルムをイソプロパノール、ヘキサン、ペンタン、塩化メチレン、メチルエチルケトン、ジオキサンなどの有機溶媒に沈積させて気孔形成添加物を抽出すれば本発明に係る微多孔性ポリオレフィン系隔膜が完成される。 Thereafter, the sheet is continuously biaxially stretched 4 to 7 times in the machine direction and the transverse direction to produce a film having a thickness of 10 μm to 25 μm. The film is made of isopropanol, hexane, pentane, methylene chloride, When the pore-forming additive is extracted by deposition in an organic solvent such as methyl ethyl ketone or dioxane, the microporous polyolefin-based membrane according to the present invention is completed.
本発明により製造された微多孔性隔膜には両面或いはいずれか一方の表面に正極側又は負極側をそれぞれ表示することにより、電池の組立作業をより容易に行うことができる。 By displaying the positive electrode side or the negative electrode side on both surfaces or one of the surfaces of the microporous diaphragm manufactured according to the present invention, the battery can be assembled more easily.
以下、本発明に対する実施例を挙げると次の通りである。 Examples of the present invention are as follows.
分子量が互いに相異なるポリエチレン樹脂を配合して溶融指数0.05〜0.1の樹脂混合物を主材料として用意し、分子量400〜500g/molであるワックス類と分子量900〜1,000g/molであるワックス類とが1:1の割合で混合された気孔形成添加物を製造した後、前記主材料に対して前記気孔形成添加物50重量%を添加し、ここに酸化防止剤などの通常の添加物2重量%を混合した。 A resin mixture having a melt index of 0.05 to 0.1 is prepared as a main material by blending polyethylene resins having different molecular weights, and a wax having a molecular weight of 400 to 500 g / mol and a molecular weight of 900 to 1,000 g / mol. After producing a pore-forming additive mixed with a certain wax in a ratio of 1: 1, 50% by weight of the pore-forming additive is added to the main material. 2% by weight of additive was mixed.
次いで、前記混合物を240〜250℃の温度で溶融し、ギアポンプ及びTダイを介して押出して幅450mm、厚さ500μmである延伸前シートを形成した後、連続的に前記シートをキャストロールに投入した。このとき、シートの一面に接触するキャストロールの温度は45℃、移動速度は8m/minに維持し、シートの他面に接触する部位には10mm程度のバンクを形成させた。 Next, the mixture is melted at a temperature of 240 to 250 ° C. and extruded through a gear pump and a T die to form a sheet before stretching having a width of 450 mm and a thickness of 500 μm, and then the sheet is continuously put into a cast roll. did. At this time, the temperature of the cast roll in contact with one surface of the sheet was maintained at 45 ° C. and the moving speed was maintained at 8 m / min, and a bank of about 10 mm was formed at the portion in contact with the other surface of the sheet.
前記シートを120℃で縦方向5.5倍、横方向7倍の比率で二軸延伸して厚さが約12μmである薄膜フィルムを得る。そして、この薄膜フィルムをヘキサンが収まっている沈積槽に投入して主材料内に混入されているワックス類を取り除いて微多孔性隔膜を製造した。前記微多孔性隔膜の熱的特性及び機械的特性などを向上させるために110℃から120℃の温度にて熱固定して本発明のポリエチレン隔膜を完成した。 The sheet is biaxially stretched at 120 ° C. at a ratio of 5.5 times in the vertical direction and 7 times in the horizontal direction to obtain a thin film having a thickness of about 12 μm. Then, this thin film was put into a sedimentation tank in which hexane was accommodated, and the waxes mixed in the main material were removed to produce a microporous membrane. In order to improve the thermal and mechanical properties of the microporous membrane, the polyethylene membrane of the present invention was completed by heat setting at a temperature of 110 to 120 ° C.
充電及び放電特性のテスト
前記実施例によって製造されたポリエチレン隔膜に対してSEM電子走査顕微鏡を用いて20,000倍の倍率で両表面の状態を撮影し、各々の気孔の形状を観察した。図1は正極側表面を撮影した顕微鏡写真であり、図2は負極側表面を撮影した顕微鏡写真である。前記図1及び図2の顕微鏡写真から確認した結果、正極側表面層には30nm〜1μmである気孔が約95%程度分布されており、負極側表面層には80nm〜2μmである気孔が約95%程度分布されていることが認められた。
Test of Charging and Discharging Characteristics The surface of both surfaces of the polyethylene diaphragm manufactured according to the above example was photographed at a magnification of 20,000 using a SEM electron scanning microscope, and the shape of each pore was observed. FIG. 1 is a photomicrograph of the positive electrode surface, and FIG. 2 is a photomicrograph of the negative electrode surface. As a result of confirmation from the micrographs of FIGS. 1 and 2, about 95% of pores having a thickness of 30 nm to 1 μm are distributed in the positive electrode side surface layer, and about 80% to 2 μm of pores are distributed in the negative electrode side surface layer. It was confirmed that the distribution was about 95%.
前記実施例によって製造されたポリエチレン隔膜を用いてリチウムイオン電池(モデル名:553048)を製造し、このリチウム電池の充電及び放電特性を評価した後、その結果を日本旭化成工業(株)社製のSE隔膜を用いた電池と比較して下記の表1に示した。このとき、電池の正極物質及び負極物質、電解液は共に同じ製品を使用した。 A lithium ion battery (model name: 553048) was manufactured using the polyethylene diaphragm manufactured according to the above example, and the charge and discharge characteristics of the lithium battery were evaluated. The result was manufactured by Nippon Asahi Kasei Kogyo Co., Ltd. The results are shown in Table 1 below in comparison with a battery using an SE diaphragm. At this time, the same product was used for the positive electrode material, the negative electrode material, and the electrolytic solution of the battery.
前記表1において、C1は充電効率を示し、D1は放電効率を示すものである。また、Rate(2C)は30分間充電及び放電を行ったときの値を電池の正格容量値で除算した特性(1Cは1時間、0.5Cは2時間を意味する)であって、充電及び放電率を示す。即ち、Rate(2C)値が大きければ大きいほど充電及び放電特性が良好であり、つまり電池の寿命が向上する。 In Table 1, C1 indicates charging efficiency and D1 indicates discharging efficiency. Rate (2C) is a characteristic obtained by dividing the value when charging and discharging for 30 minutes by the rated capacity value of the battery (1C means 1 hour, 0.5C means 2 hours). Indicates the discharge rate. That is, the larger the Rate (2C) value, the better the charge and discharge characteristics, that is, the battery life is improved.
前記表1から明らかなように、本発明の実施例による隔膜を用いた電池が日本旭化成工業(株)社製のSE隔膜を用いた電池に比して充電及び放電電流と正格容量値の比特性を代弁するC Rate特性に優れていることがわかる。つまり本発明の隔膜を用いた電池は充電及び放電特性に優れており、究極的にハイサイクル(High cycle)特性に優れているので電池の寿命を向上させることが認められた。 As is clear from Table 1, the battery using the diaphragm according to the embodiment of the present invention has a ratio of charge and discharge current to the rated capacity value as compared with the battery using the SE diaphragm manufactured by Asahi Kasei Kogyo Co., Ltd. It can be seen that the C rate characteristic representing the characteristic is excellent. That is, it was confirmed that the battery using the diaphragm of the present invention is excellent in charge and discharge characteristics, and is ultimately excellent in high cycle characteristics, so that the battery life is improved.
Claims (3)
負極側表面層には寸法80nm〜2μmの気孔が90〜97%分布されており、正極側表面層には寸法30nm〜1μmの気孔が90〜97%分布されていることを特徴とする2次電池用微多孔性ポリオレフィン系隔膜。 In a microporous polyolefin diaphragm used for a secondary battery,
90 to 97% of pores having a size of 80 nm to 2 μm are distributed in the negative electrode side surface layer, and 90 to 97% of pores having a size of 30 nm to 1 μm are distributed to the positive electrode side surface layer. A microporous polyolefin diaphragm for batteries.
前記混合する段階で混合された混合物を200℃乃至270℃の温度で溶融及び押出して厚さ300μm乃至600μmのシートを形成する段階と、
前記シートをキャストロールに投入してその一面は40〜80℃の温度に維持されるキャストロールに直接接触させて強制冷却させ、シートの他面はキャストロールに約5〜15mm程度のバンクを形成させることにより、シートの両面に温度及び移動速度の偏差を付与する段階と、
前記シートを縦軸及び横軸方向にそれぞれ4倍乃至7倍延伸させて厚さ10μm乃至25μmのフィルムを製造する段階と、
前記フィルムを有機溶媒に沈積させてシリコン化合物を取り除く段階と、を含むことを特徴とする2次電池用微多孔性ポリオレフィン系隔膜の製造方法。 Mixing 20 to 80% by weight of two or more pore-forming additives having different molecular weights selected from paraffins or waxes with a polyethylene mixed resin having a melt index of 0.01 to 0.5;
Melting and extruding the mixture mixed in the mixing step at a temperature of 200 ° C. to 270 ° C. to form a sheet having a thickness of 300 μm to 600 μm;
The sheet is put into the cast roll, and one side of the sheet is brought into direct contact with the cast roll maintained at a temperature of 40 to 80 ° C. to forcibly cool, and the other side of the sheet forms a bank of about 5 to 15 mm on the cast roll. Providing a deviation in temperature and moving speed on both sides of the sheet,
Stretching the sheet 4 to 7 times in the vertical and horizontal directions, respectively, to produce a film having a thickness of 10 μm to 25 μm;
Depositing the film in an organic solvent to remove the silicon compound, and a method for producing a microporous polyolefin diaphragm for a secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005376371A JP4369921B2 (en) | 2005-12-27 | 2005-12-27 | Microporous polyolefin diaphragm for secondary battery and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005376371A JP4369921B2 (en) | 2005-12-27 | 2005-12-27 | Microporous polyolefin diaphragm for secondary battery and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007179847A true JP2007179847A (en) | 2007-07-12 |
JP4369921B2 JP4369921B2 (en) | 2009-11-25 |
Family
ID=38304826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005376371A Active JP4369921B2 (en) | 2005-12-27 | 2005-12-27 | Microporous polyolefin diaphragm for secondary battery and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4369921B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108695476A (en) * | 2018-05-21 | 2018-10-23 | 湖南人文科技学院 | Ceramic diaphragm and its preparation method and application |
CN113451704A (en) * | 2021-06-03 | 2021-09-28 | 内蒙古中锂新材料有限公司 | Preparation method of ultrathin high-temperature-resistant safety lithium ion battery diaphragm |
CN116759753A (en) * | 2023-08-16 | 2023-09-15 | 宁德新能源科技有限公司 | Secondary battery and electronic device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0525305A (en) * | 1991-07-19 | 1993-02-02 | Tonen Corp | Polyethylene porous membrane, its production and battery separator made of the same membrane |
JPH10302748A (en) * | 1997-04-28 | 1998-11-13 | Nitto Denko Corp | Non-aqueous electrolytic battery |
-
2005
- 2005-12-27 JP JP2005376371A patent/JP4369921B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0525305A (en) * | 1991-07-19 | 1993-02-02 | Tonen Corp | Polyethylene porous membrane, its production and battery separator made of the same membrane |
JPH10302748A (en) * | 1997-04-28 | 1998-11-13 | Nitto Denko Corp | Non-aqueous electrolytic battery |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108695476A (en) * | 2018-05-21 | 2018-10-23 | 湖南人文科技学院 | Ceramic diaphragm and its preparation method and application |
CN113451704A (en) * | 2021-06-03 | 2021-09-28 | 内蒙古中锂新材料有限公司 | Preparation method of ultrathin high-temperature-resistant safety lithium ion battery diaphragm |
CN116759753A (en) * | 2023-08-16 | 2023-09-15 | 宁德新能源科技有限公司 | Secondary battery and electronic device |
CN116759753B (en) * | 2023-08-16 | 2023-11-14 | 宁德新能源科技有限公司 | Secondary battery and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP4369921B2 (en) | 2009-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016024533A1 (en) | Polyolefin microporous film and method for manufacturing same, separator for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell | |
KR101861408B1 (en) | Propylene resin microporous film, separator for battery, battery, and method for producing propylene resin microporous film | |
JP6699552B2 (en) | Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
JP4267634B2 (en) | Microporous polyolefin separator having three-dimensional stretching characteristics and method for producing the same | |
KR20130108256A (en) | Propylene resin micropore film, battery separator, battery and method of manufacturing propylene resin micropore film | |
KR101042931B1 (en) | Method for producing polyolefine microporous membrane | |
CN111668428A (en) | Method for manufacturing polyolefin separator and electrochemical cell | |
JP6659755B2 (en) | Wound body | |
JP4369921B2 (en) | Microporous polyolefin diaphragm for secondary battery and method for producing the same | |
JP2020084084A (en) | Polyolefin microporous film | |
JP4979252B2 (en) | Polyolefin microporous membrane | |
JP6416542B2 (en) | Wound body | |
JP5295857B2 (en) | Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery | |
JP2013203894A (en) | Polyolefin microporous membrane | |
JP4351673B2 (en) | Method for producing microporous polyolefin diaphragm | |
KR20160088973A (en) | Micro porous separator coated and its preparing method | |
JP2012087223A (en) | Microporous film, and battery separator | |
CN110181837B (en) | Production method for controlling aperture of lithium ion secondary battery diaphragm | |
JP2012072263A (en) | Polyolefin microporous film | |
KR100776029B1 (en) | Fine porous polyolefin separator for secondary battery and its manufacturing method | |
KR101765817B1 (en) | Separator for Secondary Battery with Improved Safety at High Temperature and Method of Making the Same | |
JP2010092879A (en) | Nonaqueous electrolyte secondary battery | |
TWI511352B (en) | Ion polymer film material and its preparation method and lithium secondary battery | |
JP2011081995A (en) | Separator for oven resistant property storage device | |
JP6596270B2 (en) | Method for producing polyolefin microporous membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090818 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090828 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4369921 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130904 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |