JP2007178581A - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
JP2007178581A
JP2007178581A JP2005375106A JP2005375106A JP2007178581A JP 2007178581 A JP2007178581 A JP 2007178581A JP 2005375106 A JP2005375106 A JP 2005375106A JP 2005375106 A JP2005375106 A JP 2005375106A JP 2007178581 A JP2007178581 A JP 2007178581A
Authority
JP
Japan
Prior art keywords
light
light guide
liquid crystal
crystal display
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005375106A
Other languages
Japanese (ja)
Inventor
Zenta Fukutomi
善太 福富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005375106A priority Critical patent/JP2007178581A/en
Publication of JP2007178581A publication Critical patent/JP2007178581A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display device with high luminance by taking out light, without forming a reflection member on a light guide, and using the light guide which controls light with high directivity. <P>SOLUTION: The light guide is formed with a multilayer structure of which the refractive indexes are different between adjacent layers. Thus, the directivity of light emitted from the light guide and an interval/position of emission is controlled. Because the refractive index layer width and the refractive index value of each of the layers are made suitably changeable, corresponding to an emission state from the light guide, the liquid crystal display device which is easily manufactured and which is superior in visibility is materialized. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、導光体、照明装置、及び液晶表示装置に関するものである。   The present invention relates to a light guide, an illumination device, and a liquid crystal display device.

近年、カラー液晶表示装置は、携帯用ノートパソコンや、カラー液晶パネルを使った携帯用液晶TVあるいはビデオ一体型液晶TV等として種々の分野で広く使用されてきている。また、情報処理量の増大化、ニーズの多様化、マルチメディア対応等に伴って、液晶表示装置の大画面化、高精細化が盛んに進められている。液晶表示装置は、基本的にバックライトと液晶表示素子を備えている。バックライトとしては、液晶表示素子の直下に光源を設けた直下方式や導光体の側面に光源を設けたエッジライト方式があり、液晶表示装置のコンパクト化からエッジライト方式が多用されている。このエッジライト方式は、板状の導光体の側面部に光源を配置して、導光体の表面全体を発光させる方式のバックライトである。   In recent years, a color liquid crystal display device has been widely used in various fields as a portable notebook personal computer, a portable liquid crystal TV using a color liquid crystal panel, or a video integrated liquid crystal TV. In addition, with the increase in the amount of information processing, diversification of needs, compatibility with multimedia, and the like, liquid crystal display devices have been increased in size and definition. The liquid crystal display device basically includes a backlight and a liquid crystal display element. As the backlight, there are a direct light method in which a light source is provided directly under a liquid crystal display element and an edge light method in which a light source is provided on a side surface of a light guide, and the edge light method is frequently used because of a compact liquid crystal display device. This edge light system is a backlight of a system in which a light source is disposed on a side surface portion of a plate-shaped light guide to emit light over the entire surface of the light guide.

従来の液晶表示装置の断面構成を図9に模式的に示す。図示するように、透過型又は半透過反射型の液晶素子7の背面側にバックライト14が配置されている。バックライト14は、略点光源の白色LEDなどの光源1からの光を、板状の導光板15内にその入射面(側面)16aから入射させるとともに、導光板15の液晶素子7と対向する出射面(上面)16bから出射させるように構成されている(例えば、特許文献1参照)。   FIG. 9 schematically shows a cross-sectional configuration of a conventional liquid crystal display device. As shown in the drawing, a backlight 14 is disposed on the back side of the transmissive or transflective liquid crystal element 7. The backlight 14 causes light from the light source 1 such as a white LED, which is a substantially point light source, to enter the plate-shaped light guide plate 15 from its incident surface (side surface) 16 a and to face the liquid crystal element 7 of the light guide plate 15. It is comprised so that it may radiate | emit from the output surface (upper surface) 16b (for example, refer patent document 1).

導光板15の出射面16bの反対側の面(下面)16cには、白色又は反射性を有する多数の突起部又はドット状平面パターンからなる反射部材17が形成されることにより、光反射性が付与されている。導光板15の下面16cに上記のような反射部材17を設ける場合、輝度ムラが生じるために導光板15の出射面16bに、拡散シート18を配置することで、均一な輝度が得られるようにしている。しかし、この拡散シート18では光が出射される範囲が広くなり過ぎるため、この拡散シート18上に2枚のプリズムシート12a、12bを順に積層している。図10にプリズムシートの構成を模式的に示す。図示するように、プリズムシートは、基材層に一連の断面三角状突出部19と一連の断面くさび状溝20とが形成されたものである。2枚のプリズムシート12a、12bは、一方のプリズムシートの突出部19の稜線の延在方向と他方のプリズムシートの突出部19の稜線の延在方向が90度異なるように配置される(換言すると、プリズム構造が直交するように配置される)。このような構成により、導光板15の出射面16bから出射された光のうちある方向の光が一方のプリズムシート12aを透過することとなる。そのため、出射光L1は、ある角度範囲(例えば70度まで)の視野角に集光されて出射される。また、他の方向の光が他方のプリズムシート12bを透過することで、ある角度範囲の視野角(例えば70度まで)に集光され、出射光L2として出射されるようになっている。
特表平11−500071号公報 (第2頁、図1)
On the surface (lower surface) 16c opposite to the exit surface 16b of the light guide plate 15, a reflective member 17 made of a large number of white or reflective projections or dot-like planar patterns is formed, so that light reflectivity is achieved. Has been granted. When the reflection member 17 as described above is provided on the lower surface 16 c of the light guide plate 15, luminance unevenness occurs, so that a uniform luminance can be obtained by disposing the diffusion sheet 18 on the emission surface 16 b of the light guide plate 15. ing. However, since the range in which light is emitted is too wide in the diffusion sheet 18, the two prism sheets 12 a and 12 b are sequentially laminated on the diffusion sheet 18. FIG. 10 schematically shows the configuration of the prism sheet. As shown in the figure, the prism sheet has a base material layer formed with a series of cross-section triangular protrusions 19 and a series of cross-section wedge-shaped grooves 20. The two prism sheets 12a and 12b are arranged such that the extending direction of the ridge line of the protruding portion 19 of one prism sheet differs from the extending direction of the ridge line of the protruding portion 19 of the other prism sheet by 90 degrees (in other words, Then, the prism structures are arranged so as to be orthogonal to each other). With such a configuration, light in a certain direction out of the light emitted from the emission surface 16b of the light guide plate 15 is transmitted through one prism sheet 12a. Therefore, the emitted light L1 is condensed and emitted at a viewing angle within a certain angle range (for example, up to 70 degrees). Further, the light in the other direction is transmitted through the other prism sheet 12b, so that it is condensed at a viewing angle within a certain angle range (for example, up to 70 degrees) and emitted as the emitted light L2.
Japanese National Patent Publication No. 11-500071 (2nd page, Fig. 1)

従来の照明装置の構成によると、導光板15の内部を伝搬する光を反射部材17で散乱させながら導光板の外へ取り出す構成のため、プリズムシートでの集光に寄与しない光線の存在や、導光体の奥へ行くほど出射光線が減少するなどの輝度ムラの発生が指摘されていた。これを解決するために従来では、反射部材17のドットサイズと分布を調整して導光体の奥での均斉度を向上させる技術や、導光板15の上面に均斉度を向上させる目的の拡散シート18を配置するなどの方法で輝度ムラの発生を最小限度にする構成が採られているが、プリズムシートへ入射する光線状態がまばらで、また散乱板も使用しているために正面方向での輝度が得にくい問題がある。   According to the configuration of the conventional lighting device, the light that propagates inside the light guide plate 15 is extracted from the light guide plate while being scattered by the reflecting member 17, so that the presence of light rays that do not contribute to the light collection on the prism sheet, It has been pointed out that brightness unevenness occurs such that the emitted light decreases as the depth of the light guide increases. In order to solve this problem, conventionally, the dot size and distribution of the reflecting member 17 are adjusted to improve the degree of uniformity in the back of the light guide, and the purpose of diffusion is to improve the degree of uniformity on the upper surface of the light guide plate 15. Although a configuration that minimizes the occurrence of luminance unevenness by adopting a method such as arranging the sheet 18 is adopted, the state of light incident on the prism sheet is sparse, and since a scattering plate is used, it is in the front direction. There is a problem that it is difficult to obtain the brightness.

さらに、昨今の薄型化トレンドに伴い、導光体部材の薄型化が要求されているが、導光体を薄型にすると反射部材の転写性が低下する弊害があり、転写性を上げるための材質改善や煩雑な光学シミュレーションを必要とするなどの課題があった。   Furthermore, along with the recent trend of thinning, there is a demand for thinning of the light guide member. However, when the light guide is thinned, there is an adverse effect that the transferability of the reflecting member decreases, and a material for improving the transferability. There were problems such as requiring improvement and complicated optical simulation.

そこで、本発明の目的は、比較的簡便な方法で導光体に反射部材を形成することなく光を取り出す技術と、高い指向性を制御できる方法とを備えた導光体を用いた照明装置及び液晶表示装置を提供することにある。   Accordingly, an object of the present invention is to provide an illumination device using a light guide including a technique for extracting light without forming a reflecting member on the light guide by a relatively simple method and a method capable of controlling high directivity. And providing a liquid crystal display device.

そこで、導光体に、隣接層間での屈折率が異なる多層構造を形成することとした。ここで、各層の屈折率の層幅と屈折率値は導光体からの出射状態に応じて適宜変更が可能である。隣接層の屈折率差は比較的小さくても実現できるため、一例としてシクロオレフィンポリマー樹脂・ポリカーボネート樹脂・アクリル樹脂等の比較的安価で加工の難易性を必要としない複合素材でも構成する事ができる。   Therefore, a multilayer structure having different refractive indexes between adjacent layers is formed on the light guide. Here, the layer width and refractive index value of the refractive index of each layer can be appropriately changed according to the emission state from the light guide. Since it can be realized even if the refractive index difference between adjacent layers is relatively small, it can be made of a composite material that does not require processing difficulty, such as cycloolefin polymer resin, polycarbonate resin, and acrylic resin, as an example. .

このような構成の導光体は出射光に強い指向性があるため、特にプリズムシート1枚を使った方式全反射方式の照明装置と組み合わせた場合との整合性が良く、光取出し効率を高く取ることができる。またプリズムシート2枚を使った方式でも、導光体全体で整列光として出射するため均斉度を向上させる意味での拡散シートが不要になり、輝度低下を低減することができる。   Since the light guide having such a configuration has a strong directivity to the emitted light, it is particularly well-matched with a combination of a total reflection type illumination device using a single prism sheet and high light extraction efficiency. Can be taken. Further, even in a system using two prism sheets, since the entire light guide is emitted as aligned light, a diffusion sheet in the sense of improving uniformity is not necessary, and a reduction in luminance can be reduced.

導光体内の屈折率については、屈折率の変更を加える層の前段、後段の屈折率を当該屈折率よりも大きくなるよう配置するが、導光体からの出光角度は出光領域とその一つ前段の領域での屈折率比で定まるため、出光状況に応じて適宜変更が可能である。   Regarding the refractive index in the light guide, the refractive index of the first stage and the subsequent stage of the layer to which the refractive index is changed is arranged to be larger than the refractive index, but the light output angle from the light guide is the light output region and one of them. Since it is determined by the refractive index ratio in the previous region, it can be changed as appropriate according to the light emission situation.

なお、多層構造の積層方法としては導光体の横断面から見て垂直方向に積層するが、斜めに積層する構成でも良い。   In addition, as a lamination | stacking method of a multilayer structure, although it laminates | stacks perpendicularly seeing from the cross section of a light guide, the structure laminated | stacked diagonally may be sufficient.

このようにして、導光体内に屈折率の異なる二つ以上の領域を設けた導光体とすることで、容易に導光体より出射する光の方向性と出射間隔・位置を制御する事ができる。このため、従来の導光体で例えば反射部材をグルーブ構造とした全反射方式の液晶表示装置では、グルーブ溝によって生じる輝線の影響を回避するためグルーブ構造の最適化が必要であったが、本発明の導光体ではこれら加工の難易性を必要とせず、また光の指向性と出射間隔を合わせるための加工の難易性も不要なため、製造容易で視認性に優れた液晶表示装置が提供できる。   In this way, by using a light guide having two or more regions having different refractive indexes in the light guide, the directionality of light emitted from the light guide and the emission interval and position can be easily controlled. Can do. For this reason, in a conventional total light reflection type liquid crystal display device in which the reflecting member has a groove structure, for example, the light guide is required to optimize the groove structure in order to avoid the influence of the bright line caused by the groove. The light guide of the invention does not require these processing difficulties, and also eliminates the difficulty of processing to match the light directivity and the emission interval, thereby providing a liquid crystal display device that is easy to manufacture and excellent in visibility. it can.

本発明の導光体では、導光体からの出光角度が出光領域とその一つ前段の領域での屈折率比で決まるため、各層の屈折率の層幅と屈折率を変えることで容易に導光体より出射する光の方向性と出射間隔・位置を制御する事ができる。このため特に全反射方式の照明装置と組み合わせた場合の光線状態の整合性が良く、光の取り出し効率が高い。また従来の反射部材を付けた導光体に見られる加工の難易性を必要とせず、薄型にしたときの転写性の問題からもフリーのため、より製造容易で高輝度、且つ視認性に優れた液晶表示装置が提供できる。   In the light guide of the present invention, since the light output angle from the light guide is determined by the refractive index ratio between the light output region and the previous region, it is easy to change the refractive index layer width and refractive index of each layer. It is possible to control the directionality of light emitted from the light guide and the emission interval and position. For this reason, the matching of the light beam state is particularly good when combined with a total reflection illumination device, and the light extraction efficiency is high. In addition, it does not require the difficulty of processing seen in conventional light guides with reflective members, and is free from the problem of transferability when thinned, making it easier to manufacture, high brightness, and excellent visibility. A liquid crystal display device can be provided.

以下、本発明の導光体を適用した液晶表示装置の実施例を図1〜図10に基づいて詳細に説明する。   Hereinafter, embodiments of a liquid crystal display device to which the light guide of the present invention is applied will be described in detail with reference to FIGS.

図1は、本発明の導光体を適用した液晶表示装置の一例を示す構成図である。本実施例の液晶表示装置は、図示するように、導光板2の下方に放出される光を導光板2の内部に反射する反射シート3が導光板2とLED光源1と導光板2の下方に配置されている。また、導光板から出射される光を液晶素子の正面方向へと変角する光学シート層4aが導光板2と液晶素子7の間に設けられている。導光板2は、屈折率が異なる二もしくはそれ以上の材質からなる多層構造を形成しており、隣接層で屈折率が互いに異なっている。光学シート層4aは、導光板2の出光面5の上方に配置され、出光面5と対向する表面に所定の間隔をおいてプリズム山4bが形成された逆プリズム形状を成す。逆プリズム形状の光学シート層4aを用いることにより、液晶表示パネルに入光される光の垂直方向の成分が増加する。そのため、光の正面輝度が向上する。   FIG. 1 is a configuration diagram showing an example of a liquid crystal display device to which the light guide of the present invention is applied. In the liquid crystal display device of the present embodiment, as shown in the drawing, the reflection sheet 3 that reflects the light emitted below the light guide plate 2 to the inside of the light guide plate 2 is below the light guide plate 2, the LED light source 1, and the light guide plate 2. Is arranged. An optical sheet layer 4 a that changes the angle of light emitted from the light guide plate in the front direction of the liquid crystal element is provided between the light guide plate 2 and the liquid crystal element 7. The light guide plate 2 forms a multilayer structure made of two or more materials having different refractive indexes, and the refractive indexes of adjacent layers are different from each other. The optical sheet layer 4 a is disposed above the light exit surface 5 of the light guide plate 2 and has an inverted prism shape in which prism peaks 4 b are formed at a predetermined interval on the surface facing the light exit surface 5. By using the reverse prism-shaped optical sheet layer 4a, the vertical component of the light incident on the liquid crystal display panel is increased. Therefore, the front brightness of the light is improved.

次に、この液晶表示装置における光の挙動について図2、図3を使って説明する。図2は本発明の導光体を適用した液晶表示装置を説明する模式図であり、導光板2の屈折率の境界が分かるようにしたものである。また、図3は図2において屈折率の領域n1とn2の部分を拡大して示した図である。ここで、図2、図3において図1と同一部分には同一符号を付し、ここではその説明を省略する。また、下記の説明文中に登場するθcは臨界角、θ0〜θ5は図3にある導光体の各位置においての入射角を表す。LED光源1から導光板2に入射した光は、屈折率の領域n1にて背面6(もしくは出光面5)に対して臨界角よりも浅い角度で入射するため(θ0<θc)、界面で全反射をするが(図中m1)、屈折率の領域n2に差し掛かった光は、屈折率n1、n2の界面で臨界角を越えるため(θ1=90゜−θ0>θc)、下記したスネルの法則に従い、屈折率の比に相当する角度だけ曲がって進行する(図中m2)。 Next, the behavior of light in this liquid crystal display device will be described with reference to FIGS. FIG. 2 is a schematic diagram for explaining a liquid crystal display device to which the light guide of the present invention is applied, in which the boundary of the refractive index of the light guide plate 2 can be understood. FIG. 3 is an enlarged view of the refractive index regions n1 and n2 in FIG. 2 and 3, the same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted here. Further, θc appearing in the following description represents a critical angle, and θ 0 to θ 5 represent incident angles at respective positions of the light guide shown in FIG. The light incident on the light guide plate 2 from the LED light source 1 is incident on the back surface 6 (or the light exit surface 5) at an angle shallower than the critical angle in the refractive index region n1 (θ 0 <θc). Although light is totally reflected (m1 in the figure), the light reaching the refractive index region n2 exceeds the critical angle at the interface of the refractive indexes n1 and n2 (θ 1 = 90 ° −θ 0 > θc). According to Snell's law, it proceeds by bending at an angle corresponding to the refractive index ratio (m2 in the figure).

Figure 2007178581
Figure 2007178581

いま、屈折率n2をn1に対して若干小さくなるようにすると、屈折率の領域n2を進行し出光面5へ到達した光は臨界角よりも大きい角度で界面へ入射するため(θ3=90゜−θ2 >θc)、一部は全反射することなく導光板2より出射し(図中m3)、他は導光板2内へと反射する(図中m4)。 Now, if the refractive index n2 is made slightly smaller than n1, light traveling through the refractive index region n2 and reaching the light exit surface 5 enters the interface at an angle larger than the critical angle (θ 3 = 90). ([Deg.]-[Theta] 2 > [theta] c), part of which is emitted from the light guide plate 2 without being totally reflected (m3 in the figure), and the other part is reflected into the light guide plate 2 (m4 in the figure)

反射した光はさらに屈折率の領域n3へと差し掛かるが(θ4=90゜−θ3 <θc)、ここで屈折率n3をn2に対して若干大きくなるように取る事で、界面で全反射することなく屈折率の比に相当する角度だけ曲がって進行する(図中m5)。 The reflected light further reaches the refractive index region n3 (θ 4 = 90 ° −θ 3 <θc). By taking the refractive index n3 so as to be slightly larger than n2, all the light is reflected at the interface. It bends at an angle corresponding to the refractive index ratio without reflection (m5 in the figure).

Figure 2007178581
Figure 2007178581

そして、屈折率の領域n3にて背面6で全反射した光は、屈折率n4の界面で屈折進行して出光面5へと到達し、一部が導光板2外部へと出射し(図中m6)、他は導光板2内へと反射する(図中m7)。以降も同様に、(隣接層での屈折率を最適化することで)一部の光を出光面5から導光板2外部へと取り出し、他の光を導光板2内へ反射することを繰り返す。そして出光面5の各位置から取り出された光は光学シート層4aのプリズム山4bの斜面により全反射され(図中m8、m9)、バックライトの正面方向に変角して正面方向への輝度を向上させている。   Then, the light totally reflected by the back surface 6 in the refractive index region n3 proceeds to be refracted at the interface of the refractive index n4 and reaches the light output surface 5, and part of the light is emitted to the outside of the light guide plate 2 (in the drawing). m6) and others are reflected into the light guide plate 2 (m7 in the figure). In the same manner, a part of the light is extracted from the light exit surface 5 to the outside of the light guide plate 2 and the other light is reflected into the light guide plate 2 in the same manner (by optimizing the refractive index in the adjacent layer). . The light extracted from each position on the light exit surface 5 is totally reflected by the slope of the prism crest 4b of the optical sheet layer 4a (m8 and m9 in the figure), and changes its angle to the front direction of the backlight, resulting in luminance in the front direction. Has improved.

本発明の導光体を適用したこの方式(以降全反射方式と称する)の液晶表示装置では、従来の導光体を適用した場合と比較して、屈折率領域の層構造(幅と屈折率)を適宜変更することで容易に導光体より出射する光の方向性と出射間隔・位置を制御する事ができる。このため、従来の導光体で例えば反射部材をグルーブ構造とした全反射方式の液晶表示装置では、図4で示すように導光体9の端面からの戻り光(図中m1)がグルーブ溝8に照射。反射した光が出光面5に到達する事で輝線が出る問題があり(図中m2)、これを解決するため従来ではグルーブ構造の最適化が必要であった。また図5で示す形に、反入光側での輝度ムラ改善策として、グルーブ形状を導光体の奥へ行くほど深く取る可変型反射溝を形成する技術を必要としたが、本発明の導光体ではこれら加工の難易性を必要としない。
さらに、他の反射部材を適用した場合に課題となる輝度ムラや光の指向性と出射間隔を合わせるための加工の難易性(例えば、V溝構造の反射部材では不等間隔ピッチにするなど)がないため、製造容易で視認性に優れた液晶表示装置が提供できる。
In the liquid crystal display device of this method (hereinafter referred to as a total reflection method) to which the light guide of the present invention is applied, the layer structure (width and refractive index) of the refractive index region is compared with the case where a conventional light guide is applied. ) Can be appropriately changed, and the directionality of the light emitted from the light guide and the emission interval / position can be easily controlled. For this reason, in a conventional light guide with a total reflection type liquid crystal display device in which the reflecting member has a groove structure, for example, the return light (m1 in the figure) from the end face of the light guide 9 is grooved as shown in FIG. 8 irradiation. There is a problem that a bright line appears when the reflected light reaches the light exit surface 5 (m2 in the figure). Conventionally, the groove structure has to be optimized to solve this problem. Further, in the shape shown in FIG. 5, as a measure for improving luminance unevenness on the anti-incident light side, a technique for forming a variable reflection groove that takes a groove shape deeper toward the back of the light guide is required. The light guide does not require such processing difficulties.
Furthermore, luminance unevenness and difficulty in processing for matching the light directivity with the output interval when other reflecting members are applied (for example, a non-uniformly spaced pitch is used with a reflecting member having a V-groove structure). Therefore, a liquid crystal display device that is easy to manufacture and excellent in visibility can be provided.

図6は、本発明の導光体を適用した第2の液晶表示装置の実施例を示す構成図である。本実施例の液晶表示装置は、図6で示すように、導光板2と導光板2の両側端面に配設したLED光源1、11と導光板2の下方に配置されて導光板2の下方に放出される光を導光板2の内部に反射する反射シート3、導光板2の出光面5より出射した光をそれぞれx方向、y方向に集光させるための第1プリズムシート12a、第2プリズムシート12bと液晶素子7を備える。   FIG. 6 is a block diagram showing an embodiment of a second liquid crystal display device to which the light guide of the present invention is applied. As shown in FIG. 6, the liquid crystal display device of the present embodiment is disposed below the light guide plate 2 and the LED light sources 1 and 11 disposed on both side end surfaces of the light guide plate 2 and below the light guide plate 2. The first prism sheet 12a and the second prism sheet 12a for condensing the light emitted from the light exit surface 5 of the light guide plate 2 in the x direction and the y direction, respectively. The prism sheet 12b and the liquid crystal element 7 are provided.

ここで、導光板2の両端面には不要反射光を除去するための無反射コート層(ARコート)13a、13bが貼られている。無反射コート層(ARコート)は特定の光波長成分に作用してこれの反射率が効果的に低減するようにした光学フィルムで、一例として図7に示す形の反射特性を有する。このため、導光板2の両側端面に配設した2対のLED光源から導光体2を介して出光する光の状態は、両端面にある無反射コート層13a、13bにより導光体からの戻り光成分が軽減されるため、図8で示す形に指向性を持った光がほぼ左右対称として出射する(図中m1、m2)。そして出射した光は上下2枚に配置したプリズムシートで屈折集光され(図中m3、m4)、光の正面方向の輝度を向上させている。ここで、LED光源から導光板2の出光面5より光が出射するまでの動作は実施例1で説明した図2と同様であり、ここではその説明を省略する。   Here, non-reflective coating layers (AR coating) 13 a and 13 b for removing unnecessary reflected light are attached to both end faces of the light guide plate 2. The non-reflective coating layer (AR coating) is an optical film that acts on a specific light wavelength component to effectively reduce the reflectance thereof, and has a reflection characteristic shown in FIG. 7 as an example. For this reason, the state of the light emitted from the two pairs of LED light sources disposed on both end faces of the light guide plate 2 through the light guide 2 is determined by the non-reflective coating layers 13a and 13b on both end faces from the light guide. Since the return light component is reduced, the light having directivity in the shape shown in FIG. 8 is emitted as being almost symmetrical (m1, m2 in the figure). The emitted light is refracted and condensed by the prism sheets arranged in the upper and lower two sheets (m3 and m4 in the figure), and the brightness in the front direction of the light is improved. Here, the operation from the LED light source until light is emitted from the light exit surface 5 of the light guide plate 2 is the same as that in FIG. 2 described in the first embodiment, and the description thereof is omitted here.

本発明の導光体を適用したこの方式の液晶表示装置では、従来例の図9にあるそれと較べると導光体からの出射光に指向性を持たせているのが特徴で、導光体全体で整列光として出射するため均斉度を向上させる意味での拡散シート18が不要になり、輝度低下を低減することができる。しかも導光板2の両側端面にLED光源を備えるため、光度と有効活用できる光量を倍増する事ができる。さらに導光体からの出射光に指向性があるため、プリズムシート内での戻り光、多重反射などの輝度上昇に寄与しない光線の存在を回避することができ、結果として高輝度な液晶表示装置が提供できる。   This type of liquid crystal display device to which the light guide of the present invention is applied is characterized in that the light emitted from the light guide has a directivity compared to that of the conventional example shown in FIG. Since the light is emitted as aligned light as a whole, the diffusion sheet 18 in the sense of improving the uniformity becomes unnecessary, and the reduction in luminance can be reduced. In addition, since the LED light sources are provided on both end faces of the light guide plate 2, the luminous intensity and the amount of light that can be effectively used can be doubled. Furthermore, since the light emitted from the light guide has directivity, it is possible to avoid the presence of light rays that do not contribute to an increase in brightness, such as return light in the prism sheet and multiple reflections, resulting in a high-brightness liquid crystal display device Can be provided.

本発明は、小型携帯情報機器の高輝度化を意図して考案したものであるが、導光体に反射部材を形成することがないため薄型化に伴う転写性の問題からはフリーであること、製造上での低コスト化が図れる他、比較的低コストで従来からある製造容易な部材(一例としてポリカーボネート、シクロオレフィンポリマー、アクリル樹脂など)をそのまま適用できるため、昨今の薄型化と低価格化が進む液晶表示装置の輝度改善に役立つ。   The present invention was devised with the intention of increasing the brightness of a small portable information device, but it is free from the problem of transferability associated with the reduction in thickness because no reflecting member is formed on the light guide. In addition to cost reduction in manufacturing, it is possible to apply conventional, easy-to-manufacture members (eg polycarbonate, cycloolefin polymer, acrylic resin, etc.) as they are at relatively low cost. This is useful for improving the brightness of liquid crystal display devices.

本発明の導光体を適用した液晶表示装置を模式的に示す断面図である。It is sectional drawing which shows typically the liquid crystal display device to which the light guide of this invention is applied. 本発明の導光体を適用した液晶表示装置を説明する模式図である。It is a schematic diagram explaining the liquid crystal display device to which the light guide of this invention is applied. 本発明の導光体を説明する模式図である。It is a schematic diagram explaining the light guide of this invention. グルーブ構造を成す従来の導光体で輝線発生のメカニズムを説明する模式図である。It is a schematic diagram explaining a bright line generation mechanism in a conventional light guide having a groove structure. 可変型反射溝を成す従来の導光体を説明する模式図である。It is a schematic diagram explaining the conventional light guide which comprises a variable reflection groove. 本発明の導光体を適用した液晶表示装置を模式的に示す断面図である。It is sectional drawing which shows typically the liquid crystal display device to which the light guide of this invention is applied. 無反射コート層の波長に対する反射特性を示す図表である。It is a graph which shows the reflective characteristic with respect to the wavelength of a non-reflective coating layer. 本発明の導光体を適用した液晶表示装置を説明する模式図である。It is a schematic diagram explaining the liquid crystal display device to which the light guide of this invention is applied. 従来の液晶表示装置を模式的に示す断面図である。It is sectional drawing which shows the conventional liquid crystal display device typically. 従来の液晶表示装置でプリズムシートでの光の集光原理を説明する模式図である。It is a schematic diagram explaining the light condensing principle in a prism sheet with the conventional liquid crystal display device.

符号の説明Explanation of symbols

1 LED光源
2 導光板
3 光反射板
4a 光学シート層、4b プリズム山
5 導光板表面(光出光面)
6 導光板背面
7 液晶素子
8 グルーブ溝
9 従来の導光板
10従来の導光板
11 LED光源
12a,12b プリズムシート(屈折手段)
13a,13b 無反射コート層(ARコート層)
14 バックライト(照明装置)
15 導光板(従来)
16a 導光板端面(光入射面)
16b 導光板表面(光出光面)
16c 導光板背面
17 反射部材(採光手段)
18 拡散シート(散光手段)
19 プリズムシート突出部
20 プリズムシート楔状溝
L1,L2 光線
DESCRIPTION OF SYMBOLS 1 LED light source 2 Light guide plate 3 Light reflecting plate 4a Optical sheet layer, 4b Prism mountain 5 Light guide plate surface (light emission surface)
6 Rear surface of light guide plate 7 Liquid crystal element 8 Groove groove 9 Conventional light guide plate 10 Conventional light guide plate 11 LED light source 12a, 12b Prism sheet (refractive means)
13a, 13b Non-reflective coating layer (AR coating layer)
14 Backlight (lighting device)
15 Light guide plate (conventional)
16a End face of light guide plate (light incident surface)
16b Light guide plate surface (light exit surface)
16c Rear surface of light guide plate 17 Reflecting member (lighting means)
18 Diffusion sheet (scattering means)
19 Prism sheet protrusion 20 Prism sheet wedge-shaped groove L1, L2 Ray

Claims (3)

液晶素子と、光源と、前記光源から入射された光を前記液晶素子に導く導光板を備える液晶表示装置であって、前記導光板は前記入射された光の入射方向に対して積層された多層構造を持ち、前記多層構造を構成するそれぞれの層は隣接する層と異なる屈折率であることを特徴とする液晶表示装置。   A liquid crystal display device comprising a liquid crystal element, a light source, and a light guide plate that guides light incident from the light source to the liquid crystal element, wherein the light guide plate is laminated in the incident direction of the incident light A liquid crystal display device having a structure, wherein each layer constituting the multilayer structure has a refractive index different from that of an adjacent layer. 前記多層構造が、前記導光板の横断面から見て斜方に積層したことを特徴とする請求項2に記載の液晶表示装置。   The liquid crystal display device according to claim 2, wherein the multilayer structure is stacked obliquely as viewed from a cross section of the light guide plate. 前記導光板に、特定の光波長成分に作用してこれの反射率を低減させる無反射コート層を備えたことを特徴とする請求項1または2に記載の液晶表示装置。   The liquid crystal display device according to claim 1, wherein the light guide plate is provided with a non-reflective coating layer that acts on a specific light wavelength component to reduce the reflectance thereof.
JP2005375106A 2005-12-27 2005-12-27 Liquid crystal display device Pending JP2007178581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375106A JP2007178581A (en) 2005-12-27 2005-12-27 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375106A JP2007178581A (en) 2005-12-27 2005-12-27 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2007178581A true JP2007178581A (en) 2007-07-12

Family

ID=38303854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375106A Pending JP2007178581A (en) 2005-12-27 2005-12-27 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2007178581A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110652A1 (en) * 2009-03-23 2010-09-30 Eldolab Holding B.V. Led lamp comprising light guide including first and second diffusing surfaces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110652A1 (en) * 2009-03-23 2010-09-30 Eldolab Holding B.V. Led lamp comprising light guide including first and second diffusing surfaces
US9228702B2 (en) 2009-03-23 2016-01-05 Eldolab Holding B.V. LED lamp comprising light guide including first and second diffusing surfaces

Similar Documents

Publication Publication Date Title
TW408241B (en) Surface light source device of side light type and liquid crystal display
US9164215B2 (en) Light guide plate and surface light source device
US7085060B2 (en) Optical component for liquid crystal display
KR101013532B1 (en) Light guide plate
EP2474846B1 (en) Light outcoupling structure for a lighting device
TWI278686B (en) Planar light source unit and display device
TW201024815A (en) A polarized and microstructural light-guide device comprises a non-polarized light source module
JP2009187904A (en) Light source unit, back light unit, and display
JP2010509707A (en) Backlight and display
US20080219024A1 (en) Backlight unit with reduced color separation including a polarizing turning film
TW200930950A (en) Improved light guide
US7548371B2 (en) Optical film, illuminator and display
JP5765301B2 (en) Light guide plate, surface light source device, transmissive display device
JP2002197908A (en) Light control sheet, surface light source device, and liquid crystal display
JP2009043565A (en) Light guide plate, planar light unit, and display device
JP2009289701A (en) Lighting device, plane light source device, and liquid crystal display
JP4544182B2 (en) Illumination device, electro-optical device, and manufacturing method thereof
JP2005243259A (en) Double-screen image display device and surface light source device
JP2002323607A (en) Light control sheet, surface light source device and image display
JP2007178581A (en) Liquid crystal display device
JP3516466B2 (en) Lighting device and liquid crystal display device
JP2005285389A (en) Lighting device and display device using the same
TW200535519A (en) Light guide for use in planar light source device, method for manufacturing the same and planar light source device
JP2017208287A (en) Surface light source device and transmission type display device
JP5929552B2 (en) Light guide plate, surface light source device, transmissive display device