JP2007178338A - Detection cell and its manufacturing method - Google Patents

Detection cell and its manufacturing method Download PDF

Info

Publication number
JP2007178338A
JP2007178338A JP2005378814A JP2005378814A JP2007178338A JP 2007178338 A JP2007178338 A JP 2007178338A JP 2005378814 A JP2005378814 A JP 2005378814A JP 2005378814 A JP2005378814 A JP 2005378814A JP 2007178338 A JP2007178338 A JP 2007178338A
Authority
JP
Japan
Prior art keywords
detection
substrate
liquid sample
channel
detection cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005378814A
Other languages
Japanese (ja)
Inventor
Nobuaki Kitano
延明 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005378814A priority Critical patent/JP2007178338A/en
Publication of JP2007178338A publication Critical patent/JP2007178338A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detection cell having a long working length with which light is transmitted through a liquid sample, and shielding an excessive beam unnecessary for detection, and a manufacturing method of the detection cell for manufacturing the detection cell highly accurately. <P>SOLUTION: An approximately linear detection passage 12 is formed on a substrate 11, and a sample introduction passage 13 for introducing the liquid sample is formed on one end of the detection passage 12, and a sample discharge passage for discharging the liquid sample is formed on the other end, respectively on positions except in the linear direction of the detection passage 12. A pinhole formation groove 16 for entrance/exit of a beam is formed on the substrate side face 15 in the linear direction of the detection passage 12, and an upper plate 17 is laminated on the upper surface of the substrate 11, and the substrate side face 15 on which the pinhole formation groove 16 is formed is covered with a shielding film 18 excepting the pinhole formation groove 16. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、透明な基板に流路を形成し、その流路中を流れる液体試料の吸光度等を測定する検出セルとその製造方法に関するものである。   The present invention relates to a detection cell for forming a flow path on a transparent substrate and measuring the absorbance and the like of a liquid sample flowing in the flow path, and a method for manufacturing the same.

可視域または紫外域の光線を用いて液体試料の吸光度を測定し、液体試料中の成分分析を行うために用いられる検出セルがある。近年、検出セルに導入する液体試料の微量化を図るため、検出セルの微細化が行われている。検出セルはキャピラリー電気泳動、液体クロマトグラフィ等の分析装置の一部に設置され、微量な液体試料に光線をあて吸光度の測定を行うものとなっている。検出セルを用いた一般的な分析装置を図5に示す。   There is a detection cell used for measuring the absorbance of a liquid sample using light in the visible region or ultraviolet region and analyzing the components in the liquid sample. In recent years, detection cells have been miniaturized in order to reduce the amount of liquid sample introduced into the detection cells. The detection cell is installed in a part of an analyzer such as capillary electrophoresis or liquid chromatography, and measures the absorbance by irradiating a small amount of liquid sample with light. A general analyzer using a detection cell is shown in FIG.

図5に示すように、分析装置50は、検出セル51と、検出セル51に光を出射する光源52と、検出セル51を透過した光を受光する受光素子53とを備える。検出セル51は、透明な基板(或いはブロック)54に、液体試料が流れると共にその液体試料に光を透過させる検出流路55と、検出流路55に試料を導入、排出するための試料入出路56とが形成されたものである。分析装置50では、光源52から発せられた光が検出セル51中の液体試料を透過し、受光素子53で受光され、液体試料の吸光度が測定される。   As shown in FIG. 5, the analysis device 50 includes a detection cell 51, a light source 52 that emits light to the detection cell 51, and a light receiving element 53 that receives light transmitted through the detection cell 51. The detection cell 51 includes a detection channel 55 for allowing a liquid sample to flow through a transparent substrate (or block) 54 and transmitting light to the liquid sample, and a sample inlet / outlet channel for introducing and discharging the sample to and from the detection channel 55. 56 is formed. In the analyzer 50, the light emitted from the light source 52 passes through the liquid sample in the detection cell 51, is received by the light receiving element 53, and the absorbance of the liquid sample is measured.

他に、検出流路の代わりに検出室が形成された検出セルを用い、検出室にマイクロピペット等を用いて液体試料を導入し、静的に液体試料の吸光度を測定する分析装置もある。   In addition, there is an analyzer that uses a detection cell in which a detection chamber is formed instead of a detection channel, introduces a liquid sample into the detection chamber using a micropipette or the like, and statically measures the absorbance of the liquid sample.

近年、検出セルの微細化がすすみ、検出セルの検出流路(或いは検出室)を機械加工に代わって、半導体微細加工プロセスを用いて作製する動きがある。半導体微細加工プロセスを用いれば、検出流路(検出室)を数ミクロンから数十ミクロンのサイズで作製することが可能である。   In recent years, miniaturization of detection cells has progressed, and there is a movement to manufacture a detection flow path (or detection chamber) of a detection cell using a semiconductor microfabrication process instead of machining. If a semiconductor microfabrication process is used, a detection channel (detection chamber) can be produced with a size of several microns to several tens of microns.

特開2000−121547号公報JP 2000-121547 A

これらの検出セルでは受光素子53に導かれる光のほぼ全てが液体試料中を通ることが望ましい。液体試料中を通らずに受光素子53で受光される光線は、液体試料の種類によらず一定の値をとり、バックグラウンドノイズとして検出感度を弱める原因となるためである。検出感度を高めるには、このような余分な光線を遮光しなくてはならない。   In these detection cells, it is desirable that almost all of the light guided to the light receiving element 53 passes through the liquid sample. This is because the light beam received by the light receiving element 53 without passing through the liquid sample takes a constant value regardless of the type of the liquid sample and causes detection sensitivity to be weakened as background noise. In order to increase the detection sensitivity, such extra light must be shielded.

例えば、特許文献1に示される検出計セルでは、分析流路の流れる方向に対して垂直な方向に入射させた光の吸光度を測定するために、分析流路と平行で、かつ光線と垂直な一面に遮光膜を設け、検出感度を高める手法が提案されている。   For example, in the detector cell shown in Patent Document 1, in order to measure the absorbance of light incident in a direction perpendicular to the flow direction of the analysis flow path, it is parallel to the analysis flow path and perpendicular to the light beam. A method has been proposed in which a light shielding film is provided on one surface to increase detection sensitivity.

しかしながら、このような検出セルとは別に、図6に示すように、流路方向(液体試料の流れる方向)と平行に光線を入射させ、液体試料中を通る経路(作用長)を長くすることにより検出セルの検出感度を高くする検出セル60が要求されている。このような構造の検出セル60では、遮光膜の光を通すピンホールと検出流路55との位置合わせを高精度に行うことは容易ではない。   However, apart from such a detection cell, as shown in FIG. 6, the light beam is incident in parallel with the flow path direction (the direction in which the liquid sample flows), and the path (action length) passing through the liquid sample is lengthened. Therefore, a detection cell 60 that increases the detection sensitivity of the detection cell is required. In the detection cell 60 having such a structure, it is not easy to align the pinhole through which light from the light shielding film passes and the detection flow path 55 with high accuracy.

そこで、本発明の目的は、上記課題を解決し、液体試料中を光が透過する作用長を長くし、かつ、検出に必要のない余分な光線を遮光せしめる検出セルと、その検出セルを高精度に作製する検出セルの製造方法とを提供することにある。   In view of the above, an object of the present invention is to solve the above-mentioned problems, to increase the working length of light passing through a liquid sample, and to block an extra light beam unnecessary for detection, and to increase the detection cell. An object of the present invention is to provide a manufacturing method of a detection cell manufactured with high accuracy.

上記目的を達成するために、請求項1の発明は、透明な基板に形成した検出流路に液体試料を導入し、その液体試料に紫外域や可視域の光線を透過させて、その吸光度を測定して液体試料の成分分析をするための検出セルにおいて、上記基板と、その基板に形成される略直線状の検出流路と、上記検出流路の一端に接続して上記検出流路の直線方向以外の位置に形成され液体試料を検出流路に導入する試料導入流路と、上記検出流路の他端に接続して上記検出流路の直線方向以外の位置に形成され上記検出流路の液体試料を排出する試料排出流路と、上記検出流路の直線方向の基板側面に形成される上記光線の入出射用のピンホール形成溝と、上記基板上面に接合する上板と、上記ピンホール形成溝が形成された基板側面を上記ピンホール形成溝を除いて覆う遮光膜とを備える検出セルである。   In order to achieve the above object, the invention of claim 1 introduces a liquid sample into a detection channel formed on a transparent substrate, transmits light in the ultraviolet region and visible region, and absorbs the absorbance. In a detection cell for measuring and analyzing a component of a liquid sample, the substrate, a substantially linear detection channel formed on the substrate, and one end of the detection channel are connected to the detection channel. A sample introduction channel that introduces a liquid sample into the detection channel formed at a position other than the linear direction, and a detection flow that is connected to the other end of the detection channel and formed at a position other than the linear direction of the detection channel. A sample discharge channel for discharging a liquid sample in the path, a pinhole forming groove for entering and exiting the light beam formed on the side surface of the substrate in the linear direction of the detection channel, an upper plate joined to the upper surface of the substrate, The side surface of the substrate on which the pinhole forming groove is formed is A detection cell and a light shielding film covering except groove.

請求項2の発明は、上記検出流路の深さが100μm以下である請求項1記載の検出セルである。   The invention according to claim 2 is the detection cell according to claim 1, wherein the depth of the detection channel is 100 μm or less.

請求項3の発明は、上記基板が石英ガラスで形成されている請求項1または2記載の検出セルである。   The invention according to claim 3 is the detection cell according to claim 1 or 2, wherein the substrate is made of quartz glass.

請求項4の発明は、上記遮光膜がSi,Ta,Cr,AlまたはWで形成されている請求項1〜3いずれかに記載の検出セルである。   A fourth aspect of the present invention is the detection cell according to any one of the first to third aspects, wherein the light shielding film is formed of Si, Ta, Cr, Al, or W.

請求項5の発明は、透明な基板に形成した検出流路に液体試料を導入し、その液体試料に紫外域や可視域の光線を当て、その吸光度を測定することで液体試料の成分分析をするための検出セルの製造方法において、上記基板に、略直線状の検出流路と、その検出流路の一端に接続され液体試料を導入する試料導入流路と、他端に接続され液体試料を排出する試料排出流路と、上記検出流路の直線方向に位置し上記光線の入出射用のピンホール形成溝とを、半導体微細加工プロセスを用いて同時に形成し、上記基板上面に上板を接合し、その接合された基板と上板をピンホール形成溝が基板側面に露出するように切断し、上記上板の上方から遮光膜を成膜して、上記ピンホール形成溝が露出した上記基板側面を上記ピンホール形成溝を除いて遮光膜で覆うことを特徴とする検出セルの製造方法である。   The invention of claim 5 introduces a liquid sample into a detection channel formed on a transparent substrate, irradiates the liquid sample with light in the ultraviolet region or visible region, and measures the absorbance to analyze the component of the liquid sample. In the method of manufacturing a detection cell, a substantially linear detection channel, a sample introduction channel connected to one end of the detection channel, and a liquid sample connected to the other end are connected to the substrate. A sample discharge channel for discharging the light and a pinhole forming groove for entering and exiting the light beam located in a linear direction of the detection channel are simultaneously formed using a semiconductor micromachining process, and an upper plate is formed on the upper surface of the substrate. Were cut so that the pinhole forming groove was exposed on the side surface of the substrate, a light shielding film was formed from above the upper plate, and the pinhole forming groove was exposed. The substrate side is shielded except for the pinhole groove. It is a manufacturing method for detecting cells, wherein the covering with film.

請求項6の発明は、上記遮光膜をスパッタリング法を用いて成膜する請求項5記載の検出セルの製造方法である。   The invention according to claim 6 is the method for manufacturing a detection cell according to claim 5, wherein the light shielding film is formed by sputtering.

請求項7の発明は、上記半導体微細加工プロセスは、フォトリソグラフィ法及び反応性イオンエッチングを用いる加工プロセスである請求項5または6記載の検出セルの製造方法である。   A seventh aspect of the present invention is the detection cell manufacturing method according to the fifth or sixth aspect, wherein the semiconductor microfabrication process is a process using a photolithography method and reactive ion etching.

請求項8の発明は、上記基板を石英ガラスで形成した請求項5〜7いずれかに記載の検出セルの製造方法である。   The invention according to claim 8 is the method of manufacturing a detection cell according to any one of claims 5 to 7, wherein the substrate is formed of quartz glass.

請求項9の発明は、上記遮光膜をSi,Ta,Cr,AlまたはWで形成した請求項5〜8いずれかに記載の検出セルの製造方法である。   The invention of claim 9 is the method of manufacturing a detection cell according to any one of claims 5 to 8, wherein the light shielding film is formed of Si, Ta, Cr, Al or W.

本発明によれば、作用長を長くし、かつ、検出に必要のない余分な光線を遮光して検出感度を高くすることができるという優れた効果を発揮する。   According to the present invention, it is possible to increase the detection sensitivity by increasing the working length and shielding extra light rays that are not necessary for detection.

以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明に係る検出セルの好適な実施の形態を示し、図1(a)は平面図、図1(b)は図1(a)の1B−1B線矢視図である。   FIG. 1 shows a preferred embodiment of a detection cell according to the present invention, FIG. 1 (a) is a plan view, and FIG. 1 (b) is a view taken along line 1B-1B in FIG. 1 (a).

図1(a)、図1(b)に示すように、本実施の形態の検出セル10は、基板11に、略直線状の検出流路12が形成され、その検出流路12の一端に液体試料を導入する試料導入流路13が、他端に液体試料を排出する試料排出流路14が、検出流路12の直線方向以外の位置にそれぞれ形成されている。検出流路12の直線方向の基板側面15には光線の入出射用のピンホール形成溝16が形成され、基板11上面に上板17を接合させてピンホール20が形成されている。さらに、ピンホール形成溝16が形成された基板側面15がピンホール形成溝16を除き遮光膜18で覆われている。   As shown in FIGS. 1 (a) and 1 (b), the detection cell 10 of the present embodiment has a substantially linear detection channel 12 formed on a substrate 11, and one end of the detection channel 12 is formed. A sample introduction channel 13 for introducing the liquid sample and a sample discharge channel 14 for discharging the liquid sample at the other end are formed at positions other than the linear direction of the detection channel 12. A pinhole forming groove 16 for entering and exiting a light beam is formed on the substrate side surface 15 in the linear direction of the detection flow path 12, and an upper plate 17 is joined to the upper surface of the substrate 11 to form a pinhole 20. Further, the substrate side surface 15 on which the pinhole forming groove 16 is formed is covered with a light shielding film 18 except for the pinhole forming groove 16.

本実施の形態の検出セル10では、試料導入流路13及び試料排出流路14は、直線形状の検出流路12の両端に、検出流路12に直角にそれぞれ接続され、試料導入流路13と試料排出流路14とは同じ基板側面19に臨んで形成されている。図示しないが、試料導入流路13と試料排出流路14には、液体試料を導入、排出するためのキャピラリ等がそれぞれ接続されている。   In the detection cell 10 of the present embodiment, the sample introduction flow path 13 and the sample discharge flow path 14 are respectively connected to both ends of the linear detection flow path 12 at right angles to the detection flow path 12. The sample discharge channel 14 is formed facing the same substrate side surface 19. Although not shown, the sample introduction channel 13 and the sample discharge channel 14 are connected to capillaries and the like for introducing and discharging a liquid sample, respectively.

基板11は、成分分析に用いる紫外域や可視域の光線を透過する透明な材料からなり、本実施の形態では、光線の透過性や化学的安定性において優れた特性を有する石英ガラスを用いて形成した。基板11を石英ガラスで形成することで、検出流路12を透過させる光の基板11内での損失を低減することができる。本実施の形態では、基板11を石英ガラスで形成すると共に、基板11に接合させる上板17も石英ガラスで形成した。   The substrate 11 is made of a transparent material that transmits light in the ultraviolet region and visible region used for component analysis. In this embodiment, quartz glass having excellent characteristics in light transmittance and chemical stability is used. Formed. By forming the substrate 11 with quartz glass, it is possible to reduce the loss in the substrate 11 of the light transmitted through the detection flow path 12. In the present embodiment, the substrate 11 is formed of quartz glass, and the upper plate 17 to be bonded to the substrate 11 is also formed of quartz glass.

検出流路12は、その深さを100μm以下にして形成し、試料導入流路13、試料排出流路14、及びピンホール形成溝16の深さも検出流路12と等しくした。検出流路12、試料導入流路13、試料排出流路14及びピンホール形成溝16の幅は100μm以下とした。検出流路12の長さは3mmとし、ピンホール形成溝16の長さは300μmとした。ただし、ピンホール形成溝16の長さは基板側面15からの距離である。検出流路12とピンホール形成溝16の間の長さは100μmとした。   The detection flow path 12 was formed with a depth of 100 μm or less, and the depths of the sample introduction flow path 13, the sample discharge flow path 14, and the pinhole formation groove 16 were also equal to the detection flow path 12. The widths of the detection flow path 12, the sample introduction flow path 13, the sample discharge flow path 14, and the pinhole forming groove 16 were 100 μm or less. The length of the detection flow path 12 was 3 mm, and the length of the pinhole forming groove 16 was 300 μm. However, the length of the pinhole forming groove 16 is a distance from the substrate side surface 15. The length between the detection channel 12 and the pinhole forming groove 16 was 100 μm.

また、検出セル10では、ピンホール形成溝16が形成された基板側面15の他に、上板17の上面とピンホール形成溝16が形成されていない側の側面も遮光膜18で覆われていてもよい。本実施の形態では、遮光膜はSiを用いて形成したが、遮光膜18を形成する材料としては、遮光性を有しかつスパッタリングによる成膜が可能な材料であればよく、例えばTa、Cr、Al、W等が挙げられる。   Further, in the detection cell 10, in addition to the substrate side surface 15 on which the pinhole forming groove 16 is formed, the upper surface of the upper plate 17 and the side surface on which the pinhole forming groove 16 is not formed are also covered with the light shielding film 18. May be. In this embodiment, the light shielding film is formed using Si, but the material for forming the light shielding film 18 may be any material that has light shielding properties and can be formed by sputtering. For example, Ta, Cr , Al, W and the like.

次に、検出セル10の製造方法を図2〜図4に基づいて説明する。   Next, the manufacturing method of the detection cell 10 is demonstrated based on FIGS.

図2(a)に示すように、基板11に検出流路12、試料導入流路13、試料排出流路14及びピンホール形成溝16を同時形成する。これらの流路及び溝は、半導体微細加工プロセスを用いて形成され、具体的には、フォトリソグラフィ及び反応性イオンエッチングを用いて形成される。ピンホール形成溝16と検出流路12とがフォトリソグラフィにより同時形成されるため、ピンホール形成溝16と検出流路12間の位置合わせ精度は、フォトマスクの描画精度レベルとなり、サブミクロンオーダでの高精度な位置合わせが可能となる。なお、図2(a)は、検出セルの製造工程の一工程をわかりやすく斜視図で示したものであるが、この段階では、まだ基板11は切断されてなく(側面15、19が形成されていない)、図2(b)に示す上面図のように切断されていない基板11aに流路等が形成されている。   As shown in FIG. 2A, the detection channel 12, the sample introduction channel 13, the sample discharge channel 14 and the pinhole forming groove 16 are simultaneously formed on the substrate 11. These flow paths and grooves are formed using a semiconductor microfabrication process, specifically, using photolithography and reactive ion etching. Since the pinhole formation groove 16 and the detection flow path 12 are simultaneously formed by photolithography, the alignment accuracy between the pinhole formation groove 16 and the detection flow path 12 is a photomask drawing accuracy level, which is on the order of submicron. High-precision alignment is possible. FIG. 2A is a perspective view showing one step of the detection cell manufacturing process in an easy-to-understand manner. At this stage, the substrate 11 is not yet cut (side surfaces 15 and 19 are formed). 2), a flow path or the like is formed in the substrate 11a that is not cut as shown in the top view of FIG.

図3(a)に示すように、流路等が形成された基板11に上板17を熱接合により接合する。接合した基板11と上板17(接合体21)をダイシングによりピンホール形成溝16が露出するように切断して側面15を形成する。図2の場合と同様に、実際にはダイシング後の接合体21は、図3(b)に示される側面15が形成された接合体21aのようになっている。   As shown in FIG. 3A, the upper plate 17 is bonded to the substrate 11 on which the flow path and the like are formed by thermal bonding. The bonded substrate 11 and the upper plate 17 (bonded body 21) are cut by dicing so that the pinhole forming groove 16 is exposed, and the side surface 15 is formed. As in the case of FIG. 2, the joined body 21 after dicing is actually a joined body 21a on which the side surface 15 shown in FIG. 3B is formed.

次に、ピンホール形成溝16が露出した接合体21をスパッタリング装置内に配置する。このとき、上板17の上面にSiが堆積するように(上板17の上面がSiターゲットに向かって)接合体21を配置する。図4(a)、図4(b)に示すように、スパッタリングにて接合体21にSiを成膜し遮光膜18を形成する。このとき、スパッタリングの回り込みにより、上板17の上面だけでなく上板17の側面及び基板側面15,19にも遮光膜18が形成される。スパッタリングの回り込みは、回り込む距離に制限があり、ピンホール形成溝16の長さを所定長以上にすれば、ピンホール形成溝16の最深部(側面15から最も遠い面)には遮光膜が成膜されない。好ましくは、ピンホール形成溝16の長さを300μm以上にするとよい。これにより、側面15は、検出流路15の直線上に形成されるピンホールでのみ光を透過するように遮光膜18が形成される。最後に遮光膜18が形成された接合体を所望サイズにダイシングして検出セル10が得られる。   Next, the joined body 21 in which the pinhole forming groove 16 is exposed is disposed in the sputtering apparatus. At this time, the joined body 21 is disposed so that Si is deposited on the upper surface of the upper plate 17 (the upper surface of the upper plate 17 faces the Si target). As shown in FIGS. 4A and 4B, Si is formed on the bonded body 21 by sputtering to form the light shielding film 18. At this time, the light shielding film 18 is formed not only on the upper surface of the upper plate 17 but also on the side surfaces of the upper plate 17 and the substrate side surfaces 15 and 19 by sputtering. Sputtering wrap-around has a limitation on the wrap-around distance. If the length of the pinhole forming groove 16 is set to a predetermined length or more, a light-shielding film is formed at the deepest portion (surface farthest from the side surface 15) of the pinhole forming groove 16. Not filmed. Preferably, the length of the pinhole forming groove 16 is 300 μm or more. As a result, the light shielding film 18 is formed on the side surface 15 so as to transmit light only through the pinhole formed on the straight line of the detection flow path 15. Finally, the joined body on which the light shielding film 18 is formed is diced to a desired size, and the detection cell 10 is obtained.

次に、本実施の形態の作用について説明する。   Next, the operation of the present embodiment will be described.

液体試料は、試料導入流路13から導入されて検出流路12を通り、試料排出流路14から排出される。図示されない光源からの光は、検出セル10の側面15に形成されたピンホール20から入射される。一方のピンホール20から入射した光は、検出流路12を透過し、他方のピンホール20から出射する。検出セル10を透過した光は、図示されない受光素子で検出され、その光の吸光度(減衰)から液体試料の成分や濃度を測定する。   The liquid sample is introduced from the sample introduction channel 13, passes through the detection channel 12, and is discharged from the sample discharge channel 14. Light from a light source (not shown) is incident from a pinhole 20 formed on the side surface 15 of the detection cell 10. Light incident from one pinhole 20 passes through the detection channel 12 and exits from the other pinhole 20. The light transmitted through the detection cell 10 is detected by a light receiving element (not shown), and the component and concentration of the liquid sample are measured from the absorbance (attenuation) of the light.

検出セル10では、検出流路12の流路方向に光を入射させているので、光が液体試料中を通る作用長を長くとることができる。作用長が長い程、液体試料を要因とする光の減衰は大きくなり、検出感度を高くすることができる。   In the detection cell 10, light is incident in the direction of the flow path of the detection flow path 12, so that the action length of the light passing through the liquid sample can be increased. The longer the action length, the greater the attenuation of light caused by the liquid sample, and the detection sensitivity can be increased.

また、ピンホール形成溝16が形成された基板側面15をピンホール形成溝16を除いて遮光膜18で覆っているので、検出される光線に付与されるノイズ光を遮断することができ、検出感度を高くすることができる。   Further, since the substrate side surface 15 on which the pinhole forming groove 16 is formed is covered with the light shielding film 18 except for the pinhole forming groove 16, noise light imparted to the detected light beam can be blocked, and detection can be performed. Sensitivity can be increased.

本実施の形態の検出セル10の製造方法によれば、検出流路12の直線方向の基板側面15に、ピンホール形成溝16を検出流路12と共に半導体微細加工プロセスにより形成しているので、検出流路12に光線を入射させるピンホール20を高精度に位置合わせして形成することができる。   According to the manufacturing method of the detection cell 10 of the present embodiment, since the pinhole forming groove 16 is formed together with the detection flow path 12 on the substrate side surface 15 in the linear direction of the detection flow path 12, The pinhole 20 for allowing the light beam to enter the detection flow path 12 can be formed with high precision alignment.

本実施の形態では、試料導入流路13及び試料排出流路14を同じ側面19に臨んで形成したが、試料導入流路13と試料排出流路14とは互いに対向する基板側面に臨むよう形成してもよく、他に、ピンホール形成溝16が形成された基板側面15に臨んで形成してもよい。ただし、基板側面15に臨んで形成した場合、試料導入流路13及び試料排流路14内に一部(基板側面近傍の流路内壁)遮光膜が形成されるので、液体試料に応じて影響のない遮光膜材料を適宜選択する必要がある。また、試料導入流路13及び試料排出流路14は、検出流路12に直角に接続されなくてもよく、検出流路12の流路延長方向(直線方向)にピンホール形成溝16が形成できれば、検出流路12にどのように接続してもよい。   In the present embodiment, the sample introduction flow path 13 and the sample discharge flow path 14 are formed facing the same side face 19, but the sample introduction flow path 13 and the sample discharge flow path 14 are formed to face the substrate side surfaces facing each other. Alternatively, it may be formed facing the substrate side surface 15 on which the pinhole forming groove 16 is formed. However, when it is formed facing the side surface 15 of the substrate, a part of the sample introduction channel 13 and the sample discharge channel 14 (channel inner wall in the vicinity of the side surface of the substrate) is formed with a light-shielding film. It is necessary to select an appropriate light-shielding film material. Further, the sample introduction channel 13 and the sample discharge channel 14 may not be connected to the detection channel 12 at a right angle, and a pinhole forming groove 16 is formed in the channel extension direction (linear direction) of the detection channel 12. If possible, the detection channel 12 may be connected in any way.

本発明に係る好適な実施の形態の検出セルを示す図であり、(a)は平面図、(b)は(a)の1B−1B線矢視図である。It is a figure which shows the detection cell of suitable embodiment which concerns on this invention, (a) is a top view, (b) is the 1B-1B arrow directional view of (a). 図1の検出セルの製造方法の一工程を示す図であり、(a)は斜視図、(b)は平面図である。It is a figure which shows 1 process of the manufacturing method of the detection cell of FIG. 1, (a) is a perspective view, (b) is a top view. 図1の検出セルの製造方法の一工程を示す図であり、(a)は斜視図、(b)は平面図である。It is a figure which shows 1 process of the manufacturing method of the detection cell of FIG. 1, (a) is a perspective view, (b) is a top view. 図1の検出セルの製造方法の一工程を示す図であり、(a)は斜視図、(b)は平面図である。It is a figure which shows 1 process of the manufacturing method of the detection cell of FIG. 1, (a) is a perspective view, (b) is a top view. 検出セルを用いた一般的な分析装置を示す概略図である。It is the schematic which shows the general analyzer using a detection cell. 分析装置の他の例を示す概略図である。It is the schematic which shows the other example of an analyzer.

符号の説明Explanation of symbols

10 検出セル
11 基板
12 検出流路
13 試料導入流路
14 試料排出流路
16 ピンホール形成溝
17 上板
18 遮光膜
DESCRIPTION OF SYMBOLS 10 Detection cell 11 Board | substrate 12 Detection flow path 13 Sample introduction flow path 14 Sample discharge flow path 16 Pinhole formation groove 17 Upper plate 18 Light shielding film

Claims (9)

透明な基板に形成した検出流路に液体試料を導入し、その液体試料に紫外域や可視域の光線を透過させて、その吸光度を測定して液体試料の成分分析をするための検出セルにおいて、
上記基板と、その基板に形成される略直線状の検出流路と、上記検出流路の一端に接続して上記検出流路の直線方向以外の位置に形成され液体試料を検出流路に導入する試料導入流路と、上記検出流路の他端に接続して上記検出流路の直線方向以外の位置に形成され上記検出流路の液体試料を排出する試料排出流路と、上記検出流路の直線方向の基板側面に形成される上記光線の入出射用のピンホール形成溝と、上記基板上面に接合する上板と、上記ピンホール形成溝が形成された基板側面を上記ピンホール形成溝を除いて覆う遮光膜とを備えることを特徴とする検出セル。
In a detection cell for analyzing the components of a liquid sample by introducing a liquid sample into a detection channel formed on a transparent substrate, transmitting light in the ultraviolet or visible range to the liquid sample, and measuring the absorbance ,
The substrate, a substantially linear detection channel formed on the substrate, and one end of the detection channel connected to one end of the detection channel, formed at a position other than the linear direction of the detection channel, and introducing a liquid sample into the detection channel A sample introduction channel, a sample discharge channel connected to the other end of the detection channel and formed at a position other than the linear direction of the detection channel and discharging the liquid sample in the detection channel, and the detection flow Pinhole forming grooves for entering and exiting the light beam formed on the side surface of the substrate in the linear direction of the path, an upper plate joined to the top surface of the substrate, and forming the pinhole on the side surface of the substrate on which the pinhole forming groove is formed A detection cell comprising a light-shielding film covering except for the groove.
上記検出流路の深さが100μm以下である請求項1記載の検出セル。   The detection cell according to claim 1, wherein the detection channel has a depth of 100 μm or less. 上記基板が石英ガラスで形成されている請求項1または2記載の検出セル。   The detection cell according to claim 1, wherein the substrate is made of quartz glass. 上記遮光膜がSi,Ta,Cr,AlまたはWで形成されている請求項1〜3いずれかに記載の検出セル。   The detection cell according to claim 1, wherein the light shielding film is formed of Si, Ta, Cr, Al, or W. 透明な基板に形成した検出流路に液体試料を導入し、その液体試料に紫外域や可視域の光線を当て、その吸光度を測定することで液体試料の成分分析をするための検出セルの製造方法において、
上記基板に、略直線状の検出流路と、その検出流路の一端に接続され液体試料を導入する試料導入流路と、他端に接続され液体試料を排出する試料排出流路と、上記検出流路の直線方向に位置し上記光線の入出射用のピンホール形成溝とを、半導体微細加工プロセスを用いて同時形成し、上記基板上面に上板を接合し、その接合された基板と上板をピンホール形成溝が上記基板側面に露出するように切断し、上記上板の上方から遮光膜を成膜して、上記ピンホール形成溝が露出した基板側面を上記ピンホール形成溝を除いて遮光膜で覆うことを特徴とする検出セルの製造方法。
Manufacture of a detection cell for component analysis of a liquid sample by introducing a liquid sample into a detection channel formed on a transparent substrate, irradiating the liquid sample with ultraviolet or visible light, and measuring the absorbance In the method
A substantially linear detection channel on the substrate; a sample introduction channel connected to one end of the detection channel to introduce a liquid sample; a sample discharge channel connected to the other end to discharge the liquid sample; A pinhole forming groove for entering and exiting the light beam located in the linear direction of the detection flow path is simultaneously formed using a semiconductor micromachining process, and an upper plate is joined to the upper surface of the substrate, and the joined substrate and The upper plate is cut so that the pinhole forming groove is exposed on the side surface of the substrate, and a light shielding film is formed from above the upper plate. A method for manufacturing a detection cell, wherein the detection cell is covered with a light shielding film.
上記遮光膜をスパッタリング法を用いて成膜する請求項5記載の検出セルの製造方法。   The method of manufacturing a detection cell according to claim 5, wherein the light shielding film is formed by a sputtering method. 上記半導体微細加工プロセスは、フォトリソグラフィ法及び反応性イオンエッチングを用いる加工プロセスである請求項5または6記載の検出セルの製造方法。   7. The detection cell manufacturing method according to claim 5, wherein the semiconductor microfabrication process is a process using a photolithography method and reactive ion etching. 上記基板を石英ガラスで形成した請求項5〜7いずれかに記載の検出セルの製造方法。   The detection cell manufacturing method according to claim 5, wherein the substrate is made of quartz glass. 上記遮光膜をSi,Ta,Cr,AlまたはWで形成した請求項5〜8いずれかに記載の検出セルの製造方法。
The method of manufacturing a detection cell according to claim 5, wherein the light shielding film is formed of Si, Ta, Cr, Al, or W.
JP2005378814A 2005-12-28 2005-12-28 Detection cell and its manufacturing method Pending JP2007178338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378814A JP2007178338A (en) 2005-12-28 2005-12-28 Detection cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378814A JP2007178338A (en) 2005-12-28 2005-12-28 Detection cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007178338A true JP2007178338A (en) 2007-07-12

Family

ID=38303666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378814A Pending JP2007178338A (en) 2005-12-28 2005-12-28 Detection cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007178338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507616A (en) * 2009-10-08 2013-03-04 ジーイー・ヘルスケア・リミテッド Chromatographic parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507616A (en) * 2009-10-08 2013-03-04 ジーイー・ヘルスケア・リミテッド Chromatographic parts

Similar Documents

Publication Publication Date Title
US9752978B2 (en) Micromachined flow cell with freestanding fluidic tube
Steigert et al. Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform
US8213015B2 (en) Integrated flow cell with semiconductor oxide tubing
JPH04268437A (en) Detecting meter cell
US7136161B2 (en) Component analyzing apparatus with microchip
US20020180963A1 (en) Microfluidic systems with enhanced detection systems
JPH09218149A (en) Detection meter cell and optical measuring device
AU2002327165A1 (en) Microfluidic systems with enhanced detection systems
JP2014044145A (en) Flow cell
US20090079968A1 (en) Apparatus for measuring differential refractive index
JP4864388B2 (en) Microchip and analysis method and apparatus using the same
JP2007178338A (en) Detection cell and its manufacturing method
JP3511910B2 (en) Detector cell
JP2016161546A (en) Micro flow channel chip
JP4626276B2 (en) Microchip inspection device
JP4410249B2 (en) Flow cell and fluorescence correlation spectrometer using the same
JP3877661B2 (en) Micro chemical analyzer
JP2010054392A (en) Light guiding apparatus for spectrally measuring small quantity of liquid
JP3978937B2 (en) Detector cell and optical measuring device
US6559940B2 (en) Measuring cell
JP2005091093A (en) Microchip for measuring absorbance
JP5922719B2 (en) Blood coagulation test method
JP2007155674A (en) Microcell
JP6784105B2 (en) Absorbance detector with flow cell and its flow cell
JP2006090775A (en) Absorbance measuring unit