JP2007177156A - Phosphor and its manufacturing method, and light-emitting element - Google Patents

Phosphor and its manufacturing method, and light-emitting element Download PDF

Info

Publication number
JP2007177156A
JP2007177156A JP2005379588A JP2005379588A JP2007177156A JP 2007177156 A JP2007177156 A JP 2007177156A JP 2005379588 A JP2005379588 A JP 2005379588A JP 2005379588 A JP2005379588 A JP 2005379588A JP 2007177156 A JP2007177156 A JP 2007177156A
Authority
JP
Japan
Prior art keywords
phosphor
inorganic salt
mol
moles
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005379588A
Other languages
Japanese (ja)
Inventor
Masaaki Hirakawa
正明 平川
Hirohiko Murakami
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005379588A priority Critical patent/JP2007177156A/en
Publication of JP2007177156A publication Critical patent/JP2007177156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor that is not deteriorated by low-accelerated electron beams and gives high intensity luminance, its manufacturing method and a light-emitting element containing the phosphor. <P>SOLUTION: The phosphor comprises a matrix comprised of at least one selected between Y<SB>2</SB>O<SB>3</SB>and Gd<SB>2</SB>O<SB>3</SB>and, added thereto as activating metals, 0.5-5 mol% of Eu and 5-25 mol% of Zn, each based on the total molar number of the metal constituting the matrix and the activating metals. The manufacturing method of the phosphor comprises dissolving or dispersing at least one inorganic salt selected from among inorganic salts of Y and Gd, inorganic salts of Eu and Zn, and an organic acid in a solvent followed by baking. The light-emitting element comprises the nanoparticle phosphor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蛍光体及びその作製方法、並びに発光素子に関し、特に赤色ナノ粒子蛍光体及びその作製方法、並びにその蛍光体を含んだ発光素子に関する。   The present invention relates to a phosphor, a manufacturing method thereof, and a light emitting device, and more particularly, to a red nanoparticle phosphor, a manufacturing method thereof, and a light emitting device including the phosphor.

今日、ディスプレイ分野では、カソードレイチューブ(CRT)から薄型のフラットパネルディスプレイ(FPD)に移行しつつあり、液晶ディスプレイ、プラズマディスプレイパネル(PDP)、有機ELディスプレイ、フィールドエミッションディスプレイ(FED)等の、様々なFPDが開発されている。その中でFEDは、CRTと同様の発光原理で、陰極から発生した電子線を陽極の蛍光体に衝突させて発光させるものである。これらの発光源を担う蛍光体は、発光輝度・色純度・寿命等の特性が優れたものであることが望ましい。従来のCRTや現状のFEDで主に用いられている蛍光体は、高コストであったり、劇物であったり、蛍光体表面の劣化に起因した発光効率の低下を引き起こすこと等、未だ解決すべき課題があり、代替材料の開発も盛んに行われている。しかし、未だに満足すべきものは得られていない。   Today, in the display field, a cathode ray tube (CRT) is shifting to a thin flat panel display (FPD), such as a liquid crystal display, a plasma display panel (PDP), an organic EL display, a field emission display (FED), Various FPDs have been developed. Among them, the FED emits light by causing an electron beam generated from the cathode to collide with the phosphor of the anode on the same light emission principle as that of the CRT. It is desirable that the phosphor serving as the light source has excellent characteristics such as light emission luminance, color purity, and lifetime. Phosphors mainly used in conventional CRTs and current FEDs still have problems such as high cost, deleterious substances, and reduction in luminous efficiency due to phosphor surface deterioration. There are problems to be solved, and alternative materials are being actively developed. However, there are still no satisfactory ones.

このようなCRTやPDP等に用いられている蛍光体では、粒径数ミクロン程度(例えば、3〜10μm)の粒子を用いることが主流になっている。しかしながら、これらの蛍光体をFEDに用いる場合には、次のような問題がある。FEDでは、その構造から、放出された電子が低加速電圧である。そのため、従来の蛍光体を用いた場合、電子の侵入深度が浅く、十分に電子が発光部まで到達できずに、満足できる発光輝度が得られない。また、蛍光体を通過できない電子は、蛍光体表面でチャージアップしてしまい、発光に寄与しない。そこで、蛍光体をナノサイズにすることや、導電性を付与することで、電子侵入深度とチャージアップの問題を解決することが考えられる。   In the phosphors used in such CRTs and PDPs, it is mainstream to use particles having a particle size of about several microns (for example, 3 to 10 μm). However, when these phosphors are used for FED, there are the following problems. In the FED, due to its structure, the emitted electrons have a low acceleration voltage. Therefore, when a conventional phosphor is used, the penetration depth of electrons is shallow, and electrons cannot sufficiently reach the light-emitting portion, so that satisfactory light emission luminance cannot be obtained. Further, electrons that cannot pass through the phosphor are charged up on the phosphor surface and do not contribute to light emission. Therefore, it is conceivable to solve the problems of electron penetration depth and charge-up by making the phosphor nano-sized or imparting conductivity.

また、FED用蛍光体として、CRT用蛍光体で用いられているZnS系やYS:Eu(例えば、特許文献1参照)等を用いることが多いが、これらの蛍光体は硫化物であるため、劇物である上、低加速電子線を照射すると、蛍光体表面の劣化に起因した発光効率の低下を引き起こすという問題がある。 Further, ZnS-based phosphors used in CRT phosphors and Y 2 O 2 S: Eu (see, for example, Patent Document 1) are often used as FED phosphors. These phosphors are sulfides. Therefore, it is a deleterious substance, and there is a problem that irradiation with a low acceleration electron beam causes a decrease in luminous efficiency due to deterioration of the phosphor surface.

さらに、ナノメータサイズのZnS系又はCdS系の蛍光体を用いて、上記電子侵入深度の問題を解決することが提案されている(例えば、特許文献2参照)。しかし、この蛍光体は硫化物であるため、上記のような問題がある。
特開平10−250214号公報(特許請求の範囲等) 特開平11−293241号公報(特許請求の範囲等)
Furthermore, it has been proposed to solve the above-mentioned problem of electron penetration depth using a nanometer-sized ZnS-based or CdS-based phosphor (see, for example, Patent Document 2). However, since this phosphor is a sulfide, there are problems as described above.
JP-A-10-250214 (Claims etc.) JP-A-11-293241 (Claims etc.)

本発明の課題は、上述の従来技術の問題点を解決することにあり、電子線の劣化を受けることなく、高輝度の赤色発光が可能な蛍光体及びその作製方法、並びにこの蛍光体を含む発光素子を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, and includes a phosphor capable of emitting red light with high luminance without being deteriorated by an electron beam, a method for manufacturing the phosphor, and the phosphor. The object is to provide a light emitting element.

本発明の蛍光体は、Y及びGdから選ばれた少なくとも1種の酸化物を母体とし、この母体にEu及びZnからなる付活剤金属を添加してなることを特徴とする。このような付活剤金属を含むことにより、電子線の劣化を受けることなく、高輝度の赤色発光が可能な蛍光体となると共に、導電性金属を含んでいるため、チャージアップの問題も解決され得る。 The phosphor of the present invention comprises at least one oxide selected from Y 2 O 3 and Gd 2 O 3 as a base material, and an activator metal composed of Eu and Zn is added to the base material. And By including such an activator metal, it becomes a phosphor capable of emitting high-luminance red light without being deteriorated by an electron beam, and also contains a conductive metal, thereby solving the problem of charge-up. Can be done.

前記Euの添加量は、前記母体の構成金属と付活剤金属との総モル数基準で0.5〜5モル%であることを特徴とする。0.5モル%未満であると低加速電子線で発光を確認することができず、また、5モル%を超えると添加量が多すぎ、蛍光体の結晶構造が崩れるために発光が弱くなる。   The addition amount of the Eu is 0.5 to 5 mol% based on the total number of moles of the constituent metal of the base and the activator metal. If it is less than 0.5 mol%, light emission cannot be confirmed with a low-acceleration electron beam, and if it exceeds 5 mol%, the amount of addition is too large and the crystal structure of the phosphor is destroyed, resulting in weak emission. .

前記Znの添加量は、前記母体の構成金属と付活剤金属との総モル数基準で5〜25モル%であることを特徴とする。5モル%未満であるとZn添加による導電性付与効果がなく、また、25モル%を超えると添加量が多すぎるため、蛍光体の結晶構造が崩れるために発光が弱くなる上、ZnO:Zn由来の緑色の発光ピークが現れてしまう。   The added amount of Zn is 5 to 25 mol% based on the total number of moles of the base metal and the activator metal. If the amount is less than 5 mol%, there is no effect of imparting conductivity due to the addition of Zn. If the amount exceeds 25 mol%, the amount added is too large, and the phosphor crystal structure collapses, resulting in weak emission, and ZnO: Zn The derived green emission peak appears.

本発明の蛍光体の作製方法は、Yの無機塩及びGdの無機塩から選ばれた少なくとも1種の無機塩と、Euの無機塩及びZnの無機塩と、有機酸とを溶媒に溶解又は分散せしめた後、所望により得られた溶液又は分散液をゲル化し、次いで焼成して蛍光体を作製することを特徴とする。   The phosphor of the present invention is prepared by dissolving at least one inorganic salt selected from an inorganic salt of Y and an inorganic salt of Gd, an inorganic salt of Eu and an inorganic salt of Zn, and an organic acid in a solvent, or After the dispersion, the solution or dispersion obtained as desired is gelled and then fired to produce a phosphor.

前記Euの無機塩は、Euに換算して、前記全ての無機塩の構成金属の総モル数基準で、蛍光体中に0.5〜5モル%含まれるような量で添加されることを特徴とする。   The Eu inorganic salt is added in such an amount that it is contained in the phosphor in an amount of 0.5 to 5 mol% in terms of Eu, based on the total number of moles of constituent metals of all the inorganic salts. Features.

前記Znの無機塩は、Znに換算して、前記全ての無機塩の構成金属の総モル数基準で、蛍光体中に5〜25モル%含まれるような量で添加されることを特徴とする。   The inorganic salt of Zn is added in such an amount that it is contained in the phosphor in an amount of 5 to 25 mol% in terms of the total number of moles of constituent metals of all the inorganic salts in terms of Zn. To do.

前記焼成は、900〜1500℃の温度で行われることを特徴とする。900℃未満
であると硝酸塩等の無機塩や有機酸の焼け残りがあり、また、得られる蛍光体の結晶性が悪くなるために発光輝度が悪く、また、1500℃を超えると得られた粒子の粒径が大きくなりすぎ300nmを超えてしまう。
The firing is performed at a temperature of 900 to 1500 ° C. Particles obtained when the temperature is lower than 900 ° C., and inorganic salts such as nitrates and organic acids are left unburned, and the phosphors obtained have poor crystallinity, resulting in poor emission luminance. The particle size of the film becomes too large and exceeds 300 nm.

前記有機酸は、少なくとも1種のアミノ酸であり、好ましくはグリシン、アスパラギン酸及びグルタミン酸から選ばれた少なくとも1種のアミノ酸であることを特徴とする。   The organic acid is at least one amino acid, preferably at least one amino acid selected from glycine, aspartic acid and glutamic acid.

前記有機酸のモル数は、前記全ての無機塩の総モル数の 1〜50倍、好ましくは1〜 10倍、より好ましくは1〜2倍であることを特徴とする。1倍未満であると、焼成前にゲル化する際にゲル状態での分散性が悪いため、粒径が大きくなり(例えば、500nm程度)、また、50倍を超えると有機酸の焼け残りが多く発生し、発光輝度の低下が起こる。   The number of moles of the organic acid is 1 to 50 times, preferably 1 to 10 times, more preferably 1 to 2 times the total number of moles of all the inorganic salts. If it is less than 1 time, the dispersion in the gel state is poor when gelling before firing, so the particle size becomes large (for example, about 500 nm), and if it exceeds 50 times, unburned organic acid remains. A large amount of light emission occurs, resulting in a decrease in light emission luminance.

本発明の発光素子は、前記蛍光体又は前記作製方法により作製された蛍光体を含んでなることを特徴とする。この発光素子の発光輝度は、蛍光体が低加速電子線による劣化受けることもないため、極めて高い。   The light-emitting element of the present invention includes the phosphor or the phosphor manufactured by the manufacturing method. The light emission luminance of this light emitting element is extremely high because the phosphor is not deteriorated by the low acceleration electron beam.

本発明の蛍光体によれば、電子線の劣化を受けることなく、高輝度の赤色発光が可能であると共に、チャージアップも防止されるという効果を奏する。そのため、この蛍光体を用いて得られた発光素子の赤色発光は、極めて高輝度を示すという効果を奏する。   According to the phosphor of the present invention, it is possible to emit red light with high luminance without being deteriorated by an electron beam and to prevent charge-up. Therefore, the red light emission of the light emitting element obtained using this phosphor has an effect of showing extremely high luminance.

また、本発明の蛍光体は、通常の焼成による容易なプロセスで作製することができるという効果を奏する。   In addition, the phosphor of the present invention has an effect that it can be produced by an easy process by ordinary firing.

さらに、本発明の蛍光体が上記したように優れた発光輝度を示すと共に、チャージアップも防止されるので、この蛍光体を含んでなる発光素子は、FED等のディスプレイへ利用できるという効果を奏する。   Furthermore, since the phosphor of the present invention exhibits excellent light emission luminance as described above, and charge-up is prevented, the light-emitting element including this phosphor can be used for a display such as an FED. .

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明の一実施の形態によれば、本発明の蛍光体は、ナノ粒子からなる赤色発光をする蛍光体である。本発明におけるナノ粒子とは、好ましくは300nm以下、さらに好ましくは100nm以下の粒径を有する粒子を言う。粒径が300nmを超えると、低加速電圧において、侵入長が浅いためにチャージアップしてしまい、発光輝度が低下する。   According to one embodiment of the present invention, the phosphor of the present invention is a phosphor that emits red light composed of nanoparticles. The nanoparticle in the present invention refers to a particle having a particle size of preferably 300 nm or less, more preferably 100 nm or less. When the particle size exceeds 300 nm, the penetration depth is shallow at a low acceleration voltage, so that the charge is increased and the emission luminance is lowered.

このような赤色ナノ粒子蛍光体は、上記したように、Y及びGdから選ばれた少なくとも1種の酸化物を母体とし、この母体にEu及びZnからなる付活剤金属を添加してなるものであり、Yの無機塩及びGdの無機塩から選ばれた少なくとも1種の無機塩と、Euの無機塩及びZnの無機塩と、有機酸とを溶媒に溶解又は分散せしめた後、得られた溶液又は分散液を所定の温度(80〜120℃)に加熱してゲル化せしめ、次いで、例えば大気中で所定の温度で焼成して作製される。 As described above, such a red nanoparticle phosphor is based on at least one oxide selected from Y 2 O 3 and Gd 2 O 3 , and this activator metal is composed of Eu and Zn. In which at least one inorganic salt selected from an inorganic salt of Y and an inorganic salt of Gd, an inorganic salt of Eu, an inorganic salt of Zn, and an organic acid are dissolved or dispersed in a solvent. After the caking, the obtained solution or dispersion is heated to a predetermined temperature (80 to 120 ° C.) to be gelled, and then fired at a predetermined temperature, for example, in the atmosphere.

このY及びGdの無機塩としては、焼成の際に分解して酸化物となり得る化合物であれば良く、例えば硝酸塩、炭酸塩、シュウ酸塩、硫酸塩、酢酸塩、水酸化物、ハロゲン化物(例えば、塩化物や臭化物等)等を挙げることができる。   The inorganic salt of Y and Gd may be a compound that can be decomposed into an oxide upon firing, such as nitrate, carbonate, oxalate, sulfate, acetate, hydroxide, halide ( For example, chloride, bromide and the like).

また、Eu及びZnの無機塩としては、例えば硝酸塩、炭酸塩、シュウ酸塩、硫酸塩、酢酸塩、水酸化物、ハロゲン化物(例えば、塩化物や臭化物等)等を挙げることができる。   Examples of inorganic salts of Eu and Zn include nitrates, carbonates, oxalates, sulfates, acetates, hydroxides, halides (eg, chlorides and bromides), and the like.

以下、本発明の蛍光体の作製方法の一実施の形態について説明する。   Hereinafter, an embodiment of a method for producing a phosphor of the present invention will be described.

本発明のナノ粒子蛍光体の作製方法は、特に限定されるものではない。例えば、上記したように、Yの無機塩及びGdの無機塩から選ばれた少なくとも1種の無機塩と、Euの無機塩及びZnの無機塩と、有機酸とを溶媒に溶解又は分散せしめた後、焼成して作製される。すなわち、高温処理により得られたものの結晶性を高くするために自己伝播燃焼法により赤色ナノ粒子蛍光体を作製している。   The method for producing the nanoparticle phosphor of the present invention is not particularly limited. For example, as described above, at least one inorganic salt selected from an inorganic salt of Y and an inorganic salt of Gd, an inorganic salt of Eu, an inorganic salt of Zn, and an organic acid were dissolved or dispersed in a solvent. Thereafter, it is produced by firing. That is, a red nanoparticle phosphor is produced by a self-propagating combustion method in order to increase the crystallinity of the product obtained by the high temperature treatment.

本発明によれば、例えば、上記母体を構成する金属を含む無機塩と付活剤金属を含む無機塩とを、目的とする蛍光体の組成に併せて秤量し、既知のボールミル、ジェットミル、V型混合器、攪拌装置等を用いて混合・粉砕し、得られた混合物に上記有機酸及び水やイソプロパノール等の溶媒を添加して溶液又は分散液を調製し、次いで所定の温度(好ましくは、100℃程度)に加熱してゲル化せしめた後、このゲルを酸化性ガス雰囲気(空気や酸素や酸素原子含有ガス等の雰囲気)中、900〜1500℃(好ましくは、900〜1100℃)で所定の時間焼成し、目的とする蛍光体を得ることができる。かくして得られた蛍光体の粒径は、透過型電子顕微鏡及びX線回折ピークの広がりに基づいた分析結果から、いずれも50〜300nm程度(好ましくは50〜100nm程度)である。このように、ナノサイズであるため、電子侵入深度の問題も解決できる。   According to the present invention, for example, an inorganic salt containing a metal constituting the matrix and an inorganic salt containing an activator metal are weighed together with the composition of the target phosphor, and a known ball mill, jet mill, Mix and pulverize using a V-type mixer, a stirrer, etc., add the organic acid and a solvent such as water or isopropanol to the resulting mixture to prepare a solution or dispersion, and then a predetermined temperature (preferably The gel is heated to about 100 ° C. to be gelled, and then the gel is subjected to 900 to 1500 ° C. (preferably 900 to 1100 ° C.) in an oxidizing gas atmosphere (air, oxygen, oxygen atom-containing gas, etc.). The target phosphor can be obtained by firing for a predetermined time. The particle size of the phosphor thus obtained is about 50 to 300 nm (preferably about 50 to 100 nm) from the analysis results based on the transmission electron microscope and the broadening of the X-ray diffraction peak. Thus, since it is nano size, the problem of electron penetration depth can be solved.

上記したようにして得られる本発明の赤色ナノ粒子蛍光体は、低加速電子線による表面の劣化を受けることもないため、従来の蛍光体と比べて、極めて高い赤色の発光輝度を有する。   Since the red nanoparticle phosphor of the present invention obtained as described above is not subject to surface deterioration due to a low acceleration electron beam, it has an extremely high red emission luminance as compared with conventional phosphors.

この蛍光体を用いて、公知の製造方法により発光素子を製造できる。この蛍光体を用いるFED用発光素子を例にとり、以下簡単に説明する。   Using this phosphor, a light emitting device can be manufactured by a known manufacturing method. An example of a light emitting element for FED using this phosphor will be briefly described below.

例えば、上記したようにして得られたナノ粒子蛍光体を高分子化合物(例えば、セルロース系化合物、ポリビニルアルコール等)からなるバインダーの有機溶媒溶液に分散せしめて、蛍光体ペーストを調製する。この蛍光体ペーストを、公知のスクリーン印刷等の塗布方法により、導電性膜(例えば、ITO膜等)が形成された(この導電性膜をアノード電極とする)前面基板の表面に塗布する。この蛍光体層を備えた前面基板と、電子源(例えば、カーボンナノチューブ、グラファイトナノファイバー等)及びカソード電極を備えた背面基板とを、真空領域を確保するためのスペーサを挟んで重ねて貼り合わせる。次いで、内部を排気して真空封止し、電子飛行空間を形成させることにより、目的とするFEDモデルを製造することができる。   For example, the nanoparticle phosphor obtained as described above is dispersed in an organic solvent solution of a binder made of a polymer compound (for example, a cellulose compound, polyvinyl alcohol, etc.) to prepare a phosphor paste. This phosphor paste is applied to the surface of the front substrate on which a conductive film (for example, an ITO film) is formed (this conductive film is used as an anode electrode) by a known application method such as screen printing. The front substrate provided with this phosphor layer and the back substrate provided with an electron source (for example, carbon nanotube, graphite nanofiber, etc.) and a cathode electrode are laminated and bonded together with a spacer for securing a vacuum region. . Next, the target FED model can be manufactured by evacuating the inside and vacuum-sealing to form an electron flight space.

次に、実施例及び比較例により本発明を詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited at all by these examples.

硝酸ガドリニウム、硝酸ユーロピウム及び硝酸亜鉛を、それぞれの構成金属のモル数に換算して、モル比で、Gd:Eu:Zn=(95−x):5:x(x=0、5、10、15、20、25、30、35及び40)となるように配合し、これにグルタミン酸0.0809g(前記3種の硝酸塩の合計モル数と等モル)を添加し、さらにHOを添加して、全量が5.0gとなるようにした。かくして得られた9種の混合液を、それぞれ、100℃で1時間加熱し、ゲル化させた後、大気中1000℃で1時間焼成して、[Gd:Eu,Zn]なる組成のナノ粒子蛍光体サンプルを作製した。作製された蛍光体サンプルの粒径は、いずれも50nm程度であった。各サンプルのペースト(分散媒:エチルセルロース)をITO膜上に塗布(塗布量:0.42mg/cm)し、70℃で乾燥させた後、大気中400℃で焼成した。この蛍光体付きITO膜を真空チャンバ内へ入れ、チャンバ内を1×10−4Paまで排気した後、加速電圧3.0kVで電流密度70μA/cmの電子線を蛍光体に照射し、赤色の発光輝度(cd/m)を測定した。図1に、各Zn量(モル%)に対する発光輝度の値をプロットした。 Gd: Eu: Zn = (95-x): 5: x (x = 0, 5, 10,) by converting gadolinium nitrate, europium nitrate and zinc nitrate into the number of moles of each constituent metal, in molar ratio 15, 20, 25, 30, 35 and 40), 0.0809 g of glutamic acid (equal moles with the total number of moles of the above three nitrates) is added thereto, and H 2 O is further added. The total amount was 5.0 g. The nine kinds of mixed solutions thus obtained were each heated at 100 ° C. for 1 hour to gel, and then fired in the atmosphere at 1000 ° C. for 1 hour to obtain [Gd 2 O 3 : Eu, Zn x ]. A nanoparticle phosphor sample of composition was prepared. The particle diameters of the prepared phosphor samples were all about 50 nm. Each sample paste (dispersion medium: ethyl cellulose) was applied onto the ITO film (coating amount: 0.42 mg / cm 2 ), dried at 70 ° C., and then fired at 400 ° C. in the atmosphere. This phosphor-attached ITO film is put into a vacuum chamber, and the inside of the chamber is evacuated to 1 × 10 −4 Pa. Then, the phosphor is irradiated with an electron beam with an acceleration voltage of 3.0 kV and a current density of 70 μA / cm 2 , and red The emission luminance (cd / m 2 ) was measured. In FIG. 1, the value of the light emission luminance with respect to each Zn amount (mol%) is plotted.

図1から明らかなように、Znを5モル%添加すると発光輝度が向上し、さらにZn添加量を増加すると、25モル%までは高輝度のままであったが、25モル%を超えて30モル%になると、発光輝度は低下し、Znを添加しない場合とほぼ同じになった。このことから、5〜25モル%のZnを添加すると、発光輝度が向上することが確認できた。   As apparent from FIG. 1, when 5 mol% of Zn is added, the luminance is improved, and when the Zn addition amount is further increased, the luminance remains high up to 25 mol%, but exceeds 25 mol% and exceeds 30 mol. When it became mol%, the luminance was lowered and became almost the same as when Zn was not added. From this, it was confirmed that when 5 to 25 mol% of Zn was added, the light emission luminance was improved.

実施例1記載のナノ粒子蛍光体作製方法を繰り返した。但し、Euの添加量を検討するために、各無機塩を、モル比で、Gd:Eu:Zn=(85−x):x:15(x=0、0.5、1.5、2.5、3.5、4.5及び5.5)となるように配合した。かくして得られた7種のナノ粒子蛍光体の粒径は実施例1の場合と同様であった。また、赤色の発光輝度に対するEu量(モル%)の影響を実施例1の場合と同様に検討した。その結果、0.5〜5モル%のEuを添加すると、赤色の発光輝度が向上することが確認できた。   The nanoparticle phosphor preparation method described in Example 1 was repeated. However, in order to examine the addition amount of Eu, each inorganic salt was added at a molar ratio of Gd: Eu: Zn = (85−x): x: 15 (x = 0, 0.5, 1.5, 2). .5, 3.5, 4.5, and 5.5). The particle diameters of the seven types of nanoparticle phosphors thus obtained were the same as in Example 1. Further, the effect of the Eu amount (mol%) on the red emission luminance was examined in the same manner as in Example 1. As a result, it was confirmed that when 0.5 to 5 mol% of Eu was added, the red emission luminance was improved.

実施例1記載のナノ粒子蛍光体作製方法を繰り返した。但し、硝酸ガドリニウムの代わりに硝酸イットリウムを用いた。かくして得られたナノ粒子蛍光体についての赤色の発光輝度に対するZn量(モル%)の影響は実施例1の場合と同様であった。また、各蛍光体の粒径も同様であった。   The nanoparticle phosphor preparation method described in Example 1 was repeated. However, yttrium nitrate was used instead of gadolinium nitrate. The influence of the Zn amount (mol%) on the red emission luminance of the nanoparticle phosphor thus obtained was the same as in Example 1. The particle size of each phosphor was also the same.

実施例2記載のナノ粒子蛍光体作製方法を繰り返した。但し、硝酸ガドリニウムの代わりに硝酸イットリウムを用いた。かくして得られた7種のナノ粒子蛍光体についての粒径及び各蛍光体の赤色の発光輝度に対するEu量(モル%)の影響は実施例2の場合と同様であった。   The nanoparticle phosphor preparation method described in Example 2 was repeated. However, yttrium nitrate was used instead of gadolinium nitrate. The effects of the Eu amount (mol%) on the particle size and the red emission luminance of each phosphor for the seven types of nanoparticle phosphors thus obtained were the same as in Example 2.

硝酸イットリウム、硝酸ユーロピウム及び硝酸亜鉛を、それぞれの構成金属のモル数に換算して、モル比で、Y:Eu:Zn=85:5:10となるように配合し、これにグルタミン酸0.0809g(前記3種の硝酸塩の合計モル数と等モル)を添加し、さらにHOを添加して、全量が5.0gとなるようにした。かくして得られた混合液を100℃で1時間加熱し、ゲル化させた後、大気中で1時間焼成して、[Y:Eu,Zn]なる組成のナノ粒子蛍光体サンプルを作製した。この場合の焼成は、その温度を500、700、900、1000、1100、1200及び1400℃と変化させて行った。 Yttrium nitrate, europium nitrate, and zinc nitrate are mixed so that the molar ratio of each constituent metal is Y: Eu: Zn = 85: 5: 10, and 0.0809 g of glutamic acid is added thereto. (Equal moles with the total number of moles of the three kinds of nitrates) was added, and H 2 O was further added so that the total amount became 5.0 g. The mixed solution thus obtained is heated at 100 ° C. for 1 hour to gel, and then fired in the air for 1 hour to produce a nanoparticle phosphor sample having a composition of [Y 2 O 3 : Eu, Zn]. did. Firing in this case was performed by changing the temperature to 500, 700, 900, 1000, 1100, 1200, and 1400 ° C.

上記のようにして作製された7種の蛍光体サンプルの粒径は、いずれも300nm程度以下であった。各サンプルのペースト(分散媒:エチルセルロース)をITO膜上に塗布(塗布量:0.42mg/cm)し、70℃で乾燥させた後、大気中400℃で焼成した。この蛍光体付きITO膜を真空チャンバ内へ入れ、チャンバ内を1×10−4Paまで排気した後、加速電圧3.0kVで電流密度70μA/cmの電子線を蛍光体に照射し、赤色の発光輝度(cd/m)を測定した。図2に、各焼成温度に対する発光輝度の値をプロットした。 The particle diameters of the seven phosphor samples prepared as described above were all about 300 nm or less. Each sample paste (dispersion medium: ethyl cellulose) was applied onto the ITO film (coating amount: 0.42 mg / cm 2 ), dried at 70 ° C., and then fired at 400 ° C. in the atmosphere. This phosphor-attached ITO film is put into a vacuum chamber, and the inside of the chamber is evacuated to 1 × 10 −4 Pa. Then, the phosphor is irradiated with an electron beam with an acceleration voltage of 3.0 kV and a current density of 70 μA / cm 2 , and red The emission luminance (cd / m 2 ) was measured. In FIG. 2, the value of the light emission luminance with respect to each baking temperature is plotted.

焼成温度500℃で得られた蛍光体サンプルは、発光を確認できず、また、焼成温度700℃で得られた蛍光体サンプルは、発光はしたが、その発光輝度は極めて低かった。図2から明らかなように、焼成温度900〜1500℃で発光輝度の良い蛍光体サンプルが得られ、好ましくは1000〜1400℃でさらに発光輝度が向上した蛍光体サンプルが得られていることが分かる。しかし、得られた蛍光体サンプルの粒径については、透過型電子顕微鏡及びX線回折ピークの広がりに基づいた分析結果から、いずれも50〜300nm程度であったが、焼成温度900〜1100℃の範囲では50〜100nm程度であり、1100℃を超え1400℃まで温度が上昇するに従って100nmから300nmへと上昇した。従って、有機酸のモル数と無機塩の総モル数との比が1.0で、かつ、焼成温度が900〜1100℃の場合、材料効率も良く、低温で高輝度の蛍光体が得られると共に、粒径も小さいので、上記した発光輝度の測定条件より低い加速電圧でも、高い高輝度が得られることが分かる。   The phosphor sample obtained at a firing temperature of 500 ° C. could not confirm light emission, and the phosphor sample obtained at a firing temperature of 700 ° C. emitted light, but its emission luminance was extremely low. As can be seen from FIG. 2, a phosphor sample with good emission luminance is obtained at a firing temperature of 900-1500 ° C., and preferably a phosphor sample with further improved emission luminance is obtained at 1000-1400 ° C. . However, the particle size of the obtained phosphor sample was about 50 to 300 nm from the analysis results based on the transmission electron microscope and the spread of the X-ray diffraction peak, but the firing temperature was 900 to 1100 ° C. The range was about 50 to 100 nm, and increased from 100 nm to 300 nm as the temperature increased from 1100 ° C. to 1400 ° C. Accordingly, when the ratio of the number of moles of organic acid to the total number of moles of inorganic salt is 1.0 and the firing temperature is 900 to 1100 ° C., a phosphor with high material efficiency and low brightness can be obtained. At the same time, since the particle size is small, it can be seen that high brightness can be obtained even at an acceleration voltage lower than the above-described measurement conditions of light emission brightness.

上記における焼成温度1000℃で得られた蛍光体サンプルのSEM写真を図3に示す。図3から明らかなように、粒径の小さな(100nm以下)蛍光体であり、この蛍光体サンプルは、高輝度を示した。なお、1500℃を超える焼成温度では、嵩密度が小さく、かつ粒径の大きい(300nmを超えていた)蛍光体サンプルが得られた。   An SEM photograph of the phosphor sample obtained at a firing temperature of 1000 ° C. in the above is shown in FIG. As is apparent from FIG. 3, the phosphor has a small particle size (100 nm or less), and this phosphor sample showed high luminance. A phosphor sample having a small bulk density and a large particle size (exceeding 300 nm) was obtained at a firing temperature exceeding 1500 ° C.

(比較例1)
実施例5記載の方法を繰り返した。但し、グルタミン酸と硝酸塩とのモル比を0.5及び0.7となるようにし、また、焼成温度を900〜1100℃の間で実施した。その結果、不純物の影響で十分な輝度が得られず、また、粒径が500nm程度と大きかった。
(Comparative Example 1)
The method described in Example 5 was repeated. However, the molar ratio of glutamic acid and nitrate was 0.5 and 0.7, and the firing temperature was 900-1100 ° C. As a result, sufficient luminance could not be obtained due to the influence of impurities, and the particle size was as large as about 500 nm.

実施例1で得られたナノ粒子蛍光体(Gd:5%Eu,15%Zn)と従来のCRT用赤色蛍光体(YSiEu)とについて、実施例1の場合と同様に処理し、加速電圧3.0kVで電流密度70μA/cmの電子線を照射し、赤色の発光輝度(cd/m)を測定したところ、2130/m(本発明)及び1240cd/m(従来発明)であり、本発明の蛍光体の方がより高輝度の赤色発光を示した。これは、本発明のナノ粒子蛍光体が、自己伝播燃焼法により作製されるので、結晶性が高く、より高輝度の蛍光体が提供できるからであると考えられる。 The nanoparticle phosphor (Gd 2 O 3 : 5% Eu, 15% Zn) obtained in Example 1 and the conventional red phosphor for CRT (Y 2 O 2 SiEu) are the same as in Example 1. The sample was irradiated with an electron beam with an acceleration voltage of 3.0 kV and a current density of 70 μA / cm 2 , and the red light emission luminance (cd / m 2 ) was measured to find 2130 / m 2 (invention) and 1240 cd / m 2. No. 2 (conventional invention), and the phosphor of the present invention emitted red light with higher luminance. This is presumably because the nanoparticle phosphor of the present invention is produced by the self-propagating combustion method, so that a phosphor with high crystallinity and higher brightness can be provided.

本発明によれば、低加速電子線の照射により劣化することはなく、発光輝度が高く、チャージアップが防止されると共に、電子侵入深度も深い赤色ナノ粒子蛍光体を提供できるので、この蛍光体は発光素子用として好適である。従って、本発明は、FED等のディスプレイ分野での利用が産業的に極めて有用である。   According to the present invention, it is possible to provide a red nanoparticle phosphor that is not deteriorated by irradiation with a low-acceleration electron beam, has high emission luminance, prevents charge-up, and has a deep electron penetration depth. Is suitable for a light emitting device. Therefore, the present invention is very useful industrially in the field of display such as FED.

実施例1で得られたナノ粒子蛍光体について、発光輝度(cd/m)に対するZn添加量(モル%)の影響を示すグラフ。The graph which shows the influence of Zn addition amount (mol%) with respect to light-emitting luminance (cd / m < 2 >) about the nanoparticle fluorescent substance obtained in Example 1. FIG. 実施例5で得られたナノ粒子蛍光体について、発光輝度(cd/m)に対する焼成温度の影響を示すグラフ。The graph which shows the influence of the calcination temperature with respect to light-emitting luminance (cd / m < 2 >) about the nanoparticle fluorescent material obtained in Example 5. FIG. 1000℃で焼成して得られたナノ粒子蛍光体のSEM写真。The SEM photograph of the nanoparticle fluorescent substance obtained by baking at 1000 degreeC.

Claims (12)

及びGdから選ばれた少なくとも1種の酸化物を母体とし、この母体にEu及びZnからなる付活剤金属を添加してなることを特徴とする蛍光体。 A phosphor obtained by using at least one oxide selected from Y 2 O 3 and Gd 2 O 3 as a base material and adding an activator metal composed of Eu and Zn to the base material. 前記Euの添加量が、前記母体の構成金属と付活剤金属との総モル数基準で0.5〜5モル%であることを特徴とする請求項1に記載の蛍光体。 2. The phosphor according to claim 1, wherein the addition amount of Eu is 0.5 to 5 mol% based on the total number of moles of the constituent metal of the base and the activator metal. 前記Znの添加量が、前記母体の構成金属と付活剤金属との総モル数基準で5〜25モル%であることを特徴とする請求項1又は2に記載の蛍光体。 3. The phosphor according to claim 1, wherein the added amount of Zn is 5 to 25 mol% based on the total number of moles of the constituent metal of the base and the activator metal. Yの無機塩及びGdの無機塩から選ばれた少なくとも1種の無機塩と、Euの無機塩及びZnの無機塩と、有機酸とを溶媒に溶解又は分散せしめた後、焼成して蛍光体を作製することを特徴とする蛍光体の作製方法。 At least one kind of inorganic salt selected from inorganic salt of Y and inorganic salt of Gd, inorganic salt of Eu, inorganic salt of Zn, and organic acid are dissolved or dispersed in a solvent, and then fired to phosphor. A method for manufacturing a phosphor, which is characterized by comprising: 前記溶解又は分散せしめた後、得られた溶液又は分散液を焼成前にゲル化することを特徴とする請求項4に記載の蛍光体の作製方法。 The method for producing a phosphor according to claim 4, wherein after the dissolution or dispersion, the obtained solution or dispersion is gelled before firing. 前記Euの無機塩が、Euに換算して、前記全ての無機塩の構成金属の総モル数基準で、蛍光体中に0.5〜5モル%含まれるような量で添加されることを特徴 とする請求項4又は5に記載の蛍光体の作製方法。 The Eu inorganic salt is added in an amount such that it is contained in the phosphor in an amount of 0.5 to 5 mol% in terms of Eu, based on the total number of moles of constituent metals of all the inorganic salts. The method for producing a phosphor according to claim 4 or 5. 前記Znの無機塩が、Znに換算して、前記全ての無機塩の構成金属の総モル数基準で、蛍光体中に5〜25モル%含まれるような量で添加されることを特徴とする請求項4〜6のいずれか1項に記載の蛍光体の作製方法。 The inorganic salt of Zn is added in such an amount that it is contained in the phosphor in an amount of 5 to 25 mol% in terms of Zn, based on the total number of moles of constituent metals of all the inorganic salts. The method for producing a phosphor according to any one of claims 4 to 6. 前記焼成が、900〜1500℃の温度で行われることを特徴とする請求項4〜7のいずれか1項に記載の蛍光体の作製方法。 The method for producing a phosphor according to claim 4, wherein the firing is performed at a temperature of 900 to 1500 ° C. 前記有機酸が、少なくとも1種のアミノ酸であることを特徴とする請求項4〜8のいずれか1項に記載の蛍光体の作製方法。 The method for producing a phosphor according to claim 4, wherein the organic acid is at least one amino acid. 前記アミノ酸が、グリシン、アスパラギン酸及びグルタミン酸から選ばれた少なくとも1種であることを特徴とする請求項9に記載の蛍光体の作製方法。 The method for producing a phosphor according to claim 9, wherein the amino acid is at least one selected from glycine, aspartic acid and glutamic acid. 前記有機酸のモル数が、前記全ての無機塩の総モル数の1〜50倍であることを特徴とする請求項4〜10のいずれか1項に記載の蛍光体の作製方法。 The method for producing a phosphor according to any one of claims 4 to 10, wherein the number of moles of the organic acid is 1 to 50 times the total number of moles of all the inorganic salts. 請求項1〜3のいずれか1項に記載の蛍光体又は請求項4〜11のいずれか1項に記載の作製方法により作製された蛍光体を含んでなることを特徴とする発光素子。 A light emitting device comprising the phosphor according to any one of claims 1 to 3 or the phosphor produced by the production method according to any one of claims 4 to 11.
JP2005379588A 2005-12-28 2005-12-28 Phosphor and its manufacturing method, and light-emitting element Pending JP2007177156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005379588A JP2007177156A (en) 2005-12-28 2005-12-28 Phosphor and its manufacturing method, and light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005379588A JP2007177156A (en) 2005-12-28 2005-12-28 Phosphor and its manufacturing method, and light-emitting element

Publications (1)

Publication Number Publication Date
JP2007177156A true JP2007177156A (en) 2007-07-12

Family

ID=38302641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005379588A Pending JP2007177156A (en) 2005-12-28 2005-12-28 Phosphor and its manufacturing method, and light-emitting element

Country Status (1)

Country Link
JP (1) JP2007177156A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167345A (en) * 2008-01-18 2009-07-30 Noritake Co Ltd Phosphor and fluorescent display device
JP2010164792A (en) * 2009-01-16 2010-07-29 Fujitsu Ltd Cryptographic processing device
US8330346B2 (en) 2008-10-10 2012-12-11 Canon Kabushiki Kaisha Image display device
JP2013537579A (en) * 2010-08-16 2013-10-03 ▲海▼洋王照明科技股▲ふん▼有限公司 Color adjustable fluorescent powder and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127777A (en) * 1982-01-27 1983-07-29 Hitachi Ltd Preparation of fluorescent substance
JP2000319654A (en) * 1999-05-12 2000-11-21 Sony Corp Phosphor and its preparation
JP2002235078A (en) * 2001-02-08 2002-08-23 Japan Science & Technology Corp Method for producing fluorescent substance and the fluorescent substance
JP2003003166A (en) * 2001-06-20 2003-01-08 Sumitomo Chem Co Ltd Phosphor for vacuum ultraviolet light excitation luminescent element and method for producing the same
JP2005075863A (en) * 2003-08-28 2005-03-24 Ulvac Japan Ltd Electroconductive nanoparticle phosphor and its synthetic method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127777A (en) * 1982-01-27 1983-07-29 Hitachi Ltd Preparation of fluorescent substance
JP2000319654A (en) * 1999-05-12 2000-11-21 Sony Corp Phosphor and its preparation
JP2002235078A (en) * 2001-02-08 2002-08-23 Japan Science & Technology Corp Method for producing fluorescent substance and the fluorescent substance
JP2003003166A (en) * 2001-06-20 2003-01-08 Sumitomo Chem Co Ltd Phosphor for vacuum ultraviolet light excitation luminescent element and method for producing the same
JP2005075863A (en) * 2003-08-28 2005-03-24 Ulvac Japan Ltd Electroconductive nanoparticle phosphor and its synthetic method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167345A (en) * 2008-01-18 2009-07-30 Noritake Co Ltd Phosphor and fluorescent display device
US8330346B2 (en) 2008-10-10 2012-12-11 Canon Kabushiki Kaisha Image display device
JP2010164792A (en) * 2009-01-16 2010-07-29 Fujitsu Ltd Cryptographic processing device
JP2013537579A (en) * 2010-08-16 2013-10-03 ▲海▼洋王照明科技股▲ふん▼有限公司 Color adjustable fluorescent powder and method for producing the same

Similar Documents

Publication Publication Date Title
JP2947156B2 (en) Phosphor manufacturing method
TW567222B (en) Phosphor for display and field-emission display
JP2007077280A (en) Phosphor for electron beam-exciting light-emitting element, method for preparing the same and electron beam-exciting light-emitting element
US20090117260A1 (en) Phosphor surface treating method and flat display device manufacturing method
WO2007105370A1 (en) Phosphor for display and field emission display
JP2007177156A (en) Phosphor and its manufacturing method, and light-emitting element
JP2007103052A (en) Plasma display panel
JP4931176B2 (en) Phosphor, method for manufacturing the same, and light emitting device
TWI290952B (en) Blue fluorescent substance for display device and method for producing the same and field emission type display device
JP2002226847A (en) Fluorescent substance for display device and field emission type display device using thereof
JP2002138279A (en) Fluorescent material for display unit, its manufacturing method and field emission type display unit using the same
JP4914608B2 (en) Phosphor and production method thereof
JP4990526B2 (en) Nanoparticle phosphor and method for producing the same
JP2005075863A (en) Electroconductive nanoparticle phosphor and its synthetic method
JP4873909B2 (en) Phosphor for electron beam excited light emitting device, method for producing the same, and electron beam excited light emitting device
TWI390576B (en) Three primary color field emission display and its phosphor powder
EP1555306A1 (en) Fluorescent material for display unit, process for producing the same and color display unit including the same
JP2004123786A (en) Phosphor for display device, its production method, and color display device using the same
JP2006312695A (en) Blue light-emitting phosphor for display device, and field emission type display device
TWI267321B (en) Green light-emitting phosphor for displays and field-emission display using same
JP5016804B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JP5386092B2 (en) Method for producing oxide phosphor
JP2009114304A (en) Nanoparticle green phosphor for electron beam excitation
JP2007077282A (en) Phosphor for electron beam-exciting light-emitting element, method for preparing the same and electron beam-exciting light-emitting element
JP3520597B2 (en) Method for manufacturing fluorescent display tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A02 Decision of refusal

Effective date: 20120110

Free format text: JAPANESE INTERMEDIATE CODE: A02