JP2007176717A - Manufacturing method for silicon single crystal - Google Patents

Manufacturing method for silicon single crystal Download PDF

Info

Publication number
JP2007176717A
JP2007176717A JP2005374343A JP2005374343A JP2007176717A JP 2007176717 A JP2007176717 A JP 2007176717A JP 2005374343 A JP2005374343 A JP 2005374343A JP 2005374343 A JP2005374343 A JP 2005374343A JP 2007176717 A JP2007176717 A JP 2007176717A
Authority
JP
Japan
Prior art keywords
single crystal
graphite
chamber
silicon single
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005374343A
Other languages
Japanese (ja)
Inventor
Hideki Hara
英輝 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2005374343A priority Critical patent/JP2007176717A/en
Publication of JP2007176717A publication Critical patent/JP2007176717A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for silicon single crystal at a low cost which has high quality and in which the generation of OSF is suppressed, by removing impurities in the graphite member mounted in the chamber by short time heating. <P>SOLUTION: When growing silicon single crystal by the Czochralski method, the manufacturing method comprises mounting a heat shielding member that is composed of graphite and a heat insulating material into the chamber, and heating the inside of the chamber in a state where a graphite susceptor is removed, then carrying out a single crystal-pulling operation by charging the graphite susceptor and a quartz crucible filled with polycrystal silicon into the chamber. Wherein the impurities contained in the heat shielding member can be removed in a short time because the heat of a heater can be directly irradiated to the heat shielding member by removing the susceptor that has a relatively large heat capacity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、単結晶引上げ装置を構成する黒鉛部材等に含まれる不純物に起因するOSF欠陥の発生が少ないシリコン単結晶を製造する方法に関する。   The present invention relates to a method for manufacturing a silicon single crystal in which generation of OSF defects due to impurities contained in a graphite member or the like constituting a single crystal pulling apparatus is small.

半導体デバイスで用いられるシリコン単結晶は、図1に示されるような装置を使用した、いわゆるチョクラルスキー法(以下CZ法)によって製造されている。
CZ法の概略について説明すると次のようになる。すなわち、まず、多結晶シリコン塊(或いは粒状多結晶シリコン)を石英るつぼに充填し、これを融解してシリコン融液とする。その後、引上げワイヤの下端に吊下げられた無転位の結晶種を前記シリコン融液中に浸し、種結晶の先端自体を融解した後に引上げを開始する。引上げを継続させて結晶径を徐々に増大させ、ネック,コーン及び肩の形成工程を経て、定径部の引上げを行い、所定長のシリコン単結晶を得ている。
A silicon single crystal used in a semiconductor device is manufactured by a so-called Czochralski method (hereinafter CZ method) using an apparatus as shown in FIG.
The outline of the CZ method will be described as follows. That is, first, a polycrystalline silicon lump (or granular polycrystalline silicon) is filled in a quartz crucible and melted to obtain a silicon melt. Thereafter, a dislocation-free crystal seed suspended from the lower end of the pulling wire is immersed in the silicon melt, and the pulling is started after melting the tip of the seed crystal itself. The crystal diameter is gradually increased by continuing the pulling, and the constant diameter portion is pulled through the neck, cone and shoulder forming steps to obtain a silicon single crystal having a predetermined length.

そして、CZ法を実施する引上げ装置においては、石英るつぼ内の多結晶シリコン塊は、チャンバ内に配置したカーボンヒータにより溶融されているが、カーボンヒータからの熱をチャンバ内或いは生成されたシリコン単結晶に輻射されるのを防ぐために、或いはカーボンヒータからの熱を多結晶シリコン塊ないしシリコン融液に効率的に供給し、生成されたシリコン単結晶への供給を遮断するために、熱遮蔽部材が配置されている。
また、多結晶シリコン塊ないしシリコン融液が充填された石英るつぼは、熱変形による軟化変形を防止するため、シャフトによってその軸線回りに回転可能に支持されているサセプタ内に収容されている。そして、このサセプタは、冷却時等における割れを防止するために周方向に分割されて石英るつぼの外周に組み付けられている。
一般的には、前記熱遮蔽部材は黒鉛及び断熱材からなり、サセプタには黒鉛が用いられている。
In the pulling apparatus that performs the CZ method, the polycrystalline silicon lump in the quartz crucible is melted by the carbon heater disposed in the chamber, but the heat from the carbon heater is absorbed in the chamber or in the generated silicon unit. In order to prevent radiation to the crystal, or to efficiently supply heat from the carbon heater to the polycrystalline silicon lump or silicon melt, and to block the supply to the generated silicon single crystal, a heat shielding member Is arranged.
Further, the quartz crucible filled with a polycrystalline silicon lump or silicon melt is accommodated in a susceptor that is supported by a shaft so as to be rotatable about its axis in order to prevent soft deformation due to thermal deformation. And this susceptor is divided | segmented into the circumferential direction and assembled | attached to the outer periphery of the quartz crucible in order to prevent the crack at the time of cooling.
Generally, the heat shielding member is made of graphite and a heat insulating material, and graphite is used for the susceptor.

ところで、一方、半導体集積回路を製造する工程において、歩留りを低下させる原因として酸化誘起積層欠陥(Oxidation‐induced Stacking Fault、以下、OSFという。)の核となる酸素析出物の微小欠陥や、結晶に起因したパーティクル(Crystal Originated Particle、以下、COPと言う。)や、或いは侵入型転位(Interstitial‐type Large Dislocation、以下、L/Dという。)の存在等が挙げられている。殊にOSFは、結晶成長時にその核となる微小欠陥が導入され、半導体デバイスを製造する際の熱酸化工程等で顕在化し、作製したデバイスのリーク電流の増加等の不良原因になるので、半導体集積回路を製造するために用いられるシリコンウェーハからOSFを減少させることが必要となっている。   On the other hand, in the process of manufacturing a semiconductor integrated circuit, as a cause of lowering the yield, oxygen precipitate micro-defects that form the nucleus of oxidation-induced stacking fault (hereinafter referred to as OSF) or crystals Examples include the presence of particles (Crystal Originated Particles, hereinafter referred to as COP) or the presence of interstitial-type large dislocation (hereinafter referred to as L / D). In particular, OSF introduces a micro defect that becomes the nucleus during crystal growth, and is manifested in a thermal oxidation process or the like when manufacturing a semiconductor device, and causes a defect such as an increase in leakage current of the manufactured device. There is a need to reduce OSF from silicon wafers used to manufacture integrated circuits.

このOSFの核となる微小欠陥は結晶育成中に形成されることがわかっており、OSF核の形成には以下の特徴があることが知られている。(例えば、特許文献1参照)
・シリコン単結晶中に含まれる重金属濃度が高くなるとOSF核が形成されやすい。
・酸素濃度が高くなるとOSF核が形成されやすい。
・サーマルドナー濃度が高くなるとOSF核が形成されやすい。
ここで、サーマルドナーとは結晶引上げ中の450℃程度の温度域をゆっくり通過すると発生するドナーの性質をもった結晶欠陥であり、シリコン結晶中の固溶酸素原子が集合したものと考えられている。結晶育成中に450℃付近の冷却を長く受け、このサーマルドナー濃度が高い結晶部位でOSF核が発生しやすくなる。
しかし、OSF発生に影響を及ぼす上記三つの因子の間の明確な相関についてはわかっていない。
It is known that the micro defect that becomes the nucleus of the OSF is formed during crystal growth, and the formation of the OSF nucleus is known to have the following characteristics. (For example, see Patent Document 1)
-OSF nuclei are easily formed when the concentration of heavy metals contained in a silicon single crystal increases.
・ OSF nuclei are easily formed when the oxygen concentration is high.
・ OSF nuclei are easily formed when the thermal donor concentration is increased.
Here, a thermal donor is a crystal defect having the properties of a donor that occurs when it slowly passes through a temperature range of about 450 ° C. during crystal pulling, and is considered to be a collection of solid solution oxygen atoms in the silicon crystal. Yes. During crystal growth, cooling at around 450 ° C. is applied for a long time, and OSF nuclei are likely to be generated at a crystal portion having a high thermal donor concentration.
However, a clear correlation between the above three factors affecting OSF development is not known.

これらの知見に基づいて、OSFを抑制するために、従来から以下の対策が取られている。すなわち、(a)金属不純物濃度を小さくする。(b)酸素濃度を下げる。(c)450℃付近の熱履歴を制御する。
上記特許文献1でも、対策(a)の金属不純物は石英ルツボから混入するため、石英ルツボの純度を改善しない限りは低減することはできない。対策(b)の酸素濃度はシリコンウェーハの製品スペックとしてユーザーが設定する条件であるため、自由に変更することができない。対策(c)の熱履歴制御を行うとサーマルドナーだけではなく、他の品質にも影響を及ぼしてしまう。このように従来知られていた(a)〜(c)の方法は十分な方法ではなかったと記載した上で、次のような技術を提案している。
Based on these findings, the following measures have been conventionally taken to suppress OSF. That is, (a) the metal impurity concentration is reduced. (B) Decrease the oxygen concentration. (C) Control heat history around 450 ° C.
Even in Patent Document 1, since the metal impurity of the measure (a) is mixed from the quartz crucible, it cannot be reduced unless the purity of the quartz crucible is improved. Since the oxygen concentration of the measure (b) is a condition set by the user as the product specification of the silicon wafer, it cannot be freely changed. If the thermal history control of the measure (c) is performed, not only the thermal donor but also other qualities are affected. Thus, after describing that the conventionally known methods (a) to (c) are not sufficient methods, the following techniques are proposed.

すなわち、特許文献1では、シリコン単結晶製造上の制約を受けず、かつ、より簡便な方法で、引上げ後のシリコン単結晶をウェーハ形状に加工して熱処理を行ってもOSFの発生が抑制された高品質のシリコン単結晶を製造するために、CZ法によってシリコン単結晶を育成するにおいて、シリコン単結晶が引上げられる領域を区画するチャンバ内の雰囲気ガスとして、当該チャンバへの雰囲気ガス供給管路に設けられたガス純化設備で純化したアルゴンガスを使用することを提案している。   That is, in Patent Document 1, generation of OSF is suppressed even when the silicon single crystal after pulling is processed into a wafer shape and subjected to heat treatment by a simpler method without being restricted in manufacturing the silicon single crystal. In order to produce a high-quality silicon single crystal, when growing the silicon single crystal by the CZ method, the atmospheric gas supply conduit to the chamber is used as the atmospheric gas in the chamber defining the region where the silicon single crystal is pulled up It is proposed to use argon gas purified by a gas purification facility installed in the factory.

一方、本出願人は、OSF発生原因の一つとしてチャンバ内に配置した黒鉛部材等に含まれる水分や酸素等の不純物が挙げられるとの考えから、これらの不純物を除去するため、多結晶シリコンを充填した石英るつぼをチャンバ内に挿入する前に、黒鉛製サセプタを含め黒鉛部材及び断熱材を一定時間高温で加熱していた。
特許第3709307号公報
On the other hand, the applicant of the present invention considers that impurities such as moisture and oxygen contained in a graphite member or the like arranged in the chamber are one of the causes of OSF generation. Prior to inserting the quartz crucible filled with the graphite, the graphite member and the heat insulating material including the graphite susceptor were heated at a high temperature for a certain period of time.
Japanese Patent No. 3709307

しかしながら、チャンバ内に送り込むアルゴンガスを純化することは、雰囲気ガス供給管路に高価なガス純化設備を設置することを必要とし、コストの著しい上昇を招くことになる。しかも、アルゴンガスを純化してもOSFの発生を完全に抑えることはできない。
また、黒鉛部材を予め一定時間加熱することは、サイクル時間が長くなることによる時間的なロスばかりでなく、使用する電力,アルゴンガスの量が増えてコスト増に繋がる。このため、加熱時間の短縮化が求められる。
本発明は、このような問題を解消するために案出されたものであり、より簡便な方法で、チャンバ内に取付けた黒鉛部材及び断熱材中の不純物を除去し、OSFの発生が抑制された高品質のシリコン単結晶を低コスト製造する方法を提供することを目的とする。
However, purifying the argon gas fed into the chamber requires an expensive gas purification facility to be installed in the atmospheric gas supply pipe line, resulting in a significant increase in cost. Moreover, even if the argon gas is purified, the generation of OSF cannot be completely suppressed.
Further, heating the graphite member for a predetermined time in advance not only causes a time loss due to a long cycle time, but also increases the amount of power and argon gas used, leading to an increase in cost. For this reason, shortening of a heating time is calculated | required.
The present invention has been devised in order to solve such a problem, and the impurities in the graphite member and the heat insulating material attached in the chamber are removed by a simpler method, and the generation of OSF is suppressed. Another object of the present invention is to provide a method for producing a high-quality silicon single crystal at low cost.

本発明のシリコン単結晶の製造方法は、その目的を達成するため、チョクラルスキー法によってシリコン単結晶を育成する際、チャンバに黒鉛及び断熱材からなる熱遮蔽部材を取り付け、かつ黒鉛質サセプタを取り除いた状態でチャンバ内を加熱し、その後に黒鉛質サセプタ及び多結晶シリコン充填石英るつぼをチャンバ内に装填して単結晶引上げ操作を行うことを特徴とする。   In order to achieve the object of the method for producing a silicon single crystal of the present invention, when the silicon single crystal is grown by the Czochralski method, a heat shielding member made of graphite and a heat insulating material is attached to the chamber, and the graphite susceptor is attached. The inside of the chamber is heated in the removed state, and thereafter, a graphite susceptor and a polycrystalline silicon filled quartz crucible are loaded into the chamber and a single crystal pulling operation is performed.

本発明では、黒鉛質サセプタを取り除いた状態で加熱することにより、ヒータからの熱が直接黒鉛及び断熱材からなる熱遮蔽部材に当り、より高温の状態に加熱される。このため、黒鉛及び断熱材からなる熱遮蔽部材に含まれる水分,酸素等の不純物を短時間で除去することができ、結果的にOSFの発生が抑制された高品質のシリコン単結晶を低コストで製造できることになる。   In the present invention, by heating with the graphite susceptor removed, the heat from the heater directly hits the heat shielding member made of graphite and a heat insulating material, and is heated to a higher temperature. For this reason, impurities such as moisture and oxygen contained in the heat shielding member made of graphite and a heat insulating material can be removed in a short time, and as a result, a high-quality silicon single crystal in which generation of OSF is suppressed is reduced in cost. Can be manufactured.

前記特許文献1にも記載されているように、水分、あるいは酸素が含まれているアルゴンガスをCZ法による引上げの雰囲気ガスとして用いて育成したシリコン単結晶をウェーハ形状に加工して酸化熱処理を行うとシリコンウェーハにOSFが発生する。このOSF発生の原因としてサーマルドナーの形成が考えられる。雰囲気アルゴン中の水分と炉内のグラファイトが反応してCOガスと水素が発生し、この水素がシリコン融液、あるいは単結晶表面から単結晶内部に取り込まれる。成長中に取り込まれた水素が単結晶内部に存在すると、成長中の高温から低温までに結晶が受ける冷却過程において、酸素に関係するクラスターが単結晶内部に多量につくられると推測する。   As described in Patent Document 1, a silicon single crystal grown using an argon gas containing moisture or oxygen as an atmospheric gas pulled by the CZ method is processed into a wafer shape and subjected to an oxidation heat treatment. If it does, OSF will generate | occur | produce in a silicon wafer. The formation of a thermal donor can be considered as a cause of this OSF generation. The moisture in the atmosphere argon reacts with the graphite in the furnace to generate CO gas and hydrogen, and this hydrogen is taken into the single crystal from the silicon melt or single crystal surface. If hydrogen incorporated during growth exists inside the single crystal, it is assumed that a large amount of oxygen-related clusters are formed inside the single crystal during the cooling process that the crystal receives from the high temperature to the low temperature during growth.

つまり成長雰囲気中の水分はサーマルドナーの形成を加速すると考えられる。サーマルドナーの濃度が高くなると、OSF核が形成されやすい。雰囲気アルゴン中の酸素がサーマルドナー形成にどのように影響するかは明確に判っていないが、酸素とグラファイトの反応、あるいは、水分とグラファイトの反応で発生したCO、あるいはCO2ガスがシリコン融液に取り込まれ、さらにシリコン単結晶に炭素として混入されると、OSF核を形成する要因となりうる。このように、アルゴン中の水分、または酸素の存在によりOSF核が形成されている可能性がある。あるいは、アルゴン中の水分と酸素の共存によりOSF核が形成されている可能性もある。特許文献1に記載されている通りである。 In other words, moisture in the growth atmosphere is thought to accelerate the formation of thermal donors. When the concentration of the thermal donor increases, OSF nuclei are likely to be formed. It is not clear how oxygen in the atmosphere argon affects the formation of thermal donors, but CO generated by the reaction between oxygen and graphite, or the reaction between moisture and graphite, or CO 2 gas is a silicon melt. If it is taken in and further mixed as carbon in the silicon single crystal, it can be a factor for forming OSF nuclei. Thus, there is a possibility that OSF nuclei are formed by the presence of moisture or oxygen in argon. Alternatively, OSF nuclei may be formed by the coexistence of moisture and oxygen in argon. This is as described in Patent Document 1.

ところで、チャンバ内のシリコン単結晶育成雰囲気中における水分や酸素等の不純物の混入源はアルゴンガスのみではない。前記しているように、熱遮蔽部材を構成する黒鉛や断熱材,サセプタを構成する黒鉛からも揮散・混入させる。
このため、本出願人は、断熱材及び黒鉛質部材を予め一定時間高温で加熱し、当該断熱材及び黒鉛質部材に含まれている不純物を除去する手段を採用している。
しかし、長時間を要するために効率的ではなかった。
そこで、本発明者等は、チャンバ内に装填する断熱材及び黒鉛質部材からシリコン単結晶に悪影響を及ぼす不純物を短時間で効率的に除去する手段について種々検討を重ね、本発明に到達したものである。以下にその詳細を説明する。
By the way, argon gas is not the only source of impurities such as moisture and oxygen in the silicon single crystal growth atmosphere in the chamber. As described above, it is volatilized and mixed from graphite constituting the heat shielding member, heat insulating material, and graphite constituting the susceptor.
For this reason, the present applicant employs means for heating the heat insulating material and the graphite member at a high temperature for a predetermined time in advance to remove impurities contained in the heat insulating material and the graphite member.
However, it is not efficient because it takes a long time.
Accordingly, the present inventors have repeatedly studied various means for efficiently removing impurities that adversely affect the silicon single crystal from the heat insulating material and the graphite member loaded in the chamber, and have reached the present invention. It is. Details will be described below.

CZ法を実施するチャンバにおいては、アルゴンガスは上方から導入され、下端に設けられた排出口から排出される形態が一般的である。
しかも、通常上方から導入されたアルゴンガスは、育成中のシリコン単結晶と熱遮蔽部材の間の空隙を通り、石英るつぼの上端で流れが変えられた後、サセプタとヒータの間の空隙を通って下方に排出される。アルゴンガスが常に流されている状態であれば、黒鉛質サセプタからの水分や酸素等の不純物は、育成中のシリコン単結晶に対して大きな影響を与えることはない。
In a chamber for performing the CZ method, an argon gas is generally introduced from above and discharged from a discharge port provided at the lower end.
Moreover, the argon gas usually introduced from above passes through the gap between the growing silicon single crystal and the heat shielding member, and after the flow is changed at the upper end of the quartz crucible, it passes through the gap between the susceptor and the heater. And discharged downward. If argon gas is constantly flowing, impurities such as moisture and oxygen from the graphite susceptor do not have a great influence on the growing silicon single crystal.

一方、本出願人等が、熱遮蔽部材やサセプタからの不純物の影響を除去するために行っている、例えば図2に示すような態様では、ヒータからの熱は熱容量の大きいサセプタの加熱に利用され、また、当該サセプタにより遮蔽されて遮蔽部材を効率的に加熱することには利用されない。
しかも、前記しているように、サセプタから排出される不純物は育成中のシリコン単結晶に大きな影響を与えることはない。
On the other hand, in the embodiment shown in FIG. 2, for example, as shown in FIG. 2, the applicant of the present application performs the removal of the influence of impurities from the heat shielding member and the susceptor, and the heat from the heater is used to heat the susceptor having a large heat capacity. In addition, the shield member is shielded by the susceptor and cannot be used to efficiently heat the shield member.
Moreover, as described above, the impurities discharged from the susceptor do not greatly affect the growing silicon single crystal.

そこで、本発明では、育成中のシリコン単結晶に悪影響を及ぼす不純物が、熱遮蔽部材からのものであると判断し、この不純物のみを、単結晶育成操作前に予め除去する態様を採ったものである。
すなわち、図3に示すように、チャンバに熱遮蔽部材を取り付け、かつ黒鉛質サセプタを取り除いた状態でチャンバ内を加熱し、その後に黒鉛質サセプタ及び多結晶シリコン充填石英るつぼをチャンバ内に装填して単結晶引上げ操作を開始することにしたものである。
ヒータからの熱が効率的に熱遮蔽部材に照射され、同部材中に含まれている水分や酸素等の不純物が短時間に効率的に除去される。このため、従来の加熱態様と比べて、加熱時間を大幅に短縮することができ、作業時間のみならずエネルギコストを大幅に削減することができる。
Therefore, in the present invention, an impurity that adversely affects the growing silicon single crystal is determined to be from the heat shielding member, and only this impurity is removed in advance before the single crystal growing operation. It is.
That is, as shown in FIG. 3, the chamber is heated with the heat shielding member attached to the chamber and the graphite susceptor is removed, and then the graphite susceptor and the polycrystalline silicon filled quartz crucible are loaded into the chamber. Thus, the single crystal pulling operation is started.
Heat from the heater is efficiently applied to the heat shielding member, and impurities such as moisture and oxygen contained in the member are efficiently removed in a short time. For this reason, compared with the conventional heating mode, the heating time can be greatly shortened, and not only the working time but also the energy cost can be greatly reduced.

次に本発明の実施例を比較例とともに説明する。
図1に示す構造のシリコン単結晶の引上げ装置であって、次に示すようなサイズを有する装置を使用し、直径が200mmのシリコン単結晶を引上げた際に、用いた黒鉛部材に予め施す熱処理の影響を調査した。
すなわち、径が1000mmで、高さが4000mmのチャンバ内に、内径が600mm,肉厚40mm,高さ450mmの黒鉛質サセプタとその内部に外径が950mmの石英るつぼを配置し、石英るつぼの上部に、肉厚が40mmで、円筒部高さが650mmの熱遮蔽部材を配置した装置で、直径200mmのシリコン単結晶を引上げた。
なお、チャンバ内は予め100torr以下に減圧し、上部からチャンバ内に100L/minの流量で、酸素含有量0.5体積%以下で、露点が−76℃以下のArガスを供給した。そして、使用したArガス中の前記酸素含有量や含有水分は、通常OSFの形成に影響を及ぼさないレベルといわれている数値であった。
また、熱遮蔽部材やサセプタを作製した素材黒鉛の灰分は400ppmであり、含有水分は0.1質量%であった。
Next, examples of the present invention will be described together with comparative examples.
1. A silicon single crystal pulling apparatus having the structure shown in FIG. 1, and using a device having the following size, when a silicon single crystal having a diameter of 200 mm is pulled, a heat treatment previously applied to the used graphite member The effect of was investigated.
That is, a graphite susceptor having an inner diameter of 600 mm, a wall thickness of 40 mm, and a height of 450 mm and a quartz crucible having an outer diameter of 950 mm are arranged in a chamber having a diameter of 1000 mm and a height of 4000 mm, and an upper portion of the quartz crucible. In addition, a silicon single crystal having a diameter of 200 mm was pulled with an apparatus in which a heat shielding member having a wall thickness of 40 mm and a cylindrical portion height of 650 mm was disposed.
Note that the pressure in the chamber was reduced to 100 torr or less in advance, and Ar gas having an oxygen content of 0.5 vol% or less and a dew point of −76 ° C. or less was supplied into the chamber from the top at a flow rate of 100 L / min. The oxygen content and water content in the Ar gas used were values that are said to be levels that normally do not affect the formation of OSF.
Further, the ash content of the material graphite from which the heat shielding member and the susceptor were produced was 400 ppm, and the water content was 0.1 mass%.

比較例1:
上記引上げ装置を用い、図1に示すように、予め加熱処理を施すことなく、多結晶シリコンを充填した石英るつぼを収容したサセプタをチャンバ内に装填し、そのまま加熱して引上げ操作を行った。
比較例2:
図2に示すように、サセプタを熱遮蔽部材とともに装填した状態で、2000℃×12hの熱処理を施した後、多結晶シリコンを充填した石英るつぼをサセプタ内に装填し、加熱して引上げ操作を行った。
実施例:
図3に示すように、サセプタを外し、熱遮蔽部材のみを装着した状態で、2000℃×6hの熱処理を行った後、サセプタと多結晶シリコンを充填した石英るつぼをチャンバ内に装填し、加熱して引上げ操作を行った。
Comparative Example 1:
Using the above pulling apparatus, as shown in FIG. 1, a susceptor containing a quartz crucible filled with polycrystalline silicon was loaded in the chamber without being subjected to heat treatment in advance, and the pulling operation was performed by heating as it was.
Comparative Example 2:
As shown in FIG. 2, with a susceptor loaded together with a heat shielding member, after a heat treatment of 2000 ° C. × 12 h, a quartz crucible filled with polycrystalline silicon is loaded into the susceptor and heated to perform a pulling operation. went.
Example:
As shown in FIG. 3, with the susceptor removed and only the heat shielding member attached, a heat treatment of 2000 ° C. × 6 h was performed, and then a quartz crucible filled with susceptor and polycrystalline silicon was loaded into the chamber and heated. Then the pulling operation was performed.

上記態様で得られた三種類のシリコン単結晶から切り出したウェーハを試料とし、OSFの発生状況を観察した。
すなわち、各シリコン単結晶から切り出した試料を湿潤酸素雰囲気中、1100℃×5hの熱処理を行った後、その表面状況を顕微鏡で観察した。
その結果、比較例1のウェーハでは約5%にOSFの発生が認められた。これに対して、比較例2及び発明例のウェーハではOSFの発生は検出限界以下であった。
Using the wafers cut out from the three types of silicon single crystals obtained in the above embodiment as a sample, the occurrence of OSF was observed.
That is, a sample cut from each silicon single crystal was heat-treated at 1100 ° C. for 5 hours in a wet oxygen atmosphere, and then the surface condition was observed with a microscope.
As a result, in the wafer of Comparative Example 1, generation of OSF was recognized in about 5%. On the other hand, in the wafers of Comparative Example 2 and Invention Example, the occurrence of OSF was below the detection limit.

以上の実施例及び比較例から、サセプタや熱遮蔽部材を構成する黒鉛を予め熱処理し、その中に含まれる不純物を除去すると、品質に優れるシリコン単結晶が得られることがわかる。
比較例2のように、サセプタをチャンバ内に装填した状態で熱処理しても、不純物除去効果は得られる。しかし、本発明実施例のように、黒鉛質のサセプタを装填せず、熱遮蔽部材のみを取付けた状態で熱処理を施すと、黒鉛質サセプタを装填した場合と比較して約半分の加熱時間で、黒鉛中の不純物物を単結晶に影響を及ぼさない程度まで除去できることがわかる。本発明方法の採用により、エネルギ効率を大幅に向上することができ、結果的に製造コストを下げることができる。
From the above Examples and Comparative Examples, it can be seen that a silicon single crystal having excellent quality can be obtained by previously heat-treating the graphite constituting the susceptor and the heat shielding member and removing impurities contained therein.
Even if heat treatment is performed with the susceptor loaded in the chamber as in Comparative Example 2, the impurity removal effect can be obtained. However, as in the embodiment of the present invention, when the heat treatment is performed with only the heat shielding member attached without loading the graphite susceptor, the heating time is about half that when the graphite susceptor is loaded. It can be seen that the impurities in the graphite can be removed to the extent that the single crystal is not affected. By adopting the method of the present invention, energy efficiency can be greatly improved, and as a result, manufacturing costs can be reduced.

シリコン単結晶引上げ装置での引上げ状況を説明する図Diagram explaining the pulling situation with a silicon single crystal pulling device シリコン単結晶引上げ装置での黒鉛部材予備加熱の従来の態様を説明する図The figure explaining the conventional aspect of the graphite member preheating in a silicon single crystal pulling device シリコン単結晶引上げ装置での黒鉛部材予備加熱の本発明方法を説明する図The figure explaining this invention method of graphite member preheating in a silicon single crystal pulling device

Claims (1)

チョクラルスキー法によってシリコン単結晶を育成する際、チャンバに黒鉛及び断熱材からなる熱遮蔽部材を取り付け、かつ黒鉛質サセプタを取り除いた状態でチャンバ内を加熱し、その後に黒鉛質サセプタ及び多結晶シリコン充填石英るつぼをチャンバ内に装填して単結晶引上げ操作を行うことを特徴とするシリコン単結晶の製造方法。   When growing a silicon single crystal by the Czochralski method, a heat shielding member made of graphite and a heat insulating material is attached to the chamber, and the inside of the chamber is heated with the graphite susceptor removed, and then the graphite susceptor and polycrystalline A method for producing a silicon single crystal, wherein a silicon filled quartz crucible is loaded into a chamber and a single crystal pulling operation is performed.
JP2005374343A 2005-12-27 2005-12-27 Manufacturing method for silicon single crystal Pending JP2007176717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005374343A JP2007176717A (en) 2005-12-27 2005-12-27 Manufacturing method for silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005374343A JP2007176717A (en) 2005-12-27 2005-12-27 Manufacturing method for silicon single crystal

Publications (1)

Publication Number Publication Date
JP2007176717A true JP2007176717A (en) 2007-07-12

Family

ID=38302261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005374343A Pending JP2007176717A (en) 2005-12-27 2005-12-27 Manufacturing method for silicon single crystal

Country Status (1)

Country Link
JP (1) JP2007176717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105551A (en) * 2009-11-18 2011-06-02 Mitsubishi Materials Techno Corp Method and apparatus for producing single crystal semiconductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472984A (en) * 1987-09-11 1989-03-17 Shinetsu Handotai Kk Apparatus for producing single crystal
JPH0789789A (en) * 1993-09-20 1995-04-04 Fujitsu Ltd Si crystal, method for growing crystal and device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472984A (en) * 1987-09-11 1989-03-17 Shinetsu Handotai Kk Apparatus for producing single crystal
JPH0789789A (en) * 1993-09-20 1995-04-04 Fujitsu Ltd Si crystal, method for growing crystal and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105551A (en) * 2009-11-18 2011-06-02 Mitsubishi Materials Techno Corp Method and apparatus for producing single crystal semiconductor

Similar Documents

Publication Publication Date Title
US9217208B2 (en) Apparatus for producing single crystal
JPWO2007013189A1 (en) Silicon wafer and manufacturing method thereof
US20080035050A1 (en) An Apparatus for Producing a Single Crystal
JP4862290B2 (en) Silicon single crystal manufacturing method
CN114318500B (en) Crystal pulling furnace and method for pulling monocrystalline silicon rod and monocrystalline silicon rod
JP2003002780A (en) Apparatus for producing silicon single crystal and method for producing silicon single crystal using the same
JP2005162599A (en) Single crystal silicon ingot and wafer having homogeneous vacancy defect, and method and apparatus for making same
US20100127354A1 (en) Silicon single crystal and method for growing thereof, and silicon wafer and method for manufacturing thereof
JP4650520B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method
US7582159B2 (en) Method for producing a single crystal
US20060191468A1 (en) Process for producing single crystal
JP5381475B2 (en) Method for reclaiming recovered polycrystalline silicon
JP2007045682A (en) Method for growing silicon single crystal, and silicon wafer
US7384480B2 (en) Apparatus for manufacturing semiconductor single crystal
JP2007176717A (en) Manufacturing method for silicon single crystal
WO2016031891A1 (en) Silicon single crystal manufacturing method
JP3832536B2 (en) Method for producing silicon single crystal and pulling machine
JP2005132665A (en) Single crystal production method
JP4293188B2 (en) Single crystal manufacturing method and silicon single crystal wafer
JP4407192B2 (en) Single crystal manufacturing method
JP2009023851A (en) Method for producing raw material for producing silicon single crystal, and method for producing silicon single crystal
JP2007314390A (en) Manufacturing method of silicon single crystal
JP2006347857A (en) Apparatus for manufacturing semiconductor single crystal
JP3900816B2 (en) Silicon wafer manufacturing method
JP2009126738A (en) Method for manufacturing silicon single crystal

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Effective date: 20070419

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

A977 Report on retrieval

Effective date: 20100528

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110222