JP2007175795A - Grinding chip transfer device - Google Patents

Grinding chip transfer device Download PDF

Info

Publication number
JP2007175795A
JP2007175795A JP2005374713A JP2005374713A JP2007175795A JP 2007175795 A JP2007175795 A JP 2007175795A JP 2005374713 A JP2005374713 A JP 2005374713A JP 2005374713 A JP2005374713 A JP 2005374713A JP 2007175795 A JP2007175795 A JP 2007175795A
Authority
JP
Japan
Prior art keywords
phase
voltage
shavings
phase coil
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005374713A
Other languages
Japanese (ja)
Inventor
Shinji Nakamura
信治 中村
Tsuneki Maruta
恒樹 丸田
Hiroyuki Saito
弘幸 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanmei Electric Co Ltd
Original Assignee
Sanmei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanmei Electric Co Ltd filed Critical Sanmei Electric Co Ltd
Priority to JP2005374713A priority Critical patent/JP2007175795A/en
Publication of JP2007175795A publication Critical patent/JP2007175795A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Non-Mechanical Conveyors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve transfer efficiency of grinding chips corresponding to sizes or the like of the grinding chips such as iron pieces, chips, and a magnetic material. <P>SOLUTION: A voltage application circuit 30 is provided with: a pattern selection circuit 31 that allows selection of transfer patterns; and an inverter 32 for applying a three-phase voltage, in which a voltage value and/or a frequency periodically varies corresponding to a command signal from the pattern selection circuit 31, to three-phase coils 22A, 22B, 22C, and 22D so as to transfer the grinding chips in a transfer direction (a) while magnetically attracting them onto an immovable transfer face 15a by a varying magnetic field generated by a three-phase AC current flowing in the three-phase coils 22A, 22B, 22C, and 22D. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、切削作業や研削作業などで発生した切粉や鉄粉など磁性体からなる削り屑をタンクから排出する削り屑搬送装置に関する。   The present invention relates to a swarf conveying device that discharges swarf made of a magnetic material such as swarf or iron powder generated in a cutting operation or a grinding operation from a tank.

切削盤又は研削盤等の成形機械で削り取られた切粉・鉄粉等削り屑は、成形機械を冷却するための冷却液を利用してタンクに回収される。タンク内の冷却液は循環されることから、通常、削り屑を含まないように、削り屑を除去した上でタンクから循環させるようにしている。従来から、タンク内の削り屑を除去するための装置として、図6及び図7に示すような切粉・鉄粉分離除去装置50が知られており、この切粉・鉄粉分離除去装置50には、回転可能な吸着ドラム型のオイルセパレータ55と呼ばれるものが使用されていた。このオイルセパレータ55は、特許文献1にも示されているように、吸着ドラム56の内壁面に多数の鉄板57を設置し、これらの鉄板57に対向して永久磁石58を設置し、吸着ドラム56の回転により回転移動する鉄板57に、永久磁石58が追従して回転移動できるように設置している。また、吸着ドラム56の内側の所定位置には、永久磁石58によって磁化された鉄板57を消磁するための消磁装置として電磁石59が、鉄板57に対向するように設置されている。   Chips such as chips and iron powder scraped off by a molding machine such as a cutting machine or a grinding machine are collected in a tank using a coolant for cooling the molding machine. Since the coolant in the tank is circulated, it is usually circulated from the tank after removing the shavings so as not to include the shavings. Conventionally, as an apparatus for removing shavings in a tank, a chip / iron powder separation / removal device 50 as shown in FIGS. 6 and 7 is known. In this case, a so-called rotatable adsorption drum type oil separator 55 was used. As shown in Patent Document 1, the oil separator 55 has a large number of iron plates 57 installed on the inner wall surface of the suction drum 56, and permanent magnets 58 are installed opposite to the iron plates 57. The permanent magnet 58 is installed so as to be able to follow and rotate on the iron plate 57 that is rotated by the rotation of 56. Further, an electromagnet 59 is installed at a predetermined position inside the attracting drum 56 so as to face the iron plate 57 as a demagnetizing device for demagnetizing the iron plate 57 magnetized by the permanent magnet 58.

図7に示すように、このオイルセパレータ55を使用する切粉・鉄粉分離除去装置50は、通常、タンク51内を切粉・鉄粉回収部52と冷却液送給部53とに2分割するとともに、オイルセパレータ55は切粉・鉄粉回収部52側に配置される。切削盤又は研削盤等の成形機械54から、循環する冷却液とともにタンク51内に回収された切粉・鉄粉は、オイルセパレータ55によって永久磁石58で吸着ドラム56に吸着され、シュートの部位において排出される。   As shown in FIG. 7, the chip / iron powder separation / removal device 50 using the oil separator 55 is usually divided into a chip / iron powder recovery unit 52 and a coolant feed unit 53 in the tank 51. In addition, the oil separator 55 is disposed on the chip / iron powder recovery unit 52 side. The chips and iron powder collected in the tank 51 together with the circulating coolant from the molding machine 54 such as a cutting machine or a grinding machine are adsorbed to the adsorption drum 56 by the permanent magnet 58 by the oil separator 55, and in the chute part. Discharged.

これによって、切粉・鉄粉が除去された冷却液は冷却液送給部53に戻され、冷却液はタンク51から成形機械54内に循環される。
特開平5−57211号公報(第2、第3頁、図1参照)
As a result, the coolant from which the chips and iron powder have been removed is returned to the coolant supply unit 53, and the coolant is circulated from the tank 51 into the molding machine 54.
Japanese Patent Laid-Open No. 5-57211 (refer to pages 2 and 3 and FIG. 1)

しかし、特許文献1に記載されているオイルセパレータ55は、希土類の磁石を使用しているため磁力が大きく、また複雑に構成されていることからコスト高となっていた。しかもこのオイルセパレータ55を使用する切粉・鉄粉分離除去装置50は、タンク51を2分割に構成するとともに切粉・鉄粉を切削盤54からタンク51に戻すためのポンプ60と、タンク51内の切粉・鉄粉をオイルセパレータ55に吸引するポンプ61とを備えることになるから、部品点数が多くコスト高となっていた。しかも、吸着ドラム56内に可動部を有していることからメンテナンスの必要が生じて手間のかかることとなっていた。   However, since the oil separator 55 described in Patent Document 1 uses a rare earth magnet, the oil separator 55 has a large magnetic force and is configured in a complicated manner, resulting in high costs. In addition, the chip / iron powder separation and removal device 50 using the oil separator 55 is configured to divide the tank 51 into two parts and to return the chip / iron powder from the cutting board 54 to the tank 51, and the tank 51. Since the pump 61 for sucking the inside chips and iron powder into the oil separator 55 is provided, the number of parts is large and the cost is high. Moreover, since the movable part is provided in the suction drum 56, it is necessary to perform maintenance, which is troublesome.

本発明は、簡単かつ廉価な構成でしかもメンテナンスフリーの削り屑搬送装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a swarf conveying device that is simple and inexpensive and that is maintenance-free.

さらに、本発明は、鉄片、切粉、磁性体等の削り屑の大きさ等に対応して削り屑の運搬効率をあげることを目的とする。また、本発明は、変動磁界により削り屑を不動搬送面に磁気吸着させながら搬送方向へ搬送する際に、削り屑が搬送面に固着して運搬効率が低下する場合がある点にかんがみ、搬送面に磁気吸着された削り屑同士の結合力を緩めたり強めたりして削り屑を搬送し易くし、運搬効率の向上を図る削り屑搬送装置を提供することを目的とする。   Furthermore, an object of the present invention is to increase the conveying efficiency of shavings corresponding to the size of shavings such as iron pieces, chips, and magnetic materials. In addition, the present invention is directed to the fact that, when the swarf is transported in the transport direction while magnetically attracting the swarf to the immobile transport surface by a variable magnetic field, the shavings may adhere to the transport surface and the transport efficiency may be reduced. An object of the present invention is to provide a swarf conveying device that makes it easier to transport swarf by loosening or strengthening the bonding force between the swarf magnetically attracted to the surface, thereby improving transport efficiency.

本発明による削り屑搬送装置は、装置本体と電圧印加回路とを備える削り屑搬送装置であって、前記装置本体は、削り屑の搬送方向に沿って配置される鉄芯と、1相ごとにかつ1組ごとに前記搬送方向における位置をずらして前記鉄芯に巻回される複数組からなるn相コイル(n:2以上の整数)であって、n相交流電流が流れることによって変動磁界を発生するn相コイルとを備え、前記電圧印加回路は、搬送パターンを選択可能なパターン選択回路と、該パターン選択回路からの指令信号に従って電圧値及び/又は周波数が周期的に変化するn相電圧を前記n相コイルに印加するインバータとを備え、前記n相コイルに流れるn相交流電流により発生する変動磁界により削り屑を不動搬送面に磁気吸着させながら前記搬送方向へ搬送することを特徴とする。   The shavings conveying apparatus by this invention is a shavings conveying apparatus provided with an apparatus main body and a voltage application circuit, Comprising: The said apparatus main body is arrange | positioned along the conveyance direction of shavings, and for every phase Each set of n-phase coils (n is an integer of 2 or more) wound around the iron core while shifting the position in the transport direction, and a variable magnetic field is generated by the flow of an n-phase alternating current. The voltage application circuit includes a pattern selection circuit capable of selecting a conveyance pattern, and an n-phase in which a voltage value and / or frequency periodically changes according to a command signal from the pattern selection circuit. An inverter for applying a voltage to the n-phase coil, and transporting the shavings in the transport direction while magnetically attracting shavings to a non-moving transport surface by a fluctuating magnetic field generated by an n-phase alternating current flowing in the n-phase coil. Toss The

本発明の削り屑搬送装置によると、n相コイルが発生する変動磁界を利用して削り屑を搬送させるよう構成されるため、簡単かつ廉価に構成できるとともに、可動部を有していないためメンテナンスフリーが可能となる。さらに、本発明の削り屑搬送装置は、パターン選択回路の指令信号を削り屑の大きさ等に基づいて選択し、このパターン選択回路からの指令信号に従って電圧値及び/又は周波数が周期的に変化するn相電圧をn相コイルに印加する、換言すると、n相電圧をスイープさせながらn相コイルに印加するようにしたため、鉄片、切粉、磁性体等の削り屑の大きさ等に適した搬送パターンを得ることができ削り屑の運搬効率をあげることが可能になるとともに、搬送面に磁気吸着された削り屑同士の結合力を緩めたり強めたりすることができるため、搬送面に削り屑が固着されたままとなる不具合が発生しにくくなり、運搬効率の向上を図ることができる。   According to the swarf conveying device of the present invention, since the swarf is transported by using the fluctuating magnetic field generated by the n-phase coil, the swarf transporting device can be configured easily and inexpensively and has no movable part, so that maintenance is possible. Free is possible. Further, the shaving carrier device of the present invention selects a command signal of the pattern selection circuit based on the size of the shavings and the like, and the voltage value and / or frequency changes periodically according to the command signal from the pattern selection circuit. N-phase voltage to be applied to the n-phase coil, in other words, the n-phase voltage is applied to the n-phase coil while sweeping, so it is suitable for the size of iron chips, chips, magnetic materials, etc. It is possible to obtain a transport pattern and increase the transport efficiency of shavings, and it is possible to loosen or strengthen the bonding force between the shavings magnetically attracted to the transport surface, so that the shavings on the transport surface It becomes difficult to cause a problem that the material remains fixed, and the transportation efficiency can be improved.

ここで、前記電圧値及び/又は周波数が周期的に変化するn相電圧は、電圧値が零と所定値とに交互に変化するn相電圧を含んでいる。このようなn相電圧をn相コイルに印加した場合、所定値の電圧値の印加によって結合力が強まり搬送面に塊となった削り屑は、零の電圧値に変化したときに結合力が弱まることによってばらけるようになり、その後所定値の電圧値が印加されたときに、搬送され易くなる。   Here, the n-phase voltage whose voltage value and / or frequency periodically change includes an n-phase voltage whose voltage value alternately changes between zero and a predetermined value. When such an n-phase voltage is applied to the n-phase coil, the binding force is strengthened by applying a predetermined voltage value, and the swarf that has become a lump on the conveying surface has a binding force that changes to a zero voltage value. When the voltage value of a predetermined value is applied after that, it becomes easy to be conveyed.

ここで、前記装置本体を複数の単位ブロックに分割し、各単位ブロックに1対1に対応して前記電圧印加回路を設けるようにすると、任意の個数の単位ブロックを組み合わせることによって、長い搬送路や短い搬送路を任意に作り出すことができ汎用性に優れた削り屑搬送装置を提供できるようになる。また、単位ブロックごとに電圧印加回路を設けることにより、個々の単位ブロックに適合した搬送パターンを得ることが可能になる。   Here, if the apparatus main body is divided into a plurality of unit blocks and the voltage application circuit is provided in one-to-one correspondence with each unit block, a long transport path can be obtained by combining an arbitrary number of unit blocks. In addition, it is possible to arbitrarily create a short conveyance path and to provide a shaving conveyance apparatus having excellent versatility. Further, by providing a voltage application circuit for each unit block, it is possible to obtain a transport pattern suitable for each unit block.

図1は、本発明の一実施形態に係る削り屑搬送装置が組み込まれた削り屑分離搬送システムの概略構成図を示す。   FIG. 1 shows a schematic configuration diagram of a shavings separating and transporting system in which a shavings transporting apparatus according to an embodiment of the present invention is incorporated.

図1において、削り屑分離搬送システム1は、切削盤又は研削盤等の成形機械2(図1では研削盤)と、研削盤2にタンク3内の冷却液7を供給するためのポンプ4と、冷却液7、及び研削盤2で研削材(ワーク)を研削することによって発生した鉄粉等磁性削り屑を回収するタンク3と、一端がタンク3内に配置され、他端がタンク3外に配置され、タンク3内の削り屑を図示矢印a方向に搬送し、外部に排出するための削り屑搬送装置10と、タンク3内の冷却液7を研削盤2に供給する冷却液供給路5と、研削盤2から冷却液7及び削り屑をタンク3内に回収するための冷却液・削り屑回収路6とを備える。   In FIG. 1, a shavings separating and conveying system 1 includes a molding machine 2 (a grinding machine in FIG. 1) such as a cutting machine or a grinding machine, and a pump 4 for supplying a coolant 7 in a tank 3 to the grinding machine 2. The tank 3 for collecting magnetic shavings such as iron powder generated by grinding the grinding material (work) with the coolant 7 and the grinding machine 2, one end being disposed in the tank 3, and the other end being outside the tank 3. The swarf conveying device 10 for transporting the shavings in the tank 3 in the direction of the arrow a and discharging it to the outside, and the coolant supply path for supplying the coolant 7 in the tank 3 to the grinding machine 2 5 and a coolant / scrap recovery path 6 for recovering the coolant 7 and shavings from the grinding machine 2 into the tank 3.

図2及び図3に示すように、削り屑搬送装置10の装置本体45は、3相コイルつまりU相コイル11A、11B、11C、‥、V相コイル12A、12B、12C、‥、W相コイル13A、13B、13C、‥を巻回した鉄芯14を密閉式のケース体15の内部に収納して構成される。鉄芯14は、磁性材の珪素鋼板あるいは鉄板を幅方向に積層して形成されており、鉄芯14の上面には、搬送方向aに所定間隔を置いて複数の溝16、17、18、19、20、21、‥が並んで形成されている。   As shown in FIGS. 2 and 3, the main body 45 of the swarf conveying apparatus 10 is composed of three-phase coils, that is, U-phase coils 11A, 11B, 11C,..., V-phase coils 12A, 12B, 12C,. The iron core 14 wound with 13A, 13B, 13C,... Is housed in a sealed case body 15. The iron core 14 is formed by laminating magnetic steel silicon steel plates or iron plates in the width direction. On the upper surface of the iron core 14, a plurality of grooves 16, 17, 18, 19, 20, 21,... Are formed side by side.

図2に示すように、U相コイル11Aは溝16、19内を通り、W相コイル13Aは溝17、20内を通り、V相コイル12Aは溝18、21内を通っている。また、溝19内には、U相コイル11Aに接続された、U相コイル11Aの左隣りのU相コイル11B(図3参照)も通り、溝20内には、W相コイル13Aに接続された、W相コイル13Aの左隣りのW相コイル13B(図3参照)も通り、溝21内には、V相コイル12Aに接続された、V相コイル12Aの左隣りのV相コイル12B(図3参照)も通り、溝16内には、U相コイル11Aに接続された、U相コイル11Aの右隣りのU相コイル11C(図3参照)も通り、溝17内には、W相コイル13Aに接続された、W相コイル13Aの右隣りのW相コイル13C(図3参照)も通り、溝18内には、V相コイル12Aに接続された、V相コイル12Aの右隣りのV相コイル12C(図3参照)も通っている。   As shown in FIG. 2, the U-phase coil 11A passes through the grooves 16 and 19, the W-phase coil 13A passes through the grooves 17 and 20, and the V-phase coil 12A passes through the grooves 18 and 21. Further, the U phase coil 11B (see FIG. 3) adjacent to the left side of the U phase coil 11A passes through the groove 19 and the U phase coil 11A is connected to the W phase coil 11A. Further, the W-phase coil 13B (see FIG. 3) adjacent to the left side of the W-phase coil 13A also passes through the groove 21, and the V-phase coil 12B adjacent to the left side of the V-phase coil 12A connected to the V-phase coil 12A ( 3), and the U phase coil 11C (see FIG. 3) on the right side of the U phase coil 11A connected to the U phase coil 11A also passes in the groove 16, and in the groove 17 the W phase. The W-phase coil 13C (see FIG. 3) on the right side of the W-phase coil 13A connected to the coil 13A also passes, and in the groove 18 is on the right side of the V-phase coil 12A connected to the V-phase coil 12A. The V-phase coil 12C (see FIG. 3) also passes.

1組の組コイル22Aを構成するU、V、W相コイル11A、12A、13Aの各巻方向(図3においてコイルの矢印方向が対応する。)は互いに同一方向である。また、1組の組コイル22Aの左隣りの組コイル22Bを構成するU、V、W相コイル11B、12B、13Bの各巻方向は互いに同一方向であり、また、1組の組コイル22Aの右隣りの組コイル22Cを構成するU、V、W相コイル11C、12C、13Cの各巻方向も互いに同一方向である。また、図3において、1組の組コイル22Bの左隣りの組コイル22Dを構成するU、V、W相コイル11D、12D、13Dの各巻方向も互いに同一である。また、隣り合う組コイル22Aと22B間、22Aと22C間、22Bと22D間においては、図3に示すように巻方向は互いに反対方向である。また、図3に示すように、U相コイル11Cの巻き始め及びV相コイル12Cの巻き始めはそれぞれ電源側(電圧印加回路30)に接続されているが、W相コイル13Cはその巻き終わりが電源側(電圧印加回路30)に接続されている。   The winding directions of U, V, and W phase coils 11A, 12A, and 13A constituting one set of coil sets 22A (corresponding to the arrow directions of the coils in FIG. 3) are the same. Further, the winding directions of the U, V, and W phase coils 11B, 12B, and 13B constituting the left adjacent coil 22B of the set coil 22A are the same, and the right side of the set coil 22A The winding directions of the U, V, and W phase coils 11C, 12C, and 13C constituting the adjacent assembled coil 22C are also in the same direction. Further, in FIG. 3, the winding directions of the U, V, and W phase coils 11D, 12D, and 13D that constitute the left adjacent set coil 22D of the set coil 22B are also the same. Also, between the adjacent coil sets 22A and 22B, between 22A and 22C, and between 22B and 22D, the winding directions are opposite to each other as shown in FIG. As shown in FIG. 3, the winding start of the U-phase coil 11C and the winding start of the V-phase coil 12C are respectively connected to the power supply side (voltage application circuit 30), but the winding end of the W-phase coil 13C is ended. It is connected to the power supply side (voltage application circuit 30).

このように、3相コイルは、1相ごとにかつ1組ごとに搬送方向aにおける位置をずらして鉄芯14に巻回される4組の組コイル22A、22B、22C、22Dからなる。   As described above, the three-phase coil includes four sets of coil sets 22A, 22B, 22C, and 22D that are wound around the iron core 14 by shifting the position in the transport direction a for each phase and for each set.

U相コイル11C、V相コイル12C、W相コイル13Cには、電圧印加回路30が接続され、電圧印加回路30に3相交流電源40が接続されている。   A voltage application circuit 30 is connected to the U-phase coil 11C, the V-phase coil 12C, and the W-phase coil 13C, and a three-phase AC power supply 40 is connected to the voltage application circuit 30.

図4は、電圧印加回路30の構成を示す。   FIG. 4 shows the configuration of the voltage application circuit 30.

図4において、電圧印加回路30は、パターン選択回路31とインバータ32を備える。   In FIG. 4, the voltage application circuit 30 includes a pattern selection circuit 31 and an inverter 32.

パターン選択回路31は、作業者によって選択もしくは設定された搬送パターンに対応する指令信号をインバータ32に出力する回路である。ここで、作業者によって選択もしくは設定される搬送パターンは、鉄片、切粉、磁性体等の削り屑の大きさ等に基づいて削り屑の運搬効率をあげるのに適した搬送パターンとされ、具体的には、3相コイル(組コイル)22A、22B、22C、22Dに印加する3相電圧の電圧値及び/又は周波数の周期的な変化パターンを複数種類予め用意し、搬送する削り屑に適した変化パターンを作業者が選択し、あるいは、作業者が任意の変化パターンを自由に設定できるものとする。ここで、前記電圧値及び/又は周波数が周期的に変化するn相電圧は、電圧値が零と所定値とに交互に変化するn相電圧を含んでいる。インバータ32は、パターン選択回路31からの指令信号(選択もしくは設定された変化パターンに対応する指令信号)に従って三相交流電源40からの3相電圧の電圧値及び周波数を周期的に変化させ、U、V、W相コイル11C、12C、13Cに印加する回路である。   The pattern selection circuit 31 is a circuit that outputs a command signal corresponding to the conveyance pattern selected or set by the operator to the inverter 32. Here, the transport pattern selected or set by the operator is a transport pattern suitable for increasing the transport efficiency of the shavings based on the size of the shavings such as iron pieces, chips, and magnetic materials. In particular, multiple types of periodic change patterns of the voltage value and / or frequency of the three-phase voltage applied to the three-phase coils (assembled coils) 22A, 22B, 22C, and 22D are prepared in advance and suitable for the shavings to be conveyed. It is assumed that the operator can select the change pattern, or the worker can freely set an arbitrary change pattern. Here, the n-phase voltage whose voltage value and / or frequency periodically change includes an n-phase voltage whose voltage value alternately changes between zero and a predetermined value. The inverter 32 periodically changes the voltage value and frequency of the three-phase voltage from the three-phase AC power supply 40 in accordance with a command signal from the pattern selection circuit 31 (command signal corresponding to the selected or set change pattern), and U , V, and W phase coils 11C, 12C, and 13C.

ケース体15は、電気抵抗の高い非磁性材もしくは弱磁性材など、例えば、ステンレス製で形成され、U相コイル11A、11B、11C、‥、V相コイル12A、12B、12C、‥、W相コイル13A、13B、13C、‥の上方に、移動しない搬送面つまり不動搬送面15aを有する。   The case body 15 is made of, for example, stainless steel, such as a non-magnetic material or a weak magnetic material having a high electric resistance, and the U-phase coils 11A, 11B, 11C,..., The V-phase coils 12A, 12B, 12C,. Above the coils 13A, 13B, 13C,..., A non-moving transfer surface, that is, a non-moving transfer surface 15a is provided.

次に、上記のように構成された削り屑分離搬送システム1の動作もしくは作用について説明する。   Next, the operation | movement or effect | action of the shavings separation conveyance system 1 comprised as mentioned above is demonstrated.

作業開始に先立って、作業者は、パターン選択回路31に対して削り屑の大きさ等に適した搬送パターンを選択もしくは設定する。   Prior to the start of work, the worker selects or sets a transport pattern suitable for the size of shavings and the like for the pattern selection circuit 31.

その後、作業が開始されると、インバータ32は、パターン選択回路31からの指令信号に従って三相交流電源40からの3相電圧の電圧値及び周波数を周期的に変化させ、U、V、W相コイル11C、12C、13Cに印加する。3相電圧Vu1、Vv1、Vw1が印加された組コイル22A、22B、22C、22Dは、それぞれ変動磁界を発生し、これら変動磁界を合成した合成磁界により、冷却液7中の磁性切り屑を磁気吸着し、搬送方向aへ搬送する移動磁界が形成される。この移動磁界は、概念的には、鉄芯14の歯部23、24、25、26、27、28、29、‥の磁極を順にN極、S極、N極、S極、‥というように搬送方向aに向けて交互に反転させることによって磁性切り屑をケース体15の搬送面15aに磁気吸着しながら搬送方向aへ移動する作用をする。そして、搬送面15a上を搬送されてきた磁性削り屑は、ケース体15の終端部から図示しない回収部に回収される。   Thereafter, when the operation is started, the inverter 32 periodically changes the voltage value and the frequency of the three-phase voltage from the three-phase AC power supply 40 in accordance with the command signal from the pattern selection circuit 31, and the U, V, W phase Applied to the coils 11C, 12C, 13C. The assembled coils 22A, 22B, 22C, and 22D to which the three-phase voltages Vu1, Vv1, and Vw1 are applied each generate a variable magnetic field, and the magnetic chips in the coolant 7 are magnetized by a combined magnetic field obtained by synthesizing these variable magnetic fields. A moving magnetic field that is attracted and transported in the transport direction a is formed. This moving magnetic field is conceptually composed of the magnetic poles of the teeth 23, 24, 25, 26, 27, 28, 29,... Of the iron core 14 in order of N pole, S pole, N pole, S pole,. The magnetic chips are moved in the transport direction a while being magnetically attracted to the transport surface 15a of the case body 15 by being alternately reversed toward the transport direction a. And the magnetic shavings conveyed on the conveyance surface 15a are collect | recovered by the collection | recovery part which is not shown in figure from the terminal part of the case body 15. FIG.

以上説明したように、本実施形態に係る削り屑搬送装置10は、装置本体45と電圧印加回路30とを備え、装置本体45は、削り屑の搬送方向aに沿って配置される鉄芯14と、1相ごとにかつ1組ごとに搬送方向aにおける位置をずらして鉄芯14に巻回される複数組からなる3相コイル22A、22B、22C、22Dであって、3相交流電流が流れることによって変動磁界を発生する3相コイル22A、22B、22C、22Dとを備え、電圧印加回路30は、搬送パターンを選択可能なパターン選択回路31と、パターン選択回路31からの指令信号に従って電圧値及び/又は周波数が周期的に変化する3相電圧を3相コイル22A、22B、22C、22Dに印加するインバータ32とを備え、3相コイル22A、22B、22C、22Dに流れる3相交流電流により発生する変動磁界により削り屑を不動搬送面15aに磁気吸着させながら搬送方向aへ搬送する。ここで、電圧値及び/又は周波数が周期的に変化するn相電圧として、電圧値が零と所定値とに交互に変化するn相電圧を設定した場合、所定値の電圧値の印加によって結合力が強まり搬送面に塊となった削り屑は、零の電圧値に変化したときに結合力が弱まることによってばらけるようになり、その後所定値の電圧値が印加されたときに、搬送され易くなる。   As described above, the shaving carrier device 10 according to the present embodiment includes the device main body 45 and the voltage application circuit 30, and the device main body 45 is disposed along the shaving conveyance direction a. And three-phase coils 22A, 22B, 22C, and 22D that are wound around the iron core 14 by shifting the position in the transport direction a for each phase and for each set, and the three-phase alternating current is The voltage application circuit 30 includes a three-phase coil 22A, 22B, 22C, 22D that generates a variable magnetic field by flowing, and a voltage selection circuit 31 that can select a conveyance pattern and a voltage according to a command signal from the pattern selection circuit 31. An inverter 32 for applying a three-phase voltage whose value and / or frequency changes periodically to the three-phase coils 22A, 22B, 22C, 22D, and a three-phase alternating current flowing in the three-phase coils 22A, 22B, 22C, 22D The shavings are transported in the transport direction a while being magnetically attracted to the immobile transport surface 15a by the varying magnetic field generated by the current. Here, when an n-phase voltage whose voltage value changes alternately between zero and a predetermined value is set as an n-phase voltage whose voltage value and / or frequency changes periodically, coupling is performed by applying a predetermined voltage value. The swarf that becomes stronger and becomes a lump on the transport surface will be scattered by the weakening of the binding force when it changes to a zero voltage value, and will be transported when a predetermined voltage value is applied thereafter. It becomes easy.

本実施形態の削り屑搬送装置10によると、3相コイルが発生する変動磁界を利用して削り屑を搬送させるよう構成されるため、簡単かつ廉価に構成できるとともに、可動部を有していないためメンテナンスフリーが可能となる。さらに、本実施形態の削り屑搬送装置10は、パターン選択回路31の指令信号を削り屑の大きさ等に基づいて選択もしくは設定し、このパターン選択回路31からの指令信号に従って電圧値及び/又は周波数が周期的に変化する3相電圧を3相コイル22A、22B、22C、22Dに印加する、換言すると、3相電圧をスイープさせながら3相コイル22A、22B、22C、22Dに印加するようにしたため、鉄片、切粉、磁性体等の削り屑の大きさ等に適した搬送パターンを得ることができ削り屑の運搬効率をあげることが可能になるとともに、搬送面15aに磁気吸着された削り屑同士の結合力を緩めたり強めたりすることができるため、搬送面15aに削り屑が固着されたままとなる不具合が発生しにくくなり、運搬効率の向上を図ることができる。   According to the swarf conveying apparatus 10 of the present embodiment, since the swarf is transported using the variable magnetic field generated by the three-phase coil, it can be configured easily and inexpensively and does not have a movable part. Therefore, maintenance-free is possible. Furthermore, the shaving carrier device 10 of the present embodiment selects or sets the command signal of the pattern selection circuit 31 based on the size of the shavings and the like, and the voltage value and / or according to the command signal from the pattern selection circuit 31. A three-phase voltage whose frequency changes periodically is applied to the three-phase coils 22A, 22B, 22C, and 22D. In other words, a three-phase voltage is swept and applied to the three-phase coils 22A, 22B, 22C, and 22D. Therefore, it is possible to obtain a transport pattern suitable for the size of shavings such as iron pieces, chips, and magnetic materials, and to increase the transport efficiency of the shavings, and to perform shaving magnetically attracted to the transport surface 15a. Since the binding force between the scraps can be loosened or strengthened, it becomes difficult to cause a problem that the scraps remain fixed on the transport surface 15a, and the transport efficiency can be improved. That.

なお、上述した実施形態に係る削り屑搬送装置10では、コイルとして3相コイル22A、22B、22C、22Dを用いたが、その代わりに2相コイルなどを用いるようにしてもよい。つまり、コイルはn相コイル(n:2以上の整数)であればよく、その場合、コイルに印加する電圧はn相電圧とする。また、図3に示したような構成は、搬送面15aの搬送方向aの全長にわたって設ける必要はなく、タンク3の冷却液7中に浸かる部分は別構成とし、つまり、コイルに直流電圧を印加して磁性削り屑を捕捉するだけで搬送を行わない固定磁界を発生する構成としてもよく、同様に、搬送方向aの終端部では、磁気吸着力を徐々に減少させ磁性削り屑が搬送面15aから落下可能になる構成としてもよい。また、インバータ32の出力電圧にパルス波形を重畳させた電圧を3相コイル22A、22B、22C、22Dに印加するようにしてもよい。また、通常時には一定の電圧値及び周波数の3相電圧を印加するようにし、運搬効率の低下時には、電圧値及び/又は周波数を変えて3相コイル22A、22B、22C、22Dに印加するようにしてもよい。   In the shavings conveying apparatus 10 according to the above-described embodiment, the three-phase coils 22A, 22B, 22C, and 22D are used as the coils. However, a two-phase coil or the like may be used instead. That is, the coil may be an n-phase coil (n: an integer of 2 or more), and in that case, the voltage applied to the coil is an n-phase voltage. Further, the configuration as shown in FIG. 3 is not required to be provided over the entire length of the transport surface 15a in the transport direction a, and the portion immersed in the coolant 7 of the tank 3 is a separate configuration, that is, a DC voltage is applied to the coil. Then, it may be configured to generate a fixed magnetic field that only captures the magnetic shavings and does not carry it. Similarly, at the end portion in the carrying direction a, the magnetic attraction force is gradually reduced so that the magnetic shavings are carried on the carrying surface 15a. It is good also as a structure which becomes possible to fall from. Further, a voltage obtained by superimposing a pulse waveform on the output voltage of the inverter 32 may be applied to the three-phase coils 22A, 22B, 22C, and 22D. In addition, a three-phase voltage having a constant voltage value and frequency is normally applied, and when the transport efficiency is lowered, the voltage value and / or frequency is changed and applied to the three-phase coils 22A, 22B, 22C, and 22D. May be.

図5は、他の実施形態に係る削り屑搬送装置10の概略構成を示す。   FIG. 5 shows a schematic configuration of the shavings conveying apparatus 10 according to another embodiment.

図5において、装置本体45は、複数個の単位ブロック46A、46B、46Cを搬送方向aに接続して構成される。各単位ブロック46A、46B、46Cは、図1〜図3に示した装置本体45と同様に構成され、図1〜図3に図示した装置本体45の3相コイル22A、22B、22C、22Dと必ずしも同数ではないが複数組の3相コイルを巻回した鉄芯を密閉式のケース体の内部に収納して構成される。また、各単位ブロック46A、46B、46Cには、図4に図示した電圧印加回路30と同様に構成された電圧印加回路30A、30B、30Cが接続される。   In FIG. 5, the apparatus main body 45 is configured by connecting a plurality of unit blocks 46A, 46B, 46C in the transport direction a. Each unit block 46A, 46B, 46C is configured in the same manner as the apparatus main body 45 shown in FIGS. 1 to 3, and the three-phase coils 22A, 22B, 22C, 22D of the apparatus main body 45 shown in FIGS. Although not necessarily the same number, an iron core around which a plurality of sets of three-phase coils are wound is housed in a sealed case body. Further, voltage application circuits 30A, 30B, and 30C configured similarly to the voltage application circuit 30 illustrated in FIG. 4 are connected to the unit blocks 46A, 46B, and 46C.

本実施形態に係る削り屑搬送装置10によると、装置本体45を複数の単位ブロック46A、46B、46Cに分割したため、任意の個数の単位ブロックを組み合わせることによって、長い搬送面15a、15b、15cや短い搬送面15a、15b、15cを任意に作り出すことができ汎用性に優れた削り屑搬送装置を提供できるようになる。また、各単位ブロック46A、46B、46Cに1対1に対応して電圧印加回路30A、30B、30Cを設けたため、個々の単位ブロック46A、46B、46Cに適合した搬送パターンを得ることが可能になる。   According to the shavings conveying apparatus 10 according to the present embodiment, the apparatus main body 45 is divided into a plurality of unit blocks 46A, 46B, and 46C. Therefore, by combining an arbitrary number of unit blocks, long conveying surfaces 15a, 15b, 15c, Short conveying surfaces 15a, 15b, and 15c can be arbitrarily created, and it is possible to provide a shaving conveying apparatus with excellent versatility. In addition, since the voltage application circuits 30A, 30B, and 30C are provided for the unit blocks 46A, 46B, and 46C on a one-to-one basis, it is possible to obtain a conveyance pattern that conforms to the individual unit blocks 46A, 46B, and 46C. Become.

本発明の一実施形態に係る削り屑搬送装置が組み込まれた削り屑分離搬送システムの概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of a shavings separating and transporting system in which a shavings transporting apparatus according to an embodiment of the present invention is incorporated. 削り屑搬送装置の装置本体の一部の概略分解斜視図である。It is a general | schematic disassembled perspective view of a part of apparatus main body of a shavings conveying apparatus. 3相コイルの巻方向と電圧印加回路との接続方法を説明するための結線図である。It is a connection diagram for demonstrating the connection method of the winding direction of a three-phase coil, and a voltage application circuit. 電圧印加回路の構成図である。It is a block diagram of a voltage application circuit. 他の実施形態に係る削り屑搬送装置10の概略構成である。It is a schematic structure of the shavings conveying apparatus 10 which concerns on other embodiment. 従来のオイルセパレータの構成図である。It is a block diagram of the conventional oil separator. 従来の切粉・鉄粉分離除去装置の構成図である。It is a block diagram of the conventional chip / iron powder separation and removal apparatus.

符号の説明Explanation of symbols

10 削り屑搬送装置
14 鉄芯
15a、15b、15c 不動搬送面
22A、22B、22C、22D 3相コイル
30、30A、30B、30C 電圧印加回路
31 パターン選択回路
32 インバータ
45 装置本体
46A、46B、46C 単位ブロック
a 搬送方向
DESCRIPTION OF SYMBOLS 10 Chip conveyance apparatus 14 Iron core 15a, 15b, 15c Immovable conveyance surface 22A, 22B, 22C, 22D Three-phase coil 30, 30A, 30B, 30C Voltage application circuit 31 Pattern selection circuit 32 Inverter 45 Apparatus main body 46A, 46B, 46C Unit block
a Transport direction

Claims (3)

装置本体と電圧印加回路とを備える削り屑搬送装置であって、
前記装置本体は、
削り屑の搬送方向に沿って配置される鉄芯と、
1相ごとにかつ1組ごとに前記搬送方向における位置をずらして前記鉄芯に巻回される複数組からなるn相コイル(n:2以上の整数)であって、n相交流電流が流れることによって変動磁界を発生するn相コイルとを備え、
前記電圧印加回路は、
搬送パターンを選択可能なパターン選択回路と、該パターン選択回路からの指令信号に従って電圧値及び/又は周波数が周期的に変化するn相電圧を前記n相コイルに印加するインバータとを備え、
前記n相コイルに流れるn相交流電流により発生する変動磁界により削り屑を不動搬送面に磁気吸着させながら前記搬送方向へ搬送する
ことを特徴とする削り屑搬送装置。
A swarf conveying device comprising a device main body and a voltage application circuit,
The apparatus main body is
An iron core disposed along the conveying direction of the shavings;
An n-phase coil (n: an integer of 2 or more) consisting of a plurality of sets wound around the iron core by shifting the position in the transport direction for each phase and for each set, and an n-phase alternating current flows And an n-phase coil that generates a variable magnetic field,
The voltage application circuit includes:
A pattern selection circuit capable of selecting a conveyance pattern, and an inverter that applies an n-phase voltage whose voltage value and / or frequency changes periodically according to a command signal from the pattern selection circuit, to the n-phase coil,
The swarf conveying apparatus, wherein the swarf is transported in the transport direction while being magnetically attracted to a stationary transport surface by a fluctuating magnetic field generated by an n-phase alternating current flowing in the n-phase coil.
前記電圧値及び/又は周波数が周期的に変化するn相電圧は、電圧値が零と所定値とに交互に変化するn相電圧を含んでいることを特徴とする請求項1に記載の削り屑搬送装置。  2. The shaving according to claim 1, wherein the n-phase voltage whose frequency value and / or frequency changes periodically includes an n-phase voltage whose voltage value alternately changes between zero and a predetermined value. Waste transport device. 前記装置本体は複数の単位ブロックに分割され、各単位ブロックに1対1に対応して前記電圧印加回路が設けられていることを特徴とする請求項1又は2に記載の削り屑搬送装置。  The chip conveying apparatus according to claim 1 or 2, wherein the apparatus main body is divided into a plurality of unit blocks, and each unit block is provided with the voltage application circuit in a one-to-one correspondence.
JP2005374713A 2005-12-27 2005-12-27 Grinding chip transfer device Pending JP2007175795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005374713A JP2007175795A (en) 2005-12-27 2005-12-27 Grinding chip transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005374713A JP2007175795A (en) 2005-12-27 2005-12-27 Grinding chip transfer device

Publications (1)

Publication Number Publication Date
JP2007175795A true JP2007175795A (en) 2007-07-12

Family

ID=38301492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005374713A Pending JP2007175795A (en) 2005-12-27 2005-12-27 Grinding chip transfer device

Country Status (1)

Country Link
JP (1) JP2007175795A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253755A (en) * 1985-09-02 1987-03-09 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for electric field treatment of ultrafine particles
JPH04269148A (en) * 1991-02-21 1992-09-25 Taiji Iwamoto Chip removing device utilizing electro-magnetic inductive action by moving magnetic field
JP2000014175A (en) * 1998-06-26 2000-01-14 Oki Electric Ind Co Ltd Medium conveying device
JP2001122436A (en) * 1999-10-20 2001-05-08 Canon Inc Carrier device and image forming device
JP2003076136A (en) * 2001-08-30 2003-03-14 Sharp Corp Developing device and image forming apparatus
JP2003300619A (en) * 2002-04-11 2003-10-21 Canon Inc Powder transporting method and device
JP2004231359A (en) * 2003-01-30 2004-08-19 Shibuya Kogyo Co Ltd Control system of conveyance means

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253755A (en) * 1985-09-02 1987-03-09 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for electric field treatment of ultrafine particles
JPH04269148A (en) * 1991-02-21 1992-09-25 Taiji Iwamoto Chip removing device utilizing electro-magnetic inductive action by moving magnetic field
JP2000014175A (en) * 1998-06-26 2000-01-14 Oki Electric Ind Co Ltd Medium conveying device
JP2001122436A (en) * 1999-10-20 2001-05-08 Canon Inc Carrier device and image forming device
JP2003076136A (en) * 2001-08-30 2003-03-14 Sharp Corp Developing device and image forming apparatus
JP2003300619A (en) * 2002-04-11 2003-10-21 Canon Inc Powder transporting method and device
JP2004231359A (en) * 2003-01-30 2004-08-19 Shibuya Kogyo Co Ltd Control system of conveyance means

Similar Documents

Publication Publication Date Title
US20220190661A1 (en) Dc electric motor/generator with enhanced permanent magnet flux densities
Ostovic Pole-changing permanent-magnet machines
CN101355289B (en) Modularization error-tolerance type permanent magnet switch magnetic linkage straight line motor
Stumberger et al. Design and comparison of linear synchronous motor and linear induction motor for electromagnetic aircraft launch system
AU2009294828A1 (en) Separating device for separating a mixture of magnetizable and non-magnetizable particles present in a suspension which are conducted in a separating channel
CN107155395B (en) Motor system and compressor
CN101431262A (en) Electric machinery with a conduction winding excited magnetic poles sandwiched pm magnetic pole
CN108808910A (en) A kind of built-in hybrid permanent magnet motor
Zhu et al. Calculation of cogging force in a novel slotted linear tubular brushless permanent magnet motor
CN110337782A (en) Brushless motor
EP0480549B1 (en) AC magnetic floating conveyor and operation method thereof
JP4926449B2 (en) Chip transport device
JP2007175795A (en) Grinding chip transfer device
JP6060296B1 (en) Switched reluctance motor device with constant current control
WO2006130565A3 (en) Apparatus and method for increasing efficiency of electric motors
JP2006281435A (en) Conveying device and separation conveying system for chip and iron powder
Mayr et al. Sustainability Aspects of Current Market Developments, Different Product Types and Innovative Manufacturing Processes of Electric Motors
WO2014142999A1 (en) Dipolar axial flux electric machine
JP4712552B2 (en) Chip / iron powder transfer device
JPH04269148A (en) Chip removing device utilizing electro-magnetic inductive action by moving magnetic field
Popa et al. Linear transverse flux motor for conveyors
Szabo et al. Compact double-sided modular linear motor for narrow industrial applications
JP2007160481A (en) Conveying device of chip and iron powder
JP2016162827A (en) Magnetic powder removal method and magnetic powder removal device
US20220376644A1 (en) Systems catching residual energy from an electric coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A977 Report on retrieval

Effective date: 20101125

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712