JP2007175624A - Method for operating membrane filtration system - Google Patents

Method for operating membrane filtration system Download PDF

Info

Publication number
JP2007175624A
JP2007175624A JP2005376912A JP2005376912A JP2007175624A JP 2007175624 A JP2007175624 A JP 2007175624A JP 2005376912 A JP2005376912 A JP 2005376912A JP 2005376912 A JP2005376912 A JP 2005376912A JP 2007175624 A JP2007175624 A JP 2007175624A
Authority
JP
Japan
Prior art keywords
water
filtration membrane
water supply
filtration
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005376912A
Other languages
Japanese (ja)
Other versions
JP4817046B2 (en
Inventor
Takeshi Yoneda
剛 米田
Atsuyuki Manabe
敦行 真鍋
Mitsuru Kondo
充 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Miura Protec Co Ltd
Original Assignee
Miura Co Ltd
Miura Protec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd, Miura Protec Co Ltd filed Critical Miura Co Ltd
Priority to JP2005376912A priority Critical patent/JP4817046B2/en
Publication of JP2007175624A publication Critical patent/JP2007175624A/en
Application granted granted Critical
Publication of JP4817046B2 publication Critical patent/JP4817046B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a method for operating a membrane filtration system capable of stabilizing the water quality of permeate when a water supply is started from a state of terminating the water supply to a water supply tank. <P>SOLUTION: This operation method comprises the closure of a water supply line 3 between a filtration membrane part 4 and a water supply tank 6, carrying out reflux operation for refluxing the permeate from the filtration membrane part 4 from the water supply line 3 on the upstream side of the closed place to the water supply line 3 on the upstream side of the filtration membrane part 4 for a predetermined time when the water supply is terminated to the water supply tank 6, then starting the water supply to the water supply tank 6, and carrying out water quality recovery operation reducing the discharge amount of water concentrate from the filtration membrane part 4 smaller than a predetermined amount for a predetermined time after the water supply is started. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、給水中の不純物を除去する濾過膜部と、機器へ供給するための給水を貯留する給水タンクとを備えた膜濾過システムの運転方法に関する。   The present invention relates to a method of operating a membrane filtration system including a filtration membrane unit that removes impurities in feed water and a feed water tank that stores feed water to be supplied to equipment.

機器への給水の水処理システムとして、給水中に含まれる不純物,たとえば溶存塩類を濾過する濾過膜部と、前記機器へ供給するための給水を貯留する給水タンクとを備えた膜濾過システムがある。   As a water treatment system for water supplied to equipment, there is a membrane filtration system provided with a filtration membrane section for filtering impurities contained in the feed water, for example, dissolved salts, and a water supply tank for storing water to be supplied to the equipment. .

前記濾過膜部の濾過膜としては、たとえば特許文献1に、ナノ濾過膜(NF膜)を用いた例が開示されている。前記ナノ濾過膜は、2nm程度より小さい粒子や高分子(分子量が最大数百程度の物質)の透過を阻止することができる液体分離膜である。前記ナノ濾過膜を用いた膜濾過システムでは、前記濾過膜部の一側から給水が流入して、前記ナノ濾過膜により、腐食促進成分およびアルカリ成分が捕捉されるとともに、腐食抑制成分が透過されるようになっている。ここで、腐食促進成分とは、たとえば前記機器が貫流ボイラである場合、非不動態化金属よりなり、ボイラ水が接触する複数の伝熱管や下部管寄せの内面に作用してその腐食を促進するものを云い、通常、硫酸イオン,塩化物イオンおよびその他の物質を含んでいる。また、前記腐食抑制成分とは、前記貫流ボイラにおいて、ボイラ水が接触する前記各伝熱管や前記下部管寄せの内面に作用してその腐食を抑制可能なものを云い、通常、シリカ(すなわち、二酸化ケイ素)を含んでいる。また、アルカリ成分としては、炭酸水素塩や炭酸塩などがあり、これらのアルカリ成分は、前記各伝熱管内や前記下部管寄せ内において熱分解により水酸化物を生成する。この水酸化物は、前記各伝熱管内や前記下部管寄せ内のボイラ水のpHを上昇させ、前記各伝熱管や前記下部管寄せの腐食を抑制する作用がある   For example, Patent Document 1 discloses an example using a nanofiltration membrane (NF membrane) as the filtration membrane of the filtration membrane portion. The nanofiltration membrane is a liquid separation membrane that can prevent permeation of particles or polymers (substances having a maximum molecular weight of about several hundreds) smaller than about 2 nm. In the membrane filtration system using the nanofiltration membrane, feed water flows from one side of the filtration membrane portion, and the nanofiltration membrane captures corrosion promoting components and alkali components and allows corrosion inhibiting components to permeate. It has become so. Here, for example, when the equipment is a once-through boiler, the corrosion promoting component is made of a non-passivated metal and acts on the inner surfaces of a plurality of heat transfer tubes and lower headers in contact with boiler water to promote the corrosion. It usually contains sulfate ions, chloride ions and other substances. In addition, the corrosion inhibiting component refers to a component that acts on the inner surface of each heat transfer tube and the lower header in contact with boiler water in the once-through boiler, and is usually silica (that is, Silicon dioxide). Examples of the alkali component include hydrogen carbonate and carbonate, and these alkali components generate hydroxide by thermal decomposition in each of the heat transfer tubes and the lower header. This hydroxide has the effect of increasing the pH of boiler water in each heat transfer tube and in the lower header, and suppressing corrosion of each heat transfer tube and the lower header.

前記濾過膜部の他側からは、腐食抑制成分を含む透過水と腐食促進成分およびアルカリ成分を含む濃縮水とがそれぞれ分離されて流出する。そして、透過水は前記機器へ供給され、濃縮水はその一部が排水されるとともに、残部が前記濾過膜部の上流側へ還流される。
特開2004−290829号公報
From the other side of the filtration membrane part, permeated water containing a corrosion inhibiting component and concentrated water containing a corrosion promoting component and an alkali component are separated and flow out. Then, the permeated water is supplied to the device, a part of the concentrated water is drained, and the remaining part is returned to the upstream side of the filtration membrane part.
JP 2004-290829 A

前記膜濾過システムでは、前記給水タンクへの給水を行うときには、前記濾過膜部の上流側に設けられたポンプによって所定の給水圧力を加えて前記濾過膜部へ給水を供給し、前記ナノ濾過膜によって逆浸透現象を利用して給水を濾過している。しかし、前記給水タンクへの給水を停止するために、前記ポンプを停止して前記濾過膜部への給水を停止すると、前記ナノ濾過膜へ給水供給側からの給水圧力がかからないために、前記ナノ濾過膜付近で浸透現象が起き、透過側の不純物濃度が高くなるとともに、給水供給側の不純物濃度が低くなる。   In the membrane filtration system, when water is supplied to the water supply tank, a predetermined water supply pressure is applied by a pump provided on the upstream side of the filtration membrane unit to supply water to the filtration membrane unit, and the nanofiltration membrane By using the reverse osmosis phenomenon, the feed water is filtered. However, in order to stop water supply to the water supply tank, when the pump is stopped and water supply to the filtration membrane unit is stopped, water supply pressure from the water supply side is not applied to the nanofiltration membrane. A permeation phenomenon occurs in the vicinity of the filtration membrane, and the impurity concentration on the permeate side increases and the impurity concentration on the water supply side decreases.

このように、前記ナノ濾過膜付近において、透過側の不純物濃度が高くなるとともに、給水供給側の不純物濃度が低くなっている状態で、前記濾過膜部へ給水を供給して前記給水タンクへの給水を開始すると、透過水の不純物濃度は、給水開始直後に通常よりも一旦高くなり、その後通常よりも低くなってから徐々に上昇して通常の濃度になる。給水開始直後に透過水の不純物濃度が高くなるのは、前記ナノ濾過膜付近において透過側の不純物濃度が高くなっているからである。また、給水開始後に透過水の不純物濃度が低くなるのは、前記ナノ濾過膜付近において、給水供給側の不純物濃度が低くなっているので、前記濾過膜部からの濃縮水を前記濾過膜部の上流側へ還流させても、前記濾過膜部へ供給される給水の不純物濃度が通常よりも低い状態になっているからである。さらに、透過水の不純物濃度が徐々に上昇し、通常の濃度になるのは、時間の経過とともに徐々に前記濾過膜部へ供給される給水の濃縮が進むからである。   In this manner, in the vicinity of the nanofiltration membrane, the permeate side impurity concentration is high and the feedwater supply side impurity concentration is low, so that water is supplied to the filtration membrane unit and supplied to the water supply tank. When the water supply is started, the impurity concentration of the permeated water once becomes higher than usual immediately after the start of water supply, and then gradually rises to a normal concentration after becoming lower than normal. The reason why the impurity concentration of permeated water increases immediately after the start of water supply is that the impurity concentration on the permeate side increases in the vicinity of the nanofiltration membrane. In addition, the permeated water impurity concentration decreases after the start of water supply because the impurity concentration on the water supply side is low in the vicinity of the nanofiltration membrane, so the concentrated water from the filtration membrane portion is removed from the filtration membrane portion. This is because the impurity concentration of the feed water supplied to the filtration membrane portion is lower than usual even when refluxed upstream. Further, the impurity concentration of the permeated water gradually increases and becomes a normal concentration because the concentration of water supplied to the filtration membrane portion gradually proceeds with time.

以上のように、前記給水タンクへの給水を停止していた状態から、給水を開始すると、開始直後は不純物濃度が通常よりも高い透過水が、給水として前記給水タンク内に貯留され、その後不純物濃度が通常よりも低い透過水が、給水として前記給水タンク内に貯留される。この結果、前記給水タンク内には、まず腐食促進成分濃度が通常よりも高い透過水が貯留された後、腐食抑制成分濃度とアルカリ成分濃度が通常よりも低い透過水が貯留されることになる。ここで、腐食促進成分濃度が高い給水や腐食抑制成分濃度が低い給水が、前記貫流ボイラへ供給されると、前記各伝熱管や前記下部管寄せの腐食が起きやすくなり、またアルカリ成分濃度が低い給水が前記貫流ボイラへ供給されると、原水のアルカリ成分濃度が低い地域においては、ボイラ水のpHが上昇せず、前記各伝熱管や前記下部管寄せの腐食が起きやすくなる。とくに、前記給水タンクへの給水の停止が頻繁に起きたり、給水を停止している時間が長くなったりする場合や、前記給水タンクの容量が小さい場合には、前記給水タンク内の腐食促進成分濃度が高く、また腐食抑制成分濃度やアルカリ成分濃度が低くなりやすいので、前記下部管寄せや前記各伝熱管の腐食の問題が顕著になる。したがって、前記給水タンクへの給水を停止していた状態から、給水を開始したときに、腐食促進成分濃度の上昇をできるだけ抑制するとともに、腐食抑制成分濃度およびアルカリ成分濃度の低下をできるだけ抑制し、透過水の水質をできるだけ安定させることが望まれる。   As described above, when water supply is started from the state where water supply to the water supply tank has been stopped, permeated water having a higher impurity concentration than usual is stored in the water supply tank as water supply immediately after the start, and then impurities Permeated water having a lower concentration than usual is stored in the water tank as water supply. As a result, in the water supply tank, first, permeated water having a higher corrosion promoting component concentration than usual is stored, and then permeated water having a corrosion inhibiting component concentration and an alkali component concentration lower than usual is stored. . Here, when feed water having a high corrosion promoting component concentration or feed water having a low corrosion inhibitor component concentration is supplied to the once-through boiler, the heat transfer tubes and the lower header are likely to be corroded, and the alkali component concentration is reduced. When low feed water is supplied to the once-through boiler, the pH of the boiler water does not increase in an area where the alkali component concentration of the raw water is low, and corrosion of the heat transfer tubes and the lower header tends to occur. In particular, when the water supply to the water supply tank is frequently stopped or when the time during which the water supply is stopped becomes long, or when the capacity of the water supply tank is small, the corrosion promoting component in the water supply tank Since the concentration is high and the corrosion-inhibiting component concentration and the alkali component concentration are likely to be low, the problem of corrosion of the lower header and the heat transfer tubes becomes significant. Therefore, when water supply is started from the state where water supply to the water supply tank is stopped, the increase in the corrosion promoting component concentration is suppressed as much as possible, and the decrease in the corrosion suppressing component concentration and the alkali component concentration is suppressed as much as possible. It is desirable to stabilize the quality of the permeated water as much as possible.

この発明は、前記の事情に鑑みてなされたもので、その解決しようとする課題は、給水タンクへの給水を停止していた状態から給水を開始したときに、透過水の水質を安定させることができる膜濾過システムの運転方法を実現することである。   The present invention has been made in view of the above circumstances, and the problem to be solved is to stabilize the quality of permeated water when water supply is started from a state where water supply to the water supply tank is stopped. It is to realize a method of operating a membrane filtration system capable of

この発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、機器への給水ラインと接続されて給水中の不純物を除去する濾過膜部と、この濾過膜部の下流側の前記給水ラインと接続されて前記機器への給水を貯留する給水タンクとを備え、前記給水タンクへの給水時には、前記濾過膜部へ給水を供給して濾過し、この濾過膜部からの透過水を前記給水タンク内に貯留する一方で、前記濾過膜部からの濃縮水の一部を所定の量で系外へ排水するとともに、残部を前記濾過膜部の上流側へ還流させる膜濾過システムの運転方法であって、前記濾過膜部と前記給水タンクとの間の前記給水ラインを閉鎖するとともに、前記濾過膜部からの透過水を前記閉鎖箇所の上流側の前記給水ラインから前記濾過膜部の上流側の前記給水ラインへ還流させる還流運転を、前記給水タンクへの給水を停止しているときに所定時間行った後、前記給水タンクへの給水を開始し、給水を開始してから所定時間、前記濾過膜部からの濃縮水の排水量を前記所定量よりも少なくする水質回復運転を行うことを特徴とする。   This invention was made in order to solve the said subject, and the invention of Claim 1 is connected with the water supply line to an apparatus, The filtration membrane part which removes the impurity in feed water, This filtration membrane part A water supply tank that is connected to the water supply line on the downstream side of the tank and stores water supplied to the device, and supplies water to the filtration membrane when the water supply to the water supply tank is filtered. While the permeated water from the filter membrane is stored in the water supply tank, a part of the concentrated water from the filtration membrane part is drained out of the system by a predetermined amount, and the remaining part is returned to the upstream side of the filtration membrane part. A method for operating a membrane filtration system, wherein the water supply line between the filtration membrane portion and the water supply tank is closed, and the permeated water from the filtration membrane portion is removed from the water supply line upstream of the closed portion. The water supply upstream of the filtration membrane section The recirculation operation for recirculating to the in is performed for a predetermined time when the water supply to the water supply tank is stopped, and then the water supply to the water supply tank is started. A water quality recovery operation is performed in which the amount of concentrated water discharged from the water is less than the predetermined amount.

請求項1に記載の発明では、前記給水タンクへの給水を停止しているときに、前記給水タンクへの給水を開始するまでの所定時間、前記還流運転を行って、前記濾過膜部からの透過水を前記濾過膜部の上流側の前記給水ラインへ還流させることにより、前記濾過膜部において透過側よりも給水供給側の水圧が高くなって給水供給側から透過側へ給水が流れ、逆浸透現象により前記濾過膜によって給水中の不純物が除去される。また、前記給水タンクへの給水を開始してから所定時間、前記水質回復運転を行って前記濾過膜部からの濃縮水の排水量を前記所定量よりも少なくすることにより、前記濾過膜部へ供給される給水の濃縮が進む。   In the first aspect of the present invention, when the water supply to the water supply tank is stopped, the reflux operation is performed for a predetermined time until the water supply to the water supply tank is started. By recirculating the permeated water to the water supply line upstream of the filtration membrane part, the water pressure on the feed water supply side is higher than the permeate side in the filtration membrane part, so that the feed water flows from the feed water supply side to the permeate side, and vice versa. Due to the permeation phenomenon, impurities in the feed water are removed by the filtration membrane. In addition, the water supply to the filtration membrane unit is performed by performing the water quality recovery operation for a predetermined time after the start of water supply to the water supply tank to reduce the drainage amount of the concentrated water from the filtration membrane unit to be less than the predetermined amount. Concentration of the supplied water will proceed.

請求項2に記載の発明は、請求項1に記載の膜濾過システムの運転方法において、前記給水タンクへの給水を停止しているときに、この給水タンク内の水位が所定の水位まで下降すると、前記還流運転を開始し、この還流運転を開始してから所定時間経過後に、前記給水タンクへの給水を開始することを特徴とする。   According to a second aspect of the present invention, in the operation method of the membrane filtration system according to the first aspect, when water supply to the water supply tank is stopped, the water level in the water supply tank drops to a predetermined water level. The recirculation operation is started, and water supply to the water supply tank is started after a lapse of a predetermined time from the start of the recirculation operation.

請求項2に記載の発明では、前記給水タンク内の水位が所定の水位まで下降したときに、前記還流運転を開始して前記濾過膜部からの透過水を前記濾過膜部の上流側の前記給水ラインへ還流させることにより、前記濾過膜部において給水供給側から透過側へ給水が流れて前記濾過膜によって給水中の不純物が除去される。   In the invention according to claim 2, when the water level in the water supply tank falls to a predetermined water level, the reflux operation is started and the permeated water from the filtration membrane portion is upstream of the filtration membrane portion. By recirculation to the water supply line, the water supply flows from the water supply side to the permeate side in the filtration membrane part, and impurities in the water supply are removed by the filtration membrane.

請求項3に記載の発明は、請求項1または2に記載の膜濾過システムの運転方法において、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質に基づいて、前記還流運転の運転時間の長さを設定することを特徴とする。   The invention according to claim 3 is the operation method of the membrane filtration system according to claim 1 or 2, wherein water supply to the filtration membrane unit, permeated water from the filtration membrane unit, and concentrated water from the filtration membrane unit The length of the operation time of the reflux operation is set based on any one of the water quality.

請求項3に記載の発明では、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質に基づいて、給水中の不純物を十分に除去して透過水の水質悪化を低減させることができるように、前記還流運転の運転時間の長さを設定する。   In the invention according to claim 3, the impurities in the water supply are sufficiently reduced based on the quality of any of the water supplied to the filtration membrane part, the permeated water from the filtration membrane part, and the concentrated water from the filtration membrane part. The length of the operation time of the reflux operation is set so as to reduce the deterioration of the quality of the permeated water.

請求項4に記載の発明は、請求項1または2に記載の膜濾過システムの運転方法において、前記濾過膜部への給水の供給を停止していた時間の長さに基づいて、前記還流運転の運転時間の長さを設定することを特徴とする請求項1または2に記載の膜濾過システムの運転方法。   According to a fourth aspect of the present invention, in the operation method of the membrane filtration system according to the first or second aspect, the reflux operation is performed based on a length of time during which supply of water supply to the filtration membrane unit is stopped. The operation method of the membrane filtration system according to claim 1 or 2, wherein the length of the operation time is set.

請求項4に記載の発明では、前記濾過膜部への給水の供給を停止していた時間の長さに基づいて、給水中の不純物を十分に除去して透過水の水質悪化を低減させることができるように、前記還流運転の運転時間の長さを設定する。   In invention of Claim 4, based on the length of time which the supply of the feed water to the said filtration membrane part was stopped, the impurity in feed water is fully removed and the water quality deterioration of permeated water is reduced. The length of the operation time of the reflux operation is set so that

請求項5に記載の発明は、請求項1または2に記載の膜濾過システムの運転方法において、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質と、前記濾過膜部への給水の供給を停止していた時間の長さとに基づいて、前記還流運転の運転時間の長さを設定することを特徴とする。   The invention according to claim 5 is the operation method of the membrane filtration system according to claim 1 or 2, wherein water supply to the filtration membrane unit, permeated water from the filtration membrane unit, and concentrated water from the filtration membrane unit The length of the operation time of the reflux operation is set based on any one of the above water quality and the length of time during which the supply of water supply to the filtration membrane unit has been stopped.

請求項5に記載の発明では、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質と、前記濾過膜部への給水の供給を停止していた時間の長さとに基づいて、給水中の不純物を十分に除去して透過水の水質悪化を低減させることができるように、前記還流運転の運転時間の長さを設定する。   In the invention according to claim 5, the water quality of any one of water supply to the filtration membrane part, permeated water from the filtration membrane part and concentrated water from the filtration membrane part, and supply of water supply to the filtration membrane part On the basis of the length of time during which the water is stopped, the length of the operation time of the reflux operation is set so that impurities in the feed water can be sufficiently removed to reduce the quality of the permeated water.

請求項6に記載の発明は、請求項1,2,3,4または5に記載の膜濾過システムの運転方法において、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水温に基づいて、前記水質回復運転における濃縮水の排水量および/または運転時間の長さを設定することを特徴とする。   A sixth aspect of the present invention is the operation method of the membrane filtration system according to the first, second, third, fourth or fifth aspect, wherein water is supplied to the filtration membrane unit, permeated water from the filtration membrane unit, and the filtration. Based on the temperature of any of the concentrated water from the membrane, the amount of concentrated water discharged and / or the length of the operation time in the water quality recovery operation is set.

請求項6に記載の発明では、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水温に基づいて、前記濾過膜部へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質が所定の水質まで回復するように、前記水質回復運転における濃縮水の排水量および/または運転時間の長さが設定される。   In the invention according to claim 6, the water is supplied to the filtration membrane unit based on the temperature of any one of water supplied to the filtration membrane unit, permeated water from the filtration membrane unit, and concentrated water from the filtration membrane unit. The amount of concentrated water discharged and / or the length of the operation time in the water quality recovery operation are set so that the feed water is concentrated in a range that does not excessively concentrate and the quality of the permeated water is restored to a predetermined quality.

請求項7に記載の発明は、請求項1,2,3,4または5に記載の膜濾過システムの運転方法において、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質に基づいて、前記水質回復運転における濃縮水の排水量および/または運転時間の長さを設定することを特徴とする。   The invention according to claim 7 is the operation method of the membrane filtration system according to claim 1, 2, 3, 4 or 5, wherein water is supplied to the filtration membrane unit, permeated water from the filtration membrane unit and the filtration Based on the quality of any of the concentrated water from the membrane, the amount of concentrated water discharged and / or the length of the operation time in the water quality recovery operation is set.

請求項7に記載の発明では、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質に基づいて、前記濾過膜部へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質が所定の水質まで回復するように、前記水質回復運転における濃縮水の排水量および/または運転時間の長さが設定される。   In the invention according to claim 7, the water is supplied to the filtration membrane unit based on the water quality of any one of water supplied to the filtration membrane unit, permeated water from the filtration membrane unit, and concentrated water from the filtration membrane unit. The amount of concentrated water discharged and / or the length of the operation time in the water quality recovery operation are set so that the feed water is concentrated in a range that does not excessively concentrate and the quality of the permeated water is restored to a predetermined quality.

請求項8に記載の発明は、請求項1,2,3,4または5に記載の膜濾過システムの運転方法において、前記濾過膜部への給水の供給を停止していた時間の長さに基づいて、前記水質回復運転における濃縮水の排水量および/または運転時間の長さを設定することを特徴とする。   According to an eighth aspect of the present invention, in the operation method of the membrane filtration system according to the first, second, third, fourth, or fifth aspect, the length of time during which the supply of water supply to the filtration membrane section is stopped is stopped. Based on the above, the drainage amount of concentrated water and / or the length of operation time in the water quality recovery operation is set.

請求項8に記載の発明では、前記濾過膜部への給水を停止していた時間の長さに基づいて、前記濾過膜部へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質が所定の水質まで回復するように、前記水質回復運転における濃縮水の排水量および/または運転時間の長さが設定される。   In the invention according to claim 8, based on the length of time during which water supply to the filtration membrane unit has been stopped, the water supplied to the filtration membrane unit is concentrated within a range not excessively concentrated, and permeated. The amount of concentrated water discharged and / or the length of operation time in the water quality recovery operation are set so that the water quality is restored to a predetermined quality.

さらに、請求項9に記載の発明は、請求項1,2,3,4または5に記載の膜濾過システムの運転方法において、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水温と、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質と、前記濾過膜部への給水の供給を停止していた時間の長さとのうち、いずれか2つ以上に基づいて、前記水質回復運転における濃縮水の排水量および/または運転時間の長さを設定することを特徴とする。   Furthermore, the invention according to claim 9 is the operation method of the membrane filtration system according to claim 1, 2, 3, 4 or 5, wherein water supply to the filtration membrane unit, permeated water from the filtration membrane unit, and The water temperature of any of the concentrated water from the filtration membrane unit, the water quality of the water supplied to the filtration membrane unit, the permeated water from the filtration membrane unit, and the concentrated water from the filtration membrane unit, and the filtration membrane The amount of concentrated water drainage and / or the length of operation time in the water quality recovery operation is set based on any two or more of the lengths of time during which the supply of water to the section has been stopped And

請求項9に記載の発明では、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水温と、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質と、前記濾過膜部への給水の供給を停止していた時間の長さとのうち、いずれか2つ以上に基づいて、前記濾過膜部へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質が所定の水質まで回復するように、前記水質回復運転における濃縮水の排水量および/または運転時間の長さが設定される。   In the invention according to claim 9, water temperature to any one of the water supply to the filtration membrane part, the permeated water from the filtration membrane part and the concentrated water from the filtration membrane part, the water supply to the filtration membrane part, Either the quality of any of the permeated water from the filtration membrane part and the concentrated water from the filtration membrane part, and the length of time during which the supply of water supply to the filtration membrane part was stopped On the basis of the amount of drainage and / or operation of the concentrated water in the water quality recovery operation so that the feed water supplied to the filtration membrane unit is concentrated in a range not excessively concentrated and the quality of the permeated water is restored to a predetermined quality. The length of time is set.

請求項1に記載の発明によれば、前記給水タンクへの給水を停止しているときに、前記給水タンクへの給水を開始するまでの所定時間、前記還流運転を行うことにより、前記濾過膜部において給水中の不純物が除去されるので、前記給水タンクへ給水を開始したときにおける透過水の水質悪化を低減させることができる。また、前記給水タンクへの給水を開始してから所定時間、前記水質回復運転を行うことによって、前記濾過膜部へ供給される給水の濃縮が進み、その不純物濃度が高くなり、透過水の水質を所定の水質まで短時間で回復させることができる。そして、このように給水中の不純物が除去されることによって透過水の水質悪化を低減させることができるとともに、前記濾過膜部へ供給される給水の不純物濃度が高くなって、透過水の水質を所定の水質まで短時間で回復させることができるので、透過水の水質を安定させることができる。したがって、前記給水タンクへの給水の停止が頻繁に起きたり、給水を停止している時間が長くなったりしても、また前記給水タンクの容量が小さくても、前記機器へ供給される給水について、所定の水質を維持することができる。   According to the first aspect of the present invention, when the water supply to the water supply tank is stopped, by performing the reflux operation for a predetermined time until the water supply to the water supply tank is started, the filtration membrane is obtained. Since the impurities in the water supply are removed in the section, the water quality deterioration of the permeated water when water supply to the water supply tank is started can be reduced. Further, by performing the water quality recovery operation for a predetermined time after the start of water supply to the water supply tank, the concentration of the water supplied to the filtration membrane portion proceeds, the impurity concentration increases, and the quality of the permeated water Can be recovered to a predetermined water quality in a short time. And by removing the impurities in the feed water in this way, the water quality deterioration of the permeated water can be reduced, and the impurity concentration of the feed water supplied to the filtration membrane part is increased, and the quality of the permeated water is reduced. Since the water quality can be recovered to a predetermined level in a short time, the quality of the permeated water can be stabilized. Therefore, even if the water supply to the water supply tank is frequently stopped or the time during which the water supply is stopped becomes long, or the capacity of the water supply tank is small, the water supplied to the device The predetermined water quality can be maintained.

請求項2に記載の発明によれば、前記給水タンク内の水位が所定の水位まで下降したときに、前記還流運転を開始することによって給水中の不純物が除去され、このように給水中の不純物が除去される還流運転を開始してから所定時間経過後に、前記給水タンクへの給水を開始するので、前記給水タンクへ給水を開始したときにおける透過水の水質悪化を低減させることができる。   According to the second aspect of the present invention, when the water level in the water supply tank falls to a predetermined water level, impurities in the water supply are removed by starting the reflux operation, and thus impurities in the water supply Since the water supply to the water supply tank is started after the elapse of a predetermined time from the start of the reflux operation in which water is removed, deterioration of the quality of the permeated water when the water supply to the water supply tank is started can be reduced.

請求項3,4に記載の発明によれば、給水中の不純物を十分に除去することができるように、前記還流運転の運転時間を最適なものに設定することができる。   According to invention of Claim 3, 4, the operation time of the said recirculation | reflux operation | movement can be set to the optimal thing so that the impurity in feed water can fully be removed.

請求項5に記載の発明によれば、前記還流運転の運転時間の長さが、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質と、前記濾過膜部への給水の供給を停止していた時間の長さとに基づいて設定されるので、給水中の不純物を十分に除去することができるように、前記還流運転の運転時間の長さを、より最適なものに設定することができる。   According to the invention described in claim 5, the length of operation time of the reflux operation is any one of water supply to the filtration membrane part, permeated water from the filtration membrane part and concentrated water from the filtration membrane part. Is set based on the quality of the water and the length of time during which supply of water to the filtration membrane unit has been stopped, so that the impurities in the water supply can be sufficiently removed. The length of time can be set to a more optimal one.

請求項6,7または8に記載の発明によれば、前記濾過膜部へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質を所定の水質まで回復させるように、前記水質回復運転における濃縮水の排水量および/または運転時間の長さを最適なものに設定することができる。   According to the invention of claim 6, 7 or 8, the feed water supplied to the filtration membrane part is concentrated in a range not excessively concentrated, and the quality of permeate is recovered to a predetermined quality. The amount of concentrated water discharged in the water quality recovery operation and / or the length of operation time can be set to an optimum value.

請求項9に記載の発明によれば、前記水質回復運転における濃縮水の排水量および/または運転時間の長さが、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水温と、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質と、前記濾過膜部への給水の供給を停止していた時間の長さとのうち、いずれか2つ以上に基づいて設定されるので、前記濾過膜部へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質を所定の水質まで回復させるように、前記水質回復運転における濃縮水の排水量および/または運転時間の長さを、より最適なものに設定することができる。   According to the ninth aspect of the present invention, the drainage amount of concentrated water and / or the length of the operation time in the water quality recovery operation is determined by the supply water to the filtration membrane unit, the permeated water from the filtration membrane unit, and the filtration membrane. The temperature of any of the concentrated water from the section, the water supply to the filtration membrane section, the quality of any of the permeated water from the filtration membrane section and the concentrated water from the filtration membrane section, and the filtration membrane section Since it is set based on any two or more of the length of time during which the supply of water supply has been stopped, the water supplied to the filtration membrane is concentrated in a range that does not excessively concentrate, The amount of concentrated water discharged and / or the length of the operation time in the water quality recovery operation can be set to be more optimal so that the water quality of the water is restored to a predetermined quality.

つぎに、この発明の実施の形態について説明する。この発明の実施の形態に係る膜濾過システムの運転方法は、機器への給水ラインと接続された濾過膜部と、この濾過膜部と接続された濃縮水の排水ラインと、この排水ラインと前記濾過膜部の上流側の前記給水ラインとを接続する循環水ラインと、前記濾過膜部の下流側の前記給水ラインに設けられた開閉弁と、この開閉弁の下流側の前記給水ラインと接続された給水タンクと、前記濾過膜部と前記開閉弁との間の前記給水ラインと前記濾過膜部の上流側の前記給水ラインとを接続する透過水還流ラインとを備えた膜濾過システムにおいて実施される。   Next, an embodiment of the present invention will be described. The operation method of the membrane filtration system according to the embodiment of the present invention includes a filtration membrane unit connected to a water supply line to equipment, a drainage line of concentrated water connected to the filtration membrane unit, the drainage line and the A circulating water line connecting the water supply line upstream of the filtration membrane part, an on-off valve provided in the water supply line downstream of the filtration membrane part, and a connection to the water supply line downstream of the on-off valve Implemented in a membrane filtration system comprising a water supply tank, a permeated water return line connecting the water supply line between the filtration membrane unit and the on-off valve and the water supply line upstream of the filtration membrane unit Is done.

前記機器としては、蒸気ボイラ,温水ボイラ,クーリングタワー,給湯器などの熱機器を挙げることができる。   Examples of the equipment include thermal equipment such as a steam boiler, a hot water boiler, a cooling tower, and a water heater.

前記濾過膜部は、濾過膜により、給水中に含まれる不純物を濾過するものである。前記濾過膜は、具体的にはナノ濾過膜(NF膜)である。このナノ濾過膜は、2nm程度より小さい粒子や高分子(分子量が最大数百程度の物質)の透過を阻止することができる液体分離膜であり、濾過機能の点において、限外濾過膜(分子量が1,000〜300,000程度の物質を濾別可能な膜)と逆浸透膜(分子量が数十程度の物質を濾別可能な液体分離膜)との中間に位置する機能を有する液体分離膜である。   The said filtration membrane part filters the impurity contained in feed water with a filtration membrane. Specifically, the filtration membrane is a nanofiltration membrane (NF membrane). This nanofiltration membrane is a liquid separation membrane that can block the passage of particles and polymers (substances having a maximum molecular weight of about several hundreds) smaller than about 2 nm, and in terms of filtration function, it is an ultrafiltration membrane (molecular weight). Separation of substances with a molecular weight of 1,000 to 300,000) and reverse osmosis membranes (liquid separation membranes with a molecular weight of several tens of substances) It is a membrane.

前記濾過膜部へは、一側から給水が流入し、この給水中に含まれる不純物が前記ナノ濾過膜によって濾過されるようになっている。具体的には、前記ナノ濾過膜により、腐食促進成分およびアルカリ成分が捕捉されるとともに、腐食抑制成分が透過されるようになっている。   Supply water flows into the filtration membrane part from one side, and impurities contained in the feed water are filtered by the nanofiltration membrane. Specifically, the nanofiltration membrane captures the corrosion promoting component and the alkali component and allows the corrosion inhibiting component to permeate.

ここで、腐食促進成分は、背景技術の欄で説明したものであり、通常、硫酸イオン,塩化物イオンおよびその他の物質を含んでいる。ちなみに、腐食促進成分として重要なものは、硫酸イオンおよび塩化物イオンの両者である。ところで、JIS B 8223:1999は、貫流ボイラを含む特殊循環ボイラの腐食を抑制する観点から、これらのボイラにおけるボイラ水の水質に関する各種の管理項目および推奨基準を規定し、その中で、塩化物イオン濃度の基準値を設けている。一方、ボイラ水の硫酸イオン濃度には言及されていないが、本願出願人においては、ボイラ水に含まれる硫酸イオンが、腐食促進成分として貫流ボイラの各伝熱管や下部管寄せなどに作用していることを確認している。   Here, the corrosion promoting components are those described in the background art section, and usually contain sulfate ions, chloride ions and other substances. Incidentally, both sulfate ions and chloride ions are important as corrosion promoting components. By the way, JIS B 8223: 1999 specifies various control items and recommended standards regarding the water quality of boiler water in these boilers from the viewpoint of suppressing the corrosion of special circulation boilers including once-through boilers. A reference value for the ion concentration is provided. On the other hand, although the sulfate ion concentration in boiler water is not mentioned, in the applicant of the present application, sulfate ions contained in boiler water act on each heat transfer tube and lower header of the once-through boiler as a corrosion promoting component. Make sure that

また、腐食抑制成分も背景技術の欄で説明したものである。この腐食抑制成分は、通常、シリカ(すなわち、二酸化ケイ素)を含んでいる。ところで、給水に含まれるシリカは、給水として用いる水道水,工業用水,地下水などにおいて、通常含有されている成分で、一般に、前記各伝熱管や前記下部管寄せにおけるスケール生成成分と認識されており、可能な限りその濃度を抑制することが好ましいと考えられている。しかし、本願出願人においては、ボイラ水に含まれるシリカが、腐食抑制成分として前記各伝熱管や前記下部管寄せなどに作用していることを確認している。   Further, the corrosion inhibiting component is also described in the background art section. This corrosion inhibiting component usually includes silica (ie, silicon dioxide). By the way, silica contained in water supply is a component usually contained in tap water, industrial water, groundwater, etc. used as water supply, and is generally recognized as a scale generating component in each of the heat transfer tubes and the lower header. It is considered preferable to suppress the concentration as much as possible. However, the applicant of the present application has confirmed that silica contained in boiler water acts on each of the heat transfer tubes and the lower header as a corrosion inhibiting component.

さらに、アルカリ成分としては、炭酸水素塩や炭酸塩などを挙げることができる。   Further, examples of the alkali component include bicarbonate and carbonate.

前記濾過膜部の他側からは、腐食抑制成分を含む透過水と腐食促進成分およびアルカリ成分を含む濃縮水とが流出するようになっている。そして、透過水は、前記給水ラインを流れて、前記機器へ供給するための給水として前記給水タンク内に貯留されるようになっている。一方、濃縮水は、一部が前記排水ラインから所定の量で系外へ排水されるとともに、残部が前記循環水ラインを通って前記濾過膜部の上流側へ還流されるようになっている。   From the other side of the filtration membrane portion, permeated water containing a corrosion inhibiting component and concentrated water containing a corrosion promoting component and an alkali component flow out. The permeated water flows in the water supply line and is stored in the water supply tank as water to be supplied to the device. On the other hand, a part of the concentrated water is drained out of the system by a predetermined amount from the drainage line, and the remaining part is returned to the upstream side of the filtration membrane part through the circulating water line. .

さて、前記膜濾過システムでは、前記給水タンクへの給水を行うときには、前記濾過膜部へ給水を供給し、この給水中の腐食促進成分およびアルカリ成分を前記ナノ濾過膜によって濾過する。そして、腐食抑制成分が含まれる透過水を前記給水タンク内に貯留する。また、腐食促進成分およびアルカリ成分が含まれる濃縮水の一部を前記排水ラインから所定の量で排水するとともに、残部を前記循環水ラインを介して前記濾過膜部の上流側の前記給水ラインへ還流させる。   In the membrane filtration system, when water is supplied to the water supply tank, water is supplied to the filtration membrane unit, and corrosion promoting components and alkali components in the water supply are filtered by the nanofiltration membrane. Then, the permeated water containing the corrosion inhibiting component is stored in the water supply tank. Further, a part of the concentrated water containing the corrosion promoting component and the alkali component is drained from the drainage line in a predetermined amount, and the remaining part is passed through the circulating water line to the water supply line upstream of the filtration membrane part. Reflux.

前記給水タンクへの給水を行うことにより、この給水タンク内の水位が上昇し、給水を停止する所定の水位になると、前記濾過膜部への給水の供給を停止して、前記給水タンクへの給水を停止する。   By supplying water to the water supply tank, when the water level in the water supply tank rises and reaches a predetermined water level at which water supply is stopped, the supply of water to the filtration membrane unit is stopped and the water supply tank is Stop water supply.

そして、前記給水タンクへの給水を開始するときには、給水の開始前に、前記開閉弁を閉状態にして前記給水ラインを閉鎖するとともに、前記濾過膜部からの透過水を前記透過水還流ラインを介して前記濾過膜部の上流側の給水ラインへ還流させる還流運転を、前記給水タンクへの給水を開始するまでの所定時間行う。この還流運転を行って、前記濾過膜部からの透過水を前記濾過膜部の上流側の前記給水ラインへ還流させると、前記濾過膜部において透過側よりも給水供給側の水圧が高くなって給水供給側から透過側へ給水が流れ、逆浸透現象により前記ナノ濾過膜によって給水中の腐食促進成分が除去される。   And when water supply to the water supply tank is started, before the water supply starts, the on-off valve is closed to close the water supply line, and the permeated water from the filtration membrane part is passed through the permeated water return line. Then, the reflux operation for returning to the water supply line upstream of the filtration membrane portion is performed for a predetermined time until the water supply to the water supply tank is started. When this reflux operation is performed and the permeated water from the filtration membrane part is refluxed to the water supply line upstream of the filtration membrane part, the water pressure on the feed water supply side is higher than the permeate side in the filtration membrane part. The feed water flows from the feed water supply side to the permeate side, and corrosion promoting components in the feed water are removed by the nanofiltration membrane by the reverse osmosis phenomenon.

前記還流運転は、たとえば前記給水タンクの水位が所定の水位まで下降したときに開始する。   The reflux operation is started, for example, when the water level of the water supply tank is lowered to a predetermined water level.

また、前記還流運転の運転時間は、給水中の不純物を十分に除去して透過水の水質悪化を低減させることができるような長さに設定する。具体的には、原水の水質(ここでは不純物濃度)は、地域や季節などによって異なるので、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質に基づいて、給水中の不純物を十分に除去して透過水の水質悪化を低減させることができるように、前記還流運転の運転時間の長さを設定する。   In addition, the operation time of the reflux operation is set to a length that can sufficiently remove impurities in the feed water and reduce deterioration of the permeated water quality. Specifically, since the quality of the raw water (here, the impurity concentration) varies depending on the region and season, water supply to the filtration membrane unit, permeated water from the filtration membrane unit, and concentrated water from the filtration membrane unit Based on one of the water qualities, the length of the recirculation operation time is set so that impurities in the feed water can be sufficiently removed to reduce deterioration of the quality of the permeated water.

また、前記濾過膜部への給水の供給を停止していた時間が長くなるほど、前記濾過膜付近において、透過側の不純物濃度が高くなる。したがって、前記濾過膜部への給水の供給を停止していた時間によって、前記濾過膜付近における透過側の不純物濃度が異なってくるので、前記還流運転の運転時間の長さは、前記濾過膜部への給水の供給を停止していた時間の長さに基づいて、給水中の不純物を十分に除去して透過水の水質悪化を低減させることができるように設定してもよい。   Further, the longer the time during which the supply of water to the filtration membrane unit is stopped, the higher the permeation side impurity concentration in the vicinity of the filtration membrane. Therefore, since the concentration of impurities on the permeate side in the vicinity of the filtration membrane varies depending on the time during which the supply of water to the filtration membrane unit has been stopped, the length of operation time of the reflux operation is determined by the filtration membrane unit. Based on the length of time during which the supply of water to the water has been stopped, impurities in the water supply may be sufficiently removed to reduce deterioration of the quality of the permeated water.

さらに、前記還流運転の運転時間の長さは、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質と、前記濾過膜部への給水の供給を停止していた時間の長さとに基づいて、給水中の不純物を十分に除去して透過水の水質悪化を低減させることができるように設定してもよい。   Furthermore, the length of operation time of the reflux operation is such that the water quality of any one of water supply to the filtration membrane part, permeated water from the filtration membrane part and concentrated water from the filtration membrane part, and to the filtration membrane part Based on the length of time during which the supply of the feed water is stopped, impurities in the feed water may be sufficiently removed to reduce deterioration of the quality of the permeated water.

前記還流運転を所定時間行うと、前記開閉弁を開状態にするとともに、前記濾過膜部へ給水を供給して前記給水タンクへの給水を開始する。そして、前記給水タンクへの給水を開始すると、開始から所定時間、前記濾過膜部からの濃縮水の排水量を通常時における前記所定量よりも少なくする水質回復運転を行う。すなわち、前記水質回復運転においては、透過水量と排水量との和に対する透過水量の割合(以下、「回収率」と云う。)を、通常よりも高くする。このように回収率を高くする前記水質回復運転を行うことにより、前記濾過膜部へ供給される給水の濃縮が進み、その不純物濃度が高くなる。この結果、透過水の腐食抑制成分濃度が高くなるとともに、前記ナノ濾過膜を透過するアルカリ成分の量も増えてその濃度が高くなるので、透過水の水質が所定の水質まで短時間で回復する。   When the reflux operation is performed for a predetermined time, the on-off valve is opened, and water is supplied to the filtration membrane unit to start water supply to the water tank. When the water supply to the water supply tank is started, a water quality recovery operation is performed for a predetermined time from the start so that the drainage amount of the concentrated water from the filtration membrane portion is smaller than the predetermined amount at the normal time. That is, in the water quality recovery operation, the ratio of the permeated water amount to the sum of the permeated water amount and the drainage amount (hereinafter referred to as “recovery rate”) is set higher than usual. By performing the water quality recovery operation to increase the recovery rate in this way, the concentration of the feed water supplied to the filtration membrane portion proceeds and the impurity concentration increases. As a result, the concentration of the permeated water corrosion-inhibiting component is increased, and the amount of the alkaline component that permeates the nanofiltration membrane is increased to increase the concentration thereof. .

前記水質回復運転における濃縮水の排水量および/または運転時間の長さは、前記濾過膜部へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質が所定の水質まで回復するような量,長さに設定する。   The amount of concentrated water discharged and / or the length of operation time in the water quality recovery operation is such that the feed water supplied to the filtration membrane part is concentrated in a range not excessively concentrated, and the quality of the permeated water is recovered to a predetermined quality. Set the amount and length.

具体的には、水温によって、腐食抑制成分であるシリカの溶解度や、アルカリ成分である炭酸水素塩,炭酸塩の溶解度が異なるので、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水温に基づいて、前記濾過膜部へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質が所定の水質まで回復するように、前記水質回復運転における濃縮水の排水量および/または運転時間の長さを設定する。   Specifically, the solubility of silica, which is a corrosion inhibiting component, and the solubility of bicarbonate, carbonate, which is an alkaline component, vary depending on the water temperature, so water supplied to the filtration membrane portion, permeated water from the filtration membrane portion Based on the temperature of any of the concentrated water from the filtration membrane part, the feed water supplied to the filtration membrane part is concentrated in a range not excessively concentrated so that the quality of the permeated water is restored to a predetermined quality. In addition, the drainage amount of concentrated water and / or the length of the operation time in the water quality recovery operation are set.

また、原水の水質(ここでは不純物濃度)は、地域や季節によって異なるので、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質に基づいて、前記濾過膜部へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質が所定の水質まで回復するように、前記水質回復運転における濃縮水の排水量および/または運転時間の長さを設定してもよい。   In addition, since the quality of the raw water (here, the impurity concentration) varies depending on the region and season, the quality of any of the water supplied to the filtration membrane, the permeated water from the filtration membrane, and the concentrated water from the filtration membrane Based on the amount of concentrated water discharged in the water quality recovery operation and / or so that the feed water supplied to the filtration membrane part is concentrated in a range that does not excessively concentrate and the quality of the permeated water is restored to a predetermined quality. The length of the operation time may be set.

また、前記濾過膜部への給水の供給を停止していた時間が長くなるほど、前記ナノ濾過膜付近において、給水供給側の不純物濃度が低くなる。すなわち、前記濾過膜部への給水の供給を停止していた時間によって、前記ナノ濾過膜付近における給水供給側の不純物濃度が異なってくるので、前記濾過膜部への給水の供給を停止していた時間の長さに基づいて、前記濾過膜部へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質が所定の水質まで回復するように、前記水質回復運転における濃縮水の排水量および/または運転時間の長さを設定してもよい。   In addition, the longer the time during which the supply of feed water to the filtration membrane unit is stopped, the lower the impurity concentration on the feed water supply side in the vicinity of the nano filtration membrane. That is, since the concentration of impurities on the feed water supply side in the vicinity of the nanofiltration membrane varies depending on the time during which the feed water supply to the filtration membrane unit is stopped, the supply of feed water to the filtration membrane unit is stopped. Concentrated water in the water quality recovery operation so that the quality of the permeated water is recovered to a predetermined quality by concentrating the feed water supplied to the filtration membrane unit based on the length of time that is not excessively concentrated. The amount of drainage and / or the length of operation time may be set.

さらに、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水温と、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質と、前記濾過膜部への給水の供給を停止していた時間の長さとのうち、いずれか2つ以上に基づいて、前記濾過膜部へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質が所定の水質まで回復するよう、前記水質回復運転における濃縮水の排水量および/または運転時間の長さを設定してもよい。   Furthermore, the temperature of any of the water supply to the filtration membrane part, the permeated water from the filtration membrane part and the concentrated water from the filtration membrane part, the water supply to the filtration membrane part, and the permeated water from the filtration membrane part And the filtration membrane unit based on any two or more of the quality of any of the concentrated water from the filtration membrane unit and the length of time during which the supply of water to the filtration membrane unit was stopped Set the amount of concentrated water discharged and / or the length of operation time in the water quality recovery operation so that the water supplied to the water is concentrated in a range that does not excessively concentrate and the quality of the permeated water recovers to a predetermined quality. Also good.

この実施の形態の膜濾過システムによれば、前記給水タンクへの給水を停止しているときに、前記給水タンクへの給水を開始するまでの所定時間、前記還流運転を行うことにより、前記濾過膜部において給水中の腐食促進成分が除去されるので、前記給水タンクへの給水を開始したときにおける透過水の水質悪化を低減させることができる。   According to the membrane filtration system of this embodiment, when the water supply to the water supply tank is stopped, the filtration operation is performed by performing the reflux operation for a predetermined time until the water supply to the water supply tank is started. Since the corrosion promoting component in the water supply is removed in the membrane portion, the deterioration of the quality of the permeated water when the water supply to the water supply tank is started can be reduced.

また、前記給水タンクへの給水を開始してから所定時間、通常よりも回収率を高くする前記水質回復運転を行うことにより、前記濾過膜部へ供給される給水の濃縮が進み、透過水の腐食抑制成分濃度およびアルカリ成分濃度が高くなり、透過水の水質を短時間で所定の水質まで回復させることができる。   In addition, by performing the water quality recovery operation in which the recovery rate is higher than usual for a predetermined time after starting the water supply to the water supply tank, the concentration of the water supplied to the filtration membrane section proceeds, and the permeated water Corrosion inhibiting component concentration and alkali component concentration are increased, and the water quality of the permeated water can be recovered to a predetermined water quality in a short time.

したがって、腐食促進成分濃度の上昇をできるだけ抑制するとともに、腐食抑制成分濃度およびアルカリ成分濃度の低下をできるだけ抑制することができるので、透過水の水質を安定させることができる。これにより、前記給水タンクへの給水の停止が頻繁に起きたり、給水を停止している時間が長くなったりしても、また前記給水タンクの容量が小さくても、前記機器へ供給される給水について、所定の水質を維持することができる。   Therefore, it is possible to suppress the increase in the corrosion promoting component concentration as much as possible and to suppress the decrease in the corrosion inhibiting component concentration and the alkali component concentration as much as possible, so that the quality of the permeated water can be stabilized. Accordingly, even if the water supply to the water supply tank is frequently stopped or the time during which the water supply is stopped increases or the capacity of the water supply tank is small, the water supplied to the device is supplied. The predetermined water quality can be maintained.

また、給水中の不純物を十分に除去することができるように、前記還流運転の運転時間の長さを最適なものに設定することができる。   Moreover, the length of the operation time of the reflux operation can be set to an optimum value so that impurities in the water supply can be sufficiently removed.

さらに、前記還流運転の運転時間の長さを、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質と、前記濾過膜部への給水の供給を停止していた時間の長さとに基づいて設定すれば、給水中の不純物をより十分に除去することができるように、前記還流運転の運転時間の長さを、より最適に設定することができる。   Furthermore, the length of operation time of the reflux operation is set to any one of the water quality of the water supply to the filtration membrane unit, the permeated water from the filtration membrane unit and the concentrated water from the filtration membrane unit, and the filtration membrane unit. The length of the recirculation operation time is more optimal so that impurities in the water supply can be more sufficiently removed by setting based on the length of time during which the water supply of the water supply has been stopped. Can be set.

また、前記濾過膜部へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質を所定の水質まで回復させるように、前記水質回復運転における濃縮水の排水量および/または運転時間の長さを最適なものに設定することができる。   Further, the amount of drainage and / or operation time of the concentrated water in the water quality recovery operation so that the feed water supplied to the filtration membrane section is concentrated in a range not excessively concentrated and the quality of the permeated water is restored to a predetermined quality. Can be set to an optimal length.

さらに、前記水質回復運転における濃縮水の排水量および/または運転時間の長さを、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水温と、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質と、前記濾過膜部への給水の供給を停止していた時間の長さとのうち、いずれか2つ以上に基づいて設定すれば、前記濾過膜部へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質を所定の水質まで回復させるように、前記水質回復運転における濃縮水の排水量および/または運転時間の長さをより最適なものに設定することができる。   Further, the amount of concentrated water discharged in the water quality recovery operation and / or the length of the operation time is set to any one of water supplied to the filtration membrane unit, permeated water from the filtration membrane unit, and concentrated water from the filtration membrane unit. Water temperature, the quality of any of the water supply to the filtration membrane part, the permeated water from the filtration membrane part and the concentrated water from the filtration membrane part, and the time during which the supply of water supply to the filtration membrane part was stopped If it is set based on any two or more of the lengths of the water, the feed water supplied to the filtration membrane part is concentrated in a range not excessively concentrated, and the quality of the permeated water is restored to a predetermined quality. In addition, the drainage amount of concentrated water and / or the length of operation time in the water quality recovery operation can be set to be more optimal.

以下、この発明の具体的実施例を図面に基づいて詳細に説明する。図1は、この発明を実施するための膜濾過システムの構成の一例を示す概略的な説明図、図2は、図1に示す膜濾過システムの給水タンクの拡大説明図である。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic explanatory view showing an example of the configuration of a membrane filtration system for carrying out the present invention, and FIG. 2 is an enlarged explanatory view of a water supply tank of the membrane filtration system shown in FIG.

図1に示す膜濾過システム1は、水道水,工業用水,地下水などの水源から供給される原水を水処理して得られた給水をボイラ2へ供給するものである。この膜濾過システム1は、前記ボイラ2への給水ライン3を備え、さらにこの給水ライン3と接続された濾過膜部4および脱気膜部5を上流側からこの順で備えている。また、前記膜濾過システム1は、給水を貯留する給水タンク6と前記濾過膜部4の上流側に設けられ、給水を前記濾過膜部4へ供給するポンプ7と、このポンプ7の上流側の前記給水ライン3に設けられた弁8と、前記濾過膜部4と前記脱気膜部5との間の前記給水ライン3に設けられた開閉弁9とを備えている。さらに、前記膜濾過システム1は、前記濾過膜部4と前記開閉弁9との間の前記給水ライン3と、前記ポンプ7と前記弁8との間の前記給水ライン3とを接続する透過水還流ライン10を備えている。そして、この透過水還流ライン10には、還流制御弁11が設けられている。   A membrane filtration system 1 shown in FIG. 1 supplies to a boiler 2 feed water obtained by treating raw water supplied from a water source such as tap water, industrial water, or groundwater. The membrane filtration system 1 includes a water supply line 3 to the boiler 2, and further includes a filtration membrane unit 4 and a deaeration membrane unit 5 connected to the water supply line 3 in this order from the upstream side. The membrane filtration system 1 is provided on the upstream side of the water supply tank 6 for storing water supply and the filtration membrane unit 4, and includes a pump 7 for supplying the water supply to the filtration membrane unit 4, and an upstream side of the pump 7. A valve 8 provided in the water supply line 3 and an on-off valve 9 provided in the water supply line 3 between the filtration membrane unit 4 and the deaeration membrane unit 5 are provided. Further, the membrane filtration system 1 has permeated water connecting the water supply line 3 between the filtration membrane unit 4 and the on-off valve 9 and the water supply line 3 between the pump 7 and the valve 8. A reflux line 10 is provided. The permeate recirculation line 10 is provided with a recirculation control valve 11.

また、前記膜濾過システム1は、バルーンA,A′,A″のうち、いずれかの位置に接続されている温度センサ12,12′,12″およびバルーンB,B′,B″のうち、いずれかの位置に接続されている水質センサ13,13′,13″を有している。これら水質センサ13,13′,13″は、それぞれ前記濾過膜部4への給水の水質情報,前記濾過膜部4からの透過水および前記濾過膜部4からの濃縮水の水質情報を得るための測定機器であり、たとえば水の電気伝導度を測定する電気伝導度センサである。   The membrane filtration system 1 includes temperature sensors 12, 12 ', 12 "and balloons B, B', B" connected to any one of the balloons A, A ', A ". It has water quality sensors 13, 13 ', 13 "connected to any position. These water quality sensors 13, 13 ′, and 13 ″ respectively obtain water quality information of water supplied to the filtration membrane unit 4, water quality information of permeated water from the filtration membrane unit 4 and concentrated water from the filtration membrane unit 4. For example, an electrical conductivity sensor that measures the electrical conductivity of water.

前記濾過膜部4は、ナノ濾過膜(図示省略)を備えて構成されている。このナノ濾過膜は、ポリアミド系,ポリエーテル系などの合成高分子膜であり、2nmよりも小さい粒子や高分子(分子量が最大数百程度の物質)の透過を阻止することができる液体分離膜である。前記ナノ濾過膜は、通常、濾過膜モジュールとして構成されている。この濾過膜モジュールの形態には、スパイラルモジュール,中空糸モジュール,平膜モジュールなどがある。   The filtration membrane unit 4 includes a nanofiltration membrane (not shown). This nanofiltration membrane is a synthetic polymer membrane such as polyamide-based or polyether-based, and is a liquid separation membrane that can prevent permeation of particles and polymers (substances having a maximum molecular weight of several hundreds) smaller than 2 nm. It is. The nanofiltration membrane is usually configured as a filtration membrane module. Examples of the form of the filtration membrane module include a spiral module, a hollow fiber module, and a flat membrane module.

前記濾過膜部4の一側へは、前記ポンプ7から送り出された給水が流入するようになっている。前記濾過膜部4へ流入した給水は、前記ナノ濾過膜により、腐食促進成分およびアルカリ成分が捕捉されるとともに、腐食抑制成分が透過されるようになっている。   Water supplied from the pump 7 flows into one side of the filtration membrane unit 4. The feed water that has flowed into the filtration membrane portion 4 captures the corrosion promoting component and the alkali component and allows the corrosion inhibiting component to permeate through the nanofiltration membrane.

前記濾過膜部4の他側からは、腐食抑制成分を含む透過水と腐食促進成分およびアルカリ成分を含む濃縮水とがそれぞれ分離されて流出するようになっている。そして、透過水は、前記給水ライン3を流れて前記給水タンク6内に貯留されるようになっている。一方、濃縮水は、一部が排水ライン14から所定の量で排水されるとともに、残部が前記排水ライン14と前記ポンプ7の上流側の前記給水ライン3とを接続する循環水ライン15を流れて前記ポンプ7の上流側へ還流されるようになっている。   From the other side of the filtration membrane part 4, the permeated water containing the corrosion inhibiting component and the concentrated water containing the corrosion promoting component and the alkali component are separated and flow out. The permeated water flows through the water supply line 3 and is stored in the water supply tank 6. On the other hand, a part of the concentrated water is drained from the drain line 14 in a predetermined amount, and the remaining part flows through a circulating water line 15 that connects the drain line 14 and the water supply line 3 upstream of the pump 7. Thus, the refrigerant is returned to the upstream side of the pump 7.

前記排水ライン14は、前記循環水ライン15の接続箇所よりも下流側が、第一排水ライン16,第二排水ライン17,第三排水ライン18に分岐している。そして、これらの各排水ライン16,17,18には、それぞれ第一排水弁19,第二排水弁20,第三排水弁21が設けられている。   The drainage line 14 is branched to a first drainage line 16, a second drainage line 17, and a third drainage line 18 on the downstream side of the connection location of the circulating water line 15. Each of these drain lines 16, 17, 18 is provided with a first drain valve 19, a second drain valve 20, and a third drain valve 21, respectively.

ここで、前記各排水弁19,20,21は、それぞれ定流量弁機構(図示省略)を備えている。この定流量弁機構は、前記各排水弁19,20,21において、それぞれ異なる流量値に設定されている。前記各排水弁19,20,21からの排水量は、たとえばつぎのように設定される。すなわち、前記第一排水弁19のみを開状態にしたときの排水量は、回収率が95%となるように設定され、また前記第二排水弁20のみを開状態にしたときの排水量は、回収率が90%となるように設定され、さらに前記第三排水弁21のみを開状態にしたときの排水量は、回収率が80%となるように設定される。ここで、以下の説明では、排水量を透過水量と排水量との和に対する排水量の割合で述べる。たとえば、前記第一排水弁19のみを開状態にしたときの排水量,すなわち回収率が95%のときの排水量を5%排水と云い、また前記第二排水弁20のみを開状態にしたときの排水量,すなわち回収率が90%のときの排水量を10%排水と云い、さらに前記第三排水弁21のみを開状態にしたときの排水量,すなわち回収率が80%のときの排水量を20%排水と云う。   Here, each of the drain valves 19, 20, 21 has a constant flow valve mechanism (not shown). This constant flow valve mechanism is set to a different flow rate value in each of the drain valves 19, 20, and 21. The amount of drainage from each of the drain valves 19, 20, 21 is set as follows, for example. That is, the drainage amount when only the first drain valve 19 is opened is set so that the recovery rate is 95%, and the drainage amount when only the second drain valve 20 is opened is recovered. The rate is set to 90%, and the amount of drainage when only the third drain valve 21 is opened is set so that the recovery rate is 80%. Here, in the following description, the amount of drainage is described as the ratio of the amount of drainage to the sum of the amount of permeate and the amount of drainage. For example, the drainage amount when only the first drain valve 19 is opened, that is, the drainage amount when the recovery rate is 95% is referred to as 5% drainage, and when only the second drain valve 20 is opened. The amount of drainage, that is, the amount of drainage when the recovery rate is 90% is called 10% drainage, and the amount of drainage when only the third drain valve 21 is opened, that is, the amount of drainage when the recovery rate is 80%, is drained by 20%. It is said.

濃縮水の排水量は、前記各排水弁19,20,21をそれぞれ開閉することにより、段階的に調節することができるようになっている。たとえば、前記第二排水弁20のみを開状態とし、前記第一排水弁19および前記第三排水弁21を閉状態とすることにより、10%排水とすることができる(すなわち、回収率90%)。また、たとえば前記第一排水弁19および前記第二排水弁20を開状態とし、前記第三排水弁21のみを閉状態とすることにより、15%排水とすることができる(すなわち、回収率85%)。したがって、濃縮水の排水量は、前記各排水弁19,20,21の組合わせにより、5%排水から35%排水まで、5%毎に段階的に調節することができ、換言すれば、回収率は、65%から95%まで、5%毎に段階的に調節することができるようになっている。   The amount of concentrated water discharged can be adjusted in stages by opening and closing the drain valves 19, 20, and 21, respectively. For example, by setting only the second drain valve 20 to the open state and closing the first drain valve 19 and the third drain valve 21, the drainage can be 10% (that is, the recovery rate is 90%). ). Further, for example, by setting the first drain valve 19 and the second drain valve 20 in an open state and only the third drain valve 21 in a closed state, 15% drainage can be achieved (that is, a recovery rate of 85). %). Therefore, the drainage amount of the concentrated water can be adjusted in steps of 5% from 5% drainage to 35% drainage by the combination of the drain valves 19, 20, 21. In other words, the recovery rate Can be adjusted in steps of 5% from 65% to 95%.

ここで、前記循環水ライン15には、前記ポンプ7の上流側への濃縮水の還流量を一定にするための流量制御弁(図示省略)が設けられていてもよい。この場合、濃縮水の排水量が調節されたときにおいても、前記流量制御弁によって前記ポンプ7の上流側への濃縮水の還流量が一定になるよう調節される。   Here, the circulating water line 15 may be provided with a flow rate control valve (not shown) for making the amount of concentrated water recirculated upstream of the pump 7 constant. In this case, even when the drainage amount of the concentrated water is adjusted, the flow rate control valve is adjusted so that the reflux amount of the concentrated water to the upstream side of the pump 7 becomes constant.

前記脱気膜部5は、気体透過膜を多数備えた気体透過膜モジュール(図示省略)と、給水中の溶存気体,具体的には溶存酸素を前記気体透過膜モジュールを通して真空吸引する水封式真空ポンプ(図示省略)とを備えている。   The degassing membrane unit 5 includes a gas permeable membrane module (not shown) having a large number of gas permeable membranes, and a water-sealed type that vacuums the dissolved gas in the feed water, specifically, dissolved oxygen through the gas permeable membrane module. And a vacuum pump (not shown).

前記脱気膜部5を通過した給水は、前記給水タンク6内に貯留され、この給水タンク6から前記ボイラ2へ供給されるようになっている。前記給水タンク6には、水位センサ22が設けられている。   The water supply that has passed through the degassing membrane unit 5 is stored in the water supply tank 6 and is supplied from the water supply tank 6 to the boiler 2. The water supply tank 6 is provided with a water level sensor 22.

ここで、前記水位センサ22により、前記給水タンク6内の水位が水位H(図2参照。図1においては図示省略)になったことが検知されたときには、前記給水タンク6への給水が停止されるようになっている。また、前記水位センサ22により、前記給水タンク6内の水位が水位L(図2参照。図1においては図示省略)になったことが検知されたときには、後述するように、この発明に係る運転方法の要部となる還流運転が開始されるようになっている。さらに、前記水位センサ22により、前記給水タンク6内の水位が水位L(図2参照。図1においては図示省略)になったことが検知されたときには、前記給水タンク6への給水が開始されるようになっている。 Here, when the water level sensor 22 detects that the water level in the water supply tank 6 has reached the water level H (see FIG. 2, not shown in FIG. 1), the water supply to the water supply tank 6 is stopped. It has come to be. When the water level sensor 22 detects that the water level in the water supply tank 6 has reached the water level L 0 (see FIG. 2, not shown in FIG. 1), the present invention relates to the present invention as will be described later. The reflux operation, which is the main part of the operation method, is started. Further, when the water level sensor 22 detects that the water level in the water supply tank 6 has reached the water level L (see FIG. 2, not shown in FIG. 1), water supply to the water supply tank 6 is started. It has become so.

前記弁8は、この実施例では減圧弁であり、この弁8により、前記透過水還流ライン10が接続された部分における前記給水ライン3の水圧が一定圧力以下に調節されるようになっている。   In this embodiment, the valve 8 is a pressure reducing valve, and the valve 8 adjusts the water pressure of the water supply line 3 in a portion where the permeate recirculation line 10 is connected to a predetermined pressure or less. .

また、この実施例では、前記開閉弁9は電磁弁または電動弁である。また、前記還流制御弁11はレリーフ弁である。このレリーフ弁は、前記ポンプ7を稼動するとともに前記開閉弁9を開状態にして前記給水タンク6への給水を行うときには、閉状態になり、前記ポンプ7を稼動させるとともに前記開閉弁9を閉状態にして前記還流運転を行うときには、開状態になるように、開弁圧が設定されている。   In this embodiment, the on-off valve 9 is an electromagnetic valve or a motor operated valve. The reflux control valve 11 is a relief valve. The relief valve is closed when the pump 7 is operated and the on-off valve 9 is opened to supply water to the water supply tank 6, and the pump 7 is operated and the on-off valve 9 is closed. When performing the reflux operation in the state, the valve opening pressure is set so as to be in the open state.

つぎに、前記膜濾過システム1の運転方法について説明する。前記膜濾過システム1において、前記給水タンク6への給水を行うときには、前記ポンプ7により、まず前記濾過膜部4へ給水を供給し、この給水中の腐食促進成分およびアルカリ成分を前記ナノ濾過膜(図示省略)によって濾過する。このとき、給水中の腐食抑制成分は、前記ナノ濾過膜を透過する。つぎに、前記濾過膜部4から流出した透過水に含まれる溶存酸素を前記脱気膜部5で脱気し、この水を前記ボイラ2へ供給する給水として前記給水タンク6内に貯留する。   Next, an operation method of the membrane filtration system 1 will be described. In the membrane filtration system 1, when water is supplied to the water supply tank 6, the pump 7 first supplies water to the filtration membrane unit 4, and the nanofiltration membrane removes corrosion promoting components and alkali components from the water supply. Filter by (not shown). At this time, the corrosion inhibiting component in the water supply permeates the nanofiltration membrane. Next, dissolved oxygen contained in the permeated water flowing out from the filtration membrane unit 4 is deaerated by the deaeration membrane unit 5, and this water is stored in the feed water tank 6 as feed water to be supplied to the boiler 2.

一方、前記濾過膜部4からは濃縮水も流出し、この濃縮水は、一部を前記排水ライン14から所定の量で排水するとともに、残部を前記循環水ライン15を介して前記ポンプ7の上流側へ還流させる。   On the other hand, concentrated water also flows out from the filtration membrane portion 4, and a portion of the concentrated water is drained from the drain line 14 by a predetermined amount, and the remaining portion of the pump 7 is passed through the circulating water line 15. Reflux to the upstream side.

前記給水タンク6への給水を行うことにより、前記給水タンク6内の水位が上昇し、前記水位Hになったことが前記水位センサ22によって検知されると、前記ポンプ7を停止して前記濾過膜部4への給水の供給を停止し、前記給水タンク6への給水を停止する。そして、前記給水タンク6への給水を停止しているときに、前記給水タンク6内の水位が前記水位Lまで下降したことが前記水位センサ22によって検知されると、前記還流運転を開始する。 By supplying water to the water supply tank 6, when the water level sensor 22 detects that the water level in the water supply tank 6 rises and reaches the water level H, the pump 7 is stopped and the filtration is performed. The supply of water supply to the membrane unit 4 is stopped, and the water supply to the water supply tank 6 is stopped. Then, when the water level sensor 22 detects that the water level in the water supply tank 6 has dropped to the water level L 0 while the water supply to the water supply tank 6 is stopped, the reflux operation is started. .

さて、前記還流運転は、前記開閉弁9および前記各排水弁19,20,21を閉状態にして、前記濾過膜部4からの透過水を、前記透過水還流ライン10を介して前記濾過膜部4の上流側へ還流させる運転である。この実施例では、前記開閉弁9を閉状態にして、前記ポンプ7を稼動させる運転を行う。これにより、前記還流制御弁11の上流側の水圧が、所定値以上になって前記還流制御弁11が開状態になり、前記濾過膜部4からの透過水が前記透過水還流ライン10を流れて前記ポンプ7と前記弁8との間の前記給水ライン3へ還流する。   In the reflux operation, the on-off valve 9 and the drain valves 19, 20, and 21 are closed, and the permeate from the filtration membrane unit 4 is passed through the permeate reflux line 10 to the filtration membrane. This is an operation for refluxing to the upstream side of the section 4. In this embodiment, the on-off valve 9 is closed and the pump 7 is operated. As a result, the water pressure on the upstream side of the reflux control valve 11 becomes equal to or higher than a predetermined value, the reflux control valve 11 is opened, and the permeated water from the filtration membrane portion 4 flows through the permeate reflux line 10. To return to the water supply line 3 between the pump 7 and the valve 8.

このように、前記濾過膜部4からの透過水が前記透過水還流ライン10を流れて前記濾過膜部4の上流側へ還流すると、前記濾過膜部4において透過側よりも給水供給側の水圧が高くなって給水供給側から透過側へ給水が流れ、逆浸透現象により前記ナノ濾過膜によって腐食促進成分が除去されるので、前記給水タンク6への給水を開始したときにおける透過水の水質悪化を低減させることができる。   Thus, when the permeate from the filtration membrane part 4 flows through the permeate reflux line 10 and returns to the upstream side of the filtration membrane part 4, the water pressure on the supply water supply side of the filtration membrane part 4 is higher than the permeation side. The feed water flows from the feed water supply side to the permeate side and the corrosion promoting components are removed by the nanofiltration membrane due to the reverse osmosis phenomenon, so that the quality of the permeate water deteriorates when the feed water to the feed water tank 6 is started. Can be reduced.

ここで、前記ポンプ7と前記弁8との間の水圧は、前記弁8によって常に一定の水圧に減圧されているので、原水の供給水圧が変動したとしても、前記透過水還流ライン10からの透過水の還流量は、常に一定の流量になる。   Here, since the water pressure between the pump 7 and the valve 8 is always reduced to a constant water pressure by the valve 8, even if the supply water pressure of the raw water fluctuates, the water pressure from the permeate recirculation line 10 The reflux amount of the permeated water is always a constant flow rate.

前記還流運転を行うときには、前記各排水弁19,20,21を閉状態にしてもよく、また前記各排水弁19,20,21のいずれかを開状態にしてもよい。前記各排水弁19,20,21を閉状態にすると、節水を図ることができる。一方、前記各排水弁19,20,21のいずれかを開状態にすると、前記濾過膜部4からの濃縮水の不純物濃度が下がり、透過水の水質が良好になる。   When the reflux operation is performed, the drain valves 19, 20, and 21 may be closed, or any of the drain valves 19, 20, and 21 may be opened. When the drain valves 19, 20, 21 are closed, water can be saved. On the other hand, when any one of the drain valves 19, 20, 21 is opened, the impurity concentration of the concentrated water from the filtration membrane portion 4 is lowered, and the quality of the permeated water is improved.

前記還流運転を行っているときに、前記給水タンク6内の水位が前記水位Lになると、前記開閉弁9を開状態にして前記給水タンク6への給水を開始する。このとき、前記還流制御弁11よりも上流側の水圧が、前記還流制御弁11の開弁圧よりも低くなって前記還流制御弁11が閉状態になり、前記還流運転が終了になる。   If the water level in the water supply tank 6 becomes the water level L during the reflux operation, the on-off valve 9 is opened and water supply to the water supply tank 6 is started. At this time, the water pressure upstream of the recirculation control valve 11 becomes lower than the opening pressure of the recirculation control valve 11, the recirculation control valve 11 is closed, and the recirculation operation ends.

前記還流運転の運転時間の長さは、給水中の腐食促進成分を十分に除去して、透過水の水質悪化を低減させることができる長さに設定される。そして、このような運転時間を確保することができるように、前記還流運転を開始する水位Lが設定される。 The length of the operation time of the reflux operation is set to a length that can sufficiently remove the corrosion promoting component in the feed water and reduce the deterioration of the quality of the permeated water. As can be secured such operating time, the water level L 0 to start the return operation is set.

具体的には、前記還流運転の運転時間の長さは、給水中の腐食促進成分を十分に除去して透過水の水質悪化を低減させることができるように、前記各水質センサ13,13′,13″の検出値に基づいて設定する。すなわち、原水の水質(ここでは不純物濃度)は、地域や季節などによって異なるので、前記各水質センサ13,13′,13″である電気伝導度センサの検出値が高くなれば、前記水位Lをより高く設定して前記還流運転の運転時間を長くし、給水中の腐食促進成分を十分に除去する。一方で、前記各水質センサ13,13′,13″の検出値が低くなれば、前記ナノ濾過膜付近における透過側の不純物濃度が低いので、これに応じて前記水位Lをより低く設定して前記還流運転の運転時間を短くする。 Specifically, the length of operation time of the reflux operation is such that each of the water quality sensors 13, 13 ′ can reduce the deterioration of permeated water quality by sufficiently removing the corrosion promoting components in the feed water. , 13 ″. That is, since the quality of the raw water (impurity concentration here) varies depending on the region, season, etc., the electric conductivity sensors which are the water quality sensors 13, 13 ′, 13 ″. the higher detection value of the water level L 0 is longer higher by setting the operating time of the return driving, to sufficiently remove corrosion promoting component in water. On the other hand, each of the water sensor 13, 13 ', 13 detection value becomes lower for ", the because of the low impurity concentration on the permeate side of the nanofiltration membrane around the set lower the water level L 0 accordingly Thus, the operation time of the reflux operation is shortened.

また、前記還流運転の運転時間の長さは、給水中の腐食促進成分を十分に除去して透過水の水質悪化を低減させることができるように、前記濾過膜部4への給水の供給を停止していた時間に基づいて設定してもよい。すなわち、前記濾過膜部4への給水の供給を停止していた時間が長くなるほど、前記ナノ濾過膜付近における透過側の不純物濃度が高くなる。したがって、前記濾過膜部4への給水の供給を停止していた時間が長ければ、前記水位Lをより高く設定して前記還流運転の運転時間を長くし、給水中の腐食促進成分を十分に除去する。一方で、前記濾過膜部4への給水の供給を停止していた時間が短ければ、前記ナノ濾過膜付近における透過側の不純物濃度が低いので、これに応じて前記水位Lをより低く設定して前記還流運転の運転時間を短くする。 In addition, the length of operation time of the reflux operation is such that the supply of water to the filtration membrane unit 4 is performed so that the corrosion promoting components in the water supply can be sufficiently removed to reduce the quality of the permeated water. You may set based on the time which has stopped. That is, the longer the time during which the supply of water supply to the filtration membrane unit 4 is stopped, the higher the concentration of impurities on the permeate side near the nanofiltration membrane. Therefore, if the time during which the supply of the feed water to the filtration membrane unit 4 has been stopped is long, the water level L 0 is set higher to increase the operation time of the reflux operation, and the corrosion promoting component in the feed water is sufficient. To remove. On the other hand, the Invite is short filtration membrane unit time that has been stopped the supply of water to 4, since the low impurity concentration on the permeate side of the nanofiltration membrane near, set lower the water level L 0 accordingly Thus, the operation time of the reflux operation is shortened.

すなわち、前記還流運転の所定時間は、前記給水タンク6内の水位が前記水位Lから前記水位Lに達するまでの時間として設定される。 That is, the reflux predetermined time operation, the water level in said water supply tank 6 is set as the time from the water level L 0 to reach the water level L.

さらに、前記還流運転の運転時間の長さは、給水中の腐食促進成分を十分に除去して透過水の水質悪化を低減させることができるように、前記各水質センサ13,13′,13″の検出値と前記濾過膜部4への給水の供給を停止していた時間の長さとに基づいて設定してもよい。   Further, the length of operation time of the reflux operation is such that each of the water quality sensors 13, 13 ′, 13 ″ can reduce the deterioration of the quality of the permeated water by sufficiently removing the corrosion promoting components in the feed water. May be set based on the detected value and the length of time during which the supply of water to the filtration membrane unit 4 has been stopped.

ここで、前記還流運転を開始した後に前記ボイラ2が停止するなど、前記ボイラ2の稼動状況によっては、前記給水タンク6内の水位が前記水位Lから前記水位Lに達するまでの時間が想定されている時間よりも長くなり、前記還流運転の開始後、前記所定時間を経過しても前記給水タンク6内の水位が前記水位Lまで達しないこともある。したがって、前記給水タンク6内の水位が前記水位Lに達する前であっても、前記還流運転を開始してから所定時間経過後に、前記開閉弁9を開状態にして前記給水タンク6への給水を開始するとともに前記還流運転を終了してもよい。 Here, the like the boiler 2 after starting the reflux operation is stopped, depending on the operating conditions of the boiler 2, the time from the water supply tank the water level L 0 water level within 6 to reach the water level L is assumed The water level in the water supply tank 6 may not reach the water level L even after the predetermined time has elapsed after the start of the reflux operation. Therefore, even before the water level in the water supply tank 6 reaches the water level L, after a predetermined time has elapsed since the start of the reflux operation, the on-off valve 9 is opened to supply water to the water supply tank 6. And the reflux operation may be terminated.

さて、前記還流運転を終了して、前記給水タンク6への給水を開始すると、開始から所定時間、前記濾過膜部4からの濃縮水の排水量を前記所定量よりも少なくして、回収率を通常よりも高くする水質回復運転を行う。これにより、前記濾過膜部4へ供給される給水の濃縮が進み、不純物濃度が高くなる。この結果、透過水の腐食抑制成分濃度が高くなるとともに、前記ナノ濾過膜を透過するアルカリ成分の量も増えてその濃度が高くなり、透過水の水質が回復する。   Now, when the reflux operation is finished and water supply to the water supply tank 6 is started, the drainage amount of the concentrated water from the filtration membrane part 4 is made smaller than the predetermined amount for a predetermined time from the start, and the recovery rate is increased. Perform water quality recovery operation to make it higher than normal. Thereby, concentration of the feed water supplied to the said filtration membrane part 4 advances, and impurity concentration becomes high. As a result, the concentration of the permeated water corrosion-inhibiting component is increased, the amount of the alkali component that permeates the nanofiltration membrane is increased, and the concentration is increased, so that the quality of the permeated water is restored.

前記水質回復運転における濃縮水の排水量および運転時間の長さは、前記濾過膜部4へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質が所定の水質まで回復することができる量および長さに設定する。   The amount of concentrated water discharged in the water quality recovery operation and the length of operation time are such that the feed water supplied to the filtration membrane unit 4 is concentrated within a range not excessively concentrated, and the quality of the permeated water is restored to a predetermined quality. Set to the amount and length that can be.

具体的には、前記水質回復運転における濃縮水の排水量および運転時間の長さは、前記濾過膜部4へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質が所定の水質まで回復することができるように、前記各温度センサ12,12′,12″の検出値に基づいて設定する。すなわち、腐食抑制成分であるシリカの溶解度は、水温が高くなるほど高くなり、水温が低くなるほど低くなるので、前記各温度センサ12,12′,12″の検出値が高ければ、前記水質回復運転における濃縮水の排水量の減少量を多くして回収率をより高めにする。一方、前記各温度センサ12,12′,12″の検出値が低ければ、前記水質回復運転における濃縮水の排水量の減少量を少なくして高温時よりも回収率を低くする。また、前記各温度センサ12,12′,12″の検出値が高くなれば、前記水質回復運転の運転時間を短くし、一方で前記各温度センサ12,12′,12″の検出値が低くなれば、前記水質回復運転の運転時間を長くする。   Specifically, the drainage amount of the concentrated water and the length of the operation time in the water quality recovery operation are such that the feed water supplied to the filtration membrane unit 4 is concentrated in a range that does not excessively concentrate, and the quality of the permeated water is predetermined. In order to recover the water quality, the temperature is set based on the detection values of the temperature sensors 12, 12 ′, 12 ″. That is, the solubility of silica, which is a corrosion inhibiting component, increases as the water temperature increases. Therefore, if the detected value of each temperature sensor 12, 12 ', 12 "is high, the amount of decrease in the amount of concentrated water discharged in the water quality recovery operation is increased to increase the recovery rate. On the other hand, if the detected value of each temperature sensor 12, 12 ', 12 "is low, the reduction rate of the drainage amount of the concentrated water in the water quality recovery operation is reduced to lower the recovery rate than at high temperatures. If the detection values of the temperature sensors 12, 12 ', 12 "are high, the operation time of the water quality recovery operation is shortened, while if the detection values of the temperature sensors 12, 12', 12" are low, Increase the operation time of water quality recovery operation.

また、前記水質回復運転における濃縮水の排水量および運転時間の長さは、前記濾過膜部4へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質が所定の水質まで回復することができるように、前記各水質センサ13,13′,13″の検出値に基づいて設定してもよい。すなわち、原水の水質は、地域や季節によって異なるので、前記各水質センサ13,13′,13″である電気伝導度センサの検出値が低くなれば、前記水質回復運転における濃縮水の排水量の減少量を多くして回収率をより高めにする。一方、前記各水質センサ13,13′,13″の検出値が高くなれば、前記水質回復運転における濃縮水の排水量の減少量を少なくして検出値が低いときよりも回収率を低くする。また、各水質センサ13,13′,13″の検出値が高くなれば、前記水質回復運転の運転時間を短くし、一方で前記各水質センサ13,13′,13″の検出値が低くなれば、前記水質回復運転の運転時間を長くする。   In addition, the amount of concentrated water discharged in the water quality recovery operation and the length of the operation time are set so that the feed water supplied to the filtration membrane unit 4 is concentrated in a range not excessively concentrated, and the quality of the permeated water is recovered to a predetermined quality. The water quality may be set based on the detection values of the water quality sensors 13, 13 ′, 13 ″. That is, the water quality of the raw water varies depending on the region and season. If the detection value of the electrical conductivity sensor of 13 ′, 13 ″ is low, the reduction rate of the drainage amount of the concentrated water in the water quality recovery operation is increased to increase the recovery rate. On the other hand, if the detected value of each of the water quality sensors 13, 13 ', 13' 'is increased, the amount of decrease in the drainage amount of the concentrated water in the water quality recovery operation is reduced to lower the recovery rate than when the detected value is low. Further, if the detected value of each water quality sensor 13, 13 ', 13 "is increased, the operation time of the water quality recovery operation is shortened, while the detected value of each water quality sensor 13, 13', 13" is decreased. For example, the operation time of the water quality recovery operation is lengthened.

また、前記水質回復運転における濃縮水の排水量および運転時間の長さは、前記濾過膜部4へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質が所定の水質まで回復することができるように、前記濾過膜部4への給水の供給を停止していた時間に基づいて設定してもよい。すなわち、前記濾過膜部4への給水の供給を停止していた時間が長くなるほど、前記ナノ濾過膜付近において、給水供給側の不純物濃度が低くなる。したがって、前記濾過膜部4への給水を停止していた時間が長ければ、前記水質回復運転における濃縮水の排水量の減少量を多くして回収率をより高くする。一方、前記濾過膜部4への給水を停止していた時間が短ければ、前記水質回復運転における濃縮水の排水量の減少量を少なくして停止時間が長いときよりも回収率を低くする。また、前記濾過膜部4への給水を停止していた時間が長ければ、前記水質回復運転の運転時間を長くし、一方で前記濾過膜部4への給水を停止していた時間が短ければ、前記水質回復運転の運転時間を短くする。   In addition, the amount of concentrated water discharged in the water quality recovery operation and the length of the operation time are set so that the feed water supplied to the filtration membrane unit 4 is concentrated in a range not excessively concentrated, and the quality of the permeated water is recovered to a predetermined quality. It may be set based on the time during which the supply of water supply to the filtration membrane unit 4 has been stopped so that it can be performed. That is, the longer the time during which the supply of water to the filtration membrane unit 4 is stopped, the lower the impurity concentration on the water supply side near the nanofiltration membrane. Therefore, if the time during which the water supply to the filtration membrane unit 4 has been stopped is long, the reduction rate of the drainage amount of the concentrated water in the water quality recovery operation is increased to increase the recovery rate. On the other hand, if the time during which the water supply to the filtration membrane unit 4 has been stopped is short, the reduction rate of the drainage amount of the concentrated water in the water quality recovery operation is reduced to lower the recovery rate than when the stop time is long. Further, if the time during which the water supply to the filtration membrane unit 4 is stopped is long, the operation time of the water quality recovery operation is lengthened, while the time during which the water supply to the filtration membrane unit 4 is stopped is short. The operation time of the water quality recovery operation is shortened.

さらに、前記水質回復運転における濃縮水の排水量および運転時間の長さは、前記濾過膜部4へ供給される給水を過度に濃縮しない範囲で濃縮させて、透過水の水質が所定の水質まで回復することができるように、前記各温度センサ12,12′,12″の検出値と、前記各水質センサ13,13′,13″の検出値と、前記濾過膜部4への給水の供給を停止していた時間とのうち、いずれか2つ以上に基づいて設定してもよい。   Further, the amount of drainage of concentrated water and the length of operation time in the water quality recovery operation are such that the feed water supplied to the filtration membrane unit 4 is concentrated within a range not excessively concentrated, and the quality of the permeated water is recovered to a predetermined water quality. The detected values of the temperature sensors 12, 12 ', 12 ", the detected values of the water quality sensors 13, 13', 13", and the supply of water to the filtration membrane unit 4 can be performed. You may set based on any 2 or more among the time which has stopped.

以上のようにして濃縮水の排水量を設定すると、設定された排水量になるよう、前記各排水弁19,20,21を開閉させる。   When the drainage amount of the concentrated water is set as described above, the drain valves 19, 20, and 21 are opened and closed so that the set drainage amount is obtained.

以上、この発明を実施例により説明したが、この発明は、その趣旨を変えない範囲で種々変更実施可能なことはもちろんである。   As mentioned above, although this invention was demonstrated by the Example, this invention can be variously implemented in the range which does not change the meaning.

この発明を実施するための膜濾過システムの構成の一例を示す概略的な説明図である。It is a schematic explanatory drawing which shows an example of a structure of the membrane filtration system for implementing this invention. 図1に示す膜濾過システムの給水タンクの拡大説明図である。It is expansion explanatory drawing of the water supply tank of the membrane filtration system shown in FIG.

符号の説明Explanation of symbols

1 膜濾過システム
2 ボイラ(機器)
3 給水ライン
4 濾過膜部
6 給水タンク
1 Membrane filtration system 2 Boiler (equipment)
3 Water supply line 4 Filtration membrane 6 Water supply tank

Claims (9)

機器への給水ラインと接続されて給水中の不純物を除去する濾過膜部と、この濾過膜部の下流側の前記給水ラインと接続されて前記機器への給水を貯留する給水タンクとを備え、前記給水タンクへの給水時には、前記濾過膜部へ給水を供給して濾過し、この濾過膜部からの透過水を前記給水タンク内に貯留する一方で、前記濾過膜部からの濃縮水の一部を所定の量で系外へ排水するとともに、残部を前記濾過膜部の上流側へ還流させる膜濾過システムの運転方法であって、
前記濾過膜部と前記給水タンクとの間の前記給水ラインを閉鎖するとともに、前記濾過膜部からの透過水を前記閉鎖箇所の上流側の前記給水ラインから前記濾過膜部の上流側の前記給水ラインへ還流させる還流運転を、前記給水タンクへの給水を停止しているときに所定時間行った後、前記給水タンクへの給水を開始し、給水を開始してから所定時間、前記濾過膜部からの濃縮水の排水量を前記所定量よりも少なくする水質回復運転を行うことを特徴とする膜濾過システムの運転方法。
A filtration membrane part that is connected to a water supply line to the device to remove impurities in the water supply, and a water supply tank that is connected to the water supply line on the downstream side of the filtration membrane part and stores the water supply to the device, At the time of water supply to the water supply tank, water is supplied to the filtration membrane unit and filtered, and the permeated water from the filtration membrane unit is stored in the water supply tank, while one of the concentrated water from the filtration membrane unit is stored. A membrane filtration system that drains the part out of the system in a predetermined amount and recirculates the remainder to the upstream side of the filtration membrane part,
The water supply line between the filtration membrane part and the water supply tank is closed, and the permeated water from the filtration membrane part is supplied to the water supply upstream of the filtration membrane part from the water supply line upstream of the closed part. The recirculation operation for returning to the line is performed for a predetermined time when the water supply to the water supply tank is stopped, and then the water supply to the water supply tank is started. A method for operating a membrane filtration system, comprising performing a water quality recovery operation in which the amount of concentrated water discharged from the water is less than the predetermined amount.
前記給水タンクへの給水を停止しているときに、この給水タンク内の水位が所定の水位まで下降すると、前記還流運転を開始し、この還流運転を開始してから所定時間経過後に、前記給水タンクへの給水を開始することを特徴とする請求項1に記載の膜濾過システムの運転方法。   When water supply to the water supply tank is stopped, if the water level in the water supply tank falls to a predetermined water level, the reflux operation is started, and after a predetermined time has elapsed since the start of the reflux operation, 2. The method for operating a membrane filtration system according to claim 1, wherein water supply to the tank is started. 前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質に基づいて、前記還流運転の運転時間の長さを設定することを特徴とする請求項1または2に記載の膜濾過システムの運転方法。   The length of the operation time of the reflux operation is set based on the quality of any one of water supplied to the filtration membrane unit, permeated water from the filtration membrane unit, and concentrated water from the filtration membrane unit. The operation method of the membrane filtration system according to claim 1 or 2. 前記濾過膜部への給水の供給を停止していた時間の長さに基づいて、前記還流運転の運転時間の長さを設定することを特徴とする請求項1または2に記載の膜濾過システムの運転方法。   The membrane filtration system according to claim 1 or 2, wherein a length of an operation time of the reflux operation is set based on a length of time during which the supply of water supply to the filtration membrane unit is stopped. Driving method. 前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質と、前記濾過膜部への給水の供給を停止していた時間の長さとに基づいて、前記還流運転の運転時間の長さを設定することを特徴とする請求項1または2に記載の膜濾過システムの運転方法。   The quality of any of the water supply to the filtration membrane part, the permeated water from the filtration membrane part and the concentrated water from the filtration membrane part, and the length of time that the supply of water supply to the filtration membrane part was stopped The operation method of the membrane filtration system according to claim 1 or 2, wherein the length of the operation time of the reflux operation is set based on the above. 前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水温に基づいて、前記水質回復運転における濃縮水の排水量および/または運転時間を設定することを特徴とする請求項1,2,3,4または5に記載の膜濾過システムの運転方法。   Based on the temperature of any of the water supplied to the filtration membrane unit, the permeated water from the filtration membrane unit, and the concentrated water from the filtration membrane unit, the drainage amount and / or operation time of the concentrated water in the water quality recovery operation is set. The method of operating a membrane filtration system according to claim 1, 2, 3, 4 or 5. 前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質に基づいて、前記水質回復運転における濃縮水の排水量および/または運転時間を設定することを特徴とする請求項1,2,3,4または5に記載の膜濾過システムの運転方法。   Based on the quality of any of the water supplied to the filtration membrane unit, the permeated water from the filtration membrane unit, and the concentrated water from the filtration membrane unit, the drainage amount and / or operation time of the concentrated water in the water quality recovery operation is set. The method of operating a membrane filtration system according to claim 1, 2, 3, 4 or 5. 前記濾過膜部への給水の供給を停止していた時間の長さに基づいて、前記水質回復運転における濃縮水の排水量および/または運転時間を設定することを特徴とする請求項1,2,3,4または5に記載の膜濾過システムの運転方法。   The drainage amount and / or operation time of the concentrated water in the water quality recovery operation is set based on the length of time during which the supply of water to the filtration membrane unit has been stopped. A method for operating the membrane filtration system according to 3, 4 or 5. 前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水温と、前記濾過膜部への給水,前記濾過膜部からの透過水および前記濾過膜部からの濃縮水のいずれかの水質と、前記濾過膜部への給水の供給を停止していた時間の長さとのうち、いずれか2つ以上に基づいて、前記水質回復運転における濃縮水の排水量および/または運転時間を設定することを特徴とする請求項1,2,3,4または5に記載の膜濾過システムの運転方法。   Water supply to the filtration membrane, water permeate from the filtration membrane and concentrated water from the filtration membrane, water supply to the filtration membrane, permeate from the filtration membrane and the water Concentration in the water quality recovery operation based on any two or more of the quality of any of the concentrated water from the filtration membrane and the length of time during which supply of water to the filtration membrane has been stopped 6. A method for operating a membrane filtration system according to claim 1, 2, 3, 4 or 5, wherein the amount of water discharged and / or the operation time is set.
JP2005376912A 2005-12-28 2005-12-28 Operation method of membrane filtration system Expired - Fee Related JP4817046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005376912A JP4817046B2 (en) 2005-12-28 2005-12-28 Operation method of membrane filtration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005376912A JP4817046B2 (en) 2005-12-28 2005-12-28 Operation method of membrane filtration system

Publications (2)

Publication Number Publication Date
JP2007175624A true JP2007175624A (en) 2007-07-12
JP4817046B2 JP4817046B2 (en) 2011-11-16

Family

ID=38301336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005376912A Expired - Fee Related JP4817046B2 (en) 2005-12-28 2005-12-28 Operation method of membrane filtration system

Country Status (1)

Country Link
JP (1) JP4817046B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037830A (en) * 2007-08-01 2009-02-19 Aisin Seiki Co Ltd Fuel cell system
JP2009279472A (en) * 2008-05-19 2009-12-03 Miura Co Ltd Reverse osmosis membrane device
WO2011099578A1 (en) * 2010-02-13 2011-08-18 Yamanaka Kunihiko Water purification device
JP2013128911A (en) * 2011-12-22 2013-07-04 Toyobo Engineering Kk Apparatus for producing purified water
JP2013188682A (en) * 2012-03-13 2013-09-26 Miura Co Ltd Water treatment system
WO2017217008A1 (en) * 2016-06-13 2017-12-21 三浦工業株式会社 Reverse osmosis membrane separation apparatus
JP2018176033A (en) * 2017-04-06 2018-11-15 オルガノ株式会社 Pure water producing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239244A (en) * 1996-03-05 1997-09-16 Hitachi Techno Eng Co Ltd Membrane type liquid concentration apparatus
JP2000015061A (en) * 1998-06-29 2000-01-18 Toray Ind Inc Method and apparatus for separating/producing liquid
JP2001000969A (en) * 1999-06-21 2001-01-09 Toray Kiki Kk Reverse osmosis membrane type refined water making apparatus
JP2005510338A (en) * 2001-04-18 2005-04-21 バディ ドン グレイ, System for recirculating tangential filtration concentrate
JP2005279614A (en) * 2004-03-31 2005-10-13 Ngk Insulators Ltd Water cleaning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239244A (en) * 1996-03-05 1997-09-16 Hitachi Techno Eng Co Ltd Membrane type liquid concentration apparatus
JP2000015061A (en) * 1998-06-29 2000-01-18 Toray Ind Inc Method and apparatus for separating/producing liquid
JP2001000969A (en) * 1999-06-21 2001-01-09 Toray Kiki Kk Reverse osmosis membrane type refined water making apparatus
JP2005510338A (en) * 2001-04-18 2005-04-21 バディ ドン グレイ, System for recirculating tangential filtration concentrate
JP2005279614A (en) * 2004-03-31 2005-10-13 Ngk Insulators Ltd Water cleaning device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037830A (en) * 2007-08-01 2009-02-19 Aisin Seiki Co Ltd Fuel cell system
JP2009279472A (en) * 2008-05-19 2009-12-03 Miura Co Ltd Reverse osmosis membrane device
WO2011099578A1 (en) * 2010-02-13 2011-08-18 Yamanaka Kunihiko Water purification device
JP5563604B2 (en) * 2010-02-13 2014-07-30 邦彦 山中 Water purifier
JP2013128911A (en) * 2011-12-22 2013-07-04 Toyobo Engineering Kk Apparatus for producing purified water
JP2013188682A (en) * 2012-03-13 2013-09-26 Miura Co Ltd Water treatment system
WO2017217008A1 (en) * 2016-06-13 2017-12-21 三浦工業株式会社 Reverse osmosis membrane separation apparatus
JP2018176033A (en) * 2017-04-06 2018-11-15 オルガノ株式会社 Pure water producing apparatus

Also Published As

Publication number Publication date
JP4817046B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4817046B2 (en) Operation method of membrane filtration system
JP2006305499A (en) Operating method of membrane filtration system
JP5158341B2 (en) Preparation method for boiler feedwater
JP2010120015A (en) Method of membrane filtration
JP4687249B2 (en) Water treatment system
TW200803966A (en) Membrane filtration system
JP4650740B2 (en) Operation method of water treatment system
JP4544020B2 (en) Operation method of membrane filtration system
JP4996812B2 (en) Water supply equipment
JP2009192193A (en) Boiler system
JP2007175603A (en) Method for operating membrane filtration system
JP2006239649A (en) Water supply device for boiler
JP5013063B2 (en) Supplying water for boiler feed water
JP4367197B2 (en) Water treatment method
JP2009192194A (en) Boiler system
JP2007175623A (en) Method for operating membrane filtration system
JP2012196678A (en) Operation method for membrane filtration system, and membrane filtration system
JP5130708B2 (en) Boiler system
JP2005313034A (en) Water supply system
JP5003993B2 (en) Membrane filtration system
JP2007152239A (en) Membrane filtration system
JP2009221733A (en) Water treatment supply system
JP2005296944A (en) Water quality improving system
JP7359198B2 (en) Warm ultrapure water production equipment
JP4631313B2 (en) Water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees