JP2007173254A - Alkaline cell - Google Patents

Alkaline cell Download PDF

Info

Publication number
JP2007173254A
JP2007173254A JP2007043169A JP2007043169A JP2007173254A JP 2007173254 A JP2007173254 A JP 2007173254A JP 2007043169 A JP2007043169 A JP 2007043169A JP 2007043169 A JP2007043169 A JP 2007043169A JP 2007173254 A JP2007173254 A JP 2007173254A
Authority
JP
Japan
Prior art keywords
mass
alkaline
potassium hydroxide
alloy powder
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007043169A
Other languages
Japanese (ja)
Other versions
JP4717025B2 (en
Inventor
Noriyuki Ito
範幸 伊東
Minajiyuuro Ushijima
三七十郎 牛島
Shinichi Iwamoto
真一 岩本
Tetsuo Itsu
哲夫 伊津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2007043169A priority Critical patent/JP4717025B2/en
Publication of JP2007173254A publication Critical patent/JP2007173254A/en
Application granted granted Critical
Publication of JP4717025B2 publication Critical patent/JP4717025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline cell excellent in load characteristics, prevented from lowering of gas-generation when reacting with electrolyte and preservation property, restrained from heat generation at abnormality. <P>SOLUTION: The alkaline cell is formed by enclosing a cathode mixture containing alkaline electrolyte (A) prepared by dissolving either manganese dioxide or nickel oxide, conductive agent, and potassium hydroxide, separator, and an anode mixture prepared by dissolving zinc alloy powder, gelatinizer, and potassium hydroxide, in an envelope. The density of the potassium hydroxide in the alkaline electrolyte (A) of the cathode mixture is not less than 45 wt.%, and the density of the potassium hydroxide in the alkaline electrolyte (B) of the anode mixture is not more than 35 wt.%. Zinc alloy powder having content of the powder passing through a sieve of 200 mesh by 4 to 40% is used as the zinc alloy powder for the anode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルカリ電池に関し、より詳しくは、負荷特性に優れる一方で、異常発生時の発熱挙動を抑制したアルカリ電池に関する。   The present invention relates to an alkaline battery. More specifically, the present invention relates to an alkaline battery that has excellent load characteristics while suppressing heat generation behavior when an abnormality occurs.

亜鉛を負極活物質とするアルカリ電池は、各種電子機器の電源として用いられ、その用途に応じて種々の特性が要求されている。特に、近年普及が著しいデジタルカメラにおいては、撮影可能枚数をできるだけ多くするためには、電池の高容量化と大電流放電特性などの負荷特性のさらなる向上が必要であり、その要求を満たすことのできる電池設計が検討されている。   An alkaline battery using zinc as a negative electrode active material is used as a power source for various electronic devices, and various characteristics are required depending on its use. In particular, in digital cameras that have been widely used in recent years, in order to maximize the number of images that can be taken, it is necessary to increase the battery capacity and further improve the load characteristics such as the large current discharge characteristics. Possible battery designs are being studied.

電池の高容量化のためには、活物質の充填量の増加が必要であるが、活物質が放電に有効に利用されなければ容量増に結びつかないため、単に、活物質の充填量を多くするのみでは目的を達することはできない。放電容量は活物質の利用率との兼ね合いで決定されるものであるから、活物質相互の良好な導電性の確保と均質な充填が重要となる。   In order to increase the capacity of the battery, it is necessary to increase the filling amount of the active material. However, if the active material is not effectively used for discharging, the capacity cannot be increased. Therefore, simply increasing the filling amount of the active material. You can't achieve your goal by just doing it. Since the discharge capacity is determined in view of the utilization factor of the active material, it is important to ensure good conductivity between the active materials and to perform uniform filling.

また、負荷特性の向上には、活物質の反応面積の増加や導電性の向上などが必要となるが、活物質の反応面積の増加に伴い、電解液との反応によるガス発生が生じやすくなるため、負極においては、負極活物質である亜鉛とガス発生を抑制できる添加元素とを合金化させるのが一般的である。   Moreover, to improve the load characteristics, it is necessary to increase the reaction area of the active material and improve the conductivity, but as the reaction area of the active material increases, gas generation due to reaction with the electrolyte tends to occur. Therefore, in the negative electrode, it is common to alloy zinc, which is a negative electrode active material, with an additive element that can suppress gas generation.

しかしながら、添加元素の含有量の増加により、導電性が低下しやすくなるため、ガス発生の抑制と負荷特性を両立させることは困難である。しかも、自己放電の抑制のために、電解液には亜鉛化合物、特に、酸化亜鉛を含有させるのが一般的であるが、これによっても負荷特性は低下してしまう。   However, since the conductivity tends to decrease due to an increase in the content of the additive element, it is difficult to achieve both suppression of gas generation and load characteristics. Moreover, in order to suppress self-discharge, the electrolyte solution generally contains a zinc compound, particularly zinc oxide, but this also deteriorates the load characteristics.

また、たとえ負荷特性に優れる電池を設計できたとしても、以下に示す別の問題が生じるため、実用的な電池とするには解決すべき課題が残されている。すなわち、高温で貯蔵した場合の貯蔵性が悪かったり、電子機器の誤作動や誤って電池を短絡させるなどして電池に過大な電流が流れた際に、電池内で発生する熱により電池が高温となり、電解液の漏出や電池の破裂などの危険性が生じることが問題となる。特に、電池が高容量化、高負荷対応となるほど反応性が高まり、かつ発熱量が大きくなるため、上記問題の解決はより重要となる。   Even if a battery having excellent load characteristics can be designed, another problem shown below arises. Therefore, there remains a problem to be solved for a practical battery. In other words, when the battery is stored at a high temperature, the battery becomes hot due to heat generated in the battery when an excessive current flows through the battery due to malfunction of the electronic device or accidental short circuit of the battery. Thus, there arises a problem that dangers such as leakage of the electrolyte and rupture of the battery occur. In particular, the higher the capacity of the battery and the higher the load, the higher the reactivity and the greater the amount of heat generated. Therefore, the solution of the above problem becomes more important.

従って、高容量で負荷特性に優れる一方で、貯蔵性に優れ、短絡などの異常発生時には、発熱による急激な温度上昇などの異常挙動が生じにくいアルカリ電池を設計することが求められているのである。   Therefore, it is required to design an alkaline battery that has high capacity and excellent load characteristics, but also has excellent storability and is unlikely to cause abnormal behavior such as rapid temperature rise due to heat generation when an abnormality such as a short circuit occurs. .

本発明は、上記事情に鑑みてなされたもので、負荷特性に優れ、電解液との反応によるガス発生や貯蔵性の低下を防止する一方で、異常発生時の発熱挙動を抑制したアルカリ電池を提供することを課題とするものである。   The present invention has been made in view of the above circumstances, and is an alkaline battery that has excellent load characteristics, prevents gas generation due to reaction with an electrolytic solution and deterioration of storage stability, and suppresses heat generation behavior when an abnormality occurs. The issue is to provide.

本発明のアルカリ電池は、二酸化マンガンおよびニッケル酸化物の少なくとも一方と導電剤と水酸化カリウムを溶解したアルカリ電解液(A)とを含有する正極合剤、セパレータ、および亜鉛合金粉末とゲル化剤と水酸化カリウムを溶解したアルカリ電解液(B)とを含有する負極合剤を外装体内部に封入することにより作製されるアルカリ電池であって、前記正極合剤のアルカリ電解液(A)の水酸化カリウム濃度が45質量%以上であり、前記負極合剤のアルカリ電解液(B)の水酸化カリウム濃度が35質量%以下であり、負極の亜鉛合金粉末として、200メッシュのふるい目を通過する粉末の割合が4〜40質量%である亜鉛合金粉末を用いたことを特徴とするものである。   The alkaline battery of the present invention includes a positive electrode mixture, a separator, and a zinc alloy powder and a gelling agent containing at least one of manganese dioxide and nickel oxide, a conductive agent, and an alkaline electrolyte (A) in which potassium hydroxide is dissolved. And an alkaline electrolyte (B) in which potassium hydroxide is dissolved, enclosed in an exterior body, an alkaline battery, wherein the positive electrode mixture alkaline electrolyte (A) The potassium hydroxide concentration is 45% by mass or more, the potassium hydroxide concentration of the alkaline electrolyte (B) of the negative electrode mixture is 35% by mass or less, and passes through a 200 mesh sieve as the zinc alloy powder of the negative electrode. A zinc alloy powder having a ratio of 4 to 40% by mass to be used is used.

本発明によれば、負荷特性に優れ、電解液との反応によるガス発生や貯蔵性の低下を防止する一方で、異常発生時の発熱挙動を抑制したアルカリ電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while being excellent in load characteristics and preventing the gas generation | occurrence | production and storage property fall by reaction with electrolyte solution, the alkaline battery which suppressed the heat-generation behavior at the time of abnormality generation can be provided.

本発明は、正極合剤の形成において水酸化カリウムを45質量%以上の高濃度で含有するアルカリ電解液(A)を用いることを第1の特徴とする。正極合剤は、二酸化マンガンおよびニッケル酸化物の少なくとも一方と導電剤と上記アルカリ電解液(A)とを混合することにより形成されるが、アルカリ電解液(A)の水酸化カリウム濃度を45質量%以上とすることにより均質な混合体が形成され、合剤の高密度での充填や合剤全体の導電性向上を可能とする。従って、電池の高容量設計を実現することができるとともに、負荷特性を向上させることも可能となる。   The present invention is characterized in that an alkaline electrolyte (A) containing potassium hydroxide at a high concentration of 45% by mass or more is used in the formation of the positive electrode mixture. The positive electrode mixture is formed by mixing at least one of manganese dioxide and nickel oxide, a conductive agent, and the alkaline electrolyte (A). The alkaline electrolyte (A) has a potassium hydroxide concentration of 45 mass. When the content is at least%, a homogeneous mixture is formed, and the mixture can be filled at a high density and the conductivity of the entire mixture can be improved. Therefore, it is possible to realize a high capacity design of the battery and to improve load characteristics.

一方、正極の反応性が高められたことにより、電池が短絡した場合は、短絡発生直後の段階では過大な短絡電流が流れるが、このときに生じる負極の亜鉛合金粉末の急激な放電反応により、反応を抑制する酸化物層が亜鉛合金粉末表面に一気に形成されることになり、短時間のうちに短絡電流は減少する。このため、放電に伴う発熱は比較的少なくなり、電池の温度上昇が抑制されて、電解液の漏出や電池の破裂などの異常な挙動が生じるのを防ぐことができると考えられる。ここで、上記電解液として50質量%を超える濃度で水酸化カリウムを含有したアルカリ電解液を用いれば、上記効果がより得られやすくなる他、後述する負極合剤のアルカリ電解液(B)として、より水酸化カリウム濃度の低いものを使用することができるので、本発明においては特に望ましい結果が得られる。   On the other hand, when the battery is short-circuited due to the increased reactivity of the positive electrode, an excessive short-circuit current flows immediately after the occurrence of the short-circuit, but due to the rapid discharge reaction of the zinc alloy powder of the negative electrode that occurs at this time, An oxide layer that suppresses the reaction is formed on the surface of the zinc alloy powder at once, and the short-circuit current decreases in a short time. For this reason, it is considered that the heat generated by the discharge is relatively small, the battery temperature rise is suppressed, and abnormal behavior such as leakage of the electrolytic solution or battery rupture can be prevented. Here, if the alkaline electrolyte containing potassium hydroxide at a concentration exceeding 50% by mass is used as the electrolytic solution, the above effect can be more easily obtained, and the alkaline electrolyte (B) of the negative electrode mixture described later Since a lower potassium hydroxide concentration can be used, particularly desirable results can be obtained in the present invention.

ただし、室温での水酸化カリウムの飽和濃度がおよそ50質量%であることから、これより高い濃度のアルカリ電解液を用いる場合は、合剤の温度管理を行うことが望ましい。すなわち、アルカリ電解液の調製は、通常、水酸化カリウムが溶解しやすいように加温された条件下で行われるため、50質量%を超える濃度の水酸化カリウム水溶液を作製することは容易であるが、合剤の作製を室温付近かそれ以下で行う場合は、その温度での飽和量を超えた水酸化カリウムが析出し、均質な合剤の形成が損なわれる可能性が高い。そのため、電解液が飽和濃度に達しないよう加温雰囲気下で合剤構成物を混合し、正極合剤を作製することが望ましい。温度条件としては、水酸化カリウムの飽和溶解量を高めるため、35℃以上で行うことが望ましく、水分の蒸発により電解液組成が変化するのを防ぐため、70℃以下の温度で行うことが望ましい。また、水酸化カリウム濃度が45〜50質量%である場合も、加温雰囲気下で合剤構成物を混合することにより、構成物の分散性が向上して均質な合剤が形成されやすくなる。   However, since the saturated concentration of potassium hydroxide at room temperature is approximately 50% by mass, it is desirable to control the temperature of the mixture when using an alkaline electrolyte having a higher concentration. That is, since the preparation of the alkaline electrolyte is usually performed under conditions that are heated so that potassium hydroxide is easily dissolved, it is easy to produce a potassium hydroxide aqueous solution having a concentration exceeding 50% by mass. However, when the mixture is produced at or near room temperature, it is highly possible that potassium hydroxide exceeding the saturation amount at that temperature precipitates and the formation of a homogeneous mixture is impaired. Therefore, it is desirable to mix the mixture composition in a heated atmosphere so that the electrolytic solution does not reach a saturated concentration to produce a positive electrode mixture. As the temperature condition, it is desirable to carry out at 35 ° C. or higher in order to increase the saturated dissolution amount of potassium hydroxide. . In addition, even when the potassium hydroxide concentration is 45 to 50% by mass, the dispersibility of the composition is improved and a homogeneous mixture is easily formed by mixing the mixture composition in a heated atmosphere. .

また、上記導電剤としては、黒鉛、アセチレンブラック、カーボンブラック、繊維状炭素などの炭素材料を主として用いることができるが、中でも黒鉛が好ましく用いられる。本発明においては、正極の活物質として、二酸化マンガン、あるいは、オキシ水酸化ニッケルやそのニッケルの一部が他の元素で置換された化合物に代表されるニッケル酸化物のいずれか一方かあるいはそれらを混合して用いるが、正極活物質である二酸化マンガンおよびニッケル酸化物の合計量100質量部に対し、6質量部以上の割合で黒鉛を混合することが望ましい。これは、前述した短絡時の異常発熱を抑制する効果が一段と発揮されやすくなるからである。一方、活物質充填量の低下は好ましくないため、黒鉛の割合は、正極活物質である二酸化マンガンおよびニッケル酸化物の合計量100質量部に対し、8.5質量部以下にすることが望ましい。   Moreover, as said electrically conductive agent, carbon materials, such as graphite, acetylene black, carbon black, and fibrous carbon, can be mainly used, However, Among these, graphite is used preferably. In the present invention, as the active material of the positive electrode, manganese dioxide, nickel oxyhydroxide, nickel oxide represented by a compound in which part of nickel is substituted with another element, or any of them is used. Although mixed and used, it is desirable to mix graphite at a ratio of 6 parts by mass or more with respect to 100 parts by mass of the total amount of manganese dioxide and nickel oxide as positive electrode active materials. This is because the effect of suppressing the abnormal heat generation at the time of the short circuit is more easily exhibited. On the other hand, since the reduction of the active material filling amount is not preferable, the proportion of graphite is desirably 8.5 parts by mass or less with respect to 100 parts by mass of the total amount of manganese dioxide and nickel oxide as the positive electrode active material.

上記以外の構成要素として、正極合剤にカルボキシメチルセルロース、メチルセルロース、ポリアクリル酸塩、ポリテトラフルオロエチレン、ポリエチレンなどのバインダを少量含有させることもできる。添加量が多いと導電性が低下するなどの弊害が生じるが、少量であれば導電剤と活物質との接触を良好にするので却って好都合である。   As a constituent element other than the above, a small amount of a binder such as carboxymethyl cellulose, methyl cellulose, polyacrylate, polytetrafluoroethylene, and polyethylene can be contained in the positive electrode mixture. If the added amount is large, adverse effects such as a decrease in conductivity occur, but if the added amount is small, the contact between the conductive agent and the active material is improved, which is advantageous.

また、本発明は、負極合剤の形成において、水酸化カリウムを35質量%以下の濃度で含有するアルカリ電解液(B)を用いることを第2の特徴とする。負極合剤は、亜鉛合金粉末とゲル化剤と水酸化カリウムを溶解したアルカリ電解液(B)とを混合し、ゲル状の混合体として形成されるが、アルカリ電解液(B)の水酸化カリウム濃度を35質量%以下とすることにより、亜鉛合金粉末表面の酸化物被膜の状態を適切なものとすることができ、アルカリ電解液の伝導度を上げて負荷特性を向上させ、また、短絡時の初期段階で放電反応が容易に進行するため、前述した異常発熱の抑制効果が得られやすくなると思われる。   The second feature of the present invention is that an alkaline electrolyte (B) containing potassium hydroxide at a concentration of 35% by mass or less is used in the formation of the negative electrode mixture. The negative electrode mixture is formed by mixing a zinc alloy powder, a gelling agent, and an alkaline electrolyte (B) in which potassium hydroxide is dissolved to form a gel-like mixture. By adjusting the potassium concentration to 35% by mass or less, the state of the oxide coating on the surface of the zinc alloy powder can be made appropriate, the conductivity of the alkaline electrolyte is increased, the load characteristics are improved, and the short circuit is also achieved. Since the discharge reaction proceeds easily at the initial stage of the time, it seems that the above-described effect of suppressing abnormal heat generation is likely to be obtained.

さらに、本発明は、負極合剤の形成において、亜鉛合金粉末として、200メッシュのふるい目を通過する粉末の割合が4質量%以上40質量%以下である亜鉛合金粉末を用いることを第3の特徴とする。亜鉛合金粉末において、200メッシュのふるい目を通過する粉末の割合が4質量%以上であれば、大電流のパルス放電での特性が向上する。亜鉛合金粉末における200メッシュのふるい目を通過する粉末の割合は、15質量%以上がより望ましく、一方、均質で流動性の良好な負極合剤を形成するためには40質量%以下にすることが望ましい。   Furthermore, in the formation of the negative electrode mixture, the present invention uses a zinc alloy powder in which the proportion of the powder passing through the 200 mesh sieve is 4% by mass or more and 40% by mass or less as the zinc alloy powder. Features. In the zinc alloy powder, if the ratio of the powder passing through the 200 mesh sieve is 4% by mass or more, the characteristics in high-current pulse discharge are improved. The proportion of the powder passing through the 200 mesh sieve in the zinc alloy powder is more preferably 15% by mass or more, while it is 40% by mass or less in order to form a negative electrode mixture having a uniform and good fluidity. Is desirable.

また、亜鉛合金粉末の合金元素としてインジウム、ビスマスおよびアルミニウムを含有していることが望ましい。亜鉛合金粉末の表面状態をより好適なものとすることができ、負荷特性や異常発熱の抑制効果に影響をおよぼすだけでなく、亜鉛合金粉末の反応面積を増加させるために微小粒子の割合を多くする場合でも、電解液との反応を抑制しガス発生を防ぐことができるからである。これら元素の含有量としては、インジウム、ビスマスおよびアルミニウムが、それぞれ0.03〜0.07質量%、0.007〜0.025質量%および0.001〜0.004質量%であるのが望ましい。   Moreover, it is desirable to contain indium, bismuth and aluminum as alloy elements of the zinc alloy powder. The surface condition of the zinc alloy powder can be made more suitable, not only affecting the load characteristics and the effect of suppressing abnormal heat generation, but also increasing the proportion of fine particles to increase the reaction area of the zinc alloy powder. This is because the reaction with the electrolytic solution can be suppressed and gas generation can be prevented. As contents of these elements, indium, bismuth and aluminum are preferably 0.03 to 0.07% by mass, 0.007 to 0.025% by mass and 0.001 to 0.004% by mass, respectively. .

また、アルカリ電解液(B)に亜鉛化合物を含有させることによっても、亜鉛合金粉末の表面状態をより好適なものとすることができる。亜鉛化合物としては、酸化亜鉛、ケイ酸亜鉛、チタン酸亜鉛、モリブデン酸亜鉛などを用いることができ、酸化亜鉛が好適に用いられる。亜鉛化合物の溶解度を高めるためには、アルカリ電解液(B)の水酸化カリウム濃度を20質量%以上とすることが望ましい。なお、正極合剤のアルカリ電解液(A)あるいは後述するアルカリ電解液(C)に亜鉛化合物を含有させることもできる。   Moreover, the surface state of a zinc alloy powder can be made more suitable also by making an alkaline electrolyte (B) contain a zinc compound. As the zinc compound, zinc oxide, zinc silicate, zinc titanate, zinc molybdate and the like can be used, and zinc oxide is preferably used. In order to increase the solubility of the zinc compound, the potassium hydroxide concentration of the alkaline electrolyte (B) is desirably 20% by mass or more. In addition, a zinc compound can also be contained in the alkaline electrolyte (A) of the positive electrode mixture or the alkaline electrolyte (C) described later.

上記以外の構成要素として、負極合剤に酸化インジウムなどのインジウム化合物、酸化ビスマスなどのビスマス化合物を少量含有させることもできる。これらの化合物を含有させた場合、亜鉛合金粉末と電解液との反応によるガス発生をより効果的に防ぐことができるが、負荷特性を低下させるおそれがあるので、必要に応じて含有量が決定される。   As constituent elements other than the above, the negative electrode mixture may contain a small amount of an indium compound such as indium oxide or a bismuth compound such as bismuth oxide. When these compounds are contained, gas generation due to the reaction between the zinc alloy powder and the electrolytic solution can be prevented more effectively, but the load characteristics may be reduced, so the content is determined as necessary. Is done.

本発明のアルカリ電池は、上記正極合剤および負極合剤をセパレータと共に外装体内部に封入することにより作製される。ただし、上記正極合剤および負極合剤に含有されるアルカリ電解液のみでは液量が不足する場合が多く、この場合は、さらに電解液を注入してセパレータに吸収させる工程が必要となる。このとき注入されるアルカリ電解液(C)は、20〜40質量%の濃度で水酸化カリウムを溶解させたものが好ましく用いられる。すなわち、前述した短絡時の異常発熱を抑制する効果は、アルカリ電解液(C)の水酸化カリウム濃度にも依存するのであり、できるだけ低い濃度の電解液を用いることが望ましく、35質量%未満であればより好ましい結果が得られる。一方、組み立て後に、電池系内のアルカリ電解液(A)〜(C)は拡散して混じりあい、徐々に一様な電解液に近づいていくが、このとき、アルカリ電解液全体の水酸化カリウムの平均濃度が好適な範囲となるよう、アルカリ電解液(A)〜(C)のそれぞれの水酸化カリウム濃度を調整しておくことが望ましく、アルカリ電解液(C)には20質量%以上の濃度で水酸化カリウムを含有させておくことが望ましい。   The alkaline battery of the present invention is produced by enclosing the positive electrode mixture and the negative electrode mixture together with a separator in the exterior body. However, there are many cases where the amount of liquid is insufficient with only the alkaline electrolyte contained in the positive electrode mixture and the negative electrode mixture. In this case, a step of further injecting the electrolyte and causing the separator to absorb it is necessary. The alkaline electrolyte (C) injected at this time is preferably one in which potassium hydroxide is dissolved at a concentration of 20 to 40% by mass. That is, the effect of suppressing the abnormal heat generation at the time of short circuit described above also depends on the potassium hydroxide concentration of the alkaline electrolyte (C), and it is desirable to use an electrolyte having a concentration as low as possible, less than 35% by mass. If so, more favorable results can be obtained. On the other hand, after the assembly, the alkaline electrolytes (A) to (C) in the battery system are diffused and mixed, and gradually approach a uniform electrolytic solution. It is desirable to adjust the potassium hydroxide concentration of each of the alkaline electrolytes (A) to (C) so that the average concentration of is within a suitable range. It is desirable to contain potassium hydroxide at a concentration.

また、アルカリ電解液(B)だけでなく(A)および(C)にも亜鉛化合物を含有させれば、電池を高温で貯蔵したときの特性劣化を低減する効果が大きくなる。アルカリ電解液(C)の水酸化カリウム濃度を20質量%以上にしておけば、亜鉛化合物の溶解度が高まるため、亜鉛化合物の添加の面からも好都合である。   Further, if the zinc compound is contained not only in the alkaline electrolyte (B) but also in (A) and (C), the effect of reducing characteristic deterioration when the battery is stored at a high temperature is increased. If the potassium hydroxide concentration of the alkaline electrolyte (C) is set to 20% by mass or more, the solubility of the zinc compound increases, which is advantageous from the viewpoint of adding the zinc compound.

上記、アルカリ電解液全体の水酸化カリウムの平均濃度としては、30〜37質量%となるように電池を設計するのが望ましい。水酸化カリウム濃度を30質量%以上とすることにより高温で貯蔵した際の貯蔵性が向上し、33.5質量%以上であればより優れた特性が得られる。一方、37質量%以下とすることにより負荷特性が向上し、また、短絡時の異常発熱の抑制効果が得られやすくなるからである。   It is desirable to design the battery so that the average concentration of potassium hydroxide in the entire alkaline electrolyte is 30 to 37% by mass. When the potassium hydroxide concentration is 30% by mass or more, the storage property when stored at a high temperature is improved, and if it is 33.5% by mass or more, more excellent characteristics are obtained. On the other hand, when the content is 37% by mass or less, load characteristics are improved, and an effect of suppressing abnormal heat generation during a short circuit is easily obtained.

本発明では、電池の形状などは特に限定されないが、外装体として円筒形の金属製外装缶を用いる場合は、リング状に成形された前記正極合剤を外装缶内部に配置し、その内側にコップ状のセパレータを配置し、次いで、アルカリ電解液(C)を注入してセパレータに吸収させ、さらに前記負極合剤をセパレータの内側の空隙に充填し、これら構成要素を外装缶内部に封入することにより電池が組み立てられる。図2に示されるように、円筒形のアルカリ電池においては、外装缶1の開口端部1aを内方に折り曲げて封口を行った際に、負極端子板207の変形を防ぎ、かつ封口体6を内側から支える指示手段として金属ワッシャ9(円板状の金属板)を用いることが一般に行われているが、封口部分10の占める体積が大きくなってしまうという問題がある。   In the present invention, the shape of the battery is not particularly limited. However, when a cylindrical metal outer can is used as the outer casing, the positive electrode mixture formed in a ring shape is disposed inside the outer can, and inside the outer casing can. A cup-shaped separator is placed, and then the alkaline electrolyte (C) is injected and absorbed by the separator. Further, the negative electrode mixture is filled in the gap inside the separator, and these components are sealed inside the outer can. As a result, the battery is assembled. As shown in FIG. 2, in the cylindrical alkaline battery, when the opening end 1 a of the outer can 1 is folded inward and sealed, the negative electrode terminal plate 207 is prevented from being deformed, and the sealing body 6 In general, a metal washer 9 (a disk-shaped metal plate) is used as an instruction means for supporting the seal from the inside, but there is a problem that the volume occupied by the sealing portion 10 is increased.

一方、金属ワッシャをなくし、封口体6を内側から支える指示手段として負極端子板7を利用した図1の電池では、封口部分10の占める体積を減少させることができるので、正極2および負極4の合剤の充填量をより高めることができる反面、電池の高容量化に伴い、短絡時の発熱は一層大きくなる。しかし、このような高容量設計の電池においても、本発明を用いることにより、電池の異常発熱挙動を防ぐことができるので、電池の実用性を高めることができる。   On the other hand, in the battery of FIG. 1 in which the metal washer is eliminated and the negative electrode terminal plate 7 is used as an instruction means for supporting the sealing body 6 from the inside, the volume occupied by the sealing portion 10 can be reduced. On the other hand, the filling amount of the mixture can be further increased. However, as the capacity of the battery is increased, the heat generation at the time of short circuit is further increased. However, even in a battery with such a high capacity design, by using the present invention, the abnormal heat generation behavior of the battery can be prevented, so that the practicality of the battery can be enhanced.

以下において本発明の実施例を説明するが、もちろん本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below. Of course, the present invention is not limited to these examples.

(参考例1)
電解二酸化マンガン、黒鉛、ポリテトラフルオロエチレン粉末およびアルカリ電解液(A)(酸化亜鉛を2.9質量%含有した56質量%水酸化カリウム水溶液)を87.6:6.7:0.2:5.5の質量比で混合し、正極合剤を作製した。この正極合剤の作製は50℃の温度下で行った。また、上記正極合剤中、二酸化マンガン100質量部に対する黒鉛の割合は7.6質量部であった。
(Reference Example 1)
Electrolytic manganese dioxide, graphite, polytetrafluoroethylene powder and alkaline electrolyte (A) (56% by mass aqueous potassium hydroxide solution containing 2.9% by mass of zinc oxide) 87.6: 6.7: 0.2: The mixture was mixed at a mass ratio of 5.5 to prepare a positive electrode mixture. The positive electrode mixture was produced at a temperature of 50 ° C. Moreover, the ratio of the graphite with respect to 100 mass parts of manganese dioxides in the said positive electrode mixture was 7.6 mass parts.

また、インジウム、ビスマスおよびアルミニウムをそれぞれ0.05質量%、0.05質量%および0.005質量%の割合で含有する亜鉛合金粉末、ポリアクリル酸ソーダ、ポリアクリル酸およびアルカリ電解液(B)(酸化亜鉛を2.2質量%含有した32質量%水酸化カリウム水溶液)を39:0.2:0.2:18の質量比で混合し、ゲル状の負極合剤を作製した。なお、上記亜鉛合金粉末は、平均粒径が122μmで、80メッシュのふるい目を全て通過し、かつ200メッシュのふるい目を通過しない亜鉛合金粉末であって、その見掛け密度は2.65g/cmであった。 Also, zinc alloy powder, polyacrylic acid soda, polyacrylic acid, and alkaline electrolyte (B) containing 0.05% by mass, 0.05% by mass, and 0.005% by mass of indium, bismuth, and aluminum, respectively. (A 32% by mass aqueous potassium hydroxide solution containing 2.2% by mass of zinc oxide) was mixed at a mass ratio of 39: 0.2: 0.2: 18 to prepare a gelled negative electrode mixture. The zinc alloy powder is a zinc alloy powder having an average particle size of 122 μm, passing through all 80 mesh screens and not passing through 200 mesh screens, and has an apparent density of 2.65 g / cm. 3 .

外装体として、封口部分10の厚みが0.25mmで、胴部分20の厚みが0.16mmに加工され、また、電池を落下させたときに正極端子1bのへこみを防ぐために、正極端子部分の缶厚を胴部分20より多少厚くしたキルド鋼板製の単三形アルカリ乾電池用外装缶1を用い、以下のようにしてアルカリ電池を作製した。   As the exterior body, the sealing portion 10 has a thickness of 0.25 mm, the body portion 20 has a thickness of 0.16 mm, and in order to prevent the positive terminal 1b from being dented when the battery is dropped, Using an outer can 1 for AA alkaline dry batteries made of a killed steel plate having a can thickness slightly thicker than that of the barrel portion 20, an alkaline battery was produced as follows.

上記正極合剤11gを、内径9.1mm、外径13.7mm、高さ41.7mmの円筒状に加圧成形して正極とし、これを上記外装缶1に挿入した。その後、外装缶1の開口端から高さ方向において3.5mmの位置にグルーブを施し、外装缶1と封口体6との密着性を向上させるために、このグルーブ位置まで外装缶1の内側にピッチを塗布した。   11 g of the positive electrode mixture was press-molded into a cylindrical shape having an inner diameter of 9.1 mm, an outer diameter of 13.7 mm, and a height of 41.7 mm to form a positive electrode, which was inserted into the outer can 1. Thereafter, a groove is applied at a position of 3.5 mm in the height direction from the opening end of the outer can 1, and in order to improve the adhesion between the outer can 1 and the sealing body 6, the inner surface of the outer can 1 is reached to the groove position. Pitch was applied.

次に、厚みが100μmで目付が30g/mのアセタール化ビニロンとテンセルからなる不織布を三重に重ねて筒状に巻き、底部になる部分を折り曲げてこの部分を熱融着し、一端が閉じられたコップ状のセパレータ3とした。このセパレータ3を、外装缶内に挿入された正極1の内側に装填し、さらに、アルカリ電解液(C)(酸化亜鉛を2.2質量%含有した32質量%水酸化カリウム水溶液)1.35gを外装缶内に注入してセパレータ3にしみこませた。次いで、上記負極合剤5.74gをセパレータ3の内側に充填して負極4とし、さらに、ナイロン6−6製の封口体6と組み合わされ、かつ打ち抜き・プレス加工により形成された厚さ0.4mmの負極端子板7(ニッケルメッキ鋼板製)に溶接により取り付けられた負極集電棒5(表面がスズメッキされた真鍮製)を上記負極中央部に差し込み、外装缶1の開口端部1aの外側からスピニング方式によりかしめることにより、図1に示す単3形アルカリ電池を作製した。なお、外装缶1の開口端と負極端子板7との間には、短絡防止のために絶縁板8を装着した。 Next, a nonwoven fabric made of acetalized vinylon having a thickness of 100 μm and a basis weight of 30 g / m 2 and tencel is overlapped in a cylinder, wound into a cylindrical shape, the bottom portion is bent, this portion is heat-sealed, and one end is closed The cup-shaped separator 3 thus obtained was obtained. The separator 3 was loaded inside the positive electrode 1 inserted in the outer can, and further, alkaline electrolyte (C) (32% by mass potassium hydroxide aqueous solution containing 2.2% by mass of zinc oxide) 1.35 g Was poured into the outer can and soaked into the separator 3. Next, 5.74 g of the negative electrode mixture was filled into the separator 3 to form the negative electrode 4, and further combined with the sealing body 6 made of nylon 6-6 and formed by punching / pressing with a thickness of 0. A negative electrode current collector rod 5 (made of brass whose surface is tin-plated) attached to a 4 mm negative electrode terminal plate 7 (made of nickel-plated steel plate) by welding is inserted into the negative electrode central portion, and from the outside of the open end 1a of the outer can 1 The AA alkaline battery shown in FIG. 1 was produced by caulking by a spinning method. An insulating plate 8 was mounted between the open end of the outer can 1 and the negative terminal plate 7 to prevent a short circuit.

上記電池において、組み立て後の電池系内のアルカリ電解液は、平均して35質量%の水酸化カリウムを含有していた。   In the above battery, the alkaline electrolyte in the assembled battery system contained 35% by mass of potassium hydroxide on average.

(参考例2)
電解二酸化マンガン、黒鉛、ポリテトラフルオロエチレン粉末およびアルカリ電解液(A)を89.3:5.1:0.2:5.6の質量比で混合し、正極合剤を作製した以外は参考例1と同様にして、単3形アルカリ電池を作製した。この正極合剤において、二酸化マンガン100質量部に対する黒鉛の割合は5.7質量部であった。
(Reference Example 2)
Reference was made except that electrolytic manganese dioxide, graphite, polytetrafluoroethylene powder and alkaline electrolyte (A) were mixed at a mass ratio of 89.3: 5.1: 0.2: 5.6 to prepare a positive electrode mixture. In the same manner as in Example 1, an AA alkaline battery was produced. In this positive electrode mixture, the ratio of graphite to 100 parts by mass of manganese dioxide was 5.7 parts by mass.

(参考例3)
アルカリ電解液(B)および(C)として、酸化亜鉛を2.0質量%含有した30質量%水酸化カリウム水溶液を用いた以外は参考例1と同様にして、単3形アルカリ電池を作製した。組み立て後の電池系内のアルカリ電解液は、平均して33質量%の水酸化カリウムを含有していた。
(Reference Example 3)
AA alkaline batteries were produced in the same manner as in Reference Example 1 except that 30% by mass potassium hydroxide aqueous solution containing 2.0% by mass of zinc oxide was used as the alkaline electrolytes (B) and (C). . The alkaline electrolyte in the assembled battery system contained 33% by mass of potassium hydroxide on average.

(実施例1)
負極の亜鉛合金粉末としてインジウム、ビスマスおよびアルミニウムをそれぞれ0.05質量%、0.015質量%および0.003質量%の割合で含有し、平均粒径が200μmで、35メッシュのふるい目を全て通過し、かつ200メッシュのふるい目を通過するものの割合が6質量%であって、見掛け密度が2.9g/cmである亜鉛合金粉末を用いた以外は参考例1と同様にして、単3形アルカリ電池を作製した。
Example 1
Indium, bismuth and aluminum are contained in the proportions of 0.05% by mass, 0.015% by mass and 0.003% by mass, respectively, as the zinc alloy powder of the negative electrode, the average particle size is 200 μm, and all 35 mesh sieves Similar to Reference Example 1, except that a zinc alloy powder that passes through and passes through a 200-mesh sieve is 6% by mass and the apparent density is 2.9 g / cm 3. A three-type alkaline battery was produced.

(実施例2)
負極の亜鉛合金粉末として、平均粒径が135μmで、35メッシュのふるい目を全て通過し、かつ200メッシュのふるい目を通過するものの割合が20質量%であって、見掛け密度が2.9g/cmである亜鉛合金粉末を用いた以外は参考例1と同様にして、単3形アルカリ電池を作製した。
(Example 2)
The proportion of the negative electrode zinc alloy powder having an average particle diameter of 135 μm, passing through all 35 mesh sieves and passing through 200 mesh sieves is 20% by mass, and the apparent density is 2.9 g / AA alkaline batteries were produced in the same manner as in Reference Example 1 except that the zinc alloy powder of cm 3 was used.

以上のようにして作製した実施例および参考例に係る電池各々12個に対し、ベース放電電流を0.5Aとし、30秒間隔で2Aのパルス電流を2秒間流すパルス放電試験を行い、2Aのパルス電流が流れた時点の電圧が1.0V以下に低下するまでに要するパルス放電の回数を測定して平均値を求め、負荷特性を評価した。   For each of the 12 batteries according to the example and the reference example manufactured as described above, a pulse discharge test was performed in which a base discharge current was 0.5 A and a pulse current of 2 A was supplied for 2 seconds at 30 second intervals. The number of pulse discharges required until the voltage at the time when the pulse current flowed decreased to 1.0 V or less was measured to obtain an average value, and the load characteristics were evaluated.

また、上記とは別の電池各々12個に対し、電池の外装缶側面の中央部にアルミニウム製のテープで熱伝対を固定し、電池を短絡させたときの外装缶表面温度を測定して平均値を求め、異常発生時の発熱挙動を評価した。このとき、参考例3の電池については電流値の時間変化も測定した。参考例3の電池の短絡電流および外装缶表面温度の短絡開始からの変化を図3に示した。   In addition, for each of 12 batteries different from the above, a thermocouple is fixed with an aluminum tape at the center of the side surface of the battery outer can, and the surface temperature of the outer can when the battery is short-circuited is measured. The average value was obtained and the heat generation behavior when an abnormality occurred was evaluated. At this time, the time change of the current value was also measured for the battery of Reference Example 3. The change from the short-circuit start of the short-circuit current of the battery of Reference Example 3 and the outer can surface is shown in FIG.

さらに、別の電池各々24個に対し、まず、12個を1Aの放電電流で放電させて0.9V以下になるまでの放電時間を測定し、その平均時間を保存前の放電時間とし、次に、残り12個を60℃の恒温槽中に20日間保存し、取り出してから1日室温で冷却後、同じく1Aの放電電流で放電させて0.9V以下になるまでの放電時間を測定し、その平均時間を保存後の放電時間とし、保存前の放電時間に対する保存後の放電時間の割合を容量保持率として求め、高温での電池の貯蔵性を評価した。上記パルス放電の回数、外装缶表面温度および容量保持率の測定結果を表1にまとめて示した。なお、ガス発生は特に問題にはならなかった。   Furthermore, for each of 24 batteries, first, 12 batteries were discharged with a discharge current of 1 A, and the discharge time until 0.9 V or less was measured. The average time was taken as the discharge time before storage. In addition, the remaining 12 pieces were stored in a constant temperature bath at 60 ° C. for 20 days, taken out, cooled at room temperature for 1 day, and then discharged at a discharge current of 1 A and measured for a discharge time of 0.9 V or less. The average time was taken as the discharge time after storage, the ratio of the discharge time after storage to the discharge time before storage was determined as the capacity retention, and the storability of the battery at high temperature was evaluated. Table 1 summarizes the measurement results of the number of pulse discharges, the outer can surface temperature, and the capacity retention. Gas generation was not a problem.

Figure 2007173254
Figure 2007173254

表1の結果より明らかなように、本発明の実施例の電池は、負荷特性が優れ、異常発生時の発熱挙動が抑制されており、高温での貯蔵性にも優れていた。   As is clear from the results in Table 1, the batteries of the examples of the present invention were excellent in load characteristics, suppressed the heat generation behavior when an abnormality occurred, and were excellent in storage at high temperatures.

封口体を内側から支える指示手段として負極端子板を利用したアルカリ電池の全体構造を示す断面図である。It is sectional drawing which shows the whole structure of the alkaline battery using a negative electrode terminal board as an instruction | indication means which supports a sealing body from the inside. 従来のアルカリ電池の一般的な構造を示す断面図である。It is sectional drawing which shows the general structure of the conventional alkaline battery. 参考例3のアルカリ電池を短絡させた際の、短絡電流および外装缶表面温度の変化を示すグラフである。It is a graph which shows the change of a short circuit current and the armored can surface temperature when the alkaline battery of the reference example 3 is short-circuited.

符号の説明Explanation of symbols

1 外装缶
1a 外装缶の開口端部
2 正極
3 セパレータ
4 負極
5 負極集電棒
6 封口体
7、207 負極端子板
8 絶縁板
9 金属ワッシャ
10 封口部分
20 胴部分
DESCRIPTION OF SYMBOLS 1 Outer can 1a Open end 2 of outer can 2 Positive electrode 3 Separator 4 Negative electrode 5 Negative electrode collector rod 6 Sealing body 7,207 Negative electrode terminal board 8 Insulating plate 9 Metal washer 10 Sealing part 20 Trunk part

Claims (9)

二酸化マンガンおよびニッケル酸化物の少なくとも一方と導電剤と水酸化カリウムを溶解したアルカリ電解液(A)とを含有する正極合剤、セパレータ、および亜鉛合金粉末とゲル化剤と水酸化カリウムを溶解したアルカリ電解液(B)とを含有する負極合剤を外装体内部に封入することにより作製されるアルカリ電池であって、
前記正極合剤のアルカリ電解液(A)の水酸化カリウム濃度が45質量%以上であり、前記負極合剤のアルカリ電解液(B)の水酸化カリウム濃度が35質量%以下であり、
負極の亜鉛合金粉末として、200メッシュのふるい目を通過する粉末の割合が4〜40質量%である亜鉛合金粉末を用いたことを特徴とするアルカリ電池。
A positive electrode mixture containing at least one of manganese dioxide and nickel oxide, a conductive agent and an alkaline electrolyte (A) in which potassium hydroxide is dissolved, a separator, and a zinc alloy powder, a gelling agent and potassium hydroxide are dissolved. An alkaline battery produced by enclosing a negative electrode mixture containing an alkaline electrolyte (B) inside an exterior body,
The potassium hydroxide concentration of the alkaline electrolyte (A) of the positive electrode mixture is 45% by mass or more, and the potassium hydroxide concentration of the alkaline electrolyte (B) of the negative electrode mixture is 35% by mass or less,
An alkaline battery using a zinc alloy powder having a ratio of powder passing through a 200 mesh sieve as 4 to 40% by mass as a zinc alloy powder for a negative electrode.
正極合剤のアルカリ電解液(A)の水酸化カリウム濃度が50質量%を超えていることを特徴とする請求項1に記載のアルカリ電池。   The alkaline battery according to claim 1, wherein the potassium hydroxide concentration of the alkaline electrolyte (A) of the positive electrode mixture exceeds 50 mass%. 負極合剤のアルカリ電解液(B)の水酸化カリウム濃度が20質量%以上であることを特徴とする請求項1に記載のアルカリ電池。   The alkaline battery according to claim 1, wherein the concentration of potassium hydroxide in the alkaline electrolyte (B) of the negative electrode mixture is 20% by mass or more. 電池の組み立て時に、さらに、20〜40質量%の濃度で水酸化カリウムを溶解させたアルカリ電解液(C)を外装体内部に注入しセパレータに吸収させたことを特徴とする請求項1〜3のいずれかに記載のアルカリ電池。   The alkaline electrolyte (C) in which potassium hydroxide is dissolved at a concentration of 20 to 40% by mass is injected into the exterior body and absorbed by the separator when the battery is assembled. The alkaline battery according to any one of the above. アルカリ電解液(A)〜(C)のうち少なくとも1つが亜鉛化合物を含有していることを特徴とする請求項4に記載のアルカリ電池。   The alkaline battery according to claim 4, wherein at least one of the alkaline electrolytes (A) to (C) contains a zinc compound. 電池の組み立て後に、電池系内のアルカリ電解液の水酸化カリウム濃度が平均して30〜37質量%となるよう、アルカリ電解液(A)〜(C)のそれぞれの水酸化カリウム濃度を調整したことを特徴とする請求項4または5に記載のアルカリ電池。   After the assembly of the battery, the potassium hydroxide concentration of each of the alkaline electrolytes (A) to (C) was adjusted so that the average potassium hydroxide concentration of the alkaline electrolyte in the battery system was 30 to 37% by mass. The alkaline battery according to claim 4 or 5, wherein 負極の亜鉛合金粉末がインジウム、ビスマスおよびアルミニウムを含有していることを特徴とする請求項1〜6のいずれかに記載のアルカリ電池。   The alkaline battery according to claim 1, wherein the zinc alloy powder of the negative electrode contains indium, bismuth and aluminum. 亜鉛合金粉末に含有されるインジウム、ビスマスおよびアルミニウムの含有量が、それぞれ0.03〜0.07質量%、0.007〜0.025質量%および0.001〜0.004質量%であることを特徴とする請求項7に記載のアルカリ電池。   The contents of indium, bismuth and aluminum contained in the zinc alloy powder are 0.03 to 0.07 mass%, 0.007 to 0.025 mass% and 0.001 to 0.004 mass%, respectively. The alkaline battery according to claim 7. 正極の導電剤として黒鉛を用い、二酸化マンガンおよびニッケル酸化物100質量部に対して黒鉛を6〜8.5質量部としたことを特徴とする請求項1〜8のいずれかに記載のアルカリ電池。
The alkaline battery according to any one of claims 1 to 8, wherein graphite is used as a conductive agent of the positive electrode, and graphite is 6 to 8.5 parts by mass with respect to 100 parts by mass of manganese dioxide and nickel oxide. .
JP2007043169A 2007-02-23 2007-02-23 Alkaline battery Expired - Lifetime JP4717025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043169A JP4717025B2 (en) 2007-02-23 2007-02-23 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043169A JP4717025B2 (en) 2007-02-23 2007-02-23 Alkaline battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002204149A Division JP3935005B2 (en) 2002-07-12 2002-07-12 Alkaline battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007173254A true JP2007173254A (en) 2007-07-05
JP4717025B2 JP4717025B2 (en) 2011-07-06

Family

ID=38299463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043169A Expired - Lifetime JP4717025B2 (en) 2007-02-23 2007-02-23 Alkaline battery

Country Status (1)

Country Link
JP (1) JP4717025B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139909A (en) * 2002-10-18 2004-05-13 Toshiba Battery Co Ltd Sealed nickel-zinc primary battery
JP2009151958A (en) * 2007-12-19 2009-07-09 Hitachi Maxell Ltd Alkaline battery
JP2009170157A (en) * 2008-01-11 2009-07-30 Panasonic Corp Aa alkaline battery
JP2010010012A (en) * 2008-06-30 2010-01-14 Hitachi Maxell Ltd Alkaline battery
JP2010218946A (en) * 2009-03-18 2010-09-30 Hitachi Maxell Ltd Alkaline storage battery
JP2011138642A (en) * 2009-12-28 2011-07-14 Hitachi Maxell Ltd Flat alkaline battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676172A (en) * 1979-11-27 1981-06-23 Matsushita Electric Ind Co Ltd Alkaline battery
JP2001283842A (en) * 2000-03-29 2001-10-12 Dowa Mining Co Ltd Lead alloy powder for alkaline battery and its manufacturing method
WO2001086740A2 (en) * 2000-05-11 2001-11-15 Eveready Battery Company, Inc. Zinc-based electrode for alkaline electrochemical cell
JP3935005B2 (en) * 2002-07-12 2007-06-20 日立マクセル株式会社 Alkaline battery and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676172A (en) * 1979-11-27 1981-06-23 Matsushita Electric Ind Co Ltd Alkaline battery
JP2001283842A (en) * 2000-03-29 2001-10-12 Dowa Mining Co Ltd Lead alloy powder for alkaline battery and its manufacturing method
WO2001086740A2 (en) * 2000-05-11 2001-11-15 Eveready Battery Company, Inc. Zinc-based electrode for alkaline electrochemical cell
JP3935005B2 (en) * 2002-07-12 2007-06-20 日立マクセル株式会社 Alkaline battery and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139909A (en) * 2002-10-18 2004-05-13 Toshiba Battery Co Ltd Sealed nickel-zinc primary battery
JP2009151958A (en) * 2007-12-19 2009-07-09 Hitachi Maxell Ltd Alkaline battery
JP2009170157A (en) * 2008-01-11 2009-07-30 Panasonic Corp Aa alkaline battery
JP2010010012A (en) * 2008-06-30 2010-01-14 Hitachi Maxell Ltd Alkaline battery
JP2010218946A (en) * 2009-03-18 2010-09-30 Hitachi Maxell Ltd Alkaline storage battery
JP2011138642A (en) * 2009-12-28 2011-07-14 Hitachi Maxell Ltd Flat alkaline battery

Also Published As

Publication number Publication date
JP4717025B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
US7767336B2 (en) Alkaline battery and method for producing the same
KR100281729B1 (en) Nickel positive electrode and alkaline storage battery using the same
JP5240897B2 (en) Alkaline battery
JP5152773B2 (en) Alkaline battery
JP4717025B2 (en) Alkaline battery
US20120052353A1 (en) Cylindrical nickel-hydrogen storage battery
JP4156004B2 (en) Alkaline battery
JP3935005B2 (en) Alkaline battery and manufacturing method thereof
JP5348717B2 (en) Alkaline battery
JP5455182B2 (en) Alkaline battery
JP2010153287A (en) Alkaline battery
US8206851B2 (en) AA alkaline battery and AAA alkaline battery
JP4522400B2 (en) Alkaline battery
EP3915161A1 (en) Alkaline electrochemical cells comprising increased zinc oxide levels
JP2008108585A (en) Cylindrical alkaline battery
JP2018037359A (en) Alkali battery
JP3969718B2 (en) Alkaline battery and manufacturing method thereof
JP5019634B2 (en) Alkaline battery
WO2010044176A1 (en) Alkali battery
JP3983266B2 (en) Alkaline battery
JP2005203380A (en) Alkaline battery and its manufacturing method
JP5981807B2 (en) Alkaline battery
JPS63138646A (en) Cylindrical nonaqueous electrolyte cell
JP3968248B2 (en) Aluminum battery
JP4831654B2 (en) Alkaline battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110329

R150 Certificate of patent or registration of utility model

Ref document number: 4717025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250