JP2007173147A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007173147A
JP2007173147A JP2005371775A JP2005371775A JP2007173147A JP 2007173147 A JP2007173147 A JP 2007173147A JP 2005371775 A JP2005371775 A JP 2005371775A JP 2005371775 A JP2005371775 A JP 2005371775A JP 2007173147 A JP2007173147 A JP 2007173147A
Authority
JP
Japan
Prior art keywords
nonaqueous electrolyte
battery
secondary battery
electrolyte secondary
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005371775A
Other languages
Japanese (ja)
Other versions
JP5098171B2 (en
Inventor
Sumio Mori
森  澄男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2005371775A priority Critical patent/JP5098171B2/en
Publication of JP2007173147A publication Critical patent/JP2007173147A/en
Application granted granted Critical
Publication of JP5098171B2 publication Critical patent/JP5098171B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long-life nonaqueous electrolyte secondary battery capable of suppressing increase of resistance of the battery in using it at high temperatures and over a long time. <P>SOLUTION: This nonaqueous electrolyte secondary battery is provided with: a positive electrode containing a substance storing/releasing lithium as a constituent; a negative electrode containing a substance storing/releasing lithium as a constituent; and a nonaqueous electrolyte; and is characterized in that the nonaqueous electrolyte contains a compound represented by chemical formula (1). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery.

民生用の携帯電話、ポータブル機器や携帯情報端末などの急速な小型軽量化・多様化に伴い、その電源である電池に対して、小型で軽量かつ高エネルギー密度で、さらに長期間繰り返し充放電が実現できる二次電池の開発が強く要求されている。なかでも、水溶液系電解液を使用する鉛電池やニッケルカドミウム電池と比較して、これらの欲求を満たす二次電池としてリチウムイオン二次電池などの非水電解質二次電池が最も有望であり、活発な研究がおこなわれている。   Along with the rapid miniaturization and diversification of consumer mobile phones, portable devices and personal digital assistants, etc., the battery that is the power source is small, lightweight, high energy density, and repeatedly charged and discharged for a long time. There is a strong demand for the development of secondary batteries that can be realized. Among them, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are the most promising and active as secondary batteries that satisfy these needs compared to lead batteries and nickel cadmium batteries that use aqueous electrolytes. Research has been conducted.

非水電解質二次電池の正極活物質には、二硫化チタン、五酸化バナジウムおよび三酸化モリブデンをはじめとしてリチウムコバルト複合酸化物、リチウムニッケル複合酸化物およびスピネル型マンガン酸化物等の一般式LiMO(ただし、Mは一種以上の遷移金属)で表される種々の化合物が検討されている。なかでも、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物およびスピネル型リチウムマンガン複合酸化物などは、4V(vs Li/Li)以上の極めて貴な電位での充放電が可能であるため、正極として用いることで高い放電電圧を有する電池を実現できる。 The positive electrode active material of the nonaqueous electrolyte secondary battery includes general formula Li x such as titanium disulfide, vanadium pentoxide and molybdenum trioxide, lithium cobalt composite oxide, lithium nickel composite oxide and spinel type manganese oxide. Various compounds represented by MO 2 (where M is one or more transition metals) have been studied. Among these, lithium cobalt composite oxide, lithium nickel composite oxide, spinel-type lithium manganese composite oxide, and the like can be charged and discharged at an extremely noble potential of 4 V (vs Li / Li + ) or more. As a result, a battery having a high discharge voltage can be realized.

非水電解質二次電池の負極活物質には、金属リチウム、リチウム合金、リチウムの吸蔵・放出が可能な炭素材料などの種々のものが検討されているが、なかでも炭素材料を使用すると、サイクル寿命の長い電池が得られ、かつ安全性が高いという利点がある。   Various negative electrode active materials for non-aqueous electrolyte secondary batteries, such as metallic lithium, lithium alloys, and carbon materials capable of occluding / releasing lithium, have been studied. There is an advantage that a battery having a long life can be obtained and safety is high.

非水電解質二次電池の電解質には、一般にエチレンカーボネートやプロピレンカーボネートなどの高誘電率溶媒とジメチルカーボネートやジエチルカーボネートなどの低粘度溶媒との混合系溶媒にLiPFやLiBF等の支持塩を溶解させた電解液が使用されている。 For the electrolyte of a non-aqueous electrolyte secondary battery, a supporting salt such as LiPF 6 or LiBF 4 is generally mixed with a mixed solvent of a high dielectric constant solvent such as ethylene carbonate or propylene carbonate and a low viscosity solvent such as dimethyl carbonate or diethyl carbonate. A dissolved electrolyte is used.

近年では、ハイブリッドカーなどの移動体用の電源としての非水電解質二次電池の需要もたかまってきており、民生用の携帯電話などよりも更なる長寿命化が必要とされている。電池の寿命特性を向上させる方法として、非水電解質に特定の化合物を混合することが有効であることがわかっており、たとえば特許文献1記載のビニレンカーボネートや特許文献2記載の1,3−プロパンスルトンなどが提案されている。   In recent years, the demand for non-aqueous electrolyte secondary batteries as a power source for mobile bodies such as hybrid cars has been increasing, and it is necessary to further extend the service life of mobile phones for consumer use. As a method for improving battery life characteristics, it has been found that mixing a specific compound with a non-aqueous electrolyte is effective. For example, vinylene carbonate described in Patent Document 1 or 1,3-propane described in Patent Document 2 Sulton has been proposed.

しかしながら、これらの化合物を添加剤として用いても、高温かつ長期の使用時に置いては電池の抵抗が増大し、その効果は十分なものではなく、更なる特性改善が見込める添加剤が要望されていた。
特開平5−13088号 特開平11−162551号
However, even when these compounds are used as additives, the resistance of the battery increases when used at a high temperature for a long period of time, and the effect is not sufficient, and an additive capable of further improving the characteristics is desired. It was.
Japanese Patent Laid-Open No. 5-13088 JP-A-11-162551

請求項1の発明は、リチウムを吸蔵・放出する物質を構成要素とする正極と、リチウムを吸蔵・放出する物質を構成要素とする負極と、非水電解質とを備えた非水電解質二次電池であって、前記非水電解液が化学式(1)で表される化合物を含有することを特徴とする。   The invention according to claim 1 is a non-aqueous electrolyte secondary battery comprising a positive electrode comprising a substance that occludes / releases lithium, a negative electrode comprising a substance that occludes / releases lithium, and a non-aqueous electrolyte. And the said non-aqueous electrolyte contains the compound represented by Chemical formula (1), It is characterized by the above-mentioned.

Figure 2007173147
(ここで、nは1〜3の整数であり、R1およびR2の少なくとも一方は炭素-炭素不飽和結合を含む鎖状または分岐鎖状の基であり、R3およびR4は水素原子、ハロゲンおよび置換基を有していても良い有機基からなる群の中の1種である。)
請求項2の発明は、請求項1において、前記化学式(1)記載の化合物がビス(ビニルスルホニル)メタンおよびビス(アリルスルホニル)メタンのうち少なくとも1種であることを特徴とする請求項1記載の非水電解質二次電池である。
Figure 2007173147
(Where n is an integer of 1 to 3, at least one of R1 and R2 is a chain or branched chain group containing a carbon-carbon unsaturated bond, and R3 and R4 are hydrogen atoms, halogens, and substituents. It is one of the group consisting of organic groups that may have a group.)
The invention of claim 2 is characterized in that, in claim 1, the compound represented by the chemical formula (1) is at least one of bis (vinylsulfonyl) methane and bis (allylsulfonyl) methane. This is a non-aqueous electrolyte secondary battery.

請求項3の発明は、化学式(1)で表される化合物を含有した非水電解液を電池内に注液して非水電解質二次電池を製造することを特徴とする非水電解質二次電池の製造方法である。   The invention according to claim 3 is a non-aqueous electrolyte secondary battery characterized in that a non-aqueous electrolyte secondary battery is produced by injecting a non-aqueous electrolyte containing a compound represented by the chemical formula (1) into the battery. It is a manufacturing method of a battery.

請求項1の発明によれば、リチウムを吸蔵・放出する物質を構成要素とする正極と、リチウムを吸蔵・放出する物質を構成要素とする負極と、非水電解質とを備えた非水電解質二次電池において、前記非水電解液が化学式(1)で表される化合物を含有することにより、高温かつ長期の使用時においても電池の抵抗上昇を小さくすることができる。   According to the first aspect of the present invention, there is provided a non-aqueous electrolyte comprising: a positive electrode having a substance that occludes / releases lithium; a negative electrode having a substance that occludes / releases lithium; and a non-aqueous electrolyte. In the secondary battery, when the non-aqueous electrolyte contains the compound represented by the chemical formula (1), the increase in the resistance of the battery can be reduced even during high temperature and long-term use.

請求項2の発明によれば、化学式(1)の化合物としてビス(ビニルスルホニル)メタンおよびビス(アリルスルホニル)メタンのうち少なくとも1種を用いることにより、高温かつ長期の使用時においても電池の抵抗上昇を特に小さくすることができる。   According to the invention of claim 2, by using at least one of bis (vinylsulfonyl) methane and bis (allylsulfonyl) methane as the compound of the chemical formula (1), the resistance of the battery even at high temperature and for a long period of use. The rise can be particularly small.

請求項3の発明によれば、化学式(1)で表される化合物を含有した非水電解液を電池内に注液して非水電解質二次電池を製造することを特徴とする非水電解質二次電池の製造方法であり、本製造方法で得られた非水電解質二次電池は高温かつ長期の使用時においても電池の抵抗上昇を特に小さくすることができる。   According to the invention of claim 3, a nonaqueous electrolyte secondary battery is produced by injecting a nonaqueous electrolyte containing a compound represented by the chemical formula (1) into the battery. This is a secondary battery manufacturing method, and the non-aqueous electrolyte secondary battery obtained by this manufacturing method can particularly reduce the increase in resistance of the battery even when used at a high temperature for a long time.

本発明は、リチウムを吸蔵・放出する物質を構成要素とする正極と、リチウムを吸蔵・放出する物質を構成要素とする負極と、非水電解質とを備えた非水電解質二次電池であって、前記非水電解液が化学式(1)で表される化合物を含有することを特徴とする。   The present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode comprising a substance that occludes / releases lithium, a negative electrode comprising a substance that occludes / releases lithium, and a non-aqueous electrolyte. The non-aqueous electrolyte contains a compound represented by the chemical formula (1).

Figure 2007173147
(ここで、nは1〜3の整数であり、R1およびR2の少なくとも一方は炭素-炭素不飽和結合を含む鎖状または分岐鎖状の基であり、R3およびR4は水素原子、ハロゲンおよび置換基を有していても良い有機基からなる群の中の1種である。)
ここで、化学式(1)で示される具体例としては、R1およびR2の少なくともいずれか一方がビニル基、アリル基、イソプロペニル基、2−プロピニル基、2−プロペニル基、2−ブテニル基、1,3−ブタジエニル基、2−ペンテニル基、2−ペンテン−4−イニル基などから選択される一価の不飽和基をもつ官能基である化合物を上げることができる。R3およびR4が水素原子の場合、例えばメチルスルホニルビニルスルホニルメタン、エチルスルホニルビニルスルホニルメタン、プロピルスルホニルビニルスルホニルメタン、メチルスルホニルアリルスルホニルエタン、エチルスルホニルアリルスルホニルエタン、プロピルスルホニルアリルスルホニルエタン、ビニルスルホニルフェニルスルホニルメタン、ビニルスルホニルフェニルスルホニルエタン、ビニルスルホニルフェニルスルホニルプロパン、アリルスルホニルフェニルスルホニルメタン、アリルスルホニルフェニルスルホニルエタン、アリルスルホニルフェニルスルホニルプロパン、イソプロペニルスルホニルフェニルスルホニルメタン、イソプロペニルスルホニルフェニルスルホニルエタン、イソプロペニルスルホニルフェニルスルホニルプロパン、ビス(ビニルスルホニル)メタン、ビス(アリルスルホニル)メタン、ビス(イソプロペニルスルホニル)メタン、ビス(ビニルスルホニル)エタン、ビス(アリルスルホニル)エタン、ビス(イソプロペニルスルホニル)エタン、ビス(ビニルスルホニル)プロパン、ビス(アリルスルホニル)プロパン、ビス(イソプロペニルスルホニル)プロパン、アリルスルホニルビニルスルホニルメタン、アリルスルホニルビニルスルホニルエタンおよびアルルスルホニルビニルスルホニルプロパン等があげられる。ここで、R3とR4に相当する部分は水素原子、ハロゲンおよび置換基を有していても良い有機基からなる群の中の1種である。また、これらを単独または混合して使用することができる。これらの中で特に好適なのは、化学式(1)においてR1とR2がともに炭素−炭素不飽和結合を有する鎖状または分岐鎖状の不飽和基であり、R3およびR4を水素原子としたときであり、特に、ビス(ビニルスルホニル)メタンまたはビス(アリルスルホニル)メタンを用いると特に電池の抵抗上昇を抑制する効果が高く、より好適である。これらの化合物を用いた場合に高温かつ長期使用時の電池抵抗上昇が抑制される理由は現時点で明らかではないが、本発明の化合物を用いることで、正極および負極に安定な被膜が形成し、非水電解質の分解を効果的に抑制していることが考えられる。
Figure 2007173147
(Where n is an integer of 1 to 3, at least one of R1 and R2 is a chain or branched chain group containing a carbon-carbon unsaturated bond, and R3 and R4 are hydrogen atoms, halogens, and substituents. It is one of the group consisting of organic groups that may have a group.)
Here, as specific examples represented by the chemical formula (1), at least one of R1 and R2 is vinyl group, allyl group, isopropenyl group, 2-propynyl group, 2-propenyl group, 2-butenyl group, 1 , 3-butadienyl group, 2-pentenyl group, 2-pentene-4-ynyl group, and the like, a compound that is a functional group having a monovalent unsaturated group can be raised. When R3 and R4 are hydrogen atoms, for example, methylsulfonylvinylsulfonylmethane, ethylsulfonylvinylsulfonylmethane, propylsulfonylvinylsulfonylmethane, methylsulfonylallylsulfonylethane, ethylsulfonylallylsulfonylethane, propylsulfonylallylsulfonylethane, vinylsulfonylphenylsulfonyl Methane, vinylsulfonylphenylsulfonylethane, vinylsulfonylphenylsulfonylpropane, allylsulfonylphenylsulfonylmethane, allylsulfonylphenylsulfonylethane, allylsulfonylphenylsulfonylpropane, isopropenylsulfonylphenylsulfonylmethane, isopropenylsulfonylphenylsulfonylethane, isopropenylsulfonylphenol Rusulfonylpropane, bis (vinylsulfonyl) methane, bis (allylsulfonyl) methane, bis (isopropenylsulfonyl) methane, bis (vinylsulfonyl) ethane, bis (allylsulfonyl) ethane, bis (isopropenylsulfonyl) ethane, bis ( Vinylsulfonyl) propane, bis (allylsulfonyl) propane, bis (isopropenylsulfonyl) propane, allylsulfonylvinylsulfonylmethane, allylsulfonylvinylsulfonylethane and allylsulfonylvinylsulfonylpropane. Here, the portion corresponding to R3 and R4 is one of the group consisting of a hydrogen atom, a halogen, and an organic group which may have a substituent. Moreover, these can be used individually or in mixture. Particularly preferred among these is when R1 and R2 in the chemical formula (1) are both chain-like or branched-chain unsaturated groups having a carbon-carbon unsaturated bond, and R3 and R4 are hydrogen atoms. In particular, when bis (vinylsulfonyl) methane or bis (allylsulfonyl) methane is used, the effect of suppressing an increase in battery resistance is particularly high, which is more preferable. The reason why the increase in battery resistance during high-temperature and long-term use is suppressed when these compounds are used is not clear at present, but by using the compound of the present invention, a stable film is formed on the positive electrode and the negative electrode, It is considered that the decomposition of the nonaqueous electrolyte is effectively suppressed.

化学式(1)の化合物の添加量は特に制限されるものではないが、添加量が少なすぎると添加の効果が小さく、逆に過剰に添加すると添加剤のコストがかかるばかりでなく、その効果が小さくなる傾向にあるので、非水電解質を製造する際の非水電解質全体に対する添加量は非水電解質全体に対して0.2wt%〜2.0wt%とすることが好ましく、0.5wt%〜1.0wt%とすることがより好ましい。ここで、添加剤は電池を作製して充放電させると電極上で消費されるため、電池内に残存する量は電池作製時に非水電解質に添加した量よりも減少する。ここでいう添加量は電池作製時に非水電解質に添加した量であって、充放電後の電池内残存量は添加した量よりも減少する。   The addition amount of the compound of the chemical formula (1) is not particularly limited, but if the addition amount is too small, the effect of addition is small. Conversely, if it is added excessively, not only does the cost of the additive increase, but the effect is also high. Since it tends to be small, the amount of addition to the whole nonaqueous electrolyte when producing the nonaqueous electrolyte is preferably 0.2 wt% to 2.0 wt% with respect to the whole nonaqueous electrolyte, 0.5 wt% to More preferably, it is 1.0 wt%. Here, since the additive is consumed on the electrode when the battery is manufactured and charged and discharged, the amount remaining in the battery is smaller than the amount added to the non-aqueous electrolyte when the battery is manufactured. The amount added here is the amount added to the non-aqueous electrolyte at the time of battery preparation, and the amount remaining in the battery after charge / discharge is smaller than the amount added.

非水電解質としては、電解液または固体電解質のいずれも使用することができる。電解液を用いる場合には、電解液溶媒として、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソランやジオキソラン、フルオロエチルメチルエーテル、エチレングリコールジアセテート、プロピレングリコールジアセテート、エチレングリコールジプロピオネート、プロピレングリコールジプロピオネート、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルイソプロピルカーボネート、エチルイソプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、アセトニトリル、フルオロアセトニトリル、エトキシペンタフルオロシクロトリホスファゼン、ジエトキシテトラフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼンなどのアルコキシおよびハロゲン置換環状ホスファゼン類および、鎖状ホスファゼン類、リン酸トリエチル、リン酸トリメチル、リン酸トリオクチルなどのリン酸エステル類、ホウ酸トリエチル、ホウ酸トリブチルなどのホウ酸エステル類、N−メチルオキサゾリジノン、N−エチルオキサゾリジノン等の非水溶媒を、単独でまたはこれらの混合溶媒を使用することができる。   As the non-aqueous electrolyte, either an electrolytic solution or a solid electrolyte can be used. When an electrolytic solution is used, the electrolytic solution solvent is ethylene carbonate, propylene carbonate, butylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, γ-valerolactone, sulfolane, 1,2-dimethoxyethane, 1,2-diethyl. Ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyl-1,3-dioxolane and dioxolane, fluoroethyl methyl ether, ethylene glycol diacetate, propylene glycol diacetate, ethylene glycol dipropionate, propylene glycol dipropionate, acetic acid Methyl, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, dimethyl carbonate, diethyl carbonate , Ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl isopropyl carbonate, ethyl isopropyl carbonate, diisopropyl carbonate, dibutyl carbonate, acetonitrile, fluoroacetonitrile, ethoxypentafluorocyclotriphosphazene, diethoxytetrafluorocyclo Alkoxy and halogen-substituted cyclic phosphazenes such as triphosphazene and phenoxypentafluorocyclotriphosphazene and chain phosphazenes, phosphate esters such as triethyl phosphate, trimethyl phosphate and trioctyl phosphate, triethyl borate and tributyl borate Boric acid esters such as N-methyloxazolidinone, N-ethyloxa A non-aqueous solvent such as Rijinon, alone or can be used mixed solvents thereof.

非水電解質は、これらの非水溶媒に支持塩を溶解して使用する。支持塩としては、LiClO、LiPF、LiBF、LiAsF、LiCFCO、LiCFSO、LiCFCFSO、LiCFCFCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF、LiN(COCFCF、LiBF、LiBC、LiPF(CおよびLiPF(CFCFなどの塩もしくはこれらの混合物を使用することができる。 The nonaqueous electrolyte is used by dissolving the supporting salt in these nonaqueous solvents. Examples of the supporting salt include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiCF 3 CF 2 CF 2 SO 3 , LiN (SO 2 CF 3 ). 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 , LiN (COCF 2 CF 3 ) 2 , LiBF 2 C 2 O 4 , LiBC 4 O 8 , LiPF 2 (C 2 O 4 ) 2 And salts such as LiPF 3 (CF 2 CF 3 ) 3 or mixtures thereof can be used.

また、電池特性向上のために、少量の化合物を非水電解質中に混合してもよく、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、プロピルビニレンカーボネート、フェニルビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、フルオロエチレンカーボネートなどのカーボネート類、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類、ジアリルスルフィド、アリルフェニルスルフィド、アリルビニルスルフィド、アリルエチルスルフィド、プロピルスルフィド、ジアリルジスルフィド、アリルエチルジスルフィド、アリルプロピルジスルフィド、アリルフェニルジスルフィド等のスルフィド類、1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−プロぺンスルトン、1,4−ブテンスルトン等の環状スルホン酸エステル類、メタンスルホン酸メチル、メタンスルホン酸エチル、メタンスルホン酸プロピル、エタンスルホン酸メチル、エタンスルホン酸エチル、エタンスルホン酸プロピル、ベンゼンスルホン酸メチル、ベンゼンスルホン酸エチル、ベンゼンスルホン酸プロピル、メタンスルホン酸フェニル、エタンスルホン酸フェニル、プロパンスルホン酸フェニル、ベンジルスルホン酸メチル、ベンジルスルホン酸エチル、ベンジルスルホン酸プロピル、メタンスルホン酸ベンジル、エタンスルホン酸ベンジル、プロパンスルホン酸ベンジル等の鎖状スルホン酸エステル類、ジメチルサルファイト、ジエチルサルファイト、エチルメチルサルファイト、メチルプロピルサルファイト、エチルプロピルサルファイト、ジフェニルサルファイト、メチルフェニルサルファイト、エチレンサルファイト、ビニルエチレンサルファイト、ジビニルエチレンサルファイト、プロピレンサルファイト、ビニルプロピレンサルファイト、ブチレンサルファイト、ビニルブチレンサルファイト、ビニレンサルファイト、フェニルエチレンサルファイトなどの亜硫酸エステル類、硫酸ジメチル、硫酸ジエチル、エチレングリコール硫酸エステル、プロピレングリコール硫酸エステル、ブチレングリコール硫酸エステル、ペンテングリコール硫酸エステルなどの硫酸エステル類、ベンゼン、トルエン、キシレン、フルオロベンゼン、ビフェニル、シクロヘキシルベンゼン、2−フルオロビフェニル、4−フルオロビフェニル、ジフェニルエーテル、tert−ブチルベンゼン、オルトターフェニル、メタターフェニル、ナフタレン、フルオロナフタレン、クメン、フルオロベンゼン、2,4−ジフルオロアニソールなどの芳香族化合物、パーフルオロオクタンなどのハロゲン置換アルカン、ホウ酸トリストリメチルシリル、硫酸ビストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリルなどのシリルエステル類など、目的に応じて適宜添加してもよい。   In order to improve battery characteristics, a small amount of compound may be mixed in the non-aqueous electrolyte, such as vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, propyl vinylene carbonate, phenyl vinylene carbonate, vinyl ethylene carbonate, divinyl ethylene carbonate. , Carbonates such as dimethyl vinylene carbonate, diethyl vinylene carbonate, fluoroethylene carbonate, vinyl esters such as vinyl acetate and vinyl propionate, diallyl sulfide, allyl phenyl sulfide, allyl vinyl sulfide, allyl ethyl sulfide, propyl sulfide, diallyl disulfide, Sulfides such as allylethyl disulfide, allylpropyl disulfide, allylphenyl disulfide, , 3-propane sultone, 1,4-butane sultone, 1,3-propene sultone, cyclic sulfonic acid esters such as 1,4-butene sultone, methyl methanesulfonate, ethyl methanesulfonate, propyl methanesulfonate, ethanesulfone Acid methyl, ethyl ethane sulfonate, propyl ethane sulfonate, methyl benzene sulfonate, ethyl benzene sulfonate, propyl benzene sulfonate, phenyl methane sulfonate, phenyl ethane sulfonate, phenyl propane sulfonate, methyl benzyl sulfonate, benzyl sulfone Chain sulfonates such as ethyl acrylate, propyl benzyl sulfonate, benzyl methanesulfonate, benzyl ethanesulfonate, benzyl propanesulfonate, dimethyl sulfite, diethyl sulfite, Tylmethyl sulfite, methyl propyl sulfite, ethyl propyl sulfite, diphenyl sulfite, methyl phenyl sulfite, ethylene sulfite, vinyl ethylene sulfite, divinyl ethylene sulfite, propylene sulfite, vinyl propylene sulfite, butylene sulfite , Sulfites such as vinyl butylene sulfite, vinylene sulfite, phenylethylene sulfite, sulfate esters such as dimethyl sulfate, diethyl sulfate, ethylene glycol sulfate, propylene glycol sulfate, butylene glycol sulfate, pentene glycol sulfate , Benzene, toluene, xylene, fluorobenzene, biphenyl, cyclohexylbenzene, 2-fluoro Aromatic compounds such as phenyl, 4-fluorobiphenyl, diphenyl ether, tert-butylbenzene, orthoterphenyl, metaterphenyl, naphthalene, fluoronaphthalene, cumene, fluorobenzene, 2,4-difluoroanisole, halogens such as perfluorooctane A substituted alkane, tristrimethylsilyl borate, bistrimethylsilyl sulfate, tristrimethylsilyl phosphate, silyl esters such as tetrakistrimethylsilyl titanate, and the like may be added depending on the purpose.

固体電解質を用いる場合は、高分子固体電解質として有孔性高分子固体電解質膜を用い、高分子固体電解質にさらに電解液を含有させることで良い。また、ゲル状の高分子固体電解質を用いる場合には、ゲルを構成する電解液と、細孔中等に含有されている電解液とは異なっていてもよい。このような高分子固体電解質を用いる場合には、本願発明の化学式(1)記載の化合物を電解液中に含有させれば良い。ただし、HEV用途のように高い出力が要求される場合は、固体電解質や高分子固体電解質を用いるよりも電解質として非水電解液を単独で用いるほうがより好ましい。   When a solid electrolyte is used, a porous polymer solid electrolyte membrane may be used as the polymer solid electrolyte, and an electrolyte solution may be further contained in the polymer solid electrolyte. Moreover, when using a gel-like polymer solid electrolyte, the electrolyte solution which comprises gel and the electrolyte solution contained in the pore etc. may differ. When such a polymer solid electrolyte is used, the compound described in the chemical formula (1) of the present invention may be contained in the electrolytic solution. However, when high output is required as in HEV applications, it is more preferable to use a non-aqueous electrolyte alone as the electrolyte than to use a solid electrolyte or a polymer solid electrolyte.

本発明を適用する非水電解質二次電池の正極活物質としては、特に制限はなく、種々の材料を適宜使用できる。例えば、二酸化マンガン、スピネル型マンガン酸リチウム、五酸化バナジウムのような遷移金属化合物や、硫化鉄、硫化チタンのような遷移金属カルコゲン化合物、さらにはこれらの遷移金属とリチウムの複合酸化物LixMO2−δ(ただし、Mは、Co、NiまたはMnを表し、0.4≦x≦1.2、0≦δ≦0.5である複合酸化物)、またはこれらの複合酸化物にAl、Mn、Fe、Ni、Co、Cr、Ti、Zn、Zrから選ばれる少なくとも一種の元素、または、P、Bなどの非金属元素を含有した化合物を使用することができる。さらに、好ましくはリチウムとニッケルの複合酸化物、すなわちLixNipM1qM2rO2−δで表される正極活物質(ただし、M1、M2はAl、Mn、Fe、Co、Cr、Ti、Zn、Zrから選ばれる少なくとも一種の元素、または、P、Bなどの非金属元素でもよい。さらに0.4≦x≦1.2、0.8≦p+q+r≦1.2、0≦δ≦0.5である)などを用いることができる。また、有機化合物としては、例えばポリアニリン等の導電性ポリマー等が挙げられる。.さらに、無機化合物、有機化合物を問わず、上記各種活物質を混合して用いてもよい。 There is no restriction | limiting in particular as a positive electrode active material of the nonaqueous electrolyte secondary battery to which this invention is applied, A various material can be used suitably. For example, transition metal compounds such as manganese dioxide, spinel type lithium manganate, vanadium pentoxide, transition metal chalcogen compounds such as iron sulfide and titanium sulfide, and composite oxides of these transition metals and lithium LixMO 2− δ (wherein M represents Co, Ni, or Mn, and 0.4 ≦ x ≦ 1.2 and 0 ≦ δ ≦ 0.5), or these composite oxides include Al, Mn, A compound containing at least one element selected from Fe, Ni, Co, Cr, Ti, Zn, and Zr, or a nonmetallic element such as P and B can be used. Further, preferably a composite oxide of lithium and nickel, that is, a positive electrode active material represented by LixNipM1qM2rO 2-δ (where M1 and M2 are at least selected from Al, Mn, Fe, Co, Cr, Ti, Zn, Zr) It may be a kind of element or a nonmetallic element such as P or B. Furthermore, 0.4 ≦ x ≦ 1.2, 0.8 ≦ p + q + r ≦ 1.2, and 0 ≦ δ ≦ 0.5. Can be used. Examples of the organic compound include conductive polymers such as polyaniline. . Furthermore, the above various active materials may be mixed and used regardless of whether they are inorganic compounds or organic compounds.

さらに、負極材料たる化合物としては、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金、LiFe、WO、MoO、SiO、CuO等の金属酸化物、難黒鉛化性炭素や易黒鉛化性炭素等の非晶質炭素質材料、黒鉛などの結晶性炭素材料、LiN等の窒化リチウム、チタン酸リチウム、もしくは金属リチウム、又はこれらの混合物を用いてもよく、複合体を用いてもよい。特に好ましくは、非晶質炭素材料を用いることが望ましい。 Further, as a negative electrode material compound, Al, Si, Pb, Sn, Zn, Cd and lithium alloy, LiFe 2 O 3 , WO 2 , MoO 2 , SiO, CuO and other metal oxides, non-graphitized Amorphous carbonaceous materials such as carbon and easily graphitizable carbon, crystalline carbon materials such as graphite, lithium nitride such as Li 3 N, lithium titanate, metallic lithium, or a mixture thereof may be used. A complex may be used. It is particularly preferable to use an amorphous carbon material.

また、本発明に係る非水電解質電池の隔離体としては、織布、不織布、合成樹脂微多孔膜等を用いることができ、特に、合成樹脂微多孔膜を好適に用いることができる。中でもポリエチレン及びポリプロピレン製微多孔膜、アラミドやポリイミドと複合化させたポリエチレンおよびポリプロピレン製微多孔膜、または、これらを複合した微多孔膜等のポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗等の面で好適に用いられる。   Moreover, as a separator of the nonaqueous electrolyte battery according to the present invention, a woven fabric, a non-woven fabric, a synthetic resin microporous membrane, or the like can be used, and a synthetic resin microporous membrane can be particularly preferably used. Among them, polyolefin-based microporous membranes such as polyethylene and polypropylene microporous membranes, polyethylene and polypropylene microporous membranes combined with aramid and polyimide, or microporous membranes composited with these have thickness, membrane strength, membrane It is preferably used in terms of resistance and the like.

さらに、高分子固体電解質等の固体電解質を用いることで、セパレータを兼ねさせることもできる。さらに、合成樹脂微多孔膜と高分子固体電解質等を組み合わせて使用してもよい。この場合、高分子固体電解質として有孔性高分子固体電解質膜を用い、高分子固体電解質にさらに電解液を含有させることで良い。ただしこの場合、電池出力が低下する原因となるので、高分子固体電解質を最小限の量にとどめるほうが好ましい。   Furthermore, a separator can also be used by using a solid electrolyte such as a polymer solid electrolyte. Further, a synthetic resin microporous membrane and a polymer solid electrolyte may be used in combination. In this case, a porous polymer solid electrolyte membrane may be used as the polymer solid electrolyte, and the polymer solid electrolyte may further contain an electrolytic solution. However, in this case, since the battery output is reduced, it is preferable to keep the polymer solid electrolyte in a minimum amount.

また、電池の形状は特に限定されるものではなく、角形、長円筒形、コイン形、ボタン形、シート形、円筒型電池等の様々な形状の非水電解質二次電池に適用可能である。   The shape of the battery is not particularly limited, and can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a rectangular shape, a long cylindrical shape, a coin shape, a button shape, a sheet shape, and a cylindrical battery.

以下、本発明を適用した具体的な実施例について説明するが、本発明は本実施例により何ら限定されるものではなく、その主旨を変更しない範囲において適宜変更して実施することが可能である。   Hereinafter, specific examples to which the present invention is applied will be described. However, the present invention is not limited to the examples, and can be appropriately modified and implemented without departing from the scope of the present invention. .

[実施例1]
図1は、本実施例の角形非水電解質二次電池の概略断面図である。この角形非水電解質二次電池1は、アルミニウム集電体に正極合材を塗布してなる正極3と、銅集電体に負極合材を塗布してなる負極4とがセパレータ5を介して巻回された扁平巻状電極群2と、非水電解液とを電池ケース6に収納してなる、幅34mm×高さ50mm×厚さ5.0mmのものである。
[Example 1]
FIG. 1 is a schematic cross-sectional view of a prismatic nonaqueous electrolyte secondary battery of the present example. In this rectangular nonaqueous electrolyte secondary battery 1, a positive electrode 3 formed by applying a positive electrode mixture to an aluminum current collector and a negative electrode 4 formed by applying a negative electrode mixture to a copper current collector are interposed via a separator 5. The wound flat flat electrode group 2 and the non-aqueous electrolyte are housed in a battery case 6 and have a width of 34 mm × a height of 50 mm × a thickness of 5.0 mm.

電池ケース6には、安全弁8を設けた電池蓋7がレーザー溶接によって取り付けられ、負極端子9は負極リード11を介して負極4と接続され、正極3は正極リード10を介して電池蓋と接続されている。   A battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, a negative electrode terminal 9 is connected to the negative electrode 4 via a negative electrode lead 11, and a positive electrode 3 is connected to the battery lid via a positive electrode lead 10. Has been.

正極板は、結着剤であるポリフッ化ビニリデン8重量%と導電剤であるアセチレンブラック6重量%とリチウム−コバルト−ニッケル−マンガン複合酸化物である正極活物質LiCo0.34Ni0.33Mn0.3386重量%とを混合してなる正極合材に、N−メチルピロリドンを加えてペースト状に調製した後、これを厚さ20μmのアルミニウム箔集電体両面に塗布、乾燥することによって作製した。 The positive electrode plate is composed of 8% by weight of polyvinylidene fluoride as a binder, 6% by weight of acetylene black as a conductive agent, and a positive electrode active material LiCo 0.34 Ni 0.33 Mn which is a lithium-cobalt-nickel-manganese composite oxide. N-methylpyrrolidone is added to a positive electrode mixture obtained by mixing 86% by weight of 0.33 O 2 to prepare a paste, which is then applied to both sides of a 20 μm thick aluminum foil current collector and dried. It was prepared by.

負極板は、難黒鉛化性炭素95重量%とポリフッ化ビニリデン5重量%をN−メチルピロリドンに加えてペースト状に調製した後、これを厚さ10μmの銅箔集電体両面に塗布、乾燥することによって製作した。   A negative electrode plate was prepared by adding 95% by weight of non-graphitizable carbon and 5% by weight of polyvinylidene fluoride to N-methylpyrrolidone to prepare a paste, which was then applied to both sides of a 10 μm thick copper foil current collector and dried. Made by doing.

セパレータには、ポリエチレン微多孔膜を用いた。また、電解液には、エチレンカーボネート(EC):ジメチルカーボネート(DMC):エチルメチルカーボネート(EMC)=3:2:5(体積比)の混合溶媒に、更にLiPFを調整後に1mol/Lとなるように溶解し、さらにビス(ビニルスルホニル)メタン[BBSM:CHCHS(O)CHS(O)CHCH]を非水電解質全体に対して0.05wt%の濃度となるようにそれぞれ添加したものを用い、電池内に注液した。 A polyethylene microporous membrane was used for the separator. In addition, in the electrolytic solution, a mixed solvent of ethylene carbonate (EC): dimethyl carbonate (DMC): ethyl methyl carbonate (EMC) = 3: 2: 5 (volume ratio) was further adjusted to 1 mol / L after adjusting LiPF 6. In addition, bis (vinylsulfonyl) methane [BBSM: CH 2 CHS (O 2 ) CH 2 S (O 2 ) CHCH 2 ] is adjusted to a concentration of 0.05 wt% with respect to the entire nonaqueous electrolyte. Each was added to the battery and poured into the battery.

以上の構成・手順で実施例1の非水電解質二次電池を3セル作製した。   Three cells of the nonaqueous electrolyte secondary battery of Example 1 were produced by the above-described configuration and procedure.

[実施例2〜9]
実施例2〜9の6種類の電池については、表1に示すように、非水電解質に添加したBBSMの量を変化させた以外は、実施例1とまったく同様にして、非水電解質二次電池を各3セルずつ作製した。
[Examples 2 to 9]
For the six types of batteries of Examples 2 to 9, as shown in Table 1, the nonaqueous electrolyte secondary battery was exactly the same as Example 1 except that the amount of BBSM added to the nonaqueous electrolyte was changed. Three batteries each were produced.

[実施例10]
実施例10の電池については、ビス(ビニルスルホニル)メタンのかわりにビス(アリルスルホニル)メタン[BASM:CHCHCHS(O)CHS(O)CHCHCH]を用いた以外は実施例1とまったく同様にして非水電解質二次電池を作製した。
[Example 10]
For the battery of Example 10, bis (allylsulfonyl) methane [BASM: CH 2 CHCH 2 S (O 2 ) CH 2 S (O 2 ) CH 2 CHCH 2 ] was used instead of bis (vinylsulfonyl) methane. A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 1 except for the above.

[実施例11]
実施例11の電池については、ビス(ビニルスルホニル)メタンのかわりにビス(ビニルスルホニル)プロパン[BBSP:CHCHS(O)CHCHCHS(O)CHCH]を用いた以外は実施例1とまったく同様にして非水電解質二次電池を作製した。
[Example 11]
For the battery of Example 11, bis (vinylsulfonyl) propane [BBSP: CH 2 CHS (O 2 ) CH 2 CH 2 CH 2 S (O 2 ) CHCH 2 ] was used instead of bis (vinylsulfonyl) methane. A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 1 except for the above.

[比較例1]
比較例1の電池については、ビス(ビニルスルホニル)メタンを添加しない以外は実施例1とまったく同様にして非水電解質二次電池を作製した。
[Comparative Example 1]
For the battery of Comparative Example 1, a nonaqueous electrolyte secondary battery was produced in exactly the same manner as in Example 1 except that bis (vinylsulfonyl) methane was not added.

Figure 2007173147
以上のようにして作製した実施例1〜11および比較例1の角形非水電解質二次電池について、25℃における初期放電容量を測定し、いずれも470mAとほぼ同等の放電容量が得られていることを確認した。なお、放電容量は、25℃において、充電電流90mA、充電電圧4.28Vの定電流−定電圧充電で6時間充電した後、すなわち、90mAの電流値で充電して電圧が4.28Vに達したのち、定電圧充電をおこない、合計で6時間の充電をおこなった後、放電電流90mA、終止電圧2.50Vの条件で定電流放電をおこなうことにより測定した。
Figure 2007173147
With respect to the rectangular nonaqueous electrolyte secondary batteries of Examples 1 to 11 and Comparative Example 1 manufactured as described above, the initial discharge capacity at 25 ° C. was measured, and a discharge capacity almost equal to 470 mA was obtained in each case. It was confirmed. The discharge capacity was 25 ° C. After charging for 6 hours with a constant current-constant voltage charge with a charge current of 90 mA and a charge voltage of 4.28 V, that is, with a current value of 90 mA, the voltage reached 4.28 V. Thereafter, constant voltage charging was performed, charging was performed for a total of 6 hours, and then, constant current discharging was performed under conditions of a discharge current of 90 mA and a final voltage of 2.50 V.

直流抵抗の測定は、25℃において、充電電流0.5CmA(235mA)の電流値で1時間充電することにより電池のSOCを50%に設定し、0.2CmAで10秒間放電した時の電圧、0.5CmAで10秒間放電したときの電圧および1CmAで10秒間放電したときの電圧をそれぞれ測定し、放電電流(I)に対する電圧降下(E)の傾き(R=E/I)を測定することにより測定した。   The DC resistance was measured by setting the battery SOC to 50% by charging for 1 hour at a current value of 0.5 CmA (235 mA) at 25 ° C., and the voltage when discharged at 0.2 CmA for 10 seconds. Measure the voltage when discharged at 0.5 CmA for 10 seconds and the voltage when discharged at 1 CmA for 10 seconds, and measure the slope of the voltage drop (E) with respect to the discharge current (I) (R = E / I) It was measured by.

放置試験は以下の方法でおこなった。初期の直流抵抗Raを測定後、0.4CmA(188mA)の電流値で2時間充電して電池のSOCを80%に設定し、60℃の恒温槽で30日間保存した。25℃に冷却後、初期放電容量確認した条件と同様の方法で放電し、その後、試験後の直流抵抗Rbについて、初期直流抵抗Raを測定した条件と同様に測定した。   The neglect test was conducted by the following method. After measuring the initial DC resistance Ra, the battery was charged at a current value of 0.4 CmA (188 mA) for 2 hours to set the SOC of the battery to 80%, and stored in a constant temperature bath at 60 ° C. for 30 days. After cooling to 25 ° C., the battery was discharged in the same manner as the condition for confirming the initial discharge capacity, and then the DC resistance Rb after the test was measured in the same manner as the condition for measuring the initial DC resistance Ra.

直流抵抗の増加率は、60℃放置試験前の直流抵抗Raと60℃30日放置試験後の直流抵抗Rbから以下の式を用いて算出した。   The increase rate of the DC resistance was calculated from the DC resistance Ra before the 60 ° C. standing test and the DC resistance Rb after the 60 ° C. standing test using the following formula.

直流抵抗増加率(%)=((Rb/Ra)−1)*100
表2に、実施例1〜11、および比較例1の直流抵抗増加率を示す。
DC resistance increase rate (%) = ((Rb / Ra) −1) * 100
Table 2 shows the DC resistance increase rates of Examples 1 to 11 and Comparative Example 1.

Figure 2007173147
比較例1の添加剤未添加の場合は60℃で30日放置後の直流抵抗が37%上昇したのに対し、BBSMを0.05wt%添加した場合では35%の増加にとどまった。また、BBSMの添加量を5.0wt%まで増やしていくと、0.05wt%から1.0wt%では添加量が多いほど直流抵抗の増加率は小さくなり、さらに1.0から5.0wt%と添加量を増やしていくと逆に効果が小さくなる傾向がみられた。いずれの添加量でも比較例1の未添加と比較して直流抵抗の増加率は小さく、直流抵抗増加を低減できることが確認された。しかし、添加量が0.05wt%の実施例1や0.1wt%の実施例2ではその効果が十分大きなものではなく、逆に添加量が3.0wt%と多過ぎるとBBSMを添加した効果が小さくなっていくこと、また添加量が0.2wt%〜2.0wt%とすることで直流抵抗の増加率が比較例1よりも15%以上も低かったことから、BBSMの添加量としては0.2wt〜2.0wt%が好ましいことがわかった。さらに、添加量が0.5wt%〜1.5wt%の時に直流抵抗の増加率が比較例1よりも25%〜29%低く、直流抵抗の増大抑制効果が著しかったことから、より好ましい添加量は0.5wt%〜1.5wt%であることがわかった。ここで、添加量が多い場合に直流抵抗の増加率が実施例5の1.0wt%添加よりも大きかった理由としては、添加量が過剰であったために、過剰のBBSMが電池内で好ましくない副反応をおこしたためであると考えられる。
Figure 2007173147
When the additive of Comparative Example 1 was not added, the direct current resistance after standing for 30 days at 60 ° C. increased by 37%, whereas when BBSM was added by 0.05 wt%, the increase was only 35%. Further, when the addition amount of BBSM is increased to 5.0 wt%, the increase rate of DC resistance decreases as the addition amount increases from 0.05 wt% to 1.0 wt%, and further from 1.0 to 5.0 wt%. On the contrary, when the amount added was increased, the effect tended to decrease. In any addition amount, the increase rate of the DC resistance was small compared with the non-addition of Comparative Example 1, and it was confirmed that the increase in DC resistance could be reduced. However, in Example 1 where the addition amount is 0.05 wt% and in Example 2 where the addition amount is 0.05 wt%, the effect is not sufficiently large. Conversely, if the addition amount is too large as 3.0 wt%, the effect of adding BBSM Since the rate of increase in DC resistance was 15% or more lower than that of Comparative Example 1 by adding 0.2 wt% to 2.0 wt%, the amount of BBSM added was It turned out that 0.2 wt-2.0 wt% is preferable. Furthermore, when the addition amount is 0.5 wt% to 1.5 wt%, the rate of increase in DC resistance is 25% to 29% lower than that of Comparative Example 1, and the effect of suppressing the increase in DC resistance was remarkable. Was found to be 0.5 wt% to 1.5 wt%. Here, the reason why the increase rate of the DC resistance was larger than the addition of 1.0 wt% of Example 5 when the addition amount was large was that the addition amount was excessive, and therefore excessive BBSM was not preferable in the battery. This is probably because of a side reaction.

また、BBSMの類似化合物であるBASMを添加した実施例10でも実施例4とほぼ同様の効果が得られた。さらにBBSPを添加した実施例11でも、実施例4や実施例10よりはやや劣るものの比較例1よりも明らかに直流抵抗の増大が小さかった。なお、ここではEC:EMCの混合系について記述したが、環状カーボネートと鎖状カーボネートの比率を変化させた場合や、電解質塩の種類や濃度を変化させた場合、また、鎖状カーボネートとして、ジエチルカーボネートやメチルプロピルカーボネートなどを用いた場合や、酢酸エチルなどのカルボン酸エステルを用いた場合にも同様の傾向が見られ、さらに、環状カーボネートとしてプロピレンカーボネートを使用した場合にも同様の傾向が得られた。   Further, in Example 10 to which BASM, which is a similar compound of BBSM, was added, the same effect as in Example 4 was obtained. Further, in Example 11 to which BBSP was added, the increase in DC resistance was clearly smaller than that in Comparative Example 1 although it was slightly inferior to Example 4 and Example 10. In addition, although the mixed system of EC: EMC was described here, when the ratio of the cyclic carbonate and the chain carbonate was changed, when the type and concentration of the electrolyte salt were changed, and as the chain carbonate, diethyl The same tendency is observed when using carbonate or methylpropyl carbonate, or when using a carboxylic acid ester such as ethyl acetate, and the same tendency is obtained when propylene carbonate is used as the cyclic carbonate. It was.

本発明の実施例及び比較例の角形電池の断面構造を示す図。The figure which shows the cross-section of the square battery of the Example and comparative example of this invention.

符号の説明Explanation of symbols

1 角形非水電解質二次電池
2 巻回型電極群
3 正極
4 負極
5 セパレータ
6 電池ケース
7 電池蓋
8 安全弁
9 負極端子
10 正極リード
11 負極リード
DESCRIPTION OF SYMBOLS 1 Square nonaqueous electrolyte secondary battery 2 Winding type electrode group 3 Positive electrode 4 Negative electrode 5 Separator 6 Battery case 7 Battery cover 8 Safety valve 9 Negative electrode terminal 10 Positive electrode lead 11 Negative electrode lead

Claims (3)

リチウムを吸蔵・放出する物質を構成要素とする正極と、リチウムを吸蔵・放出する物質を構成要素とする負極と、非水電解質とを備え、前記非水電解質が化学式(1)で表される化合物を含有することを特徴とした非水電解質二次電池。
Figure 2007173147
(ここで、nは1〜3の整数であり、R1およびR2の少なくとも一方は炭素-炭素不飽和結合を含む鎖状または分岐鎖状の基であり、R3およびR4は水素原子、ハロゲンおよび置換基を有していても良い有機基からなる群の中の1種である。)
A positive electrode having a substance that occludes / releases lithium as a constituent element, a negative electrode having a substance that occludes / releases lithium as a constituent element, and a nonaqueous electrolyte, wherein the nonaqueous electrolyte is represented by chemical formula (1) A non-aqueous electrolyte secondary battery comprising a compound.
Figure 2007173147
(Where n is an integer of 1 to 3, at least one of R1 and R2 is a chain or branched chain group containing a carbon-carbon unsaturated bond, and R3 and R4 are hydrogen atoms, halogens, and substituents. It is one of the group consisting of organic groups that may have a group.)
前記化学式(1)記載の化合物がビス(ビニルスルホニル)メタンおよびビス(アリルスルホニル)メタンのうち少なくとも1種であることを特徴とする請求項1記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the compound represented by the chemical formula (1) is at least one of bis (vinylsulfonyl) methane and bis (allylsulfonyl) methane. 化学式(1)で表される化合物を含有した非水電解液を電池内に注液して非水電解質二次電池を製造することを特徴とする非水電解質二次電池の製造方法。 A method for producing a nonaqueous electrolyte secondary battery, which comprises injecting a nonaqueous electrolyte solution containing a compound represented by the chemical formula (1) into a battery to produce a nonaqueous electrolyte secondary battery.
JP2005371775A 2005-12-26 2005-12-26 Nonaqueous electrolyte secondary battery Expired - Fee Related JP5098171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005371775A JP5098171B2 (en) 2005-12-26 2005-12-26 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005371775A JP5098171B2 (en) 2005-12-26 2005-12-26 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007173147A true JP2007173147A (en) 2007-07-05
JP5098171B2 JP5098171B2 (en) 2012-12-12

Family

ID=38299406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371775A Expired - Fee Related JP5098171B2 (en) 2005-12-26 2005-12-26 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5098171B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133112A1 (en) 2007-04-20 2008-11-06 Ube Industries, Ltd. Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using the same
JP2011040333A (en) * 2009-08-18 2011-02-24 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
WO2011052428A1 (en) * 2009-10-28 2011-05-05 Necエナジーデバイス株式会社 Nonaqueous electrolyte solution and device comprising same
KR20150024224A (en) * 2013-08-26 2015-03-06 솔브레인 주식회사 Electrolyte and lithium secondary battery comprising the same
JP2017168347A (en) * 2016-03-17 2017-09-21 富山薬品工業株式会社 Nonaqueous electrolyte solution for power storage device
CN108258314A (en) * 2018-02-01 2018-07-06 广州赛益迪新能源科技有限公司 A kind of electrolyte for being adapted to high pressure nickel-cobalt-manganternary ternary anode material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102459627B1 (en) 2017-08-16 2022-10-28 삼성전자주식회사 Disulfonate-based additive and Lithium secondary battery comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327445A (en) * 2003-04-28 2004-11-18 Samsung Sdi Co Ltd Lithium cell electrolyte and lithium cell containing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327445A (en) * 2003-04-28 2004-11-18 Samsung Sdi Co Ltd Lithium cell electrolyte and lithium cell containing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239443A (en) * 2007-04-20 2013-11-28 Ube Ind Ltd Nonaqueous electrolytic solution for lithium secondary battery and lithium secondary battery using the same
US20100092872A1 (en) * 2007-04-20 2010-04-15 Ube Industries, Ltd. Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using the same
WO2008133112A1 (en) 2007-04-20 2008-11-06 Ube Industries, Ltd. Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using the same
JP5428855B2 (en) * 2007-04-20 2014-02-26 宇部興産株式会社 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same
US8404390B2 (en) 2007-04-20 2013-03-26 Ube Industries, Ltd. Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using the same
JP2011040333A (en) * 2009-08-18 2011-02-24 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
WO2011052428A1 (en) * 2009-10-28 2011-05-05 Necエナジーデバイス株式会社 Nonaqueous electrolyte solution and device comprising same
JP5403710B2 (en) * 2009-10-28 2014-01-29 Necエナジーデバイス株式会社 Non-aqueous electrolyte and device having the same
US8377596B2 (en) 2009-10-28 2013-02-19 Nec Energy Devices, Ltd. Nonaqueous-type electrolyte solution, and device comprising the same
KR20150024224A (en) * 2013-08-26 2015-03-06 솔브레인 주식회사 Electrolyte and lithium secondary battery comprising the same
KR102187691B1 (en) * 2013-08-26 2020-12-07 솔브레인 주식회사 Electrolyte and lithium secondary battery comprising the same
JP2017168347A (en) * 2016-03-17 2017-09-21 富山薬品工業株式会社 Nonaqueous electrolyte solution for power storage device
CN108258314A (en) * 2018-02-01 2018-07-06 广州赛益迪新能源科技有限公司 A kind of electrolyte for being adapted to high pressure nickel-cobalt-manganternary ternary anode material

Also Published As

Publication number Publication date
JP5098171B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5522303B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
JP4984524B2 (en) Nonaqueous electrolyte secondary battery
JP4807072B2 (en) Nonaqueous electrolyte secondary battery
JP4092618B2 (en) Nonaqueous electrolyte secondary battery
KR101347671B1 (en) A secondary battery with nonaqueous electrolyte
JP5610052B2 (en) Nonaqueous electrolyte for lithium battery and lithium battery using the same
JP5245203B2 (en) Nonaqueous electrolyte secondary battery
KR102434070B1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
WO2010016475A1 (en) Nonaqueous electrolyte and lithium cell using the same
JP4893003B2 (en) Nonaqueous electrolyte secondary battery
JP4167012B2 (en) Nonaqueous electrolyte secondary battery
JP4940617B2 (en) Nonaqueous electrolyte secondary battery
JP5098171B2 (en) Nonaqueous electrolyte secondary battery
JP4893038B2 (en) Nonaqueous electrolyte secondary battery
JP5272635B2 (en) Nonaqueous electrolyte secondary battery
JPWO2014038174A1 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP5011742B2 (en) Nonaqueous electrolyte secondary battery
JP2006318839A (en) Nonaqueous secondary battery
JP2006080008A (en) Nonaqueous electrolyte secondary battery
JP2008021538A (en) Nonaqueous electrolyte secondary battery
JP4759932B2 (en) Nonaqueous electrolyte secondary battery
JP4313982B2 (en) Nonaqueous electrolyte secondary battery
JP3963611B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP2022150999A (en) Initial conditioning method for nonaqueous secondary battery
CN116417664A (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees