JP2007171280A - Seamless cylindrical member and fixing device - Google Patents

Seamless cylindrical member and fixing device Download PDF

Info

Publication number
JP2007171280A
JP2007171280A JP2005365031A JP2005365031A JP2007171280A JP 2007171280 A JP2007171280 A JP 2007171280A JP 2005365031 A JP2005365031 A JP 2005365031A JP 2005365031 A JP2005365031 A JP 2005365031A JP 2007171280 A JP2007171280 A JP 2007171280A
Authority
JP
Japan
Prior art keywords
cylindrical member
seamless cylindrical
heat
elastic layer
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005365031A
Other languages
Japanese (ja)
Inventor
Osamu Saotome
修 五月女
Katsuhisa Matsunaka
勝久 松中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005365031A priority Critical patent/JP2007171280A/en
Publication of JP2007171280A publication Critical patent/JP2007171280A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seamless cylindrical member which conducts heat to a recording medium by conducting heat to a release layer through an elastic layer, the seamless cylindrical member capable of securing sufficient heat conductivity along the length of the cylinder while securing high heat conductivity along the thickness of the elastic layer, i.e. high heat conductivity to the recording medium. <P>SOLUTION: The seamless cylindrical member is characterized in that the elastic layer is made of heat-resistant rubber containing a 5 to 40% by volume of needlelike heat conductive filler of 0.5 to 5 mm in length and has a heat conductivity along the thickness of 0.5 W/m.K. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、シームレス円筒部材、特に、電子写真プロセスのトナー定着に用いられる定着部材、および定着装置に関するものである。   The present invention relates to a seamless cylindrical member, in particular, a fixing member used for toner fixing in an electrophotographic process, and a fixing device.

電子写真トナーを加熱加圧により記録媒体上に定着を行う部材において、少なくとも基層と弾性層と離型層が順次積層された構成である場合、その弾性層においては、熱特性に関する機能付与技術は重要な開発事項である。   In a member that fixes an electrophotographic toner on a recording medium by heating and pressing, when a structure in which at least a base layer, an elastic layer, and a release layer are sequentially laminated, in the elastic layer, a function imparting technique relating to thermal characteristics is It is an important development item.

熱特性に着目した場合、いくつかある技術の中で、弾性層に炭素繊維を構成要素のひとつとして利用する技術が近年知られるようになってきている。   When paying attention to thermal characteristics, among several techniques, a technique that uses carbon fiber as one of the constituent elements in the elastic layer has recently been known.

特許文献1においては、定着ベルトの弾性層が、気相成長法により形成された中空状のカーボンファイバーを含有する構成を開示している。この特許文献1については主に、中空状である部分に酸素がトラップされることにより周囲のシリコーンゴムの酸化劣化を防ぐことを目的としている。   Patent Document 1 discloses a configuration in which the elastic layer of the fixing belt contains hollow carbon fibers formed by a vapor phase growth method. The purpose of Patent Document 1 is mainly to prevent oxidative degradation of surrounding silicone rubber by trapping oxygen in a hollow portion.

また、特許文献2においては、加熱フューザ部材のエラストマー層が、長軸と短軸を有するフルオロカーボン粉末を含有する構成を開示している。この特許文献2については主に、層の厚み方向に異方熱伝導性を持たせることを目的としている。   Patent Document 2 discloses a configuration in which the elastomer layer of the heating fuser member contains a fluorocarbon powder having a major axis and a minor axis. The purpose of Patent Document 2 is mainly to provide anisotropic thermal conductivity in the thickness direction of the layer.

更に、特許文献3においては、加圧部材の弾性層が、炭素繊維を含有する構成を開示している。この特許文献3については主に、加熱源を内部に有していない加圧部材に限定して、熱伝導率(軸方向)/熱伝導率(軸に直角な方向)が500〜1000程度になるように極端に軸方向の熱伝導性を高めることを目的としている。
特開2002-268423号公報 特開2000-39789号公報 特開2002-351243号公報
Furthermore, in patent document 3, the structure in which the elastic layer of a pressurization member contains carbon fiber is disclosed. About this patent document 3, it is mainly limited to the pressurization member which does not have a heating source inside, and thermal conductivity (axial direction) / thermal conductivity (direction perpendicular to an axis) is about 500-1000. The purpose is to extremely increase the thermal conductivity in the axial direction.
JP 2002-268423 A JP 2000-39789 JP 2002-351243 A

従来技術においては、弾性層の厚み方向の熱伝導性と軸方向(円筒長手方向)の熱伝導性の両方を同時に高めることは主眼に置かれず、どちらか一方の効果、または別の効果との組み合わせを狙った発明であり、充分に満足のいくものではなかった。   In the prior art, there is no focus on simultaneously increasing both the thermal conductivity in the thickness direction of the elastic layer and the thermal conductivity in the axial direction (longitudinal direction of the cylinder). The invention was aimed at a combination and was not fully satisfactory.

そこで、本発明においては、内部に加熱源を有する構成、すなわち、弾性層を通して離型層に熱を伝えて記録媒体に熱を伝えるシームレス円筒部材において、弾性層の厚み方向の熱伝導性、すなわち記録媒体への熱伝導性を大きく確保しつつ、同時に円筒長手方向の熱伝導性も充分に確保できるシームレス円筒部材を得ることを目的とした。   Therefore, in the present invention, in a configuration having a heat source inside, that is, a seamless cylindrical member that transfers heat to the release layer through the elastic layer and transfers heat to the recording medium, the thermal conductivity in the thickness direction of the elastic layer, that is, An object of the present invention is to obtain a seamless cylindrical member capable of sufficiently ensuring the thermal conductivity in the longitudinal direction of the cylinder while ensuring a large thermal conductivity to the recording medium.

記録媒体への熱伝導性は、熱エネルギー的に効率的なトナー定着のために必要であり、省エネルギー化や定着速度の高速化に貢献できる。また、円筒長手方向の熱伝導性は、部材の温度均一性を左右し、特に、少サイズ紙通紙後の非通紙部領域の温度上昇に代表されるような温度の不均一性を改善でき、結果として、定着画像の均一性といった高画質化や、部分的な過熱状態による部材の熱劣化抑制といった高耐久化に貢献できる。   Thermal conductivity to the recording medium is necessary for efficient toner fixing in terms of thermal energy, and can contribute to energy saving and higher fixing speed. In addition, the thermal conductivity in the longitudinal direction of the cylinder affects the temperature uniformity of the member, and in particular, improves the temperature non-uniformity as typified by the temperature rise in the non-sheet passing area after passing small-size paper. As a result, it is possible to contribute to high durability such as high image quality such as uniformity of a fixed image and suppression of thermal deterioration of a member due to a partial overheating state.

本出願の課題を解決するために、筆者らが鋭意検討した結果、弾性層が、長さが0.5〜5mmである針状の熱伝導性フィラーを5〜40vol%含有する耐熱性ゴムであり、この弾性層の厚み方向の熱伝導率が0.5W/m.K以上であることを特徴としたシームレス円筒部材を用いることで、記録媒体への熱伝導性を大きく確保しつつ、円筒長手方向の熱伝導性も充分に確保する目的を達成できることを見いだした。   In order to solve the problem of the present application, as a result of intensive studies by the authors, the elastic layer is a heat-resistant rubber containing 5 to 40 vol% of a needle-like thermally conductive filler having a length of 0.5 to 5 mm, By using a seamless cylindrical member characterized in that the thermal conductivity in the thickness direction of this elastic layer is 0.5 W / mK or more, the thermal conductivity in the longitudinal direction of the cylinder is secured while ensuring a large thermal conductivity to the recording medium. It was found that the purpose of sufficiently securing the sex could be achieved.

また更に、弾性層の厚みが、50〜500μmであるシームレス円筒部材に適用することや、針状の熱伝導性フィラーにピッチ系炭素繊維を用いることや、耐熱性ゴムとして、シリコーンゴム、またはフッ素ゴムを用いることで、より好適にその効果を発揮できることを見いだした。   Furthermore, the elastic layer is applied to a seamless cylindrical member having a thickness of 50 to 500 μm, pitch-based carbon fiber is used as a needle-like thermally conductive filler, silicone rubber, or fluorine as heat-resistant rubber It has been found that the effect can be more suitably exhibited by using rubber.

また、このシームレス円筒部材を加熱定着装置に組み込んで用いることにより、記録媒体への熱伝導性を大きく確保しつつ、円筒長手方向の熱伝導性も充分に確保する目的を好適に実施できる加熱定着装置を提供できる。   In addition, by using this seamless cylindrical member incorporated in a heat fixing device, heat fixing that can suitably carry out the purpose of sufficiently ensuring the heat conductivity in the longitudinal direction of the cylinder while ensuring large heat conductivity to the recording medium. Equipment can be provided.

本出願の手段によって、特に長さが0.5〜5mmである針状の熱伝導性フィラーを耐熱性ゴムに配合することにより、比較的長めの熱伝導フィラーが円筒長手方向への熱伝導を大きくしつつ、かつ厚み方向への熱伝導性を適度に大きくでき、本発明の目的を達成できる。また、フィラーの配合量として5〜40vol%とすることで、適切な範囲の熱伝導性と製造容易性を確保できる。   By means of the means of the present application, in particular, by adding a needle-shaped thermally conductive filler having a length of 0.5 to 5 mm to the heat-resistant rubber, the relatively long thermally conductive filler increases the heat conduction in the longitudinal direction of the cylinder. In addition, the thermal conductivity in the thickness direction can be increased moderately, and the object of the present invention can be achieved. Moreover, the heat conductivity of a suitable range and manufacture ease are securable by setting it as 5-40 vol% as a compounding quantity of a filler.

また更に、弾性層の厚みが、50〜500μmである場合には、寸法的に層内で存在できる向きが規制され、針状の熱伝導性フィラーが層内で円筒長手方向に配向しやすくなり、より効果的に目的を達成できるようになる。また、熱伝導性フィラーにピッチ系炭素繊維を用いることは、その他の種類の炭素繊維を用いる場合に比べて、フィラーそのものの熱伝導率が非常に高いことにより、より好適に目的を達成できるようになる。耐熱性ゴムとして、シリコーンゴム、またはフッ素ゴムを用いることは、その耐熱性と柔軟性の優位性から、より好適に目的を達成できるようになる。   Furthermore, when the thickness of the elastic layer is 50 to 500 μm, the direction in which the elastic layer can exist in the layer is regulated, and the acicular heat conductive filler is easily oriented in the longitudinal direction of the cylinder in the layer. You will be able to achieve your goals more effectively. In addition, the use of pitch-based carbon fibers for the heat conductive filler can achieve the object more suitably because the thermal conductivity of the filler itself is very high compared to the case of using other types of carbon fibers. become. The use of silicone rubber or fluoro rubber as the heat resistant rubber can achieve the object more suitably due to the superiority of the heat resistance and flexibility.

結果として、これらのシームレス円筒部材を加熱定着装置に組み込んで用いることにより、記録媒体への熱伝導性を大きく確保しつつ、円筒長手方向の熱伝導性も充分に確保する目的を好適に実施できる加熱定着装置を提供できる。   As a result, by incorporating these seamless cylindrical members into a heat fixing device, the purpose of sufficiently ensuring the thermal conductivity in the longitudinal direction of the cylinder can be suitably implemented while ensuring a large thermal conductivity to the recording medium. A heat fixing device can be provided.

以上述べたように、本発明の手段により、記録媒体への熱伝導性を大きく確保しつつ、円筒長手方向の熱伝導性も充分に確保する目的を達成できることを見いだした。   As described above, it has been found that the object of the present invention can achieve the purpose of sufficiently ensuring the thermal conductivity in the longitudinal direction of the cylinder while ensuring a large thermal conductivity to the recording medium.

本発明を実施するにあたり、以下に最良の形態を示す。   In carrying out the present invention, the best mode is shown below.

−シームレス円筒部材の説明−
図1に本発明実施の代表的なシームレス円筒部材の構成図を示した。11は基材、12は弾性層、13は表層である。
-Description of seamless cylindrical member-
FIG. 1 shows a configuration diagram of a typical seamless cylindrical member embodying the present invention. 11 is a base material, 12 is an elastic layer, 13 is a surface layer.

11の基材は、金属または耐熱樹脂からなるローラまたはベルト形状のいずれの場合にも本発明が実施できる。具体的には、厚みが数mm程度のアルミまたは鉄からなるローラ芯金や、厚みが数10μm程度のニッケルまたはステンレス鋼(SUS)またはポリイミドからなるベルト基体などが例示できる。   The present invention can be carried out when the substrate 11 is a roller or belt made of metal or heat-resistant resin. Specifically, a roller metal core made of aluminum or iron having a thickness of about several millimeters, a belt base made of nickel, stainless steel (SUS), or polyimide having a thickness of about several tens of micrometers can be exemplified.

13の表層は、耐熱性や、トナーの付着のし難さが求められる。本発明の主たる効果に対して材質は特に限定されるものではないが、様々な定着部材の特性を踏まえると、フッ素樹脂が本発明をより効果的に実施できる材料であり、このとき、その厚みを5〜50μmにすることで、本発明の効果がより効果的に引き出される。   The surface layer 13 is required to have heat resistance and difficulty in toner adhesion. Although the material is not particularly limited with respect to the main effect of the present invention, in view of the characteristics of various fixing members, the fluororesin is a material that can more effectively implement the present invention, and at this time, its thickness By making the thickness 5 to 50 μm, the effect of the present invention is more effectively brought out.

フッ素樹脂の種類は、公知である種類の材料を用いることができ、特に限定されない。一般によく知られる、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)等の単一種、または複合種の材料を用いることが好ましい。   The kind of fluororesin can be a known kind of material, and is not particularly limited. Commonly known single or complex species such as polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) It is preferable to use a material.

13の弾性層は、本発明の主要な構成部位であり、耐熱性ゴム中に針状の熱伝導性フィラーを含んで構成されている。   The elastic layer 13 is a main component of the present invention, and is configured by including a needle-like thermally conductive filler in heat resistant rubber.

図2には針状の熱伝導性フィラーの形状を模式的に示した。針状とはこのように、1方向のみに他の方向に比べて長さを有する形状を指し、主に、短軸径21と、長軸長さ22によってその形状を表すことが出来る。短軸径は特に限定される物ではないが、5〜15μm程度の物が比較的容易に利用可能である。また、長軸長さは、0.5〜5mmのものが好ましい。5mmよりも長いと部材製造の難易度が高くなり、0.5mmより短いと本発明の効果を充分に発揮することが出来ない。より好ましくは、長軸長さは1〜2mmであることが望ましい。   FIG. 2 schematically shows the shape of the needle-like thermally conductive filler. In this way, the needle shape refers to a shape having a length in only one direction compared to the other directions, and the shape can be represented mainly by a short axis diameter 21 and a long axis length 22. Although the short axis diameter is not particularly limited, a material having a diameter of about 5 to 15 μm can be used relatively easily. The major axis length is preferably 0.5 to 5 mm. If the length is longer than 5 mm, the difficulty of manufacturing the member becomes high. If the length is shorter than 0.5 mm, the effects of the present invention cannot be fully exhibited. More preferably, the long axis length is 1 to 2 mm.

針状の熱伝導性フィラーとしては、特に、ピッチ系炭素繊維が好ましく用いられる。ピッチ系炭素繊維は、例えば、商品名「グラノック」(製造:日本グラファイトファイバー株式会社)を例示することが出来る。このようなピッチ系炭素繊維は、所望の長さに切断して入手することが可能である。   As the needle-like thermally conductive filler, pitch-based carbon fibers are particularly preferably used. An example of the pitch-based carbon fiber is trade name “Granock” (manufactured by Nippon Graphite Fiber Co., Ltd.). Such pitch-based carbon fibers can be obtained by cutting to a desired length.

耐熱性ゴムとしては、特に、シリコーンゴムまたはフッ素ゴムを好ましく用いることが出来る。どちらの耐熱性ゴムも、加熱定着装置で使用した場合に、充分な耐熱耐久性を有しており、かつ、好ましい弾性(柔らかさ)を有しており、弾性層の主たるマトリックス材料として好適である。どちらの耐熱性ゴムも、本発明の作用を大きく変化させない程度に種々配合剤が配合されていても構わない。シリコーンゴムとしては、例えば、ジメチルポリシロキサンを、ビニル基とケイ素結合水素基との付加反応によりゴム架橋化して得る付加反応型ジメチルシリコーンゴムが代表的な例として例示できる。また、フッ素ゴムとしては、ビニリデンフルオライドとヘキサフルオロプロピレンの二元共重合体や、または、ビニリデンフルオライドとヘキサフルオロプロピレンとテトラフルオロエチレンの三元共重合体をベースポリマーとし、パーオキサイドによるラジカル反応によりゴム架橋化して得る二元または三元のラジカル反応型フッ素ゴムが代表的な例として例示できる。   As the heat resistant rubber, silicone rubber or fluorine rubber can be preferably used. Both heat-resistant rubbers have sufficient heat resistance and durability when used in a heat fixing device, and have favorable elasticity (softness), and are suitable as the main matrix material of the elastic layer. is there. Both heat-resistant rubbers may contain various compounding agents to such an extent that the effect of the present invention is not greatly changed. A typical example of the silicone rubber is an addition reaction type dimethyl silicone rubber obtained by crosslinking a dimethylpolysiloxane with an addition reaction between a vinyl group and a silicon-bonded hydrogen group. In addition, as fluororubber, a binary copolymer of vinylidene fluoride and hexafluoropropylene, or a terpolymer of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene is used as a base polymer, and a radical based on peroxide. A typical example is a binary or ternary radical-reactive fluororubber obtained by rubber cross-linking by reaction.

本実施例で用いたシリコーンゴムに関しては、次のような付加反応型のシリコーンゴム原液A、B液を入手した。A液中には触媒である白金化合物が微量含有され、付加反応サイトのひとつであるビニル基をシロキサン結合側鎖に有するポリシロキサン化合物を主体とする組成物で構成されている。また、B液はもうひとつの付加反応サイトであるケイ素原子結合の水素を有するポリシロキサン化合物を主体とする組成物で構成されている。A,B液中には、本発明における熱伝導性を左右しないほどに微量な酸化鉄が含まれている。このシリコーンゴム原液の粘度は、A液が13 Pa.s、B液が14 Pa.sであった。(何れもBH型回転粘度系で25℃の室温環境下で測定) このシリコーンゴム原液のA、B液を重量比で1:1の割合で混合して加熱硬化したサンプルの硬度を測定したところ、7であった。この硬度は、アスカーC型硬度計(高分子計器株式会社製)により25℃の室温環境下で密着後1秒以内の数値を読み取った。   Regarding the silicone rubber used in this example, the following addition reaction type silicone rubber stock solutions A and B were obtained. The liquid A contains a trace amount of a platinum compound as a catalyst, and is composed of a composition mainly composed of a polysiloxane compound having a vinyl group, which is one of addition reaction sites, in a siloxane bond side chain. Liquid B is composed of a composition composed mainly of a polysiloxane compound having silicon-bonded hydrogen, which is another addition reaction site. The liquids A and B contain a trace amount of iron oxide so as not to affect the thermal conductivity in the present invention. The viscosity of this silicone rubber stock solution was 13 Pa.s for Liquid A and 14 Pa.s for Liquid B. (Both measured in a room temperature environment at 25 ° C with a BH type rotational viscosity system) The hardness of a sample obtained by mixing the silicone rubber stock solutions A and B in a weight ratio of 1: 1 and heat-curing was measured. 7 This hardness was read within 1 second after adhesion using an Asker C type hardness tester (manufactured by Kobunshi Keiki Co., Ltd.) in a room temperature environment of 25 ° C.

耐熱性ゴムに配合する針状熱伝導性フィラーの量は、5〜40vol%が好適である。40vol%よりも多い長いと部材製造の難易度が高くなり、5vol%よりも少ないと本発明の効果を充分に発揮することが出来ない。より好ましくは、10〜30vol%の含有量が望ましい。   The amount of the acicular heat conductive filler to be blended with the heat resistant rubber is preferably 5 to 40 vol%. If the length is more than 40 vol%, the difficulty in producing the member becomes high, and if it is less than 5 vol%, the effect of the present invention cannot be fully exhibited. More preferably, a content of 10 to 30 vol% is desirable.

弾性層の厚みは、特に、50〜500μmである場合に本発明の効果がより好ましく期待できる。500μmよりも厚い場合には、寸法的に層内で存在できる向きが比較的に自由となり、本発明の効果が薄れる。50μmよりも薄い場合には、本来の弾性層としての柔らかさが充分に発揮できなくなり、画質に影響を及ぼしてしまう。より好ましくは100〜500μmの範囲が好適である。   The effect of the present invention can be expected more preferably when the thickness of the elastic layer is 50 to 500 μm. When it is thicker than 500 μm, the direction in which the dimension can exist in the layer becomes relatively free, and the effect of the present invention is diminished. When the thickness is less than 50 μm, the softness as the original elastic layer cannot be sufficiently exerted and the image quality is affected. A range of 100 to 500 μm is more preferable.

シームレス円筒部材は次のようにして製造することが出来る。まず、基材を用意し、表面をシリコーン系プライマー(商品名:DY39-051、東レダウコーニングシリコーン株式会社製)で処理し、その上に未架橋の耐熱性ゴム原料を所定の厚みにコートする。耐熱性ゴム原料は必要に応じて可溶性の溶媒にて希釈しても良い。また、コート方法は様々な公知な方法を利用できるが、本実施例では、同心円状に基材外側に設けられたリング状のスリットから耐熱性ゴムの原料を押し出し、基材の円筒長手方向にスリットを移動させることで均一な厚みにコートする方式により弾性層を形成した。この弾性層は、材料指定の硬化温度、例えばシリコーンゴムであれば一般的には100〜200℃の温度で、30分〜4時間加熱処理することでゴム架橋された弾性層として得ることが出来る。硬化後は、弾性層表面をシリコーンプライマーで処理し、かつ、僅かに内径が大きくかつ内面が脱フッ素処理された熱収縮型フッ素樹脂チューブ(例えばグンゼ株式会社から入手可能)を被覆し加熱させることで、本発明実施のシームレス円筒部材を製造することが出来る。   The seamless cylindrical member can be manufactured as follows. First, a base material is prepared, and the surface is treated with a silicone-based primer (trade name: DY39-051, manufactured by Toray Dow Corning Silicone Co., Ltd.), and an uncrosslinked heat-resistant rubber material is coated on the surface to a predetermined thickness. . The heat-resistant rubber raw material may be diluted with a soluble solvent as necessary. Various known methods can be used as the coating method. In this embodiment, the heat-resistant rubber material is extruded from a ring-shaped slit concentrically provided on the outer side of the base material, and is formed in the longitudinal direction of the base material of the base material. The elastic layer was formed by a method of coating to a uniform thickness by moving the slit. This elastic layer can be obtained as a rubber-crosslinked elastic layer by heat treatment for 30 minutes to 4 hours at a curing temperature specified by the material, for example, a temperature of 100 to 200 ° C. for silicone rubber. . After curing, the surface of the elastic layer is treated with a silicone primer, and a heat shrinkable fluororesin tube (for example, available from Gunze Co., Ltd.) whose inner diameter is slightly larger and whose inner surface is defluorinated is coated and heated. Thus, the seamless cylindrical member according to the present invention can be manufactured.

−加熱定着装置の説明−
本発明実施の加熱定着装置の一例について説明する。加熱定着装置例図3は本発明に従うベルト(フィルム)加熱方式の定着装置の一例の横断面模型図である。本例の定着装置は、円筒状のシームレスベルトを用いた、加圧ローラ駆動方式の定着装置である。
-Description of heat fixing device-
An example of the heat fixing device of the present invention will be described. Heat Fixing Device Example FIG. 3 is a schematic cross-sectional view of an example of a belt (film) heating type fixing device according to the present invention. The fixing device of this example is a pressure roller driving type fixing device using a cylindrical seamless belt.

31は加熱体(ヒータ)、32は該加熱体を固定支持させたヒータホルダー(加熱体保持部材)、33は円筒状のシームレスベルトであり、上記の加熱体31・ヒータホルダー32の組立体に対してルーズに外嵌させて加熱アセンブリとしてある。34は加圧部材としての弾性加圧ローラである。   Reference numeral 31 denotes a heating body (heater), 32 denotes a heater holder (heating body holding member) that fixes and supports the heating body, 33 denotes a cylindrical seamless belt, and the assembly of the heating body 31 and the heater holder 32 described above. On the other hand, it is loosely fitted as a heating assembly. Reference numeral 34 denotes an elastic pressure roller as a pressure member.

弾性加圧ローラ34はその両端軸部を回転自在に軸受支持させてあり、この加圧ローラ34の上に上記の加熱アセンブリを加熱体31側を下向きにして並行に配置し、ヒータホルダー32を不図示の加圧ステーにより上部から加圧ローラ34の弾性に抗して所定の押圧力で加圧して、加熱体31と弾性加圧ローラ34との間にベルト33を挟ませて所定幅のニップ部(加熱ニップ部,定着ニップ部)Nを形成させてある。   The elastic pressure roller 34 has bearings rotatably supported at both end shafts. The heating assembly is arranged in parallel on the pressure roller 34 with the heating body 31 facing downward. A pressure stay (not shown) is pressed from above with a predetermined pressing force against the elasticity of the pressure roller 34, and the belt 33 is sandwiched between the heating body 31 and the elastic pressure roller 34 to have a predetermined width. A nip portion (heating nip portion, fixing nip portion) N is formed.

加圧ローラ34は駆動手段Mにより矢印bの反時計方向に回転駆動される。ベルト33は加圧ローラ34の回転に伴い内面が加熱体31の表面に摺動しながらヒータホルダー32の外回りを矢印aの時計方向に従動回転する。ヒータホルダー32は回転するベルト33のガイド部材としても機能する。   The pressure roller 34 is rotationally driven by the driving means M in the counterclockwise direction indicated by the arrow b. As the pressure roller 34 rotates, the inner surface of the belt 33 slides on the surface of the heating body 31 and rotates around the heater holder 32 in the clockwise direction indicated by the arrow a. The heater holder 32 also functions as a guide member for the rotating belt 33.

加熱体31は本例装置ではセラミックヒータであり、通電により迅速に昇温し、所定の定着温度に温調される。   The heating body 31 is a ceramic heater in the apparatus of this example, and the temperature is quickly raised by energization and is adjusted to a predetermined fixing temperature.

そして、加圧ローラ34が回転駆動され、これに伴いベルト33が従動回転し、加熱体31に通電がなされて所定の定着温度に立ち上がり温調された状態において、ニップ部Nに,不図示の作像機構部から搬送された被加熱材としての、未定着トナー画像tを形成した記録材Pが導入され、ニップ部Nすなわちベルト33と加圧ローラ34との間で挟持搬送されていく。cは被加熱材(記録材)搬送方向である。   Then, the pressure roller 34 is driven to rotate, and the belt 33 is driven to rotate. As a result, the heater 31 is energized to rise to a predetermined fixing temperature, and the temperature is adjusted to a predetermined fixing temperature. A recording material P on which an unfixed toner image t is formed as a heated material conveyed from the image forming mechanism is introduced, and is nipped and conveyed between the nip N, that is, the belt 33 and the pressure roller 34. c is a material to be heated (recording material) conveyance direction.

記録材Pがニップ部Nを挟持搬送されていく過程において、ベルト33を介した加熱体31からの熱により記録材P上の未定着トナー画像tが記録材P面に加熱定着される。ニップ部Nを出た記録材Pはベルト33の面から分離されて排出搬送される。   In the process in which the recording material P is nipped and conveyed through the nip portion N, the unfixed toner image t on the recording material P is heated and fixed on the recording material P surface by the heat from the heating body 31 via the belt 33. The recording material P that has exited the nip N is separated from the surface of the belt 33 and discharged and conveyed.

加熱体31は、公知の様々な加熱手段を利用でき、より具体的には、抵抗発熱体を発熱源とした加熱体や、ハロゲンランプを発熱源とした加熱体や、電磁誘導加熱を発熱源とした加熱体などを利用することが出来る。   The heating body 31 can use various known heating means, and more specifically, a heating body using a resistance heating element as a heat source, a heating body using a halogen lamp as a heat source, or electromagnetic induction heating as a heat source. The heating body etc. which were made can be utilized.

抵抗発熱体を内部に有するセラミックで形成された加熱体(セラミックヒータ)における課題の解決を目的とした場合には、加熱体としては、例えば、耐熱性・絶縁性・良熱伝導性のセラミック基板に、被加熱材搬送方向に対し直交する方向を長手として、銀−パラジウムからなる抵抗発熱体パターンをセラミック基板の長手方向にスクリーン印刷などの公知の手法で形成し、抵抗発熱体パターンを耐熱性のガラスでコートし保護層として形成したものを利用することが出来る。   For the purpose of solving the problems in a heating element (ceramic heater) formed of ceramic having a resistance heating element therein, as the heating element, for example, a ceramic substrate having heat resistance, insulation and good thermal conductivity In addition, a resistance heating element pattern made of silver-palladium is formed in the longitudinal direction of the ceramic substrate by a known method such as screen printing, with the direction orthogonal to the conveying direction of the heated material as the longitudinal direction. It is possible to use those formed by coating with a glass of as a protective layer.

本例装置において、加熱体31はセラミックヒータであり、長手方向長さ220mm、幅9mm、厚み1mmのアルミナ焼結体基板表面に、長手方向に銀−パラジウムの抵抗発熱体ラインパターンを形成し、その表面をガラスコートしたものを用いた。   In this example apparatus, the heating element 31 is a ceramic heater, and a silver-palladium resistance heating element line pattern is formed in the longitudinal direction on the alumina sintered body substrate surface having a longitudinal length of 220 mm, a width of 9 mm, and a thickness of 1 mm. A glass-coated surface was used.

ベルト33のニップ下流位置表面及び、ローラに対向する側とは反対側の面である加熱体裏面には、温度検知手段(不図示)を設け、温度検知信号に基づいて電圧制御装置(不図示)で加熱体の抵抗発熱体にかかる電圧を制御することにより温度制御を可能な構成とした。   Temperature detection means (not shown) is provided on the surface of the belt 33 at the nip downstream position and on the back of the heating body, which is the surface opposite to the roller, and a voltage control device (not shown) is provided based on the temperature detection signal. The temperature control can be performed by controlling the voltage applied to the resistance heating element of the heating element.

本例装置において、ヒータホルダー32の素材は液晶ポリマーであり、断面形状は半円弧樋型をしており、ヒータホルダー32の下面部には長手に沿って加熱体31を嵌合させる溝を形成し、その溝内に加熱体31を嵌め入れて接着して固定支持させた。   In this example apparatus, the material of the heater holder 32 is a liquid crystal polymer, the cross-sectional shape is a semicircular arc shape, and a groove for fitting the heating body 31 along the length is formed on the lower surface of the heater holder 32. Then, the heating body 31 was fitted into the groove and adhered and fixedly supported.

本例装置においてはこのヒータホルダー32を不図示の加圧ステーにより上部から加圧ローラ34の弾性に抗して総圧で約10kgの荷重で加圧して、加熱体31と弾性加圧ローラ34との間にベルト33を挟ませて所定幅のニップ部Nを形成させてある。   In this apparatus, the heater holder 32 is pressed from above with a load of about 10 kg against the elasticity of the pressure roller 34 by means of a pressure stay (not shown), and the heating body 31 and the elastic pressure roller 34 are pressed. A nip portion N having a predetermined width is formed by sandwiching the belt 33 therebetween.

−熱伝導率計の説明−
弾性層の特性として熱伝導率と硬度を測定した。これら特性の測定には、シームレス円筒部材の弾性層をプライマー処理せずに成型して弾性層のみを剥がして取り出し、角30mm×12mm厚みに重ねて測定サンプルとした。熱伝導率は、ホットディスク法熱物性測定装置(型式:TPA-501、京都電子工業株式会社製)により25℃の室温環境下で測定し、異方熱伝導性解析を行い、厚み方向の熱伝導率を算出した。
-Explanation of thermal conductivity meter-
Thermal conductivity and hardness were measured as characteristics of the elastic layer. For the measurement of these characteristics, the elastic layer of the seamless cylindrical member was molded without primer treatment, and only the elastic layer was peeled off and taken out, and a measurement sample was obtained by overlapping a 30 mm × 12 mm thickness. The thermal conductivity is measured in a room temperature environment of 25 ° C with a hot disk method thermophysical property measuring device (model: TPA-501, manufactured by Kyoto Electronics Industry Co., Ltd.), and anisotropic thermal conductivity analysis is performed to measure the heat in the thickness direction. Conductivity was calculated.

実施例1のシームレス円筒部材として、以下の部材を製作した。短軸径10μm、長軸長さL=1mmのピッチ系炭素繊維(日本グラファイトカーボン株式会社製)を、用意したシリコーンゴム原液に10vol%の割合で配合し、弾性層として厚み500μmになるように、厚み50μmのSUS円筒基材上に形成し、表層としてフッ素樹脂チューブを被覆してシームレス円筒部材を得た。   The following members were manufactured as the seamless cylindrical member of Example 1. A pitch-based carbon fiber (manufactured by Nippon Graphite Carbon Co., Ltd.) with a minor axis diameter of 10μm and a major axis length of L = 1mm is blended at a rate of 10vol% into the prepared silicone rubber stock solution so that the elastic layer has a thickness of 500μm. A seamless cylindrical member was obtained by forming on a SUS cylindrical substrate having a thickness of 50 μm and covering the surface with a fluororesin tube.

実施例2のシームレス円筒部材として、長軸長さL=2mmのピッチ系炭素繊維(日本グラファイトカーボン株式会社製)を用いたこと以外は実施例1と同様にしてシームレス円筒部材を得た。   A seamless cylindrical member was obtained in the same manner as in Example 1 except that pitch-based carbon fiber (manufactured by Nippon Graphite Carbon Co., Ltd.) having a major axis length L = 2 mm was used as the seamless cylindrical member of Example 2.

実施例3のシームレス円筒部材として、ピッチ系炭素繊維(日本グラファイトカーボン株式会社製)を、用意したシリコーンゴム原液に30vol%の割合で配合したこと以外は実施例1と同様にしてシームレス円筒部材を得た。   As the seamless cylindrical member of Example 3, pitch-based carbon fiber (manufactured by Nippon Graphite Carbon Co., Ltd.) was used in the same manner as in Example 1 except that 30 vol% was added to the prepared silicone rubber stock solution. Obtained.

実施例4のシームレス円筒部材として、ピッチ系炭素繊維(日本グラファイトカーボン株式会社製)を、用意したシリコーンゴム原液に30vol%の割合で配合したこと以外は実施例2と同様にしてシームレス円筒部材を得た。   As a seamless cylindrical member of Example 4, pitch-type carbon fiber (manufactured by Nippon Graphite Carbon Co., Ltd.) was used in the same manner as in Example 2 except that 30 vol% was added to the prepared silicone rubber stock solution. Obtained.

実施例5のシームレス円筒部材として、弾性層として厚み100μmになるように、厚み50μmのSUS円筒基材上に形成したこと以外は実施例1と同様にしてシームレス円筒部材を得た。   As a seamless cylindrical member of Example 5, a seamless cylindrical member was obtained in the same manner as in Example 1 except that the elastic layer was formed on a SUS cylindrical base material having a thickness of 50 μm so as to have a thickness of 100 μm.

(比較例1)
比較例1のシームレス円筒部材として、ピッチ系炭素繊維を配合しないこと以外は実施例1と同様にしてシームレス円筒部材を得た。
(Comparative Example 1)
As a seamless cylindrical member of Comparative Example 1, a seamless cylindrical member was obtained in the same manner as in Example 1 except that no pitch-based carbon fiber was blended.

(比較例2)
比較例2のシームレス円筒部材として、長軸長さL=10mmのピッチ系炭素繊維(日本グラファイトカーボン株式会社製)を用いたこと以外は実施例1と同様にしてシームレス円筒部材を得ようとしたが、ピッチ系炭素繊維の長さが起因して成形困難となり、シームレス円筒部材を得ることが出来なかった。
(Comparative Example 2)
A seamless cylindrical member was obtained in the same manner as in Example 1 except that pitch-based carbon fiber (manufactured by Nippon Graphite Carbon Co., Ltd.) having a major axis length L = 10 mm was used as the seamless cylindrical member of Comparative Example 2. However, it became difficult to form due to the length of the pitch-based carbon fiber, and a seamless cylindrical member could not be obtained.

(比較例3)
比較例3のシームレス円筒部材として、ピッチ系炭素繊維(日本グラファイトカーボン株式会社製)を、用意したシリコーンゴム原液に50vol%の割合で配合したこと以外は実施例1と同様にしてシームレス円筒部材を得ようとしたが、ピッチ系炭素繊維の量の多さが起因して成形困難となり、シームレス円筒部材を得ることが出来なかった。
(Comparative Example 3)
As a seamless cylindrical member of Comparative Example 3, pitch-based carbon fiber (manufactured by Nippon Graphite Carbon Co., Ltd.) was used in the same manner as in Example 1 except that 50 vol% was added to the prepared silicone rubber stock solution. Although it tried to obtain, it became difficult to form due to the large amount of pitch-based carbon fiber, and a seamless cylindrical member could not be obtained.

−評価実験の説明−
本発明の効果を確認するため、次のような評価実験を行った。図3の加熱定着装置を用い、比較例1のシームレス円筒部材を装着し、ベルト表面が170℃になるように温調を設定し、線速度が60 mm/s になるように回転させた。
-Explanation of evaluation experiment-
In order to confirm the effect of the present invention, the following evaluation experiment was conducted. The seamless cylindrical member of Comparative Example 1 was mounted using the heat fixing apparatus of FIG. 3, the temperature was set so that the belt surface was 170 ° C., and the linear velocity was rotated to 60 mm / s.

まず、未定着トナーが全面に載ったA4用紙を縦方向に通紙して第一評価サンプルを得た。未定着トナーが全面に載ったA4用紙は、事前に、市販の電子写真方式のカラープリンター(商品名:LBP-2710、キヤノン株式会社)を準備し、定着装置の手前で用紙を取り出せるようにし、マゼンタ濃度100%とシアン濃度100%を重ねた2色べた画像を印刷することで得た。この比較例1の部材を用いた第一評価サンプルの光沢を、光沢度計(商品名:PG-1、角度60°、日本電色株式会社製)を用いて測定した。   First, a first evaluation sample was obtained by passing A4 paper with unfixed toner on the entire surface in the vertical direction. For A4 paper with unfixed toner on the entire surface, prepare a commercially available electrophotographic color printer (trade name: LBP-2710, Canon Inc.) so that the paper can be taken out before the fixing device. It was obtained by printing a two-color solid image with a magenta density of 100% and a cyan density of 100%. The gloss of the first evaluation sample using the member of Comparative Example 1 was measured using a gloss meter (trade name: PG-1, angle 60 °, manufactured by Nippon Denshoku Co., Ltd.).

次に実施例1〜5の部材について、比較例1の部材を用いた第一評価サンプルの光沢値となるようにベルト表面温度の設定値を変更した。これらベルト表面温度の設定値を、比較例1からの差、すなわち設定温度差として評価した。この設定温度差は、記録媒体への熱伝導性を測る指標となり、設定温度を下げられる部材ほど熱伝導性が良いと評価できる。   Next, for the members of Examples 1 to 5, the set value of the belt surface temperature was changed so as to be the gloss value of the first evaluation sample using the member of Comparative Example 1. These set values of the belt surface temperature were evaluated as a difference from Comparative Example 1, that is, a set temperature difference. This set temperature difference serves as an index for measuring the thermal conductivity to the recording medium, and it can be evaluated that a member that can lower the set temperature has better thermal conductivity.

次に、実施例1〜5及び比較例1の部材のそれぞれにおいて、上記評価で設定した表面温度において、A4サイズの紙を縦に半分に切断した紙(105mm×297mm)を、ベルト長手中央の位置で100枚通紙し、直後に、未定着トナーが全面に載ったA4用紙を縦方向に通紙して第二評価サンプルを得た。   Next, in each of the members of Examples 1 to 5 and Comparative Example 1, the paper (105 mm × 297 mm) obtained by cutting the A4 size paper in half vertically at the surface temperature set in the above evaluation, 100 sheets were passed at the position, and immediately thereafter, A4 paper on which the unfixed toner was placed on the entire surface was passed in the vertical direction to obtain a second evaluation sample.

この第二評価サンプルは、ベルト長手中央位置に相当する用紙位置と、ベルト長手端部から30mmの位置に相当する用紙位置で光沢を測定し、ベルト長手端部から30mmの位置に相当する用紙位置の光沢をGe、ベルト長手中央位置に相当する用紙位置の光沢をGcとしたとき、ΔG=(Ge−Gc)として差を評価し、画像均一性の指標としての光沢差を評価した。   This second evaluation sample measures the gloss at a paper position corresponding to the belt longitudinal center position and a paper position corresponding to a position 30 mm from the belt longitudinal end, and a paper position corresponding to a position 30 mm from the belt longitudinal end. The difference in gloss was evaluated as ΔG = (Ge−Gc), and the difference in gloss as an index of image uniformity was evaluated.

尚、これら評価に用いた紙は全て、商品名「カラーレーザーコピア用紙」(坪量82g/m2、キヤノン販売株式会社製)とした。 All the papers used for these evaluations were named “Color Laser Copier Paper” (basis weight 82 g / m 2 , manufactured by Canon Sales Co., Ltd.).

図4に評価結果を示す。このように、本発明を実施した例においては、同程度のトナー溶融にするのに必要な部材表面の設定温度は、比較例に対して10℃以上低く設定でき、厚み方向への熱伝導性が良好であり、記録媒体への熱伝導性を大きく確保できていることが確認できた。   FIG. 4 shows the evaluation results. As described above, in the example in which the present invention is implemented, the set temperature of the member surface necessary for melting the toner to the same degree can be set lower by 10 ° C. or more than the comparative example, and the thermal conductivity in the thickness direction can be set. It was confirmed that the thermal conductivity to the recording medium was largely secured.

また同時に、光沢差が小さく抑えられており、良好な画質均一性が得られるており、充分な円筒長手方向の熱伝導性が確保できていることが確認できた。   At the same time, it was confirmed that the difference in gloss was kept small, good image quality uniformity was obtained, and sufficient thermal conductivity in the longitudinal direction of the cylinder could be secured.

シームレス円筒部材断面及び全体像Seamless cylindrical member cross section and overview 針状熱伝導性フィラーNeedle-like thermally conductive filler 加熱定着装置Heat fixing device 実施例及び比較例Examples and Comparative Examples

符号の説明Explanation of symbols

11 基材
12 弾性層
13 表層
14 シームレース円筒部材
21 短軸径
22 長軸長さ
31 ヒータ
32 ヒータホルダー
33 ベルト(シームレス円筒部材)
34 加圧ローラ
34a 芯金
34b 弾性層
34c 表層
M モータ
P 記録紙
t トナー
N ニップ部
a,b,c 移動方向
DESCRIPTION OF SYMBOLS 11 Base material 12 Elastic layer 13 Surface layer 14 Seam race cylindrical member 21 Short axis diameter 22 Long axis length 31 Heater 32 Heater holder 33 Belt (seamless cylindrical member)
34 Pressure roller 34a Metal core 34b Elastic layer 34c Surface layer M Motor P Recording paper t Toner N Nip part a, b, c Movement direction

Claims (5)

電子写真トナーを加熱加圧により記録媒体上に定着を行う部材であり、
少なくとも基層と弾性層と離型層が順次積層された構成を有し、
弾性層を通して離型層へ熱を伝えるシームレス円筒部材において、
この弾性層が、長さが0.5以上且つ5mm以下である針状の熱伝導性フィラーを5以上且つ40vol%以下含有する耐熱性ゴムであり、この弾性層の厚み方向の熱伝導率が0.5W/m.K以上である
ことを特徴としたシームレス円筒部材。
A member that fixes electrophotographic toner onto a recording medium by heating and pressing,
At least a base layer, an elastic layer, and a release layer are sequentially stacked,
In a seamless cylindrical member that conducts heat to the release layer through the elastic layer,
This elastic layer is a heat-resistant rubber containing 5 or more and 40 vol% or less of a needle-like thermally conductive filler having a length of 0.5 or more and 5 mm or less, and the thermal conductivity in the thickness direction of this elastic layer is 0.5 W. A seamless cylindrical member characterized by being over / mK.
請求項1記載のシームレス円筒部材において、
弾性層の厚みが、50以上且つ500μm以下であることを特徴としたシームレス円筒部材。
The seamless cylindrical member according to claim 1,
A seamless cylindrical member, wherein the elastic layer has a thickness of 50 to 500 µm.
針状の熱伝導性フィラーは、ピッチ系炭素繊維であることを特徴とした請求項1〜2に記載のシームレス円筒部材。   The seamless cylindrical member according to claim 1, wherein the needle-like thermally conductive filler is a pitch-based carbon fiber. 耐熱性ゴムは、シリコーンゴム、またはフッ素ゴムであることを特徴とした請求項1〜3に記載のシームレス円筒部材。   The seamless cylindrical member according to claim 1, wherein the heat-resistant rubber is silicone rubber or fluorine rubber. 電子写真トナーを加熱加圧により記録媒体上に定着を行う装置であり、
請求項1〜4のシームレス円筒部材を少なくとも1つ具備し、
シームレス円筒部材内部に加熱手段を有することを特徴とした加熱定着装置。
An apparatus for fixing electrophotographic toner onto a recording medium by heating and pressurization,
Comprising at least one seamless cylindrical member according to claims 1 to 4,
A heating and fixing apparatus having a heating means inside a seamless cylindrical member.
JP2005365031A 2005-12-19 2005-12-19 Seamless cylindrical member and fixing device Withdrawn JP2007171280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005365031A JP2007171280A (en) 2005-12-19 2005-12-19 Seamless cylindrical member and fixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005365031A JP2007171280A (en) 2005-12-19 2005-12-19 Seamless cylindrical member and fixing device

Publications (1)

Publication Number Publication Date
JP2007171280A true JP2007171280A (en) 2007-07-05

Family

ID=38297967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005365031A Withdrawn JP2007171280A (en) 2005-12-19 2005-12-19 Seamless cylindrical member and fixing device

Country Status (1)

Country Link
JP (1) JP2007171280A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103882A (en) * 2007-10-23 2009-05-14 Canon Inc Pressure member, image heating device, and image forming apparatus
JP2015043072A (en) * 2013-07-26 2015-03-05 株式会社リコー Fixing member, fixing device, and image forming apparatus
CN110579950A (en) * 2018-06-07 2019-12-17 佳能株式会社 Fixing member and thermal fixing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103882A (en) * 2007-10-23 2009-05-14 Canon Inc Pressure member, image heating device, and image forming apparatus
JP2015043072A (en) * 2013-07-26 2015-03-05 株式会社リコー Fixing member, fixing device, and image forming apparatus
CN110579950A (en) * 2018-06-07 2019-12-17 佳能株式会社 Fixing member and thermal fixing device

Similar Documents

Publication Publication Date Title
JP5822559B2 (en) Pressure roller, image heating apparatus using the pressure roller, and method for manufacturing the pressure roller
JP5414450B2 (en) Pressure member, image heating apparatus, and image forming apparatus
JP5383946B2 (en) PRESSURE MEMBER AND IMAGE HEATING DEVICE HAVING THE PRESSURE MEMBER
JP6921649B2 (en) Fixing member, fixing device and electrophotographic image forming device
JP6238654B2 (en) PRESSURE ROTATING BODY, IMAGE HEATING DEVICE USING SAME, IMAGE FORMING APPARATUS, AND PRESSURE ROTATING MANUFACTURING METHOD
US9915897B2 (en) Fixing device
JP2009109952A (en) Pressure member and image heating device equipped with same
US8965239B2 (en) Heat fixing device having cooling fan and pressing roller with heat conductive filler
JP2015114368A (en) Nip part forming member and fixing device using nip part forming member
JP2009103882A (en) Pressure member, image heating device, and image forming apparatus
JP2010008710A (en) Image heating device and image forming apparatus
JP2007171280A (en) Seamless cylindrical member and fixing device
US9176442B2 (en) Roller, heating member, and image heating apparatus equipped with roller and heating member
JP6366662B2 (en) Fixing member, fixing device, image forming apparatus, and fixing member manufacturing method
JP2015165299A (en) Fixing member and manufacturing method of the same, fixing device, and image forming apparatus
JP2019028184A (en) Fixing member and method for manufacturing fixing member
JP5985026B2 (en) Pressure roller and method of manufacturing the pressure roller
JP6957169B2 (en) Manufacturing method of rotating body for electrophotographic, fixing device, electrophotographic image forming device and rotating body
JP2015102618A (en) Rotating body and pressure body and manufacturing method of the same, and fixing device
JP2015114367A (en) Method of manufacturing elastic roller and coating device
JP2019028182A (en) Fixing belt and fixing device
US11934128B2 (en) Fixing belt having increased surface roughness
JP7278796B2 (en) Roller and fixing device
JP2004138957A (en) Toner fixing member
JP2022192011A (en) Belt for electrophotography, electrophotographic image forming apparatus, and varnish for fixing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303