JP2007170904A - Method for evaluating seismic response of building on improved foundation - Google Patents

Method for evaluating seismic response of building on improved foundation Download PDF

Info

Publication number
JP2007170904A
JP2007170904A JP2005366280A JP2005366280A JP2007170904A JP 2007170904 A JP2007170904 A JP 2007170904A JP 2005366280 A JP2005366280 A JP 2005366280A JP 2005366280 A JP2005366280 A JP 2005366280A JP 2007170904 A JP2007170904 A JP 2007170904A
Authority
JP
Japan
Prior art keywords
ground
improved
building
wave velocity
shear wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005366280A
Other languages
Japanese (ja)
Other versions
JP4822107B2 (en
Inventor
Akira Ishikawa
明 石川
Miharu Asaka
美治 浅香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2005366280A priority Critical patent/JP4822107B2/en
Publication of JP2007170904A publication Critical patent/JP2007170904A/en
Application granted granted Critical
Publication of JP4822107B2 publication Critical patent/JP4822107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating more precisely and simply than before the equivalent sharing velocity of the improved foundation corresponding to improvement geometry. <P>SOLUTION: The method for evaluating seismic response of building is performed as follows: a seismic response of building on the original foundation is obtained (S1); whether the response of the building is less than the designed value or not is checked (S2); if less than the designed value, detail design is performed on the original foundation (S3); if exceeding the designed value, improved geometry, rate of improving of the foundation, and strength of the improved foundation are set (S4); an equivalent sharing wave velocity VH of the improved foundation is calculated by using previously prepared equivalent sharing velocity graph (S5); and the seismic response of the building on the improved foundation is obtained (S6). It is checked whether response of the building is less than the designed value or not (S7); if less than the designed value, the detail design of the building on the improved foundation is performed (S8); if the response of the building is exceeding the designed value, improved geography, rate of improving of the foundation and the strength of the improved foundation are set again (S4); and steps following to the S5 are performed again. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、改良地盤上の建屋の地震応答評価方法に関する。   The present invention relates to an earthquake response evaluation method for a building on an improved ground.

建屋の沈下制御あるいは地震時の建屋の応答を抑えるために、セメント攪拌系の地盤改良工法(深層混合処理工法)を採用するケースが増えている。
この工法は、任意の改良形状で地盤を改良することが可能なため、目的や基礎形式によって改良形状が異なっており、例えば、べた基礎や杭基礎では、一般に地盤を格子状に改良し、フーチング基礎では、フーチング直下を柱状あるいはブロック状に改良することが行われる。
In order to control the settlement of buildings or to suppress the response of buildings during earthquakes, the use of cement mixing ground improvement methods (deep mixing treatment methods) is increasing.
Since this method can improve the ground with an arbitrary improved shape, the improved shape differs depending on the purpose and foundation type. For example, in the case of a solid foundation or pile foundation, the ground is generally improved in a lattice shape and footing is performed. At the foundation, it is performed to improve the shape immediately below the footing into a columnar shape or a block shape.

構築物を支持する基礎地盤を地盤改良する先行技術文献としては特許文献1がある。特許文献1では、液状化の可能性がある砂層地盤を貫通して、この地盤の下方に続く液状化の可能性の無い砂層地盤内まで連続した平面格子状に区画した地盤固結遮水壁を造成し、この地盤固結遮水壁上に構築物の基礎躯体を形成する技術が開示されている。
特開平10−46619号公報
There exists patent document 1 as a prior art document which improves the ground of the foundation ground which supports a structure. According to Patent Document 1, a ground-impermeable impermeable wall that is divided into a planar grid that penetrates through a sand layer ground that may be liquefied and continues to the bottom of the sand layer ground that does not have the possibility of liquefaction. And a technique for forming a foundation frame of a structure on the ground consolidated impermeable wall is disclosed.
Japanese Patent Laid-Open No. 10-46619

地震時の建屋応答の低減を目的として地盤を格子状に改良する場合、地盤改良による応答低減効果は、改良地盤のせん断波速度から評価することが多く、格子状改良では、この値として原地盤と地盤改良体のせん断波速度を面積平均して求めることが多い。
一方、建屋の沈下制御を目的としてフーチング直下を柱状に改良する場合は、地盤改良による地盤の動的特性の変化は積極的に評価しない場合が多かった。
改良地盤には、改良形状に応じた等価せん断波速度が存在するはずである。しかし、従来は、等価なせん断波速度を定量的に評価する方法が無かったため、簡易的に上記の方法を用いていた。このことから、改良形状に応じた改良地盤の等価せん断波速度を精確且つ簡便に評価する方法が求められていた。
When the ground is improved in a grid shape for the purpose of reducing the building response during an earthquake, the response reduction effect of the ground improvement is often evaluated from the shear wave velocity of the improved ground. In many cases, the shear wave velocity of the ground improvement body is obtained by averaging the areas.
On the other hand, when modifying the footing directly below the footing for the purpose of building settlement control, changes in the dynamic characteristics of the ground due to ground improvement were often not evaluated positively.
In the improved ground, there should be an equivalent shear wave velocity corresponding to the improved shape. However, conventionally, there has been no method for quantitatively evaluating the equivalent shear wave velocity, and thus the above method is simply used. For this reason, a method for accurately and simply evaluating the equivalent shear wave velocity of the improved ground according to the improved shape has been demanded.

本発明は、上述する問題点に鑑みてなされたもので、改良形状に応じた改良地盤の等価せん断波速度を従来に比べて精確且つ簡便に評価する方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for accurately and simply evaluating the equivalent shear wave velocity of the improved ground according to the improved shape as compared with the conventional case.

上記目的を達成するため、本発明は、地盤改良体が原地盤内に平面視で周期的に配設されてなる改良地盤の等価せん断波速度VHと当該改良地盤の地盤改良率との相関関係を示す等価せん断波速度グラフを用いて、当該改良地盤上に構築される建屋の地震応答を評価する方法であって、前記改良地盤を所定領域の前記地盤改良体および前記原地盤からなる単位周期構造体の集合体とみなし、(1)式を用いて前記改良地盤の等価弾性マトリックスCHを求め、当該等価弾性マトリックスCHの成分である前記改良地盤の等価せん断弾性係数GHを用いて(2)式より前記改良地盤の等価せん断波速度VHを算出し、算出された前記改良地盤の等価せん断波速度VHに基いて前記等価せん断波速度グラフを作成することを特徴としている。   In order to achieve the above object, the present invention provides a correlation between an equivalent shear wave velocity VH of an improved ground in which a ground improvement body is periodically arranged in plan view in the original ground and the ground improvement rate of the improved ground. An equivalent shear wave velocity graph is used to evaluate the seismic response of a building constructed on the improved ground, wherein the improved ground is a unit period consisting of the ground improved body and the original ground in a predetermined region. Considering an aggregate of structures, the equivalent elastic matrix CH of the improved ground is obtained using equation (1), and the equivalent shear elastic modulus GH of the improved ground, which is a component of the equivalent elastic matrix CH, is used (2) An equivalent shear wave velocity VH of the improved ground is calculated from an equation, and the equivalent shear wave velocity graph is created based on the calculated equivalent shear wave velocity VH of the improved ground.

Figure 2007170904
Figure 2007170904

Figure 2007170904
Figure 2007170904

但し、C:前記単位周期構造体の弾性マトリックス、I:単位マトリックス、X:前記単位周期構造体に単位マクロ歪を作用させたときの応答変位ベクトル、y:ミクロスケール、Y:前記単位周期構造体の領域、ρ:前記改良地盤の平均密度
ここで、地盤改良率とは、地盤改良体の面積/改良地盤の全面積である。また、単位マクロ歪とは、改良地盤の平均歪を1とすることをいう。
Where C: elastic matrix of the unit periodic structure, I: unit matrix, X: response displacement vector when unit macro strain is applied to the unit periodic structure, y: microscale, Y: the unit periodic structure Body area, ρ: Average density of the improved ground Here, the ground improvement rate is the area of the ground improved body / the total area of the improved ground. The unit macro distortion means that the average distortion of the improved ground is 1.

通常、改良地盤では、原地盤内に地盤改良体が平面視で周期的に配設されており、改良地盤を所定領域の地盤改良体および原地盤からなる単位周期構造体の集合体とみなすことができる。例えば、柱状改良の場合、図9(a)に示すように、1本の柱状の地盤改良体1とそれを取り囲む二点鎖線で囲まれた所定領域の原地盤2を単位周期構造体Uとみなすことができる。また、格子状改良の場合には、図9(b)に示すように、二点鎖線で囲まれた所定領域内の原地盤2および十字状の地盤改良体11を単位周期構造体Uとみなすことができる。
他方、物体が基本セルの周期的な繰返しで構成されている場合、数学的均質化法(以下、単に均質化法と呼ぶ。)を用いて当該物体の材料特性を導出することができる。均質化法では、ミクロスケールとマクロスケールという二つの座標系を導入し、両者の支配方程式を連成して解くことによりマクロ特性とともにミクロ構造内の変数の分布も解析することができる。ここで、基本セルの寸法がεのオーダーをもっている場合、マクロスケールxとミクロスケールyは、y=x/εで定義される。
Usually, in the improved ground, the ground improvement bodies are periodically arranged in plan view in the original ground, and the improved ground is regarded as an assembly of unit periodic structures consisting of the ground improvement body in a predetermined area and the original ground. Can do. For example, in the case of columnar improvement, as shown in FIG. 9 (a), a single columnar ground improvement body 1 and an original ground 2 in a predetermined region surrounded by a two-dot chain line surrounding it are defined as a unit periodic structure U. Can be considered. Further, in the case of lattice improvement, as shown in FIG. 9B, the original ground 2 and the cross-shaped ground improvement body 11 in a predetermined area surrounded by a two-dot chain line are regarded as a unit periodic structure U. be able to.
On the other hand, when the object is composed of periodic repetitions of basic cells, the material properties of the object can be derived using a mathematical homogenization method (hereinafter simply referred to as the homogenization method). The homogenization method introduces two coordinate systems, micro-scale and macro-scale, and can analyze the distribution of variables in the microstructure as well as the macro characteristics by solving the governing equations of both. Here, when the dimension of the basic cell has an order of ε, the macro scale x and the micro scale y are defined by y = x / ε.

改良地盤を物体とみなし、単位周期構造体を当該物体を構成する基本セルと考えると、改良地盤の等価弾性マトリックスCHは(1)式により得られる。単位周期構造体の弾性マトリックスCおよび応答変位ベクトルXは力学的あるいは解析的に求めることができ、それらを(1)式に代入すれば改良地盤の等価弾性マトリックスCHが算出される。
改良地盤の等価弾性マトリックスCHが算出されると、等価弾性マトリックスCHの成分である改良地盤の等価せん断弾性係数GHを用いて(2)式から改良地盤の等価せん断波速度VHを算出することができる。
Considering the improved ground as an object and considering the unit periodic structure as a basic cell constituting the object, the equivalent elastic matrix CH of the improved ground can be obtained by the equation (1). The elastic matrix C and the response displacement vector X of the unit periodic structure can be obtained mechanically or analytically, and by substituting them into the equation (1), the equivalent elastic matrix CH of the improved ground is calculated.
When the equivalent elastic matrix CH of the improved ground is calculated, the equivalent shear wave velocity VH of the improved ground can be calculated from the equation (2) using the equivalent shear elastic modulus GH of the improved ground which is a component of the equivalent elastic matrix CH. it can.

従って、柱状改良や格子状改良などの改良形状ごとに(地盤改良体のせん断波速度/原地盤のせん断波速度)をパラメータとして、改良地盤の等価せん断波速度VHと当該改良地盤の地盤改良率との相関関係を示す等価せん断波速度グラフを予め作成しておくことで、改良形状に応じた改良地盤上に構築される建屋の地震応答を従来より精確且つ簡便に評価することが可能となる。   Therefore, for each improved shape such as columnar improvement or grid improvement (shear wave velocity of ground improvement body / shear wave velocity of original ground), the equivalent shear wave velocity VH of the improved ground and the ground improvement rate of the improved ground By creating an equivalent shear wave velocity graph that shows a correlation with the earthquake, it is possible to evaluate the seismic response of the building constructed on the improved ground according to the improved shape more accurately and simply than before. .

本発明に係る改良地盤上の建屋の地震応答評価方法では、均質化法を用いて改良形状に応じた改良地盤の等価せん断波速度VHを算出し、それに基いた等価せん断波速度グラフを用いて改良地盤上に構築される建屋の地震応答を評価するので、改良形状に応じた改良地盤上に構築される建屋の地震応答を従来に比べて精確且つ簡便に評価することができる。   In the seismic response evaluation method for buildings on the improved ground according to the present invention, the equivalent shear wave velocity VH of the improved ground corresponding to the improved shape is calculated using the homogenization method, and the equivalent shear wave velocity graph based on that is used. Since the seismic response of the building constructed on the improved ground is evaluated, the seismic response of the building constructed on the improved ground corresponding to the improved shape can be evaluated more accurately and simply than before.

以下、本発明の実施形態について図面に基づいて説明する。
図1は柱状改良の場合の改良地盤の等価せん断波速度グラフであり、図2は格子状改良の場合の改良地盤の等価せん断波速度グラフである。なお、図中のaは(地盤改良体のせん断波速度/原地盤のせん断波速度)である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an equivalent shear wave velocity graph of the improved ground in the case of columnar improvement, and FIG. 2 is an equivalent shear wave velocity graph of the improved ground in the case of grid improvement. In addition, a in the figure is (shear wave velocity of the ground improvement body / shear wave velocity of the original ground).

改良地盤の等価せん断波速度グラフを作成する場合、先ず、柱状改良や格子状改良など改良形状を選択する必要がある。次に、aおよび地盤改良率を設定して単位周期構造体の弾性マトリックスCおよび応答変位ベクトルXを力学的あるいは解析的に求め、(3)式を用いて改良地盤の等価弾性マトリックスCHを算出する。そして、等価弾性マトリックスCHの成分として得られた改良地盤の等価せん断弾性係数GHを用いて(4)式から改良地盤の等価せん断波速度VHを算出する。   When creating an equivalent shear wave velocity graph of the improved ground, it is necessary to first select an improved shape such as a columnar improvement or a lattice improvement. Next, a and the ground improvement rate are set, and the elastic matrix C and response displacement vector X of the unit periodic structure are obtained mechanically or analytically, and the equivalent elastic matrix CH of the improved ground is calculated using equation (3). To do. Then, the equivalent shear wave velocity VH of the improved ground is calculated from the equation (4) using the equivalent shear elastic modulus GH of the improved ground obtained as a component of the equivalent elastic matrix CH.

Figure 2007170904
Figure 2007170904

Figure 2007170904
Figure 2007170904

以下、aおよび地盤改良率を順次、変えて改良地盤の等価せん断波速度VHを算出し、aをパラメータとして、改良地盤の等価せん断波速度VHと当該改良地盤の地盤改良率との相関関係を示す曲線群を求めることにより、選択した改良形状に対応する等価せん断波速度グラフを得ることができる。   In the following, the equivalent shear wave velocity VH of the improved ground is calculated by sequentially changing a and the ground improvement rate, and the correlation between the equivalent shear wave velocity VH of the improved ground and the ground improvement rate of the improved ground is calculated using a as a parameter. By obtaining the curve group shown, an equivalent shear wave velocity graph corresponding to the selected improved shape can be obtained.

図1や図2に示す等価せん断波速度グラフを利用する場合は、(改良地盤の等価せん断波速度VH/原地盤のせん断波速度)を先ず設定し、等価せん断波速度グラフを用いて最適なaと地盤改良率の組合せを設計的観点から選択することになる。例えば、柱状改良の場合、改良地盤の等価せん断波速度VHを原地盤の約1.4倍に設定すると、図1よりa=4〜20の範囲において地盤改良率を35%とすればよいことがわかる。   When using the equivalent shear wave velocity graph shown in FIG. 1 or FIG. 2, first set the equivalent ground wave velocity VH of the improved ground / the shear wave velocity of the original ground, and use the equivalent shear wave velocity graph to The combination of a and ground improvement rate will be selected from a design viewpoint. For example, in the case of columnar improvement, if the equivalent shear wave velocity VH of the improved ground is set to about 1.4 times that of the original ground, the ground improvement rate should be 35% in the range of a = 4 to 20 from FIG. I understand.

次に、上記等価せん断波速度グラフを用いた改良地盤上の建屋の地震応答評価方法の手順について説明する。
図3は、改良地盤上の建屋の地震応答評価の手順を説明するためのフロー図である。
先ず、一次元重複反射理論に則ったSHAKEなどのプログラムを用いて、原地盤上の建屋の地震応答を求める(S1)。そして、建屋の応答が設計値以下かどうかチェックし(S2)、設計値以下の場合は、原地盤のままで建屋の詳細設計を行う(S3)。
建屋の応答が設計値を超えている場合は、地盤改良を行うものとし、改良形状、地盤改良率、地盤改良体の強度などの設定を行い(S4)、予め作成しておいた等価せん断波速度グラフを用いて改良地盤の等価せん断波速度VHを算出した後(S5)、SHAKEなどのプログラムを用いて改良地盤上の建屋の地震応答を求める(S6)。そして、建屋の応答が設計値以下かどうかチェックし(S7)、設計値以下の場合は、改良地盤上の建屋の詳細設計を行う(S8)。
建屋の応答が設計値を超えている場合は、改良形状、地盤改良率、地盤改良体の強度などを設定し直し(S4)、S5以下のステップを再度実施することになる。
Next, the procedure of the seismic response evaluation method for buildings on the improved ground using the equivalent shear wave velocity graph will be described.
FIG. 3 is a flowchart for explaining the procedure of the seismic response evaluation of the building on the improved ground.
First, the earthquake response of the building on the original ground is obtained using a program such as SHAKE according to the one-dimensional overlapping reflection theory (S1). Then, it is checked whether or not the response of the building is equal to or less than the design value (S2). If the response is equal to or less than the design value, the detailed design of the building is performed with the original ground (S3).
If the response of the building exceeds the design value, the ground shall be improved, and the improved shape, ground improvement rate, strength of the ground improvement body, etc. are set (S4), and the equivalent shear wave previously created After calculating the equivalent shear wave velocity VH of the improved ground using the velocity graph (S5), the earthquake response of the building on the improved ground is obtained using a program such as SHAKE (S6). And it is checked whether the response of a building is below a design value (S7), and when it is below a design value, the detailed design of the building on an improved ground is performed (S8).
When the response of the building exceeds the design value, the improved shape, the ground improvement rate, the strength of the ground improvement body, etc. are reset (S4), and the steps after S5 are performed again.

さて、改良形状に応じた改良地盤の等価せん断波速度VHを均質化法を用いて算出する方法について述べてきたが、その精度について明らかにしておく必要がある。以下では、改良地盤の実験模型を作成して実施した遠心力載荷試験を例に採り、本方法の精度について検証する。
図4〜図6に遠心力載荷試験に使用した実験模型を示す。図4は柱状改良モデル、図5は格子状改良モデル、図6は非改良モデルである。各図には、加速度計ACC、変位計LDT、およびベンダーエレメントBEも併せて示しており、実験模型各部の加速度、変位、およびせん断波速度の計測を行った。なお、ベンダーエレメントBEは、せん断波速度を計測するために用いられ、発振子と受振子の機能を有する一対の圧電素子から構成される。
Now, the method for calculating the equivalent shear wave velocity VH of the improved ground according to the improved shape using the homogenization method has been described, but it is necessary to clarify the accuracy thereof. In the following, we will verify the accuracy of this method by taking an example of a centrifugal loading test conducted by creating an experimental model of improved ground.
4 to 6 show experimental models used in the centrifugal load test. 4 shows a columnar improvement model, FIG. 5 shows a lattice improvement model, and FIG. 6 shows a non-improvement model. Each figure also shows an accelerometer ACC, a displacement meter LDT, and a bender element BE, and the acceleration, displacement, and shear wave velocity of each part of the experimental model were measured. The bender element BE is used for measuring the shear wave velocity, and includes a pair of piezoelectric elements having functions of an oscillator and a receiver.

各実験模型を構成する原地盤2のせん断波速度について、ベンダーエレメントBEで計測した値を図7に示す。同図において、四角のマークが柱状改良モデル、三角のマークが格子状改良モデル、黒丸が非改良モデルを示している。また、実線および破線は均質化法を使用する際にモデル化した原地盤2のせん断波速度である。これらの値は、共振時の地盤のせん断ひずみ量に応じて、実測したせん断波速度を補正したものである。一方、地盤改良体1、11のせん断波速度は650m/sである。   FIG. 7 shows the values measured by the bender element BE for the shear wave velocity of the raw ground 2 constituting each experimental model. In the figure, a square mark indicates a columnar improved model, a triangular mark indicates a lattice improved model, and a black circle indicates an unimproved model. Further, the solid line and the broken line are the shear wave velocities of the original ground 2 modeled when the homogenization method is used. These values are obtained by correcting the measured shear wave velocity according to the shear strain amount of the ground at the time of resonance. On the other hand, the shear wave velocity of the ground improvement bodies 1 and 11 is 650 m / s.

遠心力載荷試験は、回転腕の先端の振動台に建設物や地盤などの実験模型を設置し、高速回転させた状態で、振動台上の実験模型に地震を発生させるものである。実験模型に重力の何十倍もの遠心力をかけることにより、実験模型の見かけの重さはそれに比例して大きくなるため、実地盤の性質を再現することができる。実際の建設物や地盤と実験模型との縮尺に合わせて腕の回転数を調節することにより、さまざまな大きさの建物や地盤などに対する模型実験を行うことができる。
本試験では、回転腕を30Gで高速回転させたうえで、各実験模型に対する入力加速度を3Gまたは5Gとし、30〜300Hzの間で正弦波掃引試験を実施した。
In the centrifugal load test, an experimental model such as a construction or ground is set on a vibrating table at the tip of a rotating arm, and an earthquake is generated in the experimental model on the vibrating table in a state where the model is rotated at a high speed. By applying a centrifugal force that is tens of times the gravity of the experimental model, the apparent weight of the experimental model increases proportionally, so the properties of the actual ground can be reproduced. By adjusting the rotation speed of the arm according to the scale of the actual construction or ground and the experimental model, it is possible to conduct model experiments on buildings and grounds of various sizes.
In this test, the rotating arm was rotated at a high speed of 30 G, and the input acceleration for each experimental model was set to 3 G or 5 G, and a sine wave sweep test was performed between 30 and 300 Hz.

各実験模型の1次固有振動数について実験結果と固有値解析結果を対比して表1に示す。ここで、固有値解析は、均質化法を用いて推定した各実験模型の等価せん断弾性係数GHおよび改良地盤の平均密度ρより、図8に示したせん断型のモデルにより算出したものである。実験結果と固有値解析結果はほぼ一致しており、均質化法を用いることにより、改良地盤の振動特性を高い精度で評価できることがわかる。   Table 1 compares the experimental results with the eigenvalue analysis results for the primary natural frequency of each experimental model. Here, the eigenvalue analysis is calculated by the shear type model shown in FIG. 8 from the equivalent shear elastic modulus GH of each experimental model estimated using the homogenization method and the average density ρ of the improved ground. The experimental results and the eigenvalue analysis results are almost consistent, and it can be seen that the vibration characteristics of the improved ground can be evaluated with high accuracy by using the homogenization method.

Figure 2007170904
Figure 2007170904

以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、上記の実施形態では、改良地盤として柱状改良と格子状改良の例を示しているが、他の改良形状にも適用できることは言うまでもない。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit thereof. For example, in the above embodiment, examples of the columnar improvement and the lattice improvement are shown as the improved ground, but it goes without saying that the present invention can be applied to other improved shapes.

柱状改良の場合の改良地盤の等価せん断波速度グラフである。It is an equivalent shear wave velocity graph of the improved ground in the case of columnar improvement. 格子状改良の場合の改良地盤の等価せん断波速度グラフである。It is an equivalent shear wave velocity graph of the improved ground in the case of lattice improvement. 本発明に係る改良地盤上の建屋の地震応答評価方法の手順を説明するためのフロー図である。It is a flowchart for demonstrating the procedure of the earthquake response evaluation method of the building on the improved ground which concerns on this invention. 遠心力載荷試験の実験模型(柱状改良モデル)を示し、(a)はその立断面図、(b)は平断面図である。The experimental model (columnar improvement model) of a centrifugal-force loading test is shown, (a) is the standing sectional view, (b) is a plane sectional view. 遠心力載荷試験の実験模型(格子状改良モデル)を示し、(a)はその立断面図、(b)は平断面図である。The experimental model (grid-like improvement model) of a centrifugal loading test is shown, (a) is the standing sectional view, and (b) is a plan sectional view. 遠心力載荷試験の実験模型(非改良モデル)を示し、(a)はその立断面図、(b)は平断面図である。The experimental model (non-improved model) of a centrifugal load test is shown, (a) is the elevation sectional view, (b) is a plane sectional view. 遠心力載荷試験に使用した原地盤のせん断波速度を示したグラフである。It is the graph which showed the shear wave velocity of the original ground used for the centrifugal loading test. 固有値解析モデルの模式図である。It is a schematic diagram of an eigenvalue analysis model. 改良地盤の部分平面図を示し、(a)は柱状改良の場合、(b)は格子状改良の場合である。The partial top view of an improved ground is shown, (a) is a case of columnar improvement, (b) is a case of lattice-like improvement.

符号の説明Explanation of symbols

1、11 地盤改良体
2 原地盤
U 単位周期構造体
ACC 加速度計
LDT 変位計
BE ベンダーエレメント
1,11 Ground improvement body 2 Original ground U Unit periodic structure ACC Accelerometer LDT Displacement meter BE Bender element

Claims (1)

地盤改良体が原地盤内に平面視で周期的に配設されてなる改良地盤の等価せん断波速度VHと当該改良地盤の地盤改良率との相関関係を示す等価せん断波速度グラフを用いて、当該改良地盤上に構築される建屋の地震応答を評価する方法であって、
前記改良地盤を所定領域の前記地盤改良体および前記原地盤からなる単位周期構造体の集合体とみなし、(1)式を用いて前記改良地盤の等価弾性マトリックスCHを求め、当該等価弾性マトリックスCHの成分である前記改良地盤の等価せん断弾性係数GHを用いて(2)式より前記改良地盤の等価せん断波速度VHを算出し、算出された前記改良地盤の等価せん断波速度VHに基いて前記等価せん断波速度グラフを作成することを特徴とする改良地盤上の建屋の地震応答評価方法。
Figure 2007170904
Figure 2007170904
但し、C:前記単位周期構造体の弾性マトリックス、I:単位マトリックス、X:前記単位周期構造体に単位マクロ歪を作用させたときの応答変位ベクトル、y:ミクロスケール、Y:前記単位周期構造体の領域、ρ:前記改良地盤の平均密度
Using the equivalent shear wave velocity graph showing the correlation between the equivalent shear wave velocity VH of the improved ground in which the ground improvement body is periodically arranged in the original ground in plan view and the ground improvement rate of the improved ground, A method for evaluating an earthquake response of a building constructed on the improved ground,
The improved ground is regarded as an assembly of unit periodic structures composed of the ground improved body and the original ground in a predetermined region, and an equivalent elastic matrix CH of the improved ground is obtained using the equation (1), and the equivalent elastic matrix CH The equivalent shear wave velocity VH of the improved ground is calculated from the equation (2) using the equivalent shear elastic modulus GH of the improved ground, which is a component of A method for evaluating the seismic response of buildings on improved ground, characterized by creating an equivalent shear wave velocity graph.
Figure 2007170904
Figure 2007170904
Where C: elastic matrix of the unit periodic structure, I: unit matrix, X: response displacement vector when unit macro strain is applied to the unit periodic structure, y: microscale, Y: the unit periodic structure Body area, ρ: average density of the improved ground
JP2005366280A 2005-12-20 2005-12-20 Seismic response evaluation method for buildings on improved ground Active JP4822107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366280A JP4822107B2 (en) 2005-12-20 2005-12-20 Seismic response evaluation method for buildings on improved ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005366280A JP4822107B2 (en) 2005-12-20 2005-12-20 Seismic response evaluation method for buildings on improved ground

Publications (2)

Publication Number Publication Date
JP2007170904A true JP2007170904A (en) 2007-07-05
JP4822107B2 JP4822107B2 (en) 2011-11-24

Family

ID=38297668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366280A Active JP4822107B2 (en) 2005-12-20 2005-12-20 Seismic response evaluation method for buildings on improved ground

Country Status (1)

Country Link
JP (1) JP4822107B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185546A (en) * 2008-02-07 2009-08-20 Shimizu Corp Method of evaluating earth retaining wall deformation deterrent effect by soil improvement
JP2010018956A (en) * 2008-07-08 2010-01-28 Shimizu Corp Soil improvement structure
JP2012144968A (en) * 2010-12-22 2012-08-02 Shimizu Corp Optimum rigidity setting method for displacement control material
JP2016057112A (en) * 2014-09-08 2016-04-21 鹿島建設株式会社 Vibration response evaluation system, vibration response evaluation method, and vibration response evaluation program
JP2021038587A (en) * 2019-09-04 2021-03-11 清水建設株式会社 Damage determination system and damage determination method for grid-like ground improvement body as measure against liquefaction
JP7355680B2 (en) 2020-02-27 2023-10-03 清水建設株式会社 Liquefaction evaluation method for pile foundation improved ground and pile foundation ground improvement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108560858A (en) * 2018-04-23 2018-09-21 南京璞返新材料科技有限公司 Parquets stone plate and its joining method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046619A (en) * 1996-07-31 1998-02-17 Shimizu Corp Foundation structure of construction in sand-layer ground

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046619A (en) * 1996-07-31 1998-02-17 Shimizu Corp Foundation structure of construction in sand-layer ground

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185546A (en) * 2008-02-07 2009-08-20 Shimizu Corp Method of evaluating earth retaining wall deformation deterrent effect by soil improvement
JP2010018956A (en) * 2008-07-08 2010-01-28 Shimizu Corp Soil improvement structure
JP2012144968A (en) * 2010-12-22 2012-08-02 Shimizu Corp Optimum rigidity setting method for displacement control material
JP2016057112A (en) * 2014-09-08 2016-04-21 鹿島建設株式会社 Vibration response evaluation system, vibration response evaluation method, and vibration response evaluation program
JP2021038587A (en) * 2019-09-04 2021-03-11 清水建設株式会社 Damage determination system and damage determination method for grid-like ground improvement body as measure against liquefaction
JP7330021B2 (en) 2019-09-04 2023-08-21 清水建設株式会社 Damage determination system and damage determination method for grid-like ground improvement material as a countermeasure against liquefaction
JP7355680B2 (en) 2020-02-27 2023-10-03 清水建設株式会社 Liquefaction evaluation method for pile foundation improved ground and pile foundation ground improvement method

Also Published As

Publication number Publication date
JP4822107B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP4822107B2 (en) Seismic response evaluation method for buildings on improved ground
Güllü et al. Full 3D nonlinear time history analysis of dynamic soil–structure interaction for a historical masonry arch bridge
Yang et al. Large-scale shaking table test on tall buildings with viscous dampers considering pile-soil-structure interaction
CN104536941B (en) A kind of frequency domain load recognition method based on Tikhonov regularizations
Yuan et al. Seismic performance of earth-core and concrete-faced rock-fill dams by large-scale shaking table tests
Liu et al. Discrete elements and size effects
Zafeirakos et al. Incremental dynamic analysis of caisson–pier interaction
Hübler et al. Experimentally supported consideration of operating point dependent soil properties in coupled dynamics of offshore wind turbines
CN111553107A (en) Liquefiable site pile foundation random earthquake response analysis and safety evaluation method
Ghasemi-Fare et al. Numerical investigation of the effects of geometric and seismic parameters on liquefaction-induced lateral spreading
Limnaiou et al. Verification of bounding surface plasticity model with reversal surfaces for the analysis of liquefaction problems
Schädlich et al. A multilaminate constitutive model accounting for anisotropic small strain stiffness
Byrne et al. Seismic liquefaction: centrifuge and numerical modeling
JP2012037305A (en) Sequential nonlinear earthquake response analysis method for foundation and storage medium with analysis program stored thereon
Cigada et al. Dynamic behavior of the palazzo lombardia tower: Comparison of numerical models and experimental results
Ong et al. Dynamic simulation of unrestrained interlocking Tuned Liquid Damper blocks
Yarmohammadi Numerical Modelling of Structure-Soil-Structure Interaction Affected by Soil Liquefaction
Namdar et al. The Timber Floor Seismic Design by Means Finite Element Method
Ahmadi et al. Stability Analysis of Rocking Soil-Structure Systems Subjected to Near-Fault Pulses
Choi et al. Experimental and numerical analyses of seismic behaviors of L-shaped unreinforced masonry walls
Zorzi et al. Long-term cyclic triaxial tests with DEM simulations
Ma et al. A modified generalized scaling law for the similitude of dynamic strain in centrifuge modeling
Dung Modelling of installation effect of driven piles by hypoplasticity
Huang et al. Nonlinear Stochastic Dynamic Seismic Response Analysis of Slopes Based on Large Shaking Table Tests
Riabova et al. NUMERICAL METHOD FOR ESTIMATION OF TENSILE LOAD IN TIE-RODS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Ref document number: 4822107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3