JP7355680B2 - Liquefaction evaluation method for pile foundation improved ground and pile foundation ground improvement method - Google Patents

Liquefaction evaluation method for pile foundation improved ground and pile foundation ground improvement method Download PDF

Info

Publication number
JP7355680B2
JP7355680B2 JP2020031273A JP2020031273A JP7355680B2 JP 7355680 B2 JP7355680 B2 JP 7355680B2 JP 2020031273 A JP2020031273 A JP 2020031273A JP 2020031273 A JP2020031273 A JP 2020031273A JP 7355680 B2 JP7355680 B2 JP 7355680B2
Authority
JP
Japan
Prior art keywords
ground
pile foundation
pile
liquefaction
improved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020031273A
Other languages
Japanese (ja)
Other versions
JP2021134551A (en
Inventor
匠 木村
聡武 中村
裕之郎 原
明 石川
洋之 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2020031273A priority Critical patent/JP7355680B2/en
Publication of JP2021134551A publication Critical patent/JP2021134551A/en
Application granted granted Critical
Publication of JP7355680B2 publication Critical patent/JP7355680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Description

本発明は、杭基礎改良地盤の液状化評価方法および杭基礎地盤改良工法に関する。 The present invention relates to a liquefaction evaluation method for pile foundation improved ground and a pile foundation ground improvement construction method.

従来、地盤の液状化防止対策として、地盤内にセメント系改良によって平面視で格子状の壁を作成することで、格子内の原地盤を拘束し、地震時の地盤のせん断ひずみを低減する工法が知られている。 Conventionally, as a measure to prevent ground liquefaction, a method of construction in which a lattice-like wall is created in plan view using cement-based improvement in the ground, restraining the original ground within the lattice and reducing the shear strain of the ground during an earthquake. It has been known.

このような液状化防止を行った改良地盤の液状化の評価方法としては、例えば特許文献1に示されるように、地盤改良壁と原地盤を合わせたときの剛性を簡単に求める方法がある。
特許文献1には、地盤改良体が原地盤内に平面視で周期的に配設されてなる改良地盤の等価せん断波速度と当該改良地盤の地盤改良率との相関関係を示す等価せん断波速度グラフを用いて、当該改良地盤上に構築される建屋の地震応答を評価する方法が提案されている。
As a method for evaluating the liquefaction of the improved ground that has undergone such liquefaction prevention, for example, as shown in Patent Document 1, there is a method of simply determining the rigidity of the ground improvement wall and the original ground combined.
Patent Document 1 describes an equivalent shear wave velocity that shows the correlation between the equivalent shear wave velocity of improved ground in which ground improvement bodies are periodically arranged in a plan view in the original ground and the ground improvement rate of the improved ground. A method has been proposed that uses graphs to evaluate the seismic response of buildings built on the improved ground.

特開2007-170904号公報Japanese Patent Application Publication No. 2007-170904

ところで、従来では、地盤に打設されている杭を液状化対策として利用することは行われていない。そこで、このような杭を考慮した地盤改良における具体的な液状化の評価方法が求められており、その点で改善の余地があった。 By the way, conventionally, piles driven into the ground have not been used as a countermeasure against liquefaction. Therefore, there is a need for a specific method for evaluating liquefaction in ground improvement that takes such piles into consideration, and there is room for improvement in this respect.

本発明は、上述する問題点に鑑みてなされたもので、杭基礎を考慮した改良地盤の液状化を効率よく評価できる杭基礎改良地盤の液状化評価方法および杭基礎地盤改良工法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and provides a method for evaluating liquefaction of improved ground on pile foundations and a method for improving ground on pile foundations, which can efficiently evaluate liquefaction of improved ground in consideration of pile foundations. With the goal.

上記目的を達成するため、本発明に係る杭基礎改良地盤の液状化評価方法は、杭基礎を格子状地盤改良体で拘束した杭基礎改良地盤における液状化の可能性について評価するための杭基礎改良地盤の液状化評価方法であって、改良形状をパイル状に改良したパイル状地盤改良体の等価せん断速度より得られた第1算定チャートを作成する工程と、前記格子状地盤改良体の等価せん断速度より得られた第2算定チャートを作成する工程と、前記第1算定チャートを使用して前記パイル状地盤改良体の材料値を前記杭基礎の材料値に変換し、前記杭基礎と原地盤の剛性をもつせん断応力τとひずみγの関係を求める工程と、前記第2算定チャートを使用して前記格子状地盤改良体のせん断応力τとひずみγの関係を求める工程と、前記杭基礎と原地盤の剛性をもつせん断応力τとひずみγの関係、及び前記格子状地盤改良体のせん断応力τとひずみγの関係に基づいて、改良前後の地盤に生じるせん断応力比からなる液状化安全率を求める工程と、前記せん断応力比の大きさに基づいて液状化の有無を判定する工程と、を有することを特徴としている。 In order to achieve the above object, the liquefaction evaluation method of pile foundation improved ground according to the present invention is a pile foundation for evaluating the possibility of liquefaction in pile foundation improved ground where the pile foundation is restrained by a grid-like ground improvement body. A method for evaluating liquefaction of improved ground, comprising: creating a first calculation chart obtained from the equivalent shear rate of a pile-like ground improvement body whose improved shape is improved to a pile-like shape; A step of creating a second calculation chart obtained from the shear rate, and converting the material values of the pile-like ground improvement body into material values of the pile foundation using the first calculation chart, and converting the material values of the pile foundation and the original a step of determining the relationship between the shear stress τ and the strain γ with respect to the rigidity of the ground, a step of determining the relationship between the shear stress τ and the strain γ of the grid-like ground improvement body using the second calculation chart, and the pile foundation. Based on the relationship between shear stress τ and strain γ with the stiffness of the original ground, and the relationship between the shear stress τ and strain γ of the grid-like ground improvement body, liquefaction safety is determined by the ratio of shear stress generated in the ground before and after improvement. The present invention is characterized by comprising the steps of determining the shear stress ratio, and determining the presence or absence of liquefaction based on the magnitude of the shear stress ratio.

また、本発明に係る杭基礎地盤改良工法は、上述した杭基礎改良地盤の液状化評価方法を用いて前記杭基礎改良地盤を構築する杭基礎地盤改良工法であって、原地盤に前記杭基礎を打設する工程と、該杭基礎を格子状に囲むように格子状地盤改良体を構築する工程と、を有することを特徴としている。 Further, the pile foundation ground improvement method according to the present invention is a pile foundation ground improvement method for constructing the pile foundation improved ground using the above-mentioned liquefaction evaluation method for the pile foundation improved ground, wherein the pile foundation is added to the original ground. and a step of constructing a lattice-like ground improvement body so as to surround the pile foundation in a lattice-like manner.

本発明では、パイル状地盤改良体に基づく第1算定チャートを杭基礎の材料値に置き換えて補正したものを使用して液状化を評価できる。すなわち、液状化安全率を求める際に、杭基礎の剛性を考慮して原地盤の見掛け上の強度を高めて計算することができる。
これにより、本発明では、杭基礎と格子状地盤改良体とを組み合わせた杭基礎改良地盤の剛性を簡単な方法により求めることができ、杭基礎の効果を考慮した杭基礎改良地盤であっても液状化を評価できる。しかも、従来使用されるパイル状地盤改良体の第1算定チャートを利用して、杭基礎の材料値に変換するといった簡単な方法により液状化安全率を求めることができ、効率よく液状化を評価することができる。
In the present invention, liquefaction can be evaluated using the first calculation chart based on the pile-like ground improvement body, which is corrected by replacing it with the material values of the pile foundation. That is, when calculating the liquefaction safety factor, the apparent strength of the original ground can be increased in consideration of the rigidity of the pile foundation.
As a result, in the present invention, the rigidity of a pile foundation improved ground that combines a pile foundation and a lattice-like ground improvement body can be determined by a simple method, and even if the pile foundation improved ground takes into account the effects of the pile foundation. Liquefaction can be evaluated. In addition, the liquefaction safety factor can be obtained by a simple method such as using the first calculation chart of the conventionally used pile-type ground improvement body and converting it to the material value of the pile foundation, so that liquefaction can be evaluated efficiently. can do.

また、本発明に係る杭基礎改良地盤の液状化評価方法は、前記杭基礎は、既存杭であることを特徴としてもよい。 Moreover, the liquefaction evaluation method for pile foundation improved ground according to the present invention may be characterized in that the pile foundation is an existing pile.

この場合には、既存杭と格子状地盤改良体とを組み合わせた杭基礎改良地盤を構築する際に、上述した液状化評価方法を用いて液状化を評価することができる。この場合には、新たな杭基礎を打設することなく施工できるので、効率的かつ剛性の高い改良地盤を構築することができる。 In this case, when constructing a pile foundation improved ground that combines existing piles and grid-like ground improvement bodies, liquefaction can be evaluated using the liquefaction evaluation method described above. In this case, construction can be carried out without driving a new pile foundation, so it is possible to construct an efficient and highly rigid improved ground.

本発明の杭基礎改良地盤の液状化評価方法および杭基礎地盤改良工法によれば、杭基礎を考慮した改良地盤の液状化を効率よく評価できる。 According to the method for evaluating liquefaction of improved ground on pile foundations and the method for improving ground on pile foundations of the present invention, liquefaction of improved ground in consideration of pile foundations can be efficiently evaluated.

本発明の実施形態による液状化評価方法を適用する杭基礎改良地盤を模式的に示した斜視図である。1 is a perspective view schematically showing a pile foundation improved ground to which a liquefaction evaluation method according to an embodiment of the present invention is applied. 図1に示す杭基礎改良地盤の平面図である。FIG. 2 is a plan view of the pile foundation improved ground shown in FIG. 1. パイル状地盤改良体を模式的に示す図であって、(a)は斜視図、(b)は平面図である。It is a figure which shows a pile-like ground improvement body typically, Comprising: (a) is a perspective view, (b) is a top view. 格子状地盤改良体を模式的に示す図であって、(a)は斜視図、(b)は平面図である。It is a figure which shows typically a grid-like ground improvement body, Comprising: (a) is a perspective view, (b) is a top view. 図3に示すパイル状地盤改良体の等価せん断波速度グラフである。4 is an equivalent shear wave velocity graph of the pile-shaped ground improvement body shown in FIG. 3. 図4に示す格子状地盤改良体の等価せん断波速度グラフである。5 is an equivalent shear wave velocity graph of the grid-like ground improvement body shown in FIG. 4. FIG. 改良地盤の液状化検討フローの一例を示す図である。It is a figure showing an example of a liquefaction examination flow of improved ground. 改良前後の改良地盤の液状化安全率(FL値)を示す図である。It is a figure showing the liquefaction safety factor (FL value) of the improved ground before and after improvement.

以下、本発明の実施形態による杭基礎改良地盤の液状化評価方法および杭基礎地盤改良工法について、図面に基づいて説明する。 DESCRIPTION OF EMBODIMENTS Hereinafter, a liquefaction evaluation method for pile foundation improved ground and a pile foundation ground improvement construction method according to an embodiment of the present invention will be described based on the drawings.

本実施形態による杭基礎改良地盤1の液状化評価方法は、図1及び図2に示すように、例えば鋼管杭やコンクリート杭等の複数の既存杭2(杭基礎)が施工されている原地盤Gにおいて、地盤改良により平面視で格子状となる格子状地盤改良体3を形成した杭基礎改良地盤1を対象として液状化を評価するものである。格子状地盤改良体3は、既存杭2を囲うような複数の格子が形成されている。既存杭2は、円柱状に形成されている。
なお、本実施形態では杭基礎として既存杭2を対象としているが、新設杭を本実施形態の液状化評価方法による杭基礎の適用対象としてもよい。
As shown in FIGS. 1 and 2, the liquefaction evaluation method for pile foundation improved ground 1 according to the present embodiment is applied to the original ground on which a plurality of existing piles 2 (pile foundations) such as steel pipe piles and concrete piles have been constructed. In G, liquefaction is evaluated for the pile foundation improved ground 1 that has been improved to form a grid-like ground improvement body 3 that is grid-like in plan view. In the lattice-like ground improvement body 3, a plurality of lattices surrounding the existing piles 2 are formed. The existing pile 2 is formed into a columnar shape.
In addition, in this embodiment, although the existing pile 2 is targeted as a pile foundation, a newly installed pile may be applied to the pile foundation by the liquefaction evaluation method of this embodiment.

先ず、杭基礎改良地盤1の等価せん断波速度グラフを作成する。本実施形態では、既存杭2の形状や格子状地盤改良体3の改良形状が選択される。具体的には、図3(a)、(b)に示すように改良形状をパイル状に改良したパイル状地盤改良体4の等価せん断速度より得られた第1算定チャート(図5参照)を作成するとともに、図4(a)、(b)に示すように格子状地盤改良体3の等価せん断速度より得られた第2算定チャート(図6参照)を作成する。
これら算定チャートは、改良体の形状に応じて、原地盤Gと地盤改良体3、4の等価剛性を求めるために使用される。
First, an equivalent shear wave velocity graph of the pile foundation improved ground 1 is created. In this embodiment, the shape of the existing pile 2 and the improved shape of the grid-like ground improvement body 3 are selected. Specifically, as shown in FIGS. 3(a) and 3(b), the first calculation chart (see FIG. 5) obtained from the equivalent shear rate of the pile-like ground improvement body 4 whose improved shape has been improved to a pile-like shape is At the same time, as shown in FIGS. 4(a) and 4(b), a second calculation chart (see FIG. 6) obtained from the equivalent shear rate of the grid-like ground improvement body 3 is created.
These calculation charts are used to determine the equivalent rigidity of the original ground G and the ground improvement bodies 3 and 4, depending on the shape of the improvement body.

図5に示す第1算定チャートは、図3(a)、(b)に示すパイル状地盤改良体4において、ミクロスケールで表される周期構造モデルを用いて等価せん断波速度Vs_eqを求め、算定チャート化したものである。パイル状地盤改良体4の場合には、パイル状地盤改良体4の半径rを変えて計算している。第1算定チャートに示す曲線群は、パイル形状に応じた特性を示し、地盤改良率R(%)の増加に対する等価せん断波速度VS_eqの増加率は小さく、例えばR=60%で原地盤の2倍程度の等価せん断波速度VS_eqにしかかならい。地盤改良率Rは、地盤改良体の面積/改良地盤の全面積である。 The first calculation chart shown in FIG. 5 calculates the equivalent shear wave velocity V s_eq using a periodic structure model expressed on a micro scale in the pile ground improvement body 4 shown in FIGS. 3(a) and 3(b). This is a calculation chart. In the case of the pile-shaped ground improvement body 4, the radius r of the pile-shaped ground improvement body 4 is changed for calculation. The curve group shown in the first calculation chart shows characteristics depending on the pile shape, and the rate of increase in the equivalent shear wave velocity V S_eq with respect to the increase in the ground improvement rate R (%) is small. For example, when R = 60%, the It only corresponds to the equivalent shear wave velocity V S_eq, which is about twice as high. The ground improvement rate R is the area of the ground improvement body divided by the total area of the improved ground.

図6に示す第2算定チャートは、格子状地盤改良体3において、ミクロスケールで表される周期構造モデルを用いて等価せん断波速度VS_eqを求め、算定チャート化したものである。格子状地盤改良体3の場合には、格子状地盤改良体3の格子幅方向の厚さtを変えて計算している。第2算定チャートに示す曲線群は、格子形状に応じた特性を示し、全体剛性に対する顕著な改良形状効果が生じている。 The second calculation chart shown in FIG. 6 is a calculation chart obtained by determining the equivalent shear wave velocity V S_eq in the grid-like ground improvement body 3 using a periodic structure model expressed on a micro scale. In the case of the lattice-shaped ground improvement body 3, the thickness t of the lattice-shaped ground improvement body 3 in the lattice width direction is changed for calculation. The curve group shown in the second calculation chart shows characteristics depending on the lattice shape, and a remarkable improved shape effect on the overall stiffness has occurred.

各算定チャートにおけるaおよび地盤改良率Rを設定して単位周期構造体の弾性マトリックスCおよび応答変位ベクトルXを力学的あるいは解析的に求め、(1)式を用いて地盤改良体の等価弾性マトリックスCを算出する。なお、図中のaは、(地盤改良体のせん断波速度VSI/原地盤のせん断波速度VSG)である。
次に、等価弾性マトリックスCHの成分として得られた地盤改良体の等価せん断弾性係数Gを用いて(2)式から地盤改良体の等価せん断波速度Vを算出する。
ここで、(1)式、(2)式において、Cは上記の通り単位周期構造体の弾性マトリックス、Iは単位マトリックス、Xは上記の通り単位周期構造体に単位マクロひずみを作用させたときの応答変位ベクトル、yはミクロスケール、Yは単位周期構造体の領域、ρは改良地盤の平均密度である。そして、単位マクロひずみとは、改良地盤の平均ひずみを1とすることをいう。
Set a and the ground improvement rate R in each calculation chart, mechanically or analytically determine the elastic matrix C and response displacement vector Calculate C H. Note that a in the figure is (shear wave velocity V SI of the ground improvement body/shear wave velocity V SG of the original ground).
Next, the equivalent shear wave velocity V H of the ground improvement body is calculated from equation (2) using the equivalent shear elastic modulus G H of the ground improvement body obtained as a component of the equivalent elasticity matrix CH.
Here, in equations (1) and (2), C is the elastic matrix of the unit periodic structure as above, I is the unit matrix, and X is the time when unit macro strain is applied to the unit periodic structure as above. , where y is the microscale, Y is the area of the unit periodic structure, and ρ is the average density of the improved ground. The unit macro strain means that the average strain of the improved ground is 1.

Figure 0007355680000001
Figure 0007355680000001

Figure 0007355680000002
Figure 0007355680000002

続いて、aおよび地盤改良率Rを順次、変えて改良地盤の等価せん断波速度Vを算出し、aをパラメータとして、改良地盤の等価せん断波速度Vと当該改良地盤の地盤改良率との相関関係を示す曲線群を求めることにより、選択した改良形状に対応する等価せん断波速度グラフを得ることができる。 Next, the equivalent shear wave velocity V H of the improved ground is calculated by changing a and the ground improvement rate R sequentially, and using a as a parameter, the equivalent shear wave velocity V H of the improved ground and the ground improvement rate of the improved ground are calculated. By finding a group of curves showing the correlation of , an equivalent shear wave velocity graph corresponding to the selected improved shape can be obtained.

図5及び図6に示す等価せん断波速度グラフを利用する場合は、(地盤改良体のせん断波速度VsI/原地盤のせん断波速度VsG)を先ず設定し、等価せん断波速度グラフを用いて最適なaと地盤改良率Rの組合せを設計的観点から選択することになる。例えば、パイル状地盤改良体4の場合、改良地盤の等価せん断波速度Vを原地盤の約1.4倍に設定すると、図5よりa=4~20の範囲において地盤改良率を35%とすればよいことがわかる。 When using the equivalent shear wave velocity graphs shown in Figures 5 and 6, first set (shear wave velocity V sI of the ground improvement body / shear wave velocity V sG of the original ground), and then use the equivalent shear wave velocity graph. Therefore, the optimal combination of a and soil improvement rate R is selected from a design perspective. For example, in the case of the pile-shaped ground improvement body 4, if the equivalent shear wave velocity V H of the improved ground is set to approximately 1.4 times that of the original ground, the ground improvement rate will be 35% in the range of a = 4 to 20 as shown in Figure 5. You can see that it is sufficient to do this.

ここで、本実施形態による杭基礎改良地盤1の液状化評価方法は、一例として図7に示すような改良地盤における液状化検討フローを用いることができる。図7に示す液状化検討フローは、「格子状改良体で拘束された砂地盤の簡易液状化評価法」(土木学会論文集C(地圏工学)、vol.68、No.2、297-304、2012)である。このような図7に示す液状化検討フローを用いてもよいし、他の液状化検討フローを採用することも可能ある。なお、図7に示す液状化検討フローは、上述した文献に記載されているので、ここでは詳しい説明を省略する。 Here, the liquefaction evaluation method of the pile foundation improved ground 1 according to the present embodiment can use a liquefaction study flow in the improved ground as shown in FIG. 7, as an example. The liquefaction study flow shown in Figure 7 is based on “Simple liquefaction evaluation method for sandy ground restrained by grid-like improvement bodies”, Journal of the Japan Society of Civil Engineers C (Geosphere Engineering), vol. 68, No. 2, 297- 304, 2012). The liquefaction study flow shown in FIG. 7 may be used, or other liquefaction study flow may be adopted. Note that the liquefaction study flow shown in FIG. 7 is described in the above-mentioned literature, so a detailed explanation will be omitted here.

次に、図5に示す第1算定チャートを使用してパイル状地盤改良体4の材料値を既存杭2の材料値に変換し、図8に示すように、既存杭2と原地盤Gの剛性をもつせん断応力τとひずみγの関係(図8に示すS2の曲線)を求める。具体的には、パイル状地盤改良体4の第1算定チャートのせん断波速度VSIに関して、パイル状地盤改良体4の材料に代えて既存杭2の材料のものを使用する。例えば、既存杭2のせん断波速度VSIが2000m/sで、パイル状地盤改良体4が500m/sの場合、比率aは、既存杭2の場合にはパイル状地盤改良体の場合の4倍になる。 Next, the material value of the pile-like ground improvement body 4 is converted to the material value of the existing pile 2 using the first calculation chart shown in FIG. 5, and as shown in FIG. The relationship between rigid shear stress τ and strain γ (curve S2 shown in FIG. 8) is determined. Specifically, regarding the shear wave velocity V SI of the first calculation chart of the pile-shaped ground improvement body 4, the material of the existing pile 2 is used instead of the material of the pile-shaped ground improvement body 4. For example, if the shear wave velocity V SI of the existing pile 2 is 2000 m/s and the pile-like ground improvement body 4 is 500 m/s, the ratio a is 4 for the existing pile 2 and 4 for the pile-like ground improvement body. Double.

次に、等価繰り返しせん断応力比(τ/σ´)を算定する。地震時に地盤に生じるせん断応力τは地震応答解析などから算定する。そして、拘束された地盤のせん断ひずみγを算定する。そして、上記で求めたせん断応力τに対する初期せん断ひずみγを(3)式により求める。ここで、Geqは、格子状地盤改良体3の等価なせん断剛性である。 Next, the equivalent repeated shear stress ratio (τ d /σ′ v ) is calculated. The shear stress τ d generated in the ground during an earthquake is calculated from earthquake response analysis. Then, the shear strain γ I of the restrained ground is calculated. Then, the initial shear strain γ I for the shear stress τ d determined above is determined using equation (3). Here, G eq is the equivalent shear rigidity of the grid-like ground improvement body 3.

Figure 0007355680000003
Figure 0007355680000003

(3)式により得られた初期せん断ひずみγの値に応じて図5の第1算定チャートにより格子状地盤改良体3の等価なせん断剛性Geqを求める。そして、このサイクルをγが収束するまで数度繰り返し、γ=γI_eqを決定する。ここで、γI_eqは、改良地盤に生じる等価な初期せん断ひずみである。 In accordance with the value of the initial shear strain γ I obtained from equation (3), the equivalent shear rigidity G eq of the lattice-shaped ground improvement body 3 is determined using the first calculation chart shown in FIG. Then, this cycle is repeated several times until γ I converges, and γ I = γ I_eq is determined. Here, γ I_eq is the equivalent initial shear strain occurring in the improved ground.

次に、図8に示すように、改良前後の液状化安全率(FL値)を求める。即ち、既存杭2と原地盤Gの剛性をもつせん断応力τとひずみγの関係(図8のS2の曲線)、及び第2算定チャートから得られる格子状地盤改良体3のせん断応力τとひずみγの関係(図8のS3の曲線)に基づいて、改良前後の地盤に生じるせん断応力比(τ/σ´)からなる液状化安全率を求める。 Next, as shown in FIG. 8, the liquefaction safety factor (FL value) before and after the improvement is determined. That is, the relationship between the rigid shear stress τ and strain γ of the existing pile 2 and the original ground G (curve S2 in FIG. 8), and the shear stress τ and strain of the grid-like ground improvement body 3 obtained from the second calculation chart. Based on the relationship of γ (curve S3 in FIG. 8), a liquefaction safety factor consisting of the shear stress ratio (τ/σ′ v ) generated in the ground before and after improvement is determined.

具体的には、上記で求めた改良地盤の等価な初期せん断ひずみγI_eqおよび液状化が発生する初期せん断ひずみγI_Iqから対応するせん断応力比(τ/σ´)を求める。 Specifically, the corresponding shear stress ratio (τ/σ′ v ) is determined from the equivalent initial shear strain γ I_eq of the improved ground determined above and the initial shear strain γ I_Iq at which liquefaction occurs.

図8に示すように、原地盤Gの液状化に達するひずみγI_Iqが変わらないように、液状化強度を補正する。図8のグラフは、横軸に変形(ひずみγ)、縦軸にせん断応力比(τ/σ´)を示している。ここでは、原地盤Gに液状化が発生するせん断ひずみγI_Iqが既存杭2の有無に関係なく変わらないと仮定するものであり、液状化時に地盤に生じる応力が大きくなると仮定する。つまり、原地盤Gに液状化が発生するせん断ひずみγI_Iqのとき、液状化時に地盤に生じる応力は、原地盤Gのτ-γ関係のグラフS1ではなく、原地盤Gと既存杭2の剛性をもつ地盤のτ-γ関係のグラフS2による数値に基づいて求める。 As shown in FIG. 8, the liquefaction intensity is corrected so that the strain γ I_Iq at which the original ground G reaches liquefaction does not change. The graph in FIG. 8 shows deformation (strain γ I ) on the horizontal axis and shear stress ratio (τ/σ′ v ) on the vertical axis. Here, it is assumed that the shear strain γ I_Iq at which liquefaction occurs in the original ground G does not change regardless of the presence or absence of the existing pile 2, and it is assumed that the stress generated in the ground during liquefaction increases. In other words, when the shear strain γ I_Iq at which liquefaction occurs in the original ground G, the stress generated in the ground during liquefaction is not the graph S1 of the τ - γ relationship of the original ground G, but the stiffness of the original ground G and the existing pile 2. It is determined based on the numerical value from the graph S2 of the τ-γ relationship of the ground with .

なお、均質化法の仮定として、杭が周囲の地盤と一体となってせん断変形するものとしているが、実際には杭は地盤と同じせん断変形はせず、曲げ材として変形するので、均質化された複合地盤のせん断剛性は比較的過大に評価される。 The assumption of the homogenization method is that the pile deforms in shear together with the surrounding ground, but in reality, the pile does not undergo the same shear deformation as the ground, but deforms as a bending material, so the homogenization method The shear stiffness of the composite ground is relatively overestimated.

次に、図8に基づいて、せん断応力比の大きさに基づいて液状化の有無を判定する。ここで、FL値は、液状化が発生するせん断応力τIqに対する改良前後の地盤のせん断応力の比(τ/σ´)である。 Next, based on FIG. 8, the presence or absence of liquefaction is determined based on the magnitude of the shear stress ratio. Here, the FL value is the ratio (τ/σ′ v ) of the shear stress of the ground before and after improvement to the shear stress τ Iq at which liquefaction occurs.

改良前では、外力(等価繰返しせん断応力比:τ/σ´)の方が、液状化強度(液状化時に地盤に生じるせん断応力比:τIq/σ´)より大きいため液状化のおそれがある(FL値<1)と判定される場合においても、適切な改良後では、外力によって生じるせん断ひずみが改良の効果により小さくなり、原地盤Gに生じるせん断応力比(τeq/σ´)が液状化強度より小さくなり、液状化の恐れがない(FL値>1)と判定される。 Before the improvement, the external force (equivalent cyclic shear stress ratio: τ d /σ′ v ) was larger than the liquefaction strength (shear stress ratio generated in the ground during liquefaction: τ Iq /σ′ v ), so the liquefaction Even if it is determined that there is a risk (FL value < 1), after appropriate improvement, the shear strain caused by external force will be reduced due to the improvement effect, and the shear stress ratio (τ eq /σ' v ) becomes smaller than the liquefaction strength, and it is determined that there is no risk of liquefaction (FL value>1).

次に、上述した杭基礎改良地盤の液状化評価方法および杭基礎地盤改良工法の作用について、図面に基づいて詳細に説明する。
本実施形態では、図8に示すように、パイル状地盤改良体4に基づく第1算定チャートを既存杭2の材料値に置き換えて補正したものを使用して液状化を評価できる。すなわち、液状化安全率を求める際に、既存杭2の剛性を考慮して原地盤Gの見掛け上の強度を高めて計算することができる。
Next, the effects of the liquefaction evaluation method of the pile foundation improved ground and the pile foundation ground improvement method described above will be explained in detail based on the drawings.
In this embodiment, as shown in FIG. 8, liquefaction can be evaluated using a first calculation chart based on the pile-like ground improvement body 4 that is corrected by replacing it with the material values of the existing piles 2. That is, when calculating the liquefaction safety factor, the apparent strength of the original ground G can be increased in consideration of the rigidity of the existing pile 2 in calculation.

これにより、本実施形態では、既存杭2と格子状地盤改良体3とを組み合わせた杭基礎改良地盤1の剛性を簡単な方法により求めることができ、既存杭2の効果を考慮した杭基礎改良地盤1であっても液状化を評価できる。しかも、図5に示す従来使用されるパイル状地盤改良体4の第1算定チャートを利用して、既存杭2の材料値に変換するといった簡単な方法により液状化安全率を求めることができ、効率よく液状化を評価することができる。 As a result, in this embodiment, the rigidity of the pile foundation improved ground 1 that combines the existing piles 2 and the lattice-like ground improvement body 3 can be determined by a simple method, and the pile foundation improvement considering the effect of the existing piles 2 is possible. Liquefaction can be evaluated even in ground 1. Moreover, the liquefaction safety factor can be determined by a simple method such as using the first calculation chart of the conventionally used pile-shaped ground improvement body 4 shown in FIG. 5 and converting it to the material value of the existing pile 2. Liquefaction can be evaluated efficiently.

また、本実施形態では、杭基礎として既存杭2を採用しているので、既存杭2と格子状地盤改良体3とを組み合わせた杭基礎改良地盤1を構築する際に、本実施形態の液状化評価方法を用いて液状化を評価することができる。この場合には、新たな杭基礎を打設することなく施工できるので、効率的かつ剛性の高い改良地盤を構築することができる。 In addition, in this embodiment, since the existing piles 2 are adopted as the pile foundation, when constructing the pile foundation improved ground 1 that combines the existing piles 2 and the lattice-like ground improvement body 3, the liquid of this embodiment Liquefaction can be evaluated using a liquefaction evaluation method. In this case, construction can be carried out without driving a new pile foundation, so it is possible to construct an efficient and highly rigid improved ground.

上述のように本実施形態による杭基礎改良地盤の液状化評価方法および杭基礎地盤改良工法では、杭基礎を考慮した改良地盤の液状化を効率よく評価できる。 As described above, in the pile foundation improved ground liquefaction evaluation method and pile foundation ground improvement construction method according to the present embodiment, liquefaction of improved ground considering the pile foundation can be efficiently evaluated.

以上、本発明による杭基礎改良地盤の液状化評価方法および杭基礎地盤改良工法の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 The embodiments of the liquefaction evaluation method for pile foundation improved ground and the pile foundation ground improvement method according to the present invention have been described above, but the present invention is not limited to the above-described embodiments, and may be provided within the scope of the spirit thereof. It can be changed as appropriate.

例えば、本実施形態で対象としている杭基礎2は、既存杭、新設の基礎杭のいずれかを対象とすることも可能である。
また、杭基礎として、円柱形状のものに限定されることはなく、断面視で矩形状の杭であってもかまわない。
For example, the pile foundation 2 targeted in this embodiment can be either an existing pile or a newly installed foundation pile.
Moreover, the pile foundation is not limited to a columnar shape, and may be a rectangular pile in cross-section.

また、上述した実施形態では、格子状地盤改良体3の1つの格子の中に1本の基礎杭(杭基礎)が配置された一例であるが、1つの格子の中に複数本の杭基礎が配置される場合にも適用可能である。この場合の液状化評価方法として、例えば、パイル状地盤改良体4に基づく第1算定チャート(図5参照)と、格子状地盤改良体3に基づく第2算定チャート(図6参照)をそれぞれ独立して算定することにより液状化評価を実施することができる。すなわち、複数の杭基礎の杭種が同じ場合は、近似的には、格子内地盤の面積に対する複数本の杭面積で改良率を決めてパイル状地盤改良体4に基づく第1算定チャートを使用して計算することができる。また、複数杭の杭種が異なる場合(例えば、第1既存杭A、第2既存杭B)には、近似的には、杭剛性を単純に(第1既存杭A+第2既存杭B)/2とし、格子内地盤との面積比で剛性を決めて同様に計算することができる。なお、格子間に複数本の杭基礎が配置される場合の第1算定チャートを使用した計算方法は、これに限定されることはなく、適宜な算定方法を採用することができる。 Furthermore, in the embodiment described above, one foundation pile (pile foundation) is arranged in one lattice of the lattice-like ground improvement body 3, but a plurality of pile foundations are arranged in one lattice. It is also applicable when As a liquefaction evaluation method in this case, for example, the first calculation chart based on the pile-shaped ground improvement body 4 (see Figure 5) and the second calculation chart based on the grid-like ground improvement body 3 (see Figure 6) are independently used. Liquefaction evaluation can be carried out by calculating. In other words, if the pile types of multiple pile foundations are the same, approximately, the improvement rate is determined based on the area of the multiple piles relative to the area of the ground within the grid, and the first calculation chart based on the pile-shaped soil improvement body 4 is used. It can be calculated by In addition, if the pile types of multiple piles are different (for example, the first existing pile A, the second existing pile B), approximately the pile rigidity can be simply calculated as (the first existing pile A + the second existing pile B). /2, and the rigidity can be determined by the area ratio with the ground in the grid and calculated in the same way. Note that the calculation method using the first calculation chart when a plurality of pile foundations are arranged between grids is not limited to this, and any appropriate calculation method can be adopted.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 In addition, it is possible to appropriately replace the components in the above-described embodiments with well-known components without departing from the spirit of the present invention.

1 杭基礎改良地盤
2 既存杭(杭基礎)
3 格子状地盤改良体
4 パイル状地盤改良体
G 原地盤
1 Pile foundation improved ground 2 Existing piles (pile foundation)
3 Grid-shaped ground improvement body 4 Pile-shaped ground improvement body G Original ground

Claims (3)

杭基礎を格子状地盤改良体で拘束した杭基礎改良地盤における液状化の可能性について評価するための杭基礎改良地盤の液状化評価方法であって、
改良形状をパイル状に改良したパイル状地盤改良体の等価せん断速度より得られた第1算定チャートを作成する工程と、
前記格子状地盤改良体の等価せん断速度より得られた第2算定チャートを作成する工程と、
前記第1算定チャートを使用して前記パイル状地盤改良体の材料値を前記杭基礎の材料値に変換し、前記杭基礎と原地盤の剛性をもつせん断応力τとひずみγの関係を求める工程と、
前記第2算定チャートを使用して前記格子状地盤改良体のせん断応力τとひずみγの関係を求める工程と、
前記杭基礎と原地盤の剛性をもつせん断応力τとひずみγの関係、及び前記格子状地盤改良体のせん断応力τとひずみγの関係に基づいて、改良前後の地盤に生じるせん断応力比からなる液状化安全率を求める工程と、
前記せん断応力比の大きさに基づいて液状化の有無を判定する工程と、
を有することを特徴とする杭基礎改良地盤の液状化評価方法。
A liquefaction evaluation method for pile foundation improved ground for evaluating the possibility of liquefaction in pile foundation improved ground where the pile foundation is restrained by a grid-like ground improvement body, comprising:
a step of creating a first calculation chart obtained from the equivalent shear rate of a pile-like ground improvement body whose improved shape is improved to a pile-like shape;
creating a second calculation chart obtained from the equivalent shear rate of the grid-like ground improvement body;
A step of converting the material values of the pile-like ground improvement body into material values of the pile foundation using the first calculation chart, and determining the relationship between the shear stress τ and strain γ with the stiffness of the pile foundation and the original ground. and,
determining the relationship between shear stress τ and strain γ of the grid-like ground improvement body using the second calculation chart;
It consists of the shear stress ratio generated in the ground before and after improvement based on the relationship between the shear stress τ and strain γ with the rigidity of the pile foundation and the original ground, and the relationship between the shear stress τ and strain γ of the lattice-like ground improvement body. A process of determining the liquefaction safety factor,
determining the presence or absence of liquefaction based on the magnitude of the shear stress ratio;
A liquefaction evaluation method for pile foundation improved ground, characterized by having the following.
前記杭基礎は、既存杭であることを特徴とする請求項1に記載の杭基礎改良地盤の液状化評価方法。 The liquefaction evaluation method for pile foundation improved ground according to claim 1, wherein the pile foundation is an existing pile. 請求項1又は2に記載の杭基礎改良地盤の液状化評価方法を用いて前記杭基礎改良地盤を構築する杭基礎地盤改良工法であって、
原地盤に前記杭基礎を打設する工程と、
該杭基礎を格子状に囲むように格子状地盤改良体を構築する工程と、
を有することを特徴とする杭基礎地盤改良工法。
A pile foundation ground improvement method for constructing the pile foundation improved ground using the liquefaction evaluation method for pile foundation improved ground according to claim 1 or 2,
a step of driving the pile foundation into the original ground;
constructing a lattice-like ground improvement body so as to surround the pile foundation in a lattice-like manner;
A pile foundation ground improvement method characterized by having.
JP2020031273A 2020-02-27 2020-02-27 Liquefaction evaluation method for pile foundation improved ground and pile foundation ground improvement method Active JP7355680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020031273A JP7355680B2 (en) 2020-02-27 2020-02-27 Liquefaction evaluation method for pile foundation improved ground and pile foundation ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020031273A JP7355680B2 (en) 2020-02-27 2020-02-27 Liquefaction evaluation method for pile foundation improved ground and pile foundation ground improvement method

Publications (2)

Publication Number Publication Date
JP2021134551A JP2021134551A (en) 2021-09-13
JP7355680B2 true JP7355680B2 (en) 2023-10-03

Family

ID=77660549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020031273A Active JP7355680B2 (en) 2020-02-27 2020-02-27 Liquefaction evaluation method for pile foundation improved ground and pile foundation ground improvement method

Country Status (1)

Country Link
JP (1) JP7355680B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170904A (en) 2005-12-20 2007-07-05 Shimizu Corp Method for evaluating seismic response of building on improved foundation
JP2007262813A (en) 2006-03-29 2007-10-11 Toda Constr Co Ltd Construction method for foundation for soil improvement and reduction in ground subsidence
JP2010133204A (en) 2008-12-08 2010-06-17 Shimizu Corp Method for simply evaluating liquefaction strength of partially-improved ground, and method for simply evaluating deformation of the partially-improved ground

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170904A (en) 2005-12-20 2007-07-05 Shimizu Corp Method for evaluating seismic response of building on improved foundation
JP2007262813A (en) 2006-03-29 2007-10-11 Toda Constr Co Ltd Construction method for foundation for soil improvement and reduction in ground subsidence
JP2010133204A (en) 2008-12-08 2010-06-17 Shimizu Corp Method for simply evaluating liquefaction strength of partially-improved ground, and method for simply evaluating deformation of the partially-improved ground

Also Published As

Publication number Publication date
JP2021134551A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
Akhoondi et al. Seismic fragility curves of steel structures including soil-structure interaction and variation of soil parameters
Miari et al. Analysis of pounding between adjacent buildings founded on different soil types
Visuvasam et al. Effect of soil–pile–structure interaction on seismic behaviour of RC building frames
Kotsoglou et al. Response simulation and seismic assessment of highway overcrossings
Fu et al. Seismic responses of sea-crossing isolated continuous beam bridges considering seabed–pile–seawater–bridge interaction
Temur Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm
JP7355680B2 (en) Liquefaction evaluation method for pile foundation improved ground and pile foundation ground improvement method
Kothari et al. In-structure response spectra considering nonlinearity of RCC structures: Experiments and analysis
Nishida et al. Development of seismic countermeasures against cliff edges for enhancement of comprehensive safety of nuclear power plants: cliff edges relevant to NPP building system
JP2010133204A (en) Method for simply evaluating liquefaction strength of partially-improved ground, and method for simply evaluating deformation of the partially-improved ground
Yousfi et al. Weighting assessment of vulnerability index parameters for reinforced masonry structures
Lemsara et al. Seismic Fragility of a Single Pillar-Column Under Near and Far Fault Soil Motion with Consideration of Soil-Pile Interaction
Huguet et al. Ductility coefficient assessment for RC walls and slabs submitted to experimental tests
CN117648835B (en) BRB design parameter optimization method suitable for highway pile plate type structure
JP2009074315A (en) Method of designing structure provided for transmitting load of upper structure to ground, and structure
Radeva et al. Fuzzy random vibration of hysteretic system subjected to earthquake
Lopez-Caballero et al. Mitigation of liquefaction seismic risk by preloading
Abbadi et al. Multi-objective optimization of elastomeric bearings to improve seismic performance of old bridges using eigen analysis and genetic algorithms
Janićijević et al. Nonlinear static" pushover" analysis of multi-storey reinforced concrete building
Mondal Soil Structure Interaction Effect on Dynamic Behavior of a Building
Katona Seismic design and analysis of buried structures with CANDE-2007
Dadawala et al. Response spectrum analysis of multi storied buildings: A review
al-Islami et al. Validation of alternate diagonal element in performance evaluation of frames with steel plate shear walls using fragility curve
Nasser et al. AN ANALYTICAL EVALUATION OF THE IMPACT OF IN-PLAN IRREGULARITY ON THE DYNAMIC CHARACTERISTICS AND LATERAL CAPACITY OF RC BUILDINGS
Aljuhaishi et al. Study of the Impact Irregular Concrete Facilities with the Shear Walls Based: The Effect of Soil-Structure Interaction with ABAQUS Software

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221221

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230921

R150 Certificate of patent or registration of utility model

Ref document number: 7355680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150