JP2007170578A - Member for dynamic pressure bearing, mould for moulding same, method for manufacturing same, and dynamic pressure bearing - Google Patents

Member for dynamic pressure bearing, mould for moulding same, method for manufacturing same, and dynamic pressure bearing Download PDF

Info

Publication number
JP2007170578A
JP2007170578A JP2005370686A JP2005370686A JP2007170578A JP 2007170578 A JP2007170578 A JP 2007170578A JP 2005370686 A JP2005370686 A JP 2005370686A JP 2005370686 A JP2005370686 A JP 2005370686A JP 2007170578 A JP2007170578 A JP 2007170578A
Authority
JP
Japan
Prior art keywords
dynamic pressure
bearing member
mold
core pin
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005370686A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
弘史 佐藤
Yuji Shishido
祐司 宍戸
Takeshi Kaneko
猛 金子
Kenichiro Yazawa
健一郎 矢澤
Yoshiaki Kakinuma
義昭 柿沼
Toshio Hashimoto
寿雄 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005370686A priority Critical patent/JP2007170578A/en
Publication of JP2007170578A publication Critical patent/JP2007170578A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member for a dynamic pressure bearing preventing a rotary shaft from being pulled out and a radial dynamic pressure groove from being damaged, a mould for moulding the same, a method for manufacturing the same, and the dynamic pressure bearing. <P>SOLUTION: This member 30A for the dynamic pressure bearing is provided with a predetermined length, has a bearing hole 51 having a round inner section in which a rotary shaft 31 is inserted opened thereon, consists of a bottomed 52 resin tube part 50 of which one end opens as a rotary shaft insertion opening 51a, has predetermined shape radial dynamic pressure grooves Ra, Rb formed on an inner circumference surface 53 of a bearing hole 51 of the tube part 50, has a thrust bearing part S formed on a bottom part 50, and has a retaining washer engagement groove 57 integrally formed above a part near the thrust bearing part S. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、回転軸の抜けない動圧溝が円筒状の内周面にラジアル軸受面として形成された、特に小型モータの動圧軸受に好適な動圧軸受用部材、その成形金型、その製造方法及び動圧軸受の改良に関するものである。   The present invention relates to a hydrodynamic bearing member suitable for a hydrodynamic bearing, in particular, a molding die thereof, in which a hydrodynamic groove through which a rotating shaft does not come off is formed as a radial bearing surface on a cylindrical inner peripheral surface, The present invention relates to an improved manufacturing method and hydrodynamic bearing.

先ず、図21〜図25を参照しながら、一例としての従来技術のモータ及びその回転軸を軸支する各種の軸受けユニットの構造及びその動圧軸受用部材の構造を説明する。   First, referring to FIGS. 21 to 25, the structure of various conventional bearing units that support the motor of the prior art as an example and the rotating shaft thereof and the structure of the dynamic pressure bearing member will be described.

図21は小型電子機器に用いられている一例の小型のモータの断面図、図22は図21に示したモータに用いることができる第1形態の軸受ユニットの断面側面図、図23は図22に示した軸受けユニットに組み込まれている動圧軸受用部材の断面斜視図、図24は図21に示したモータに用いことができる第2形態の軸受ユニットの断面側面図、図25は第3形態の軸受けユニットに組み込める従来技術の動圧軸受用部材を示していて、同図Aはその断面側面図、同図Bは同図Aの一部拡大図、図26は第3形態の動圧軸受用部材を射出成形する場合に用いられる第1例のコアピンを示していて、同図Aはその側面図、同図Bはその要部の拡大断面図、図27は図26に示したコアピンを用いて射出成形するための射出成形用金型の一例を示した要部断面図、図28は図27に示した射出成形用金型で成形した動圧軸受用部材の離型方法を説明するため図27に示した一部射出成形用金型及び動圧軸受用部材の断面図、図29は従来技術の第3例のコアピンの要部の拡大断面図、そして図30は図29のコアピンを用いて射出成形した第2例の動圧軸受用部材の要部の拡大断面図である。   21 is a cross-sectional view of an example of a small motor used in a small electronic device, FIG. 22 is a cross-sectional side view of a bearing unit of the first embodiment that can be used in the motor shown in FIG. 21, and FIG. FIG. 24 is a cross-sectional perspective view of a dynamic pressure bearing member incorporated in the bearing unit shown in FIG. 24, FIG. 24 is a cross-sectional side view of a second type bearing unit that can be used in the motor shown in FIG. 1 shows a conventional hydrodynamic bearing member that can be incorporated into a bearing unit of the embodiment, wherein FIG. A is a sectional side view thereof, FIG. B is a partially enlarged view of FIG. A, and FIG. The core pin of the 1st example used when carrying out injection molding of the member for bearings is shown, The figure A is the side view, The figure B is the expanded sectional view of the principal part, FIG. 27 is the core pin shown in FIG. Example of injection mold for injection molding using 28 is a cross-sectional view of the main part, and FIG. 28 is a partial injection mold and dynamic pressure shown in FIG. 27 for explaining a method of releasing the dynamic pressure bearing member formed by the injection mold shown in FIG. 29 is a sectional view of a bearing member, FIG. 29 is an enlarged sectional view of a main part of a core pin of a third example of the prior art, and FIG. 30 is a diagram of a second example of a hydrodynamic bearing member injection-molded using the core pin of FIG. It is an expanded sectional view of the principal part.

先ず、図21を用いて、モータの構成及び構造を説明する。   First, the configuration and structure of the motor will be described with reference to FIG.

この図示の形態のモータは、コンピュータ、特にノート型コンピュータなどの各種情報を演算処理、記録再生などを行う電子機器、特に小型電子機器に組み込んで好適なモータ、特に放熱装置付きモータである。   The motor in the form shown in the figure is a motor, particularly a motor with a heat dissipation device, which is suitable for being incorporated in an electronic device, particularly a small electronic device, which performs various kinds of information processing, recording / reproduction, etc. of a computer, particularly a notebook computer.

ノート型コンピュータなど電子機器の内部には放熱装置が設けられている。この放熱装置は、金属製のベースと、このベースに取り付けられたモータ1と、このモータ1によって回転動作するファン3と、このファン3を収納したファンケース4と、ヒートシンク(不図示)を備えている。モータ1はこのような放熱用のファン3を回転駆動するものである。   A heat dissipation device is provided inside an electronic device such as a notebook computer. The heat radiating device includes a metal base, a motor 1 attached to the base, a fan 3 that rotates by the motor 1, a fan case 4 that houses the fan 3, and a heat sink (not shown). ing. The motor 1 rotationally drives such a heat radiating fan 3.

このモータ1は、図21に示したように、ロータ11とステータ12とを備えている。   As shown in FIG. 21, the motor 1 includes a rotor 11 and a stator 12.

ステータ12は、モータ1と共にこのモータ1によって回転操作されるファン3を収納したファンケース4の上面板4a側に一体に設けられている。ステータ12は、ステータヨーク13と、軸受けユニット30と、コイル14とこのコイル14が巻回されているコア15とを備えている。ステータヨーク13は、ファンケース4の上面部4aと一体に形成されたもの、即ち、ファンケース4の一部によって構成したものでもよく、別体に形成したものであってもよい。ステータヨーク13は、例えば、鉄により形成されている。軸受けユニット30は、ステータヨーク13の中心部に筒状に形成されたホルダー16中に圧入または接着、更には圧入と共に接着により固定されている。   The stator 12 is integrally provided on the upper surface plate 4 a side of the fan case 4 that houses the fan 3 that is rotated by the motor 1 together with the motor 1. The stator 12 includes a stator yoke 13, a bearing unit 30, a coil 14, and a core 15 around which the coil 14 is wound. The stator yoke 13 may be formed integrally with the upper surface portion 4a of the fan case 4, that is, may be formed by a part of the fan case 4, or may be formed separately. The stator yoke 13 is made of, for example, iron. The bearing unit 30 is fixed by press-fitting or bonding into a cylindrical holder 16 formed at the center of the stator yoke 13, and further by pressing and bonding.

なお、軸受けユニット30が圧入されるホルダー16は、ステータヨーク13と一体に円筒状に形成されている。ステータヨーク13に一体に形成されたホルダー16の外周部には、図21に示したように、駆動電流が供給されるコイル14が巻回されたコア15が取り付けられている。   The holder 16 into which the bearing unit 30 is press-fitted is formed in a cylindrical shape integrally with the stator yoke 13. As shown in FIG. 21, a core 15 around which a coil 14 to which a drive current is supplied is attached is attached to the outer peripheral portion of the holder 16 formed integrally with the stator yoke 13.

ステータ12と共にモータ1を構成するロータ11は、軸受けユニット30に回転可能に支持された回転軸31に取り付けられ、回転軸31と一体に回転する。ロータ11は、ロータヨーク17と、このロータヨーク17と一体に回転する複数の羽根19を備えたファン3とを有する。ファン3の羽根19は、ロータヨーク17の外周面にアウトサート成形することにより、ロータヨーク17と一体に形成される。回転軸31は動圧軸受32により支持されている。   The rotor 11 that constitutes the motor 1 together with the stator 12 is attached to a rotating shaft 31 that is rotatably supported by the bearing unit 30, and rotates integrally with the rotating shaft 31. The rotor 11 includes a rotor yoke 17 and a fan 3 including a plurality of blades 19 that rotate integrally with the rotor yoke 17. The blade 19 of the fan 3 is formed integrally with the rotor yoke 17 by outsert molding on the outer peripheral surface of the rotor yoke 17. The rotary shaft 31 is supported by a dynamic pressure bearing 32.

ロータヨーク17の筒状部17aの内周面には、ステータ12のコイル14と対向するように、リング状のロータマグネット20が設けられている。このマグネット20は、周回り方向にS極とN極が交互に着磁されたプラスチックマグネットであり、接着剤によりロータヨーク17の内周面に固定されている。   A ring-shaped rotor magnet 20 is provided on the inner peripheral surface of the cylindrical portion 17 a of the rotor yoke 17 so as to face the coil 14 of the stator 12. The magnet 20 is a plastic magnet in which S and N poles are alternately magnetized in the circumferential direction, and is fixed to the inner peripheral surface of the rotor yoke 17 with an adhesive.

ロータヨーク17は、軸受けユニット30に支持された回転軸31の先端側に設けた取付部31dに、平板部17bの中心部に設けた貫通孔21aが設けられたボス部21を圧入することによって回転軸31と一体に回転可能に取り付けられている。   The rotor yoke 17 is rotated by press-fitting a boss portion 21 provided with a through hole 21a provided in the central portion of the flat plate portion 17b into a mounting portion 31d provided on the distal end side of the rotating shaft 31 supported by the bearing unit 30. The shaft 31 and the shaft 31 are rotatably attached.

前記のような構成のモータ1は、ステータ12側のコイル14に、モータ1の外部に設けた駆動回路部から所定の通電パターンにより駆動電流が供給されると、コイル14に発生する磁界とロータ11側のロータマグネット20からの磁界との作用によって、ロータ11が回転軸31と一体に回転する。ロータ11が回転することにより、このロータ11に取り付けられた複数の羽根19を有するファン3もロータ11と一体に回転する。ファン3が回転することにより、コンピュータを構成する筐体に設けた開口を通じて装置外部のエアーを吸引し、更に、筐体内を流通させ、筐体内に設けたヒートシンク中を流通しながら貫通口を介して筐体の外部に排気されることにより、発熱素子から発生する熱をコンピュータ本体の外部に放熱し、コンピュータ本体を冷却する。   In the motor 1 having the above-described configuration, when a drive current is supplied to the coil 14 on the stator 12 side by a predetermined energization pattern from a drive circuit unit provided outside the motor 1, the magnetic field generated in the coil 14 and the rotor The rotor 11 rotates integrally with the rotating shaft 31 by the action of the magnetic field from the 11-side rotor magnet 20. As the rotor 11 rotates, the fan 3 having a plurality of blades 19 attached to the rotor 11 also rotates integrally with the rotor 11. As the fan 3 rotates, air outside the apparatus is sucked through an opening provided in the housing constituting the computer, and further, the air is circulated through the housing and is passed through the heat sink provided in the housing through the through-hole. As a result, the heat generated from the heating element is radiated to the outside of the computer main body, and the computer main body is cooled.

次に、図22及び図24を用いて、このモータ1に用いられる軸受けユニットについて説明する。   Next, the bearing unit used for the motor 1 will be described with reference to FIGS. 22 and 24.

図22において符号30Cは第1形態の軸受けユニットを指す。この軸受けユニット30Cは、回転軸31B、その外周を軸受けする動圧軸受用部材32、ケース33、蓋34、回転軸31Bの下端を軸支するスラスト軸受け35から構成されている。   In FIG. 22, reference numeral 30C indicates the bearing unit of the first form. The bearing unit 30C includes a rotating shaft 31B, a dynamic pressure bearing member 32 that supports the outer periphery thereof, a case 33, a lid 34, and a thrust bearing 35 that supports the lower end of the rotating shaft 31B.

回転軸31Bは、下端の軸受け支持部31aと、中間部の軸本体31bと、上端部の取付部31dと、軸本体31bと取付部31dの間に設けられたテーパー部31cとの各部分に機能的に分けることができる構造のものである。軸受け支持部31aはスラスト軸受け35に支持される部分であり、軸本体31bは動圧軸受用部材32に支持される部分であり、取付部31dはモータ1のロータ11などを取り付ける部分であり、そしてテーパー部31cは蓋34の軸挿通孔34aと協動して軸受けユニット30Cの内部に充填されている潤滑油Lの漏洩を防止する機能を備えている部分である。   The rotary shaft 31B has a bearing support portion 31a at the lower end, a shaft main body 31b at the intermediate portion, a mounting portion 31d at the upper end, and a tapered portion 31c provided between the shaft main body 31b and the mounting portion 31d. It has a structure that can be divided functionally. The bearing support portion 31a is a portion that is supported by the thrust bearing 35, the shaft body 31b is a portion that is supported by the dynamic pressure bearing member 32, and the attachment portion 31d is a portion that attaches the rotor 11 and the like of the motor 1, The tapered portion 31c is a portion having a function of preventing leakage of the lubricating oil L filled in the bearing unit 30C in cooperation with the shaft insertion hole 34a of the lid 34.

この軸受けユニット30Cのスラスト軸受手段はピボット型軸受で、回転軸31Bの下端の軸受け支持部31aは球状とされ、平面のスラスト軸受け35に点接触状態で支持されている。   The thrust bearing means of the bearing unit 30C is a pivot type bearing, and the bearing support portion 31a at the lower end of the rotary shaft 31B has a spherical shape and is supported by a flat thrust bearing 35 in a point contact state.

動圧軸受用部材32は、図23に示したように、円筒状の部品で、その軸方向の長さは回転軸31Bの軸本体31bの軸方向の長さとほぼ同一の長さで、軸本体31bの直径より僅かに大きい内径を有している。その内周面の全周にはV字状の2本の動圧連続溝Ra、Rbが所定の間隔を開けて並行に形成されていて、回転軸31Bの軸本体31bを回転自在に軸支するものである。動圧軸受用部材23の材料としては、焼結メタル、真鍮、ステンレスなどの金属または樹脂などが用いられている。   As shown in FIG. 23, the dynamic pressure bearing member 32 is a cylindrical part whose axial length is substantially the same as the axial length of the shaft body 31b of the rotary shaft 31B. The inner diameter is slightly larger than the diameter of the main body 31b. Two V-shaped dynamic pressure continuous grooves Ra and Rb are formed in parallel at a predetermined interval on the entire circumference of the inner peripheral surface, and the shaft main body 31b of the rotating shaft 31B is rotatably supported. To do. As a material of the fluid dynamic bearing member 23, a metal such as sintered metal, brass, stainless steel or a resin is used.

金属製のケース33は下方が有底で上方が開口した容器であって、この軸受けユニット30Cの外郭を覆っている。   The metal case 33 is a container having a bottom at the bottom and an opening at the top, and covers the outer shell of the bearing unit 30C.

スラスト軸受け35は回転軸31Bの軸受け支持部31aをピボット受けする部材で、ケース33の底面内部に配設されている。   The thrust bearing 35 is a member that pivotally receives the bearing support portion 31a of the rotating shaft 31B, and is disposed inside the bottom surface of the case 33.

蓋34は、その中央部に回転軸31Bが挿通できる軸挿通孔34aが形成されており、ケース33の上端の開口部33aに嵌め込める直径の円板状の部材であり、ケース33のその開口部33aに嵌め込み、ケース33の上端内周面と蓋34の外周面との接合部37を接着或いはロウ付けにより結合して軸受けユニット30Cの内部を封止部36をもって封止されている。この軸受けユニット30Cの内部には潤滑油Lが充填されている。   The lid 34 is formed with a shaft insertion hole 34a through which the rotary shaft 31B can be inserted at the center thereof, and is a disk-shaped member having a diameter that can be fitted into the opening 33a at the upper end of the case 33. The bearing unit 30 </ b> C is sealed with a sealing portion 36 by fitting into the portion 33 a, and joining the joint portion 37 between the inner peripheral surface of the upper end of the case 33 and the outer peripheral surface of the lid 34 by bonding or brazing. The bearing unit 30C is filled with lubricating oil L.

しかし、この軸受けユニット30Cは、構成の部品点数が多く、組立工数が掛かるばかりではなく、この軸受けユニット30Cを用いたモータ1が組み込まれている電子機器を、例えば、落下させた場合、回転軸31Bが抜け易いという課題がある。   However, this bearing unit 30C not only has a large number of components and requires a lot of assembly work, but also when the electronic device incorporating the motor 1 using the bearing unit 30C is dropped, for example, the rotating shaft There is a problem that 31B is easily removed.

このような課題を解決するために、図24に示したような第2形態の軸受けユニット30Dが提案されている。なお、軸受けユニット30Cと同一構成部分には同一の符号を付し、それらの説明を省略する。   In order to solve such a problem, a bearing unit 30D of the second form as shown in FIG. 24 has been proposed. In addition, the same code | symbol is attached | subjected to the same component as the bearing unit 30C, and those description is abbreviate | omitted.

この軸受けユニット30Dは、回転軸31Cと、その周回り方向の支持を行うラジアル軸受である動圧軸受用部材32と、この動圧軸受用部材32の外側に形成されている通路形成部材38と、この通路形成部材38を収納するハウジング39と、蓋体40と、通路形成部材38と動圧軸受用部材32との間に形成される連通通路41などとから構成されている。   The bearing unit 30D includes a rotating shaft 31C, a dynamic pressure bearing member 32 that is a radial bearing that supports the rotating shaft 31C, and a passage forming member 38 formed outside the dynamic pressure bearing member 32. The housing 39 accommodates the passage forming member 38, a lid 40, a communication passage 41 formed between the passage forming member 38 and the fluid dynamic bearing member 32, and the like.

この軸受ユニット30Dでは、通路形成部材38が動圧軸受用部材32の連通通路41のみを覆うのではなく、動圧軸受用部材32の全周を覆うような構造として、蓋体40と通路形成部材38で動圧軸受用部材32を、その軸解放端30a側以外を完全に覆うような構造で構成されている。   In this bearing unit 30D, the passage forming member 38 does not cover only the communication passage 41 of the fluid dynamic bearing member 32, but covers the entire circumference of the fluid dynamic bearing member 32. The member 38 is configured so as to completely cover the dynamic pressure bearing member 32 except for the shaft release end 30a side.

通路形成部材38は、カップ形状のものであって、動圧軸受用部材32の全外周を覆うことができる円筒形の構造で、複数本の溝状の連通通路41が内面に形成されており、それらの溝の空隙を確保できるような寸法で形成されている。そしてその底部はスラスト軸受38aであり、また、その底部の中央部には回転軸31Cを差し込んで押し広げられる柔軟性のある抜止ワッシャWを収容できる空間36と回転軸31Cの下端部である軸受け支持部31aを収容できる空間37が同心円的に形成されている。これらの空間36、37は連通通路41とも連通し、潤滑油Lが循環することができるスラスト空間でもある。また、上方の開口部の全周縁にわたって内方に向けて係合爪38bが形成されている。   The passage forming member 38 is cup-shaped and has a cylindrical structure capable of covering the entire outer periphery of the fluid dynamic bearing member 32, and has a plurality of groove-shaped communication passages 41 formed on the inner surface. The dimensions are such that the gaps of these grooves can be secured. The bottom portion is a thrust bearing 38a, and the center portion of the bottom portion is a space 36 that can accommodate a flexible retaining washer W into which the rotary shaft 31C is inserted and expanded, and a bearing that is a lower end portion of the rotary shaft 31C. A space 37 that can accommodate the support portion 31a is formed concentrically. These spaces 36 and 37 also communicate with the communication passage 41 and are thrust spaces in which the lubricating oil L can circulate. Further, an engaging claw 38b is formed inward over the entire periphery of the upper opening.

抜止ワッシャWは中央部に回転軸31Cを差し込んで押し広げられるナイロン樹脂製のような柔軟性のある材質のものである。   The retaining washer W is made of a flexible material such as a nylon resin that is inserted and pushed by inserting the rotary shaft 31C into the center.

この軸受けユニット30Dの組立は、通路形成部材38の空間37に予め抜止ワッシャWを配設しておき、その内部に動圧軸受用部材32を、スラスト軸受側端面32b側を下側にして嵌め込み、通路形成部材38の上方から蓋体40を嵌め込み、動圧軸受用部材32の軸解放側端面32aに密着するように係合爪39で係合、固定する。   In assembling the bearing unit 30D, a retaining washer W is disposed in advance in the space 37 of the passage forming member 38, and the dynamic pressure bearing member 32 is fitted therein with the thrust bearing side end face 32b side down. The lid 40 is fitted from above the passage forming member 38, and is engaged and fixed by the engaging claw 39 so as to be in close contact with the shaft release side end surface 32a of the dynamic pressure bearing member 32.

この組立状態で金型を用いて、通路形成部材38の外表面及び材蓋体40の軸挿通孔を除く上面にわたって樹脂封止する。そうすると、通路形成部材38の全外表面から蓋体40の上面にわたって樹脂製のハウジング39で覆うことができる。   In this assembled state, a mold is used to seal the resin over the outer surface of the passage forming member 38 and the upper surface of the material lid 40 excluding the shaft insertion hole. Then, the resin housing 39 can be covered from the entire outer surface of the passage forming member 38 to the upper surface of the lid 40.

その後、蓋体40の軸挿通孔、動圧軸受用部材32の中央貫通孔及び抜止ワッシャWの中央部に回転軸31Cを挿入、押し込めば、図24に示したような構造の本軸受ユニット30Dが得られる。   After that, if the rotary shaft 31C is inserted and pushed into the shaft insertion hole of the lid 40, the central through hole of the dynamic pressure bearing member 32, and the central portion of the retaining washer W, the main bearing unit 30D having the structure shown in FIG. Is obtained.

従って、この軸受けユニット30Dの回転軸31Cは、その下端部と動圧軸受用部材32の下端面32bとの間に抜止ワッシャWが介在している構造となっていることから、回転軸31Cは前記のように抜けることはない。しかし、この軸受けユニット30Dも、部品点数が多く、ラジアル軸受部(動圧連続溝Ra、Rb)とスラスト軸受け38aを形成する部品が別体であるという課題がある。   Accordingly, the rotating shaft 31C of the bearing unit 30D has a structure in which the retaining washer W is interposed between the lower end portion thereof and the lower end surface 32b of the dynamic pressure bearing member 32. It does not come off as described above. However, this bearing unit 30D also has a large number of parts, and there is a problem that the parts that form the radial bearing portions (dynamic pressure continuous grooves Ra and Rb) and the thrust bearing 38a are separate.

それ故、図25に示したように、ラジアル軸受部Rとスラスト軸受けSとが同一の動圧軸受用部材内に形成されているラジアル・スラスト一体形で樹脂製の第3形態の軸受けユニット30Eも[特許文献1]に開示されている。   Therefore, as shown in FIG. 25, the radial / thrust integrated type bearing unit 30E made of a radial / thrust resin, in which the radial bearing portion R and the thrust bearing S are formed in the same dynamic pressure bearing member. Is also disclosed in [Patent Document 1].

この動圧軸受用部材30Eは、樹脂を射出成形して一体的に形成されているものであって、その筒部50は軸受け穴51が断面円形で有底52のものであり、その内周面53の内周方向に、V字状の動圧溝(凹部)54と動圧溝ランド部(凸部)55とが交互に所定のピッチで2段の動圧連続溝Ra、Rbが長軸方向に所定の間隔を開けて並行に形成されてラジアル軸受部Rが形成されていると共に、それに続く底部52の中央部にはスラスト軸受部Sが形成されている。底部52の外部周辺部には一体的にフランジ部56が形成されており、これは電子機器に取り付ける部材にもなる。   The dynamic pressure bearing member 30E is integrally formed by injection molding of a resin. The cylindrical portion 50 has a bearing hole 51 with a circular cross section and a bottomed 52, and has an inner circumference. In the inner circumferential direction of the surface 53, the V-shaped dynamic pressure grooves (concave portions) 54 and the dynamic pressure groove land portions (convex portions) 55 are alternately arranged at a predetermined pitch and the two-stage dynamic pressure continuous grooves Ra and Rb are long. A radial bearing portion R is formed in parallel with a predetermined interval in the axial direction, and a thrust bearing portion S is formed in the central portion of the bottom portion 52 following the radial bearing portion R. A flange portion 56 is integrally formed on the outer peripheral portion of the bottom portion 52, and this also serves as a member attached to the electronic device.

このような動圧軸受用部材30Eは、図26に示したコアピン60と図27に示した射出成形用金型70とを用いて射出成形される。   Such a dynamic pressure bearing member 30E is injection molded using the core pin 60 shown in FIG. 26 and the injection mold 70 shown in FIG.

コアピン60は、図26に示したように、その外周面61にV字状のピン溝Mrとランド部Lとが所定のピッチで連続的に、そしてその長軸方向に所定の間隔を開けて並行に2段の動圧溝形成部62a、62bからなるラジアル動圧軸受形成部62が形成されており、その先端の端面はスラスト軸受形成部63である。   As shown in FIG. 26, the core pin 60 has a V-shaped pin groove Mr and a land portion L continuously on the outer peripheral surface 61 at a predetermined pitch and at a predetermined interval in the major axis direction. In parallel, a radial dynamic pressure bearing forming portion 62 composed of two stages of dynamic pressure groove forming portions 62 a and 62 b is formed, and an end face at the tip thereof is a thrust bearing forming portion 63.

拡大図26Bに示したように、コアピン60のピン溝Mrのエッジ部EはほぼR形状に加工されている。このようにピン溝Mrのエッジ部EをほぼR形状に加工することにより、射出成形時に射出成形品である動圧軸受用部材30E(図25)を金型から離型する時の離型圧力が低減され、動圧軸受用部材30Eの動圧溝54の変形や動圧溝54を含む内周面53に傷を付けることもなく精度良く成形できるとしている。また、離型が円滑に行え、エジェクターピン94(図27)などにより直接押される部分(この動圧軸受用部材30Eの場合はフランジ部56)が過大な押圧力で変形することがないとしている。   As shown in the enlarged view 26B, the edge E of the pin groove Mr of the core pin 60 is processed into a substantially R shape. Thus, by processing the edge portion E of the pin groove Mr into a substantially R shape, the release pressure when releasing the dynamic pressure bearing member 30E (FIG. 25), which is an injection molded product, from the mold during injection molding. Therefore, it can be formed with high accuracy without deformation of the dynamic pressure groove 54 of the dynamic pressure bearing member 30E and without scratching the inner peripheral surface 53 including the dynamic pressure groove 54. Further, the mold can be released smoothly, and the portion directly pressed by the ejector pin 94 (FIG. 27) or the like (the flange portion 56 in the case of the dynamic pressure bearing member 30E) is not deformed by an excessive pressing force. .

次に、前記動圧軸受用部材30Eを射出成形する場合の射出成形金型も前記[特許文献1]に掲載されている。その従来技術の射出成形金型を図27に示し、そして図28を用いて従来技術の動圧軸受用部材の製造方法を説明する。   Next, an injection mold for injection molding the dynamic pressure bearing member 30E is also described in [Patent Document 1]. The prior art injection mold is shown in FIG. 27 and the prior art method for producing a member for a hydrodynamic bearing will be described with reference to FIG.

この射出成形用金型70は、ピンポイントゲート方式の3枚プレート構成の金型であり、固定側80、可動側90の金型類と、コアピン60を組み込んで構成されている。   This injection mold 70 is a pinpoint gate type three-plate mold, and is configured by incorporating molds on a fixed side 80 and a movable side 90 and a core pin 60.

固定側80はスプール81aを有するスプールブッシュ81、ランナーロックピン82が取り付けられている固定側取付板83、ランナーストリッパプレート84、固定側金型85、固定側金型用ホルダー86などからなり、固定側金型85にはランナー85a、ゲート85b、平面状のパーティング面85cが形成されている。なお、パーティング面85cには動圧軸受のスラスト軸受部Sが形成されている底部52の一部を成形することができるキャビティを形成してもよい。   The fixed side 80 includes a spool bush 81 having a spool 81a, a fixed side mounting plate 83 to which a runner lock pin 82 is mounted, a runner stripper plate 84, a fixed side mold 85, a fixed side mold holder 86, and the like. The side mold 85 is formed with a runner 85a, a gate 85b, and a planar parting surface 85c. In addition, you may form the cavity which can shape | mold a part of bottom part 52 in which the thrust bearing part S of a dynamic pressure bearing is formed in the parting surface 85c.

可動側90は可動側金型91、コアピン60、可動側金型用ホルダー93、エジェクターピン94、可動側金型取付板95などから構成されている。   The movable side 90 includes a movable mold 91, a core pin 60, a movable mold holder 93, an ejector pin 94, a movable mold mounting plate 95, and the like.

この可動側金型91は、固定側金型85のパーティング面85cに密着できる平面状のパーティング面91aが、可動側金型91のキャビティ92の中心にはコアピン60を挿通できる貫通孔91bが、そしてこの貫通孔91bの近傍の複数箇所にエジェクターピン94を挿通する貫通孔91c(図27には1箇所のみを図示した)が開けられており、更にそのパーティング面91aには動圧軸受用部材30Eのフランジ部56を成形するフランジ部キャビティ92aが、そのパーティング面91a側の貫通孔91bの円周面には動圧軸受用部材30Eの筒部50を成形する円筒部キャビティ92bが形成されている。可動側金型91はまた可動側金型用ホルダー93に保持される。即ち、可動側金型91はそのパーティング面91aが可動側金型用ホルダー93のパーティング面91aと同一面を形成するように保持される。   The movable mold 91 has a flat parting surface 91a that can be in close contact with the parting surface 85c of the fixed mold 85, and a through hole 91b through which the core pin 60 can be inserted into the center of the cavity 92 of the movable mold 91. However, through holes 91c (only one place is shown in FIG. 27) through which the ejector pins 94 are inserted are opened at a plurality of locations in the vicinity of the through hole 91b, and dynamic pressure is applied to the parting surface 91a. A flange portion cavity 92a for forming the flange portion 56 of the bearing member 30E has a cylindrical portion cavity 92b for forming the cylindrical portion 50 of the hydrodynamic bearing member 30E on the circumferential surface of the through hole 91b on the parting surface 91a side. Is formed. The movable mold 91 is also held by a movable mold holder 93. That is, the movable mold 91 is held such that its parting surface 91 a is flush with the parting surface 91 a of the movable mold holder 93.

コアピン60は可動側金型91のキャビティ92の円筒部キャビティ92b内に同心的に挿入され、そのコアピン60の先端面は、スラスト軸受成形部63であり、この例の場合は一部球状凹部の形状に形成されている。これに続く外周面に動圧発生用の動圧溝54を形成するべくラジアル動圧軸受形成部62が形成されている。   The core pin 60 is inserted concentrically into the cylindrical portion cavity 92b of the cavity 92 of the movable die 91, and the tip surface of the core pin 60 is a thrust bearing molding portion 63. It is formed into a shape. A radial dynamic pressure bearing forming portion 62 is formed to form a dynamic pressure groove 54 for generating dynamic pressure on the outer peripheral surface that follows this.

可動側金型取付板95には可動側金型91に開けられた貫通孔91cと同径で中心が一致した複数の貫通孔95aが形成されている。   The movable mold mounting plate 95 is formed with a plurality of through holes 95a having the same diameter and the same center as the through holes 91c opened in the movable mold 91.

このコアピン60は可動側金型91の貫通孔91bと共にそれらの後部で可動側金型取付板95により一体化されている。   The core pin 60 is integrated with the through-hole 91b of the movable mold 91 by a movable mold mounting plate 95 at the rear part thereof.

エジェクターピン94は可動側金型91の貫通孔91c及び可動側金型取付板95の貫通孔95aに挿通され、その先端部は動圧軸受用部材30Eのフランジ部56を押圧できるように、可動側金型91のフランジ部キャビティ92a面と同一面を形成する位置で留まるようにして組み込まれている。   The ejector pin 94 is inserted into the through-hole 91c of the movable-side mold 91 and the through-hole 95a of the movable-side mold mounting plate 95, and its tip is movable so that the flange portion 56 of the dynamic pressure bearing member 30E can be pressed. The side mold 91 is assembled so as to remain at a position where it forms the same surface as the surface of the flange cavity 92a.

なお、可動側90の他の型部品(ガイドピン、サポートピン、スペーサブロック、可動側取付板、エジェクターピンを取り付けたエジェクタープレート、リターンピン、バネなど)や3枚プレートを作動させるための引張リンク、プラボルト、ストップボルト、金型温調用ヒータなどは図示することを省略した。   Note that other mold parts on the movable side 90 (guide pins, support pins, spacer blocks, movable side mounting plates, ejector plates with ejector pins attached, return pins, springs, etc.) and tension links for operating three plates Illustration of the plastic bolt, stop bolt, heater for mold temperature control, etc. is omitted.

前記のような構成の射出成形用金型70を用いて動圧軸受用部材30Eを射出成形する場合、可動側90を矢印Xaの方向に移動させて固定側80と密着、締結し、その後、図示していない射出成形機の射出ノズルから前記射出成形用金型70内に射出し、射出された溶融樹脂Mrは、スプール81a、ランナー85aを経て、固定側金型85の中心に設けられた1点ピンポイントゲート85bから可動側金型91のキャビティ92に流入し、可動側金型91のキャビティ92のフランジ部キャビティ92aの円周方向に均一に充填された後、円筒部キャビティ92bに順次充填される。   When the dynamic pressure bearing member 30E is injection-molded using the injection molding die 70 having the above-described configuration, the movable side 90 is moved in the direction of the arrow Xa to closely contact and fasten with the fixed side 80, and then The molten resin Mr injected from the injection nozzle of an injection molding machine (not shown) into the injection molding die 70 was provided at the center of the fixed side die 85 through the spool 81a and the runner 85a. After flowing into the cavity 92 of the movable mold 91 from the one-point pinpoint gate 85b and uniformly filling the circumferential direction of the flange cavity 92a of the cavity 92 of the movable mold 91, the cylindrical cavity 92b is sequentially filled. Filled.

次に、保圧、冷却後、図28の矢印Xbで示したように、射出成形機の型開きにより可動側金型91を固定側金型85から後退させ、パーティング面85cとパーティング面91aを開き、同時に可動側金型91の後退と共にコアピン60も後退し、成形された動圧軸受用部材30E内から無理抜きにより離型される。ただし、この場合、エジェクターピン94が動圧軸受用部材30Eのフランジ部56を押し続ける。   Next, after holding and cooling, as shown by the arrow Xb in FIG. 28, the movable mold 91 is retracted from the fixed mold 85 by opening the mold of the injection molding machine, and the parting surface 85c and the parting surface At the same time, the core pin 60 is also retracted together with the retraction of the movable die 91, and is released from the molded dynamic pressure bearing member 30E by forcible removal. However, in this case, the ejector pin 94 continues to push the flange portion 56 of the dynamic pressure bearing member 30E.

次に、動圧軸受用部材30Eのフランジ部56を押し続けていたエジェクターピン94を矢印Xb方向に後退させ、図示していないワイパーなどで固定側金型85のパーティング面85cから動圧軸受用部材30Eを掻き落とせば、そのゲート部85bから切断されて、製品である図25Aに図示の動圧軸受用部材30Eが得られる。   Next, the ejector pin 94 that has continued to push the flange portion 56 of the dynamic pressure bearing member 30E is retracted in the direction of the arrow Xb, and the dynamic pressure bearing is removed from the parting surface 85c of the fixed mold 85 with a wiper (not shown). If the member 30E is scraped off, it is cut from the gate portion 85b, and the product 30E shown in FIG. 25A as a product is obtained.

次に、不図示の引っ張りリンク、プラボルト、ストップボルトにより固定側金型85とランナーストリッパープレイト84間及びランナーストリッパープレイト84と固定側取付板83間が開く。   Next, a space between the fixed mold 85 and the runner stripper plate 84 and a space between the runner stripper plate 84 and the fixed mounting plate 83 are opened by a pull link, a plastic bolt, and a stop bolt (not shown).

このような構造のコアピン60と射出成形用金型70を用いて動圧軸受用部材30Eを射出成形した場合には、その筒部50の軸受け孔51の内周面53に、コアピン60のピン溝Mr(凹部)が動圧溝ランド部(凸部)55となって、反対にコアピン60のランド部L(凸部)が動圧溝54(凹部)となって転写される。   When the dynamic pressure bearing member 30E is injection molded using the core pin 60 and the injection molding die 70 having such a structure, the pin of the core pin 60 is formed on the inner peripheral surface 53 of the bearing hole 51 of the cylindrical portion 50. The groove Mr (concave portion) is transferred as a dynamic pressure groove land portion (convex portion) 55, and the land portion L (convex portion) of the core pin 60 is transferred as a dynamic pressure groove 54 (concave portion).

前記のように、コアピン60のピン溝Mrのエッジ部EがほぼR形状に面取りされているため、動圧軸受用部材30Eでは動圧溝54の溝底角部54eがほぼR形状に加工され、動圧溝54以外の部分も動圧溝54とほぼ同じ深さの凹部57となっている。実際の使用に当たっては、動圧溝54以外の凹部57は潤滑油溜まりの役目を果たす。   As described above, since the edge portion E of the pin groove Mr of the core pin 60 is chamfered in a substantially R shape, the groove bottom corner portion 54e of the dynamic pressure groove 54 is processed in a substantially R shape in the dynamic pressure bearing member 30E. The portions other than the dynamic pressure groove 54 are recessed portions 57 having substantially the same depth as the dynamic pressure groove 54. In actual use, the recesses 57 other than the dynamic pressure groove 54 serve as a lubricating oil reservoir.

前記動圧軸受用部材30EにおけるほぼR形状の加工量は、動圧溝54の深さの5〜40%としている。5%より小さいと成形された動圧軸受用部材30Eの離型時に、それらのランド部55に変形や傷が生じるとうたっている。また、この離型時の変形や傷に対してはR形状の加工量は大きい程良いが、40%より大きいと動圧軸受としての性能が低下するため上限を40%とするとしている。   The machining amount of the substantially R shape in the dynamic pressure bearing member 30 </ b> E is 5 to 40% of the depth of the dynamic pressure groove 54. It is said that deformation and scratches occur in the land portions 55 at the time of release of the molded hydrodynamic bearing member 30E when it is less than 5%. Further, the larger the R-shaped machining amount is, the better for deformation and scratches at the time of mold release, but if it exceeds 40%, the performance as a hydrodynamic bearing is lowered, so the upper limit is made 40%.

また、動圧軸受用部材30Eから更に良好に無理抜きできるコアピン60bとして、図29に示したように、ラジアル動圧溝用のランド部Lのエッジ部Eのみならず、ピン溝Mrの溝底角部BcをほぼR形状に加工しておくことにより、射出成形された動圧軸受用部材30Fの各動圧溝54の各溝底角部54e及び各ランド部55のエッジ55EともほぼR形状に加工することができ、図30に示したように、各動圧溝54の各溝底角部54e及び各ランド部(凸部)55のエッジ55EがほぼR形状に成形された動圧軸受用部材30Fが得られ、各溝底角部54e及び各ランド部(凸部)55のエッジ55EがほぼR形状に成形されることにより動圧軸受用部材30Eよりも本動圧軸受用部材30Fの方が射出成形用金型から動圧軸受用部材30Fがより一層無理抜きできるとされている。
特開2001−65570号(第3頁〜第4頁、図1〜図4)
Further, as shown in FIG. 29, as the core pin 60b that can be more easily removed from the dynamic pressure bearing member 30E, not only the edge portion E of the land portion L for the radial dynamic pressure groove, but also the groove bottom of the pin groove Mr. By processing the corner portion Bc into a substantially R shape, the groove bottom corner portion 54e of each dynamic pressure groove 54 and the edge 55E of each land portion 55 of the dynamic pressure bearing member 30F that has been injection-molded are substantially R-shaped. As shown in FIG. 30, the hydrodynamic bearing in which the groove bottom corners 54e of the hydrodynamic grooves 54 and the edges 55E of the land portions (convex portions) 55 are formed in a substantially R shape. Member 30F is obtained, and the edge 55E of each groove bottom corner portion 54e and each land portion (convex portion) 55 is formed in a substantially R shape, whereby the dynamic pressure bearing member 30F is more than the dynamic pressure bearing member 30E. Is from injection mold to dynamic pressure bearing part 30F is a more can be more unreasonable excl.
Japanese Patent Laid-Open No. 2001-65570 (pages 3 to 4, FIGS. 1 to 4)

しかし、前記のように、従来技術の動圧軸受用部材における内周面への動圧溝54の成形方法は、コアピン60を挿入した金型のキャビティ内に或る弾性率を持つ樹脂を射出注入し、無理抜きを行うが、図26B及び図25Bに示したように、コアピン60のランド部Lにストレート部Hが、そして動圧軸受用部材30E或いは30Fの動圧溝54にストレー卜部Jが存在することから、両者は無理抜き力Fに対して垂直に面対するため、抵抗力となり、無理抜き力Fを大きく取らなければならず、また動圧軸受用部材30E或いは30Fにも不必要な力を掛けるため、依然として傷が付き易いという課題がある。   However, as described above, in the conventional method for forming the dynamic pressure groove 54 on the inner peripheral surface of the dynamic pressure bearing member, a resin having a certain elastic modulus is injected into the cavity of the mold into which the core pin 60 is inserted. 26B and 25B, as shown in FIGS. 26B and 25B, the straight portion H is formed in the land portion L of the core pin 60, and the stray flange portion J is formed in the dynamic pressure groove 54 of the dynamic pressure bearing member 30E or 30F. Since both of them face each other perpendicular to the forcing force F, it becomes a resistance force, and the forcing force F must be taken large, and is unnecessary for the dynamic pressure bearing member 30E or 30F. However, there is still a problem that it is easily damaged.

また、図24に示したような軸受けユニット30Dにおける回転軸31Cの抜け止めを防止するための抜止ワッシャ49を係合させる抜止ワッシャ係合溝の射出成形は、そのための環状突起の直径を動圧溝形成部62a、62bの直径よりも太くコアピンに形成する必要があり、そのようなコアピンを動圧軸受用部材の成形後に従来技術の製造方法と同様に無理抜きするとすると、成形した動圧軸受用部材の内周面に形成されている動圧連続溝Ra、Rbを抜止ワッシャ係合溝の存在により、より一層傷を付けたり、変形させてしまうことになる。   Further, in the injection molding of the retaining washer engaging groove for engaging the retaining washer 49 for preventing the rotation shaft 31C from being prevented from slipping in the bearing unit 30D as shown in FIG. 24, the diameter of the annular projection for that purpose is the dynamic pressure. It is necessary to form the core pin thicker than the diameter of the groove forming portions 62a, 62b, and if such a core pin is forcibly removed after the formation of the dynamic pressure bearing member in the same manner as the manufacturing method of the prior art, the molded dynamic pressure bearing The dynamic pressure continuous grooves Ra and Rb formed on the inner peripheral surface of the working member are further damaged or deformed due to the presence of the retaining washer engaging groove.

本発明は、このような課題を解決しようとするものであって、先端部の外周面に抜止ワッシャ係合溝成形環状突起が、これに続く外周面にラジアル動圧軸受形成部が形成され、前者の直径が後者の直径より太いコアピンを、成形された動圧軸受用部材から無理抜きしても、前記抜止ワッシャ係合溝形成突起でラジアル動圧溝を傷付け難く、或いは変形させ難く、その無理抜き力も小さくても容易に無理抜きできる動圧軸受用部材、その成形金型、その製造方法及び動圧軸受を得ることを目的とする。   The present invention is intended to solve such a problem, a retaining washer engaging groove forming annular protrusion is formed on the outer peripheral surface of the tip portion, and a radial hydrodynamic bearing forming portion is formed on the outer peripheral surface following this, Even if the former core pin having a diameter larger than the latter diameter is forcibly removed from the molded dynamic pressure bearing member, it is difficult to damage or deform the radial dynamic pressure groove with the retaining washer engaging groove forming projection. It is an object of the present invention to obtain a dynamic pressure bearing member, a molding die, a manufacturing method thereof, and a dynamic pressure bearing that can be easily forcibly extracted even if the forcible extraction force is small.

それ故、前記目的を達成するために、本発明の動圧軸受用部材は、所定の長さを備え、回転軸が挿入される内部の断面が円形の穴が開けられ、一端が回転軸挿入口として開口した有底の樹脂製筒部からなり、該筒部の前記円形穴の内周面に所定形状のラジアル動圧溝が、前記底部にスラスト軸受部が、そして該スラスト軸受部の近傍上方に抜止ワッシャ係合溝が一体的に形成されていることを特徴とする。   Therefore, in order to achieve the above object, the dynamic pressure bearing member of the present invention has a predetermined length, a hole in which the rotary shaft is inserted has a circular hole, and one end of the rotary shaft is inserted. It consists of a bottomed plastic cylinder opening as a mouth, a radial dynamic pressure groove of a predetermined shape on the inner peripheral surface of the circular hole of the cylinder part, a thrust bearing part on the bottom part, and the vicinity of the thrust bearing part A retaining washer engaging groove is integrally formed on the upper side.

本発明の他の動圧軸受用部材は、前記動圧軸受用部材の前記回転軸挿入口側の前記樹脂製筒部の端面に開口する所定の長さの円形スリットが前記円形穴の軸方向に、そして同心円的に形成されていることを特徴とする。   In another dynamic pressure bearing member of the present invention, a circular slit having a predetermined length that opens on an end surface of the resin cylindrical portion on the rotary shaft insertion port side of the dynamic pressure bearing member is an axial direction of the circular hole. And is formed concentrically.

そして、前記筒部の前記スラスト軸受部の外側にフランジ部を一体的に形成することが好ましい。   And it is preferable to form a flange part integrally in the outer side of the said thrust bearing part of the said cylinder part.

また、前記スラスト軸受部は球形の一部で形成されていることが好ましい。   Moreover, it is preferable that the said thrust bearing part is formed in a spherical part.

そしてまた、前記円形スリットは前記スラスト軸受部まで延在するように形成されていることが好ましい。   The circular slit is preferably formed so as to extend to the thrust bearing portion.

更に、前記筒部内周面に2段以上の動圧溝は軸方向に形成されていることが好ましい。   Furthermore, it is preferable that two or more stages of dynamic pressure grooves are formed in the axial direction on the inner peripheral surface of the cylindrical portion.

更にまた、前記動圧溝は連続したV字状溝で形成されていることが好ましい。   Furthermore, the dynamic pressure groove is preferably formed as a continuous V-shaped groove.

そして更にまた、前記動圧軸受用部材は樹脂の射出成形により形成され、前記動圧軸受用部材を射出成形金型から無理抜きする場合のその無理抜き方向における前記動圧溝の断面形状が台形凹状に形成されていて、前記台形凹状の無理抜き方向における少なくとも後方の傾斜面の傾斜角が135゜から150゜の角度で形成されており、前記動圧溝の底角部及び開口角部が面取り、またはほぼR形状に形成されていることが好ましい。   Still further, the dynamic pressure bearing member is formed by resin injection molding, and when the dynamic pressure bearing member is forcibly removed from the injection mold, the sectional shape of the dynamic pressure groove in the forcible removal direction is trapezoidal. It is formed in a concave shape, and an inclination angle of at least the rear inclined surface in the direction of forced removal of the trapezoidal concave shape is formed at an angle of 135 ° to 150 °, and a bottom corner portion and an opening corner portion of the dynamic pressure groove are formed It is preferable to be chamfered or formed in a substantially R shape.

そして更にまた、前記動圧軸受用部材は樹脂の射出成形により形成され、前記動圧軸受用部材を射出成形金型から無理抜きする場合のその無理抜き方向における前記動圧溝の断面形状が円弧状凹面に形成されていることが好ましい。   Furthermore, the dynamic pressure bearing member is formed by resin injection molding, and when the dynamic pressure bearing member is forcibly removed from the injection mold, the sectional shape of the dynamic pressure groove in the forcible removal direction is circular. It is preferable that it is formed in an arcuate concave surface.

そして本発明の射出成形用金型は、所定の長さを備え、回転軸が挿入される内部の断面が円形の軸受け穴が開けられ、一端が回転軸挿入口として開口した有底の樹脂製筒部からなり、該筒部の前記軸受け穴の内周面に所定形状のラジアル動圧溝が、前記底部にスラスト軸受部が、そして該スラスト軸受部の近傍上方に抜止ワッシャ係合溝が一体的に形成されている動圧軸受用部材を成形する射出成形用金型であって、前記軸受け穴、前記ラジアル動圧溝、スラスト軸受部、抜止ワッシャ係合溝を形成するコアピンと、前記筒部を形成する固定側金型と、前記筒部を形成する可動側金型とを備え、該可動側金型と前記コアピンとが個別に同一方向に移動できるように構成されており、そして必要に応じて前記コアピンが回動できるように構成されていることを特徴とする。   The injection mold according to the present invention has a predetermined length, and is made of a resin with a bottom, in which a bearing hole having a circular inner cross section into which a rotating shaft is inserted is opened and one end is opened as a rotating shaft insertion port. A cylindrical dynamic pressure groove having a predetermined shape is formed on the inner peripheral surface of the bearing hole of the cylindrical portion, a thrust bearing portion is integrally formed on the bottom portion, and a retaining washer engaging groove is integrated above the thrust bearing portion. An injection mold for forming a fluid pressure bearing member formed in a general manner, the core pin forming the bearing hole, the radial dynamic pressure groove, the thrust bearing portion, the retaining washer engaging groove, and the cylinder A fixed-side mold that forms the part and a movable-side mold that forms the cylindrical part, and the movable-side mold and the core pin are individually configured to move in the same direction, and are necessary The core pin can be rotated according to And wherein the are.

また、本発明の射出成形用金型は、所定の長さを備え、回転軸が挿入される内部の断面が円形の穴が開けられ、一端が回転軸挿入口として開口した有底の樹脂製筒部からなり、該筒部の前記円形穴の内周面に所定形状のラジアル動圧溝が、前記底部にスラスト軸受部が、そして該スラスト軸受部の近傍上方に抜止ワッシャ係合溝が一体的に形成されている動圧軸受用部材を成形する射出成形用金型であって、外周面に前記動圧軸受用部材の前記ラジアル動圧溝を形成するための所定形状の突起条と、先端部側に前記動圧軸受用部材の前記抜止ワッシャ係合溝を形成するための抜止ワッシャ係合溝形成突起と、先端面に前記動圧軸受用部材の前記スラスト軸受部を形成するためのスラスト軸受成形部とが形成されているコアピンを備えて構成されていることを特徴とする。   Further, the injection mold of the present invention is made of a resin with a bottom having a predetermined length, a hole having a circular inner cross section into which the rotation shaft is inserted, and one end being opened as a rotation shaft insertion port. A cylindrical portion, a radial dynamic pressure groove of a predetermined shape on the inner peripheral surface of the circular hole of the cylindrical portion, a thrust bearing portion on the bottom, and a retaining washer engagement groove on the upper vicinity of the thrust bearing portion are integrated. An injection molding mold for molding a dynamic pressure bearing member formed in a specific manner, and a protrusion having a predetermined shape for forming the radial dynamic pressure groove of the dynamic pressure bearing member on an outer peripheral surface; A retaining washer engaging groove forming projection for forming the retaining washer engaging groove of the dynamic pressure bearing member on the distal end side, and a thrust bearing portion of the dynamic pressure bearing member on the distal end surface Thrust bearing formed with a core pin formed with molded part And wherein the are.

更に、本発明の他の射出成形用金型は、所定の長さを備え、回転軸が挿入される内部の断面が円形の穴が開けられ、一端が回転軸挿入口として開口した有底の樹脂製筒部からなり、該筒部の前記円形穴の内周面に所定形状のラジアル動圧溝が、前記底部にスラスト軸受部が、そして該スラスト軸受部の近傍上方に抜止ワッシャ係合溝が一体的に形成されており、更に前記回転軸挿入口側の前記樹脂製筒部の端面に開口する所定の長さの円形スリットを前記円形穴の軸方向に、そして同心円的に形成されている動圧軸受用部材を成形する射出成形用金型であって、外周面に前記動圧軸受用部材の前記ラジアル動圧溝を形成するための所定形状の突起条と、先端部側に前記動圧軸受用部材の前記抜止ワッシャ係合溝を形成するための抜止ワッシャ係合溝形成突起と、先端面に前記動圧軸受用部材の前記スラスト軸受部を形成するためのスラスト軸受成形部とが形成されているコアピンと、前記筒部を形成する円筒部キャビティと該円筒部キャビティに連続して前記スラスト軸受成形部を形成するキャビティとを形成する断面円形の内周面を備えた前記筒部を成形する前記円筒突起と該円筒突起の中間に同心円的に前記円形スリットを形成する円筒突起とが形成されている可動側金型とを備えて構成されていることを特徴とする。   Furthermore, another injection mold according to the present invention has a predetermined length, has a bottom with a circular hole in the inner section into which the rotary shaft is inserted, and one end opened as a rotary shaft insertion port. A cylindrical portion made of resin, a radial dynamic pressure groove of a predetermined shape on the inner peripheral surface of the circular hole of the cylindrical portion, a thrust bearing portion on the bottom portion, and a retaining washer engaging groove on the upper vicinity of the thrust bearing portion Is formed integrally, and a circular slit having a predetermined length that opens at an end face of the resin cylinder portion on the rotary shaft insertion port side is formed in the axial direction of the circular hole and concentrically. An injection molding die for molding a dynamic pressure bearing member, and a protrusion having a predetermined shape for forming the radial dynamic pressure groove of the dynamic pressure bearing member on an outer peripheral surface; A retaining washer for forming the retaining washer engaging groove of the fluid dynamic bearing member A core pin on which a groove forming projection, a thrust bearing forming portion for forming the thrust bearing portion of the dynamic pressure bearing member on the tip surface are formed, a cylindrical portion cavity forming the cylindrical portion, and the cylinder The cylindrical projection for forming the cylindrical portion having an inner circumferential surface having a circular cross section that forms a cavity forming the thrust bearing molding portion continuously with the portion cavity, and the circular slit concentrically between the cylindrical projections It is characterized by comprising a movable mold in which a cylindrical projection for forming a cylinder is formed.

前記コアピンの先端部付近に形成されている前記抜止ワッシャ係合溝形成突起の前記筒部側は低くなるテーパー面またはR形状に形成されていることが好ましい。   It is preferable that the tube portion side of the retaining washer engaging groove forming protrusion formed near the tip of the core pin is formed in a tapered surface or an R shape that is lowered.

そして、前記コアピンの外周面の前記突起条はその軸方向に所定の間隔を開けて2段以上に形成されていることが好ましい。   And it is preferable that the said protrusion on the outer peripheral surface of the said core pin is formed in 2 steps | paragraphs or more at predetermined intervals in the axial direction.

また、前記コアピンの外周面の前記突起条は連続したV字状突起であることが好ましい。   Moreover, it is preferable that the said protrusion on the outer peripheral surface of the said core pin is a continuous V-shaped protrusion.

そしてまた、前記コアピンの外周面に形成されている突起条の角は面取りされていることが好ましい。   Moreover, it is preferable that the corners of the protrusions formed on the outer peripheral surface of the core pin are chamfered.

更に、前記コアピンの外周面に形成されている突起条の断面形状は前記動圧軸受用部材の無理抜き方向に対し、そして前記コアピンの前記外周面を基準として鋭角で、該鋭角が30゜から45゜の角度で突起条が形成されていることが好ましい。   Further, the cross-sectional shape of the protrusion formed on the outer peripheral surface of the core pin is an acute angle with respect to the forcible removal direction of the dynamic pressure bearing member and with respect to the outer peripheral surface of the core pin, and the acute angle is from 30 °. It is preferable that the protrusions are formed at an angle of 45 °.

更にまた、前記コアピンの外周面に前記動圧溝形状に対応する断面形状は台形の突起条で形成されていて、前記台形状突起条の無理抜き方向における少なくとも後方の斜面の傾斜角が前記コアピンの前記外周面を基準として鋭角で、該鋭角が30゜から45゜の角度で形成されており、前記各台形状突起条の表面角部及び前記各台形突起条の基部が面取りされ、またはほぼR形状に形成されていることが好ましい。   Furthermore, a cross-sectional shape corresponding to the dynamic pressure groove shape is formed on the outer peripheral surface of the core pin by a trapezoidal protrusion, and an inclination angle of at least a rear slope in the forcibly removing direction of the trapezoidal protrusion is the core pin. Are formed with an acute angle with respect to the outer peripheral surface, and the acute angle is formed at an angle of 30 ° to 45 °, and the surface corner of each trapezoidal protrusion and the base of each trapezoidal protrusion are chamfered, or substantially It is preferably formed in an R shape.

そして更にまた、前記コアピンの外周面に前記動圧溝形状に対応する断面形状が一部円弧状の突起条で形成されていて、前記一部円弧状突起条の基部が面取り、またはほぼR形状に形成されていることが好ましい。   Still further, a cross-sectional shape corresponding to the dynamic pressure groove shape is formed on the outer peripheral surface of the core pin by a partially arcuate protrusion, and the base of the partially arcuate protrusion is chamfered or substantially R-shaped. It is preferable to be formed.

また、本発明の動圧軸受用部材の製造方法は、所定の長さを備え、回転軸が挿入される内部の断面が円形の穴が開けられ、一端が回転軸挿入口として開口した有底の樹脂製筒部からなり、該筒部の前記円形穴の内周面に所定形状のラジアル動圧溝が、前記底部にスラスト軸受部が、そして該スラスト軸受部の近傍上方に抜止ワッシャ係合溝が一体的に形成されている動圧軸受用部材を射出成形により製造するに当たり、パーティング面側に臨んで溶融樹脂射出ゲートが形成されて固定側金型と、前記固定側金型に対して前進、後退でき、かつ前記パーティング面に密着できるパーティング面を備え、該パーティング面に貫通する断面円形の貫通孔と成形しようとする動圧軸受用部材の少なくとも一部分を形成するキャビティとが形成されている可動側金型と、前記可動側金型の前記貫通孔に挿通できる太さで、少なくとも前記キャビティに面し、その外周面に前記動圧軸受用部材の前記ラジアル動圧溝を形成するための所定形状の突起条と、先端部側に前記動圧軸受用部材の前記抜止ワッシャ係合溝を形成するための抜止ワッシャ係合溝形成突起と、先端面に前記動圧軸受用部材の前記スラスト軸受部を形成するためのスラスト軸受成形部が形成されていて前記可動側金型の動きと同一方向に移動できるが、個別に移動するコアピンとを備えて構成されている射出成形用金型を用い、前記可動側金型の前記貫通孔内の所定位置に前記コアピンを挿通した状態で前記固定側金型の前記パーティング面に前記可動側金型の前記パーティング面とを衝合、密着させて締結し、前記固定側金型と前記可動側金型とで形成されたキャビティ内に前記溶融樹脂射出ゲートから溶融樹脂を射出注入、充填し、該射出注入、充填された前記溶融樹脂が硬化した後、前記固定側金型と前記可動側金型との締結を解除し、前記固定側金型のパーティング面及び硬化した前記動圧軸受用部材の外周面から前記可動側金型を後退させ、その後、硬化した前記動圧軸受用部材の周辺に前記可動側金型が存在しない状態で、前記動圧軸受用部材から前記コアピンを、或いは前記コアピンを前記動圧軸受用部材から前記動圧軸受用部材の軸方向に無理抜きして、前記動圧軸受用部材を得ることを特徴とする。   In addition, the method for manufacturing a dynamic pressure bearing member according to the present invention has a bottomed structure having a predetermined length, a hole having a circular inner cross section into which the rotary shaft is inserted, and one end being opened as a rotary shaft insertion port. A radial dynamic pressure groove of a predetermined shape on the inner peripheral surface of the circular hole of the cylindrical portion, a thrust bearing portion on the bottom portion, and a locking washer engaged near the thrust bearing portion. When manufacturing a dynamic pressure bearing member in which grooves are integrally formed by injection molding, a molten resin injection gate is formed facing the parting surface side, and a fixed mold and the fixed mold And a cavity that forms at least a part of a member for a hydrodynamic bearing to be formed, and a through hole having a circular cross section that penetrates the parting surface. Is formed A movable die and a thickness that can be inserted into the through hole of the movable die, at least facing the cavity, and for forming the radial dynamic pressure groove of the dynamic pressure bearing member on the outer peripheral surface thereof A protrusion having a predetermined shape, a retaining washer engaging groove forming protrusion for forming the retaining washer engaging groove of the dynamic pressure bearing member on the distal end side, and the thrust of the dynamic pressure bearing member on the distal end surface An injection molding die having a thrust pin forming part for forming a bearing part and capable of moving in the same direction as the movement of the movable mold, but having a core pin that moves individually is provided. Using the core pin inserted into a predetermined position in the through-hole of the movable mold, the parting surface of the movable mold is brought into contact with and closely contacted with the parting surface of the fixed mold The fixed side metal And the molten resin is injected and filled from the molten resin injection gate into the cavity formed by the movable side mold, the injection injection, and after the filled molten resin is cured, the fixed side mold and The fastening of the movable side mold is released, the movable side mold is retracted from the parting surface of the fixed side mold and the outer peripheral surface of the hardened dynamic pressure bearing member, and then the hardened dynamic pressure The core pin from the dynamic pressure bearing member or the core pin from the dynamic pressure bearing member to the axial direction of the dynamic pressure bearing member in a state where the movable mold does not exist around the bearing member. To obtain the fluid dynamic bearing member.

そしてまた、本発明の他の動圧軸受用部材の製造方法は、所定の長さを備え、回転軸が挿入される内部の断面が円形の穴が開けられ、一端が回転軸挿入口として開口した有底の樹脂製筒部からなり、該筒部の前記円形穴の内周面に所定形状のラジアル動圧溝が、前記底部にスラスト軸受部が、そして該スラスト軸受部の近傍上方に抜止ワッシャ係合溝が一体的に形成されており、更に前記回転軸挿入口側の前記樹脂製筒部の端面に開口する所定の長さの円形スリットを前記円形穴の軸方向に、そして同心円的に形成されている動圧軸受用部材を射出成形により製造するに当たり、パーティング面側に臨んで溶融樹脂射出ゲートが形成されて固定側金型と、該固定側金型に対して前進、後退でき、かつ前記パーティング面に密着できるパーティング面を備え、成形しようとする動圧軸受用部材の少なくとも前記筒部を形成する円筒部キャビティと該円筒部キャビティに連続して前記スラスト軸受成形部を形成するキャビティとを形成する断面円形の内周面を備えた前記筒部を成形する前記円筒突起と該円筒突起の中間に同心円的に前記円形スリットを形成する円筒突起とが形成されている可動側金型と、前記可動側金型の前記貫通孔に挿通できる太さで、少なくとも前記キャビティに面し、その外周面に動圧溝を形成するための所定形状の突起条が、その先端部の周辺の外周に抜止ワッシャ係合溝形成突起が、そしてその先端面にスラスト軸受形成部が形成されていて、前記可動側金型の動きと一体して同一方向に移動し、或いは前記可動側金型の動きと同一方向に移動できるが、個別に移動するコアピンとを備えて構成されている射出成形用金型を用い、前記可動側金型の前記貫通孔内の所定位置に前記コアピンを挿通した状態で前記固定側金型の前記パーティング面に前記可動側金型の前記パーティング面とを衝合、密着させて締結し、前記固定側金型と前記可動側金型とで形成されたキャビティ内に前記溶融樹脂射出ゲートから溶融樹脂を射出注入、充填し、該射出注入、充填された前記溶融樹脂が硬化した後、前記固定側金型と前記可動側金型との締結を解除し、前記固定側金型のパーティング面及び硬化した前記動圧軸受用部材の外周面から前記可動側金型を前記動圧軸受用部材から前記動圧軸受用部材の軸方向に無理抜きして、前記動圧軸受用部材を得ることを特徴とする。   Further, in another method for manufacturing a dynamic pressure bearing member of the present invention, a hole having a predetermined length, a circular section of the inside into which the rotating shaft is inserted is opened, and one end is opened as a rotating shaft insertion port. The bottom of the cylindrical hole has a radial dynamic pressure groove of a predetermined shape, a thrust bearing portion at the bottom, and an upper portion in the vicinity of the thrust bearing portion. A washer engaging groove is integrally formed, and a circular slit having a predetermined length that opens to the end surface of the resin cylinder portion on the rotary shaft insertion port side is formed in a concentric manner in the axial direction of the circular hole. In manufacturing the hydrodynamic bearing member formed in the mold by injection molding, a molten resin injection gate is formed facing the parting surface side, and the fixed side mold is moved forward and backward with respect to the fixed side mold. Party that can be attached to the parting surface A cylindrical part cavity that forms at least the cylindrical part of the dynamic pressure bearing member to be molded, and a circular cross section that forms a cavity that forms the thrust bearing molded part continuously to the cylindrical part cavity. A movable mold in which the cylindrical projection for forming the cylindrical portion having an inner peripheral surface and a cylindrical projection for forming the circular slit concentrically between the cylindrical projection are formed; and the movable mold A projection having a predetermined shape for forming a dynamic pressure groove on the outer peripheral surface thereof is formed in a thickness that can be inserted into the through-hole, and a retaining washer engaging groove on the outer periphery around the tip portion The forming projection has a thrust bearing forming portion formed on the tip surface thereof, and can move in the same direction as the movement of the movable mold, or can move in the same direction as the movement of the movable mold But The parting of the fixed mold in a state where the core pin is inserted into a predetermined position in the through hole of the movable mold, using an injection mold configured to include a core pin that moves to The parting surface of the movable mold is abutted and brought into close contact with the surface and fastened, and the molten resin is injected from the molten resin injection gate into the cavity formed by the fixed mold and the movable mold. After the injection resin is filled and the molten resin filled is cured, the fastening between the fixed side mold and the movable side mold is released, and the parting surface of the fixed side mold and Forcibly removing the movable side mold from the outer peripheral surface of the cured dynamic pressure bearing member from the dynamic pressure bearing member in the axial direction of the dynamic pressure bearing member to obtain the dynamic pressure bearing member. Features.

そして、前記動圧軸受用部材の製造方法の場合、前記コアピンを回動させ、そして前記コアピンを前記動圧軸受用部材の軸方向に無理抜きすることがより好ましい。   In the case of the method for manufacturing the dynamic pressure bearing member, it is more preferable that the core pin is rotated and the core pin is forcibly removed in the axial direction of the dynamic pressure bearing member.

また、前記コアピンの外周面の前記突起条はその軸方向に所定の間隔を開けて2段以上に形成されていることが好ましい。   Moreover, it is preferable that the said protrusion on the outer peripheral surface of the said core pin is formed in two or more steps | paragraphs at predetermined intervals in the axial direction.

更に、前記コアピンの外周面の前記突起条は連続したV字状突起であることが好ましい。   Furthermore, it is preferable that the protrusions on the outer peripheral surface of the core pin are continuous V-shaped protrusions.

そしてまた、前記コアピンの回動方向はV字状突起条の尖端方向であることが好ましい。   And it is preferable that the rotation direction of the said core pin is a point direction of a V-shaped protrusion.

そして更に、前記円筒部内周面に2段以上の動圧溝が形成されている動圧軸受用部材の軸方向に前記コアピンを無理抜きする際に、前記コアピンを回動させる角度は、前記コアピンを無理抜きする軸方向における隣接する前記動圧溝に前記コアピンの一連の突起条が嵌り込まない角度であることが好ましい。   Further, when the core pin is forcibly removed in the axial direction of the dynamic pressure bearing member in which two or more stages of dynamic pressure grooves are formed on the inner peripheral surface of the cylindrical portion, the angle at which the core pin is rotated is the core pin It is preferable that the angle is such that a series of protrusions of the core pin does not fit into the adjacent dynamic pressure grooves in the axial direction in which force is removed.

そして更にまた、前記コアピンの外周面に形成されている突起条の角は面取りされていることが好ましい。   Furthermore, it is preferable that the corners of the protrusions formed on the outer peripheral surface of the core pin are chamfered.

そして更にまた、前記コアピンの外周面に形成されている突起条の断面形状が前記動圧軸受用部材の無理抜き方向に対し、そして前記コアピンの前記外周面を基準として鋭角で、該鋭角が30゜から45゜の角度で突起条が形成されていることが好ましい。   Still further, the cross-sectional shape of the protrusion formed on the outer peripheral surface of the core pin is an acute angle with respect to the forcibly removing direction of the dynamic pressure bearing member, and with respect to the outer peripheral surface of the core pin, and the acute angle is 30. The protrusions are preferably formed at an angle of from 45 ° to 45 °.

そして更にまた、前記コアピンの外周面に前記動圧溝形状に対応する断面形状は台形の突起条で形成されていて、前記台形状突起条の無理抜き方向における少なくとも後方の斜面の傾斜角が前記コアピンの前記外周面を基準として鋭角で、該鋭角が30゜から45゜の角度で形成されており、前記各台形状突起条の表面角部及び前記各台形突起条の基部が面取りされ、またはほぼR形状に形成されていることが好ましい。   Furthermore, a cross-sectional shape corresponding to the dynamic pressure groove shape is formed on the outer peripheral surface of the core pin by a trapezoidal protrusion, and an inclination angle of at least a rear slope in the forcibly removing direction of the trapezoidal protrusion is the An acute angle with respect to the outer peripheral surface of the core pin, the acute angle being formed at an angle of 30 ° to 45 °, and a surface corner portion of each trapezoidal protrusion and a base portion of each trapezoidal protrusion are chamfered, or It is preferably formed in a substantially R shape.

そして更にまた、前記コアピンの外周面に前記動圧溝形状に対応する断面形状が一部円弧状の突起条で形成されていて、前記一部円弧状突起条の基部が面取り、またはほぼR形状に形成されていることが好ましい。   Still further, a cross-sectional shape corresponding to the dynamic pressure groove shape is formed on the outer peripheral surface of the core pin by a partially arcuate protrusion, and the base of the partially arcuate protrusion is chamfered or substantially R-shaped. It is preferable to be formed.

そして更にまた、前記コアピンの前記突起条はV字状をなす突起が前記外周面の周りに連続するように形成して構成されていることが好ましい。   Furthermore, it is preferable that the protrusion of the core pin is formed so that a V-shaped protrusion is continuous around the outer peripheral surface.

そして更にまた、所定の長さを備え、回転装置用回転軸が挿入される内部の断面が円形の穴が開けられ、一端が回転軸挿入口として開口した有底の樹脂製筒部からなり、該筒部の前記円形穴の内周面に所定形状のラジアル動圧溝が、前記底部にスラスト軸受部が、そして該スラスト軸受部の上方近傍に抜止ワッシャ係合溝が一体的に形成されている動圧軸受用部材と、該抜止ワッシャ係合溝内に嵌り込む直径で、中心部に前記回転軸を挿入できる直径の回転軸挿入孔が形成されており、該回転軸挿入孔から放射状に周辺部に向かって複数本の切り込みが入り、撓む厚みのプラスチック製円板状抜止ワッシャと、前記スラスト軸受部に軸受けされる端面が、前記ラジアル軸受部に軸支される外周面が、前記端面の近傍上方の前記外周面に抜止ワッシャ係合溝が形成されている前記回転装置用回転軸とからなり、前記抜止ワッシャが前記動圧軸受用部材の前記回転軸挿入口から撓ませて挿入し、前記抜止ワッシャ係合溝に前記抜止ワッシャの外周縁が嵌め込まれ、前記回転軸を前記回転軸挿入口から前記抜止ワッシャの前記回転軸挿入孔に挿入し、前記抜止ワッシャの前記回転軸挿入孔の内周縁が前記回転軸の抜止ワッシャ係合溝に嵌め込んで装着し、前記回転軸が前記動圧軸受用部材から抜けないように構成されている。   And furthermore, it comprises a bottomed resin cylinder portion having a predetermined length, a circular hole in the inner cross section into which the rotating shaft for the rotating device is inserted, and one end opened as a rotating shaft insertion port, A radial dynamic pressure groove having a predetermined shape is integrally formed on the inner peripheral surface of the circular hole of the cylindrical portion, a thrust bearing portion is formed on the bottom portion, and a retaining washer engaging groove is formed in the vicinity of the upper portion of the thrust bearing portion. A rotary shaft insertion hole having a diameter that can be inserted into the retaining washer engagement groove and having a diameter that allows the rotation shaft to be inserted is formed in the center portion, and radially from the rotation shaft insertion hole. A plastic disc-shaped retaining washer having a plurality of incisions toward the peripheral portion and bent, and an end surface supported by the thrust bearing portion, and an outer peripheral surface pivotally supported by the radial bearing portion, A stopper is attached to the outer peripheral surface near the end surface. The rotary shaft for the rotating device in which a shear engaging groove is formed, and the retaining washer is bent from the rotational shaft insertion port of the dynamic pressure bearing member and inserted into the retaining washer engaging groove. The outer peripheral edge of the retaining washer is fitted, the rotational shaft is inserted into the rotational shaft insertion hole of the retaining washer from the rotational shaft insertion port, and the inner peripheral edge of the rotational shaft insertion hole of the retaining washer is secured to the rotational shaft. The rotary shaft is configured to be fitted into a washer engaging groove so that the rotating shaft does not come out of the dynamic pressure bearing member.

従って、本発明によれば、射出成形後に可動側金型から動圧軸受用部材を離型する際に、成形された動圧軸受用部材をコアピンから無理抜くか、或いはコアピンを動圧軸受用部材から無理抜きするが、その際、成形された動圧軸受用部材の外周面には可動側金型が存在せず、自由空間(円形スリットも含む)となっているため、コアピンのラジアル動圧軸受形成部や抜止ワッシャ係合溝成形環状突起により前記動圧軸受用部材は直径方向に広がり易くなり、また、従来技術の動圧軸受用部材の製造方法の場合と比較して成形された動圧軸受用部材が可動側金型に保持されていないため、無理抜き力が小さくて済み、不必要な力を掛けることなく無理抜きすることができる。   Therefore, according to the present invention, when the dynamic pressure bearing member is released from the movable mold after injection molding, the molded dynamic pressure bearing member is forcibly removed from the core pin, or the core pin is used for the dynamic pressure bearing. Although it is forcibly removed from the member, there is no movable mold on the outer peripheral surface of the molded hydrodynamic bearing member, and there is free space (including a circular slit), so the radial movement of the core pin The pressure bearing forming portion and the retaining washer engaging groove forming annular projection make the dynamic pressure bearing member easy to expand in the diametrical direction, and are formed in comparison with the conventional method of manufacturing a dynamic pressure bearing member. Since the dynamic pressure bearing member is not held by the movable side mold, the forcible extraction force is small, and the extraction can be performed without applying unnecessary force.

また、前記コアピンのラジアル動圧軸受形成部の突起条のエッジが面取されていたり、ほぼR形状に形成されていたり、或いは台形や円弧状など無理抜き方向に対して傾斜面に形成されていることから、前記コアピンから前記動圧軸受用部材を一層弱い力で無理抜きすることができる。   Further, the edge of the protrusion of the radial dynamic pressure bearing forming portion of the core pin is chamfered, formed in a substantially R shape, or formed on an inclined surface with respect to the forcibly removing direction such as a trapezoid or an arc shape. Therefore, the dynamic pressure bearing member can be forcibly removed from the core pin with a weaker force.

更にまた、このコアピン或いは動圧軸受用部材の無理抜きの際に、そのコアピンを回動させることにより、そのコアピンの外周面に形成されている動圧溝形成部が無理抜き方向の後方に形成されている動圧溝に嵌り込むことを防ぐことができる。   Furthermore, when the core pin or the dynamic pressure bearing member is forcibly removed, the core pin is rotated so that a dynamic pressure groove forming portion formed on the outer peripheral surface of the core pin is formed at the rear in the forcible removal direction. It can prevent fitting in the dynamic pressure groove.

それ故、本発明の動圧軸受用部材によれば、
1.傷或いは変形が生じ難い良好なラジアル軸受部が形成されていること
2.ラジアル軸受部、スラスト軸受け、抜止ワッシャ係合溝が一体化して形成されること
3.前記2項から部品点数を大幅に削減できること
4.前記3項から動圧軸受用部材のコストを大幅に削減できること
5.抜止ワッシャを動圧軸受用部材に容易に挿入することができること
また、本発明の射出成形用金型によれば、
1.特に1本のコアピンで動圧軸受用部材の内周部にラジアル軸受部とスラスト軸受け及 び抜止ワッシャ係合溝を成形できること
2.コアピンに無理な力が掛からなくなるため、寿命が延びること
更に、本発明の動圧軸受用部材の製造方法によれば、
1.前記無理抜きの際、動圧軸受用部材の内周面に形成されたラジアル軸受部に傷付け難 く或いは変形させ難いこと
2.無理抜きの際の力が小さくて済み、射出成型機の自由度が上がること
3.無理抜きの際の力が小さくて済み、動圧軸受用部材に用いる樹脂の弾性率の制約が緩 和でき、樹脂選定の自由度が上がること
4.高価な樹脂を使用する際、軸径が細く、ハウジング部に取り付ける筒部の外径が大き い場合、筒部に円形スリットを入れることにより使用樹脂量を削減できること、特に円 形スリットの幅を広くすれば一層使用樹脂量を削減できること
5.前記4項からラジアル軸受部が形成されている筒部の厚みを薄くなれば、より一層傷 或いは変形を生じさせることなく良好な動圧軸受用部材が得られること
更にまた、本発明の動圧軸受によれば、
1.回転軸が動圧軸受から容易に抜け出ないこと
など、数々の優れた効果が得られる。
Therefore, according to the dynamic pressure bearing member of the present invention,
1. 1. A good radial bearing is formed that is less likely to be scratched or deformed. 2. A radial bearing, a thrust bearing, and a retaining washer engaging groove are formed integrally. 3. The number of parts can be greatly reduced from the item 2 above. 4. The cost of the hydrodynamic bearing member can be greatly reduced from the item 3 above. The retaining washer can be easily inserted into the dynamic pressure bearing member. Also, according to the injection mold of the present invention,
1. In particular, a single core pin can form a radial bearing, a thrust bearing, and a retaining washer engagement groove on the inner periphery of the hydrodynamic bearing member. Since an excessive force is not applied to the core pin, the life is extended. Further, according to the method for manufacturing a fluid dynamic bearing member of the present invention,
1. 1. When forcibly removing, the radial bearing formed on the inner peripheral surface of the dynamic pressure bearing member is not easily damaged or deformed. 2. Less force is required when unreasonable, and the flexibility of the injection molding machine is increased. The force required to remove the force is small, the restriction on the elastic modulus of the resin used for the dynamic pressure bearing member can be relaxed, and the degree of freedom in resin selection increases. When using expensive resin, if the shaft diameter is thin and the outer diameter of the cylinder part attached to the housing part is large, the amount of resin used can be reduced by inserting a circular slit in the cylinder part, especially the width of the circular slit. 4. If it is widened, the amount of resin used can be further reduced. If the thickness of the cylindrical part on which the radial bearing part is formed is reduced from the item 4, a good dynamic pressure bearing member can be obtained without causing further damage or deformation. According to the bearing
1. Numerous excellent effects are obtained, such as the rotating shaft not easily coming out of the hydrodynamic bearing.

以下、図を用いて、本発明の動圧軸受用部材、その成形金型、その製造方法及び動圧軸受を順次説明する。   Hereinafter, the member for a dynamic pressure bearing, the molding die thereof, the manufacturing method thereof, and the dynamic pressure bearing of the present invention will be sequentially described with reference to the drawings.

図1は本発明の第1実施例の動圧軸受用部材の断面拡大図、図2は図1に示した動圧軸受用部材を成形するために用いるコアピンの拡大側面図、図3は図2に示したコアピンとエジェクターピンとを組み付けた可動側金型の拡大断面側面図、図4は本発明の動圧軸受用部材を射出成形するための固定側金型と可動側金型とから構成され、両者が締結された状態で表した射出成形用金型の一例の断面図、図5は図4に示した射出成形用金型を開いた状態の断面図、図6は図5に示した動作に続く動作を示していて、硬化した動圧軸受用部材が固定側金型のパーティング面から離型した状態を示した断面図、図7は図6に示した動作に続く動作を示していて、可動側金型のコアピンと動圧軸受用部材とを無理抜きした瞬間を示した断面図、図8は図7に示した動作に続く動作を示していて、可動側金型のコアピンと動圧軸受用部材とを完全に無理抜きした状態を示した断面図、そして図9は図8に続く動作を示していて、本発明の動圧軸受用部材の製造方法により得られた状態の動圧軸受用部材と射出成形用金型の関係を示した断面図である。   FIG. 1 is an enlarged sectional view of a fluid dynamic bearing member according to a first embodiment of the present invention, FIG. 2 is an enlarged side view of a core pin used for molding the fluid dynamic bearing member shown in FIG. 1, and FIG. 4 is an enlarged cross-sectional side view of the movable side mold in which the core pin and the ejector pin shown in FIG. 2 are assembled. FIG. 4 is composed of a fixed side mold and a movable side mold for injection molding the dynamic pressure bearing member of the present invention. FIG. 5 is a cross-sectional view of an example of an injection mold shown in a state where both are fastened, FIG. 5 is a cross-sectional view of the state where the injection mold shown in FIG. 4 is opened, and FIG. FIG. 7 is a cross-sectional view showing a state where the hardened hydrodynamic bearing member is released from the parting surface of the fixed mold, and FIG. 7 shows the operation following the operation shown in FIG. FIG. 8 is a cross-sectional view showing the moment when the core pin of the movable mold and the dynamic pressure bearing member are forcibly removed. FIG. 9 is a sectional view showing a state where the core pin of the movable mold and the dynamic pressure bearing member are completely removed, and FIG. 9 shows the operation following FIG. FIG. 2 is a cross-sectional view showing the relationship between a dynamic pressure bearing member and an injection mold in a state obtained by the method for manufacturing a dynamic pressure bearing member of the present invention.

なお、図4に示した本発明の射出成形用金型は、固定側80には固定側金型85、固定側金型用ホルダー86のみを、可動側90には可動側金型91、コアピン30A、可動側金型用ホルダー93、エジェクターピン94及びその先端に取り付けられているコイルバネ95のみを示し、本発明の動圧軸受用部材の製造方法に直接関係のない構成部分の図示は割愛し、原理図として示した。図5乃至図9についても同様である。   The injection mold of the present invention shown in FIG. 4 has only a fixed side mold 85 and a fixed side mold holder 86 on the fixed side 80, and a movable side mold 91 and a core pin on the movable side 90. 30A, only the movable side mold holder 93, the ejector pin 94, and the coil spring 95 attached to the tip thereof are shown, and illustration of components not directly related to the method of manufacturing the dynamic pressure bearing member of the present invention is omitted. The principle diagram is shown. The same applies to FIGS. 5 to 9.

なお、この実施例の動圧軸受用部材及び射出成形用金型の構成、構造部分には、従来技術のそれらと同一の構成、構造部分に付した符号を付して説明する。   It should be noted that the configurations and structural parts of the dynamic pressure bearing member and the injection molding die of this embodiment will be described with the same configurations and structural parts as those of the prior art.

先ず、図1〜図9を用いて、本発明の第1実施例の動圧軸受用部材、その成形金型、その製造方法及び動圧軸受の構成、構造を説明する。   First, with reference to FIG. 1 to FIG. 9, the structure and structure of a fluid dynamic bearing member, its molding die, its manufacturing method, and fluid dynamic bearing according to a first embodiment of the present invention will be described.

図1において、符号30Aは本発明の第1実施例の動圧軸受用部材を指す。この動圧軸受用部材30Aは、樹脂を射出成形して一体的に形成されているものであって、その筒部50は内周面53が断面円形で、回転軸31が回転軸挿入口51aから挿入できる有底52の軸受け穴51で形成されているものであり、その内周面53の内周方向に、図25Aに示したV字状の動圧溝(凹部)54と動圧溝ランド部(凸部)55とが交互に所定のピッチで2段の動圧連続溝Ra、Rbが長軸方向に所定の間隔を開けて並行に形成されてラジアル軸受部Rが形成されていると共に、それに続く底部52の中央部には一部の球形状のスラスト軸受部Sが形成されている。また、このスラスト軸受部Sと動圧溝Rbとの間のスラスト軸受部Sに近い部分には、本発明の特徴である抜止ワッシャ係合溝57が形成されている。更に底部52の外部周辺部には一体的にフランジ部56が形成されており、これは電子機器に取り付ける部材にもなる。   In FIG. 1, reference numeral 30A denotes a fluid dynamic bearing member according to the first embodiment of the present invention. The dynamic pressure bearing member 30A is integrally formed by injection molding of resin, and the cylindrical portion 50 has an inner peripheral surface 53 having a circular cross section, and the rotary shaft 31 is a rotary shaft insertion port 51a. Is formed with a bearing hole 51 of a bottomed 52 that can be inserted through the inner circumferential surface 53, and a V-shaped dynamic pressure groove (recess) 54 and a dynamic pressure groove shown in FIG. A radial bearing portion R is formed by alternately forming land portions (convex portions) 55 at two-stage dynamic pressure continuous grooves Ra and Rb at a predetermined pitch in parallel with a predetermined interval in the major axis direction. At the same time, a part of the spherical thrust bearing portion S is formed at the center of the bottom portion 52 subsequent thereto. Further, a retaining washer engaging groove 57 that is a feature of the present invention is formed in a portion close to the thrust bearing portion S between the thrust bearing portion S and the dynamic pressure groove Rb. Further, a flange portion 56 is integrally formed on the outer peripheral portion of the bottom portion 52, and this also serves as a member attached to the electronic device.

次に、図2に示した本発明の射出成形用金型を構成する一つの金型であるコアピン60Aについて説明する。   Next, the core pin 60A, which is one mold constituting the injection mold of the present invention shown in FIG. 2, will be described.

このコアピン60Aは、その外周面61に動圧溝形成部62a、62bが形成されており、また、コアピン60Aの先端面は一部分の球状凹部のスラスト軸受成形部63Aに形成されている。そして本発明の特徴である抜止ワッシャ係合溝成形環状突起64が動圧溝形成部62bとそのスラスト軸受成形部63Aとの間のスラスト軸受成形部63A側に近い部分に形成されている。この抜止ワッシャ係合溝成形環状突起64の動圧溝形成部62b側のエッジはその動圧溝形成部62b側に下がるテーパー面64aに形成されている。
コアピン30の先端部分の外周面31に、動圧軸受用部材30Aの円筒部50の内周面53(図1)に軸方向に所定の間隔を開けて並行に2段の動圧溝Ra、Rbが形成されるように、動圧溝Ra、Rbに対応する動圧溝形成部62a、62bが形成されているが、これらの動圧溝形成部62a、62bは、所定の間隔で連続するV字状をなす断面が突起で構成されており、これらのV字状突起の大きさ、角度、ピッチ、溝幅、溝の深さなどは全く同一に形成されている。
The core pin 60A has dynamic pressure groove forming portions 62a and 62b formed on the outer peripheral surface 61 thereof, and the tip surface of the core pin 60A is formed in a thrust bearing forming portion 63A of a partial spherical recess. The retaining washer engaging groove forming annular protrusion 64, which is a feature of the present invention, is formed in a portion close to the thrust bearing forming portion 63A side between the dynamic pressure groove forming portion 62b and the thrust bearing forming portion 63A. The edge on the dynamic pressure groove forming portion 62b side of the retaining washer engaging groove forming annular protrusion 64 is formed on a tapered surface 64a that falls to the dynamic pressure groove forming portion 62b side.
On the outer peripheral surface 31 of the tip portion of the core pin 30, two stages of dynamic pressure grooves Ra in parallel with a predetermined interval in the axial direction on the inner peripheral surface 53 (FIG. 1) of the cylindrical portion 50 of the dynamic pressure bearing member 30A, The dynamic pressure groove forming portions 62a and 62b corresponding to the dynamic pressure grooves Ra and Rb are formed so that Rb is formed, but these dynamic pressure groove forming portions 62a and 62b are continuous at a predetermined interval. The V-shaped cross section is composed of protrusions, and the size, angle, pitch, groove width, groove depth, etc. of these V-shaped protrusions are formed exactly the same.

このコアピン60Aは、図3に示したように、可動側90の可動側金型91に組み付けられ、矢印Xで示したように左右の方向に移動でき、また必要に応じてV字状動圧溝Ra、RbのV字の尖端部方向に符号Xrで示したように1回転以内の僅かな回動角範囲で回動できるように組み付けられる。   As shown in FIG. 3, the core pin 60A is assembled to a movable mold 91 on the movable side 90, and can move in the left-right direction as indicated by an arrow X, and V-shaped dynamic pressure as required. As shown by the symbol Xr in the direction of the V-shaped tip of the grooves Ra and Rb, the grooves Ra and Rb are assembled so that they can be rotated within a slight rotation angle range within one rotation.

この可動側金型91は、後記の固定側金型85のパーティング面85cに密着できるパーティング面91aと、このパーティング面91aの前記固定側金型85のゲート85bを中心にして開口するキャビティ92と、このキャビティ92の中央部に貫通する断面円形の1本の貫通孔91bとこの貫通孔91bの周りに均等に配設された複数の貫通孔91cとが形成されている。   The movable mold 91 opens with a parting surface 91a that can be in close contact with a parting surface 85c of the fixed mold 85 to be described later, and a gate 85b of the fixed mold 85 on the parting surface 91a. A cavity 92, a single through hole 91b having a circular cross section penetrating through the central portion of the cavity 92, and a plurality of through holes 91c arranged evenly around the through hole 91b are formed.

キャビティ92は成形される動圧軸受用部材30Aのフランジ部56を成形できるフランジ部キャビティ92aと動圧軸受用部材30Aの円筒部50を成形する円筒部キャビティ92bとが一体化された構造で形成されている。前記複数の貫通孔91cの先端はフランジ部キャビティ92aに臨んで開口している。   The cavity 92 is formed by a structure in which a flange portion cavity 92a capable of forming the flange portion 56 of the dynamic pressure bearing member 30A to be formed and a cylindrical portion cavity 92b for forming the cylindrical portion 50 of the dynamic pressure bearing member 30A are integrated. Has been. The ends of the plurality of through-holes 91c are open facing the flange cavity 92a.

可動側金型用ホルダー93には、可動側金型91を嵌め込める凹部93aと、可動側金型91の貫通孔91b及び91cと同一直径でそれらの長軸が一直線となるように形成されている貫通孔93bと複数の貫通孔93cが形成されている。   The movable-side mold holder 93 is formed with a recess 93a into which the movable-side mold 91 can be fitted and the same diameter as the through-holes 91b and 91c of the movable-side mold 91 so that their long axes are in a straight line. A through hole 93b and a plurality of through holes 93c are formed.

可動側の金型は、前記可動側金型用ホルダー93の凹部93aに可動側金型91を嵌め込み、可動側金型91の貫通孔91b、91cと可動側金型用ホルダー93の貫通孔93b、93cとを軸方向に一直線に合わせ、貫通孔91bと貫通孔93bとにコアピン60Aを挿通し、コアピン60Aのスラスト軸受成形部63Aがフランジ部キャビティ92aの所定の位置、例えば、中央部に止め、それぞれのエジェクターピン94は、それぞれ貫通孔91b、93cに挿通され、それらの先端部に固定されているコイルバネ95の先端は可動側金型91のフランジ部キャビティ92aに開けられている開口面と同一面を形成するように臨んで留められて組み立てられている。   The movable-side mold is configured such that the movable-side mold 91 is fitted into the recess 93 a of the movable-side mold holder 93, and the through-holes 91 b and 91 c of the movable-side mold 91 and the through-hole 93 b of the movable-side mold holder 93 are inserted. , 93c are aligned in a straight line in the axial direction, the core pin 60A is inserted into the through hole 91b and the through hole 93b, and the thrust bearing molding portion 63A of the core pin 60A is stopped at a predetermined position, for example, the center portion of the flange portion cavity 92a. The ejector pins 94 are inserted into the through holes 91 b and 93 c, respectively, and the tips of the coil springs 95 fixed to the tips of the ejector pins 94 are open surfaces opened in the flange cavity 92 a of the movable mold 91. It is assembled so that it faces to form the same surface.

これらのエジェクターピン94は1個のキャビティ92に対して、その周りに複数本、均等に設けられており、そしてこれら複数本のエジェクターピン94は共に同時に移動し、更にそれぞれの先端部にコイルバネ95が取り付けられている。そして各コイルバネ95の先端部は円筒部キャビティ92bに臨んで同一面となる位置に留まり、溶融樹脂Mrの射出注入時には決して円筒部キャビティ92b内に突き抜けることがないように構成されている。また、これらのエジェクターピン94は可動側金型91の貫通孔91c内及び可動側金型用ホルダー93の貫通孔93c内を矢印Xで示した左右方向に円滑に摺動できるように取り付けられている。   A plurality of these ejector pins 94 are equally provided around one cavity 92, and the plurality of ejector pins 94 move together at the same time. Is attached. The tip end of each coil spring 95 remains on the same surface facing the cylindrical cavity 92b, and is configured to never penetrate into the cylindrical cavity 92b when the molten resin Mr is injected and injected. Further, these ejector pins 94 are attached so as to be able to slide smoothly in the left-right direction indicated by the arrow X in the through hole 91c of the movable mold 91 and the through hole 93c of the movable mold holder 93. Yes.

可動側金型91は可動側金型用ホルダー93と共に、そしてのコアピン30A及び全てのエジェクターピン94は符号Xで示す各軸方向に個別に移動できるように構成されており、また、コアピン30は必要に応じて符号Xrで示すようにV字状動圧溝Ra、RbのV字の尖端部方向に1回転未満の範囲で回動できるように回動装置(不図示)で制御されるように構成されている。   The movable mold 91 is configured so as to move together with the movable mold holder 93, and the core pin 30A and all the ejector pins 94 can be individually moved in the respective axial directions indicated by the symbol X. It is controlled by a rotating device (not shown) so that it can be rotated within a range of less than one rotation in the direction of the V-shaped tip of the V-shaped dynamic pressure grooves Ra and Rb as indicated by reference numeral Xr. It is configured.

なお、前記のキャビティ92は全て可動側金型91に形成されている例で図示したが、固定側金型85のパーティング面85cに円筒部キャビティ92bの一部分を形成しておいてもよい。   Although the cavity 92 is illustrated as being formed in the movable mold 91, a part of the cylindrical cavity 92b may be formed on the parting surface 85c of the fixed mold 85.

一方、固定側金型85の構成、構造は、図27及び図28に示したものと同様であるので、説明を省略する。   On the other hand, the configuration and structure of the fixed mold 85 are the same as those shown in FIGS.

次に、図4乃至図9を用いて、本発明の動圧軸受用部材を製造する本発明の動圧軸受用部材の製造方法を説明する。   Next, the manufacturing method of the dynamic pressure bearing member of the present invention for manufacturing the dynamic pressure bearing member of the present invention will be described with reference to FIGS.

先ず、図4に示したように、固定側金型85を固定側金型用ホルダー86の凹部に取り付け、可動側金型91を可動側金型用ホルダー93の凹部93aに取り付け、コアピン60Aを可動側金型91の貫通孔91b及びこの貫通孔91bに一直線状に配設された可動側金型用ホルダー93の貫通孔93bに挿通し、そしてその先端部のスラスト軸受成形部63Aをフランジ部キャビティ92aの中程の所定位置に止め、更に各エジェクターピン94を可動側金型91の各貫通孔91c及び可動側金型用ホルダー93の各貫通孔93cに一直線状に挿通し、各エジェクターピン94の先端に取り付けられているコイルバネ95の先端をフランジ部キャビティ7aに臨んで同一面となる位置に止めた状態で、可動側金型91を、図においてX軸左方向に移動させて固定側金型85のパーティング面85cに可動側金型91のパーティング面91aを衝合、密着させて締結し、固定側金型85と可動側金型91とで形成されたキャビティ92内に溶融樹脂ゲート85bから溶融樹脂Mrを射出注入し、充填する(図4)。   First, as shown in FIG. 4, the fixed mold 85 is attached to the recess of the fixed mold holder 86, the movable mold 91 is mounted to the recess 93a of the movable mold holder 93, and the core pin 60A is attached. The through hole 91b of the movable side mold 91 and the through hole 93b of the movable side mold holder 93 arranged in a straight line in the through hole 91b are inserted, and the thrust bearing molding portion 63A at the tip portion is inserted into the flange portion. The ejector pin 94 is stopped at a predetermined position in the middle of the cavity 92a, and each ejector pin 94 is inserted into each through hole 91c of the movable mold 91 and each through hole 93c of the movable mold holder 93 in a straight line. With the tip of the coil spring 95 attached to the tip of 94 facing the flange cavity 7a being stopped at the same plane, the movable mold 91 is moved to the left of the X axis in the figure. The parting surface 91a of the movable-side mold 91 is abutted and brought into close contact with the parting surface 85c of the fixed-side mold 85, and is formed by the fixed-side mold 85 and the movable-side mold 91. The molten resin Mr is injected and injected into the cavity 92 from the molten resin gate 85b (FIG. 4).

次に、その射出注入し、充填された溶融樹脂Mrが硬化した後、図5に示したように、固定側金型85と可動側金型91との締結を解除し、先ず、固定側金型85のパーティング面85c及び硬化、成形された動圧軸受用部材20の外周面から可動側金型91を可動側金型用ホルダー93共々X軸右方向に後退させる。この場合、動圧軸受用部材30Aは固定側金型85のパーティング面85cにエジェクターピン94とコイルバネ95とに押された状態のままである。また、コアピン60Aも移動しない。   Next, after the injection and injection, and the filled molten resin Mr is cured, as shown in FIG. 5, the fastening between the fixed side mold 85 and the movable side mold 91 is released. From the parting surface 85c of the mold 85 and the outer peripheral surface of the cured and molded dynamic pressure bearing member 20, the movable side mold 91 is retracted together with the movable side mold holder 93 in the right direction of the X axis. In this case, the dynamic pressure bearing member 30 </ b> A remains pressed by the ejector pins 94 and the coil springs 95 on the parting surface 85 c of the fixed mold 85. Also, the core pin 60A does not move.

その後、図6に示したように、更に可動側全体を僅かに後退させて、動圧軸受用部材30Aを固定側金型85のゲート85b及びパーティング面85cから切り離す。   Thereafter, as shown in FIG. 6, the entire movable side is further retracted slightly, and the dynamic pressure bearing member 30A is separated from the gate 85b and the parting surface 85c of the fixed side mold 85.

次に、図7に示したように、各エジェクターピン94及びコイルバネ95は図6に示した状態の位置のまま、成形された動圧軸受用部材30Aの周辺に可動側金型91が存在しない状態で不図示の駆動機構を用いて符号Xrで示したV字状動圧溝Ra、RbのV字の尖端部方向にコアピン60Aを1回転以内の僅かな角範囲内で回動させ、そして符号Xで示したX軸右方向にその長軸方向に移動させて、そのコアピン60Aを動圧軸受用部材30Aの底部52から無理抜きし始める。   Next, as shown in FIG. 7, the ejector pins 94 and the coil springs 95 remain in the positions shown in FIG. 6, and the movable die 91 does not exist around the molded dynamic pressure bearing member 30A. In the state, the core pin 60A is rotated within a slight angular range within one rotation in the direction of the V-shaped tip of the V-shaped dynamic pressure grooves Ra and Rb indicated by the symbol Xr using a drive mechanism (not shown), and The core pin 60A is moved in the long axis direction to the right of the X axis indicated by the symbol X, and the core pin 60A is forcibly removed from the bottom 52 of the dynamic pressure bearing member 30A.

そして更に前記駆動機構を作動させて、図8に示したように、X軸右方向にコアピン60Aを移動させながら動圧軸受用部材30Aから無理抜きし、コアピン60Aを可動側金型91内にまで後退させる。   Then, the drive mechanism is further operated, and the core pin 60A is forcibly removed from the dynamic pressure bearing member 30A while moving the core pin 60A in the right direction of the X axis as shown in FIG. Retreat until.

次に、図9に示したように、エジェクターピン94及びコイルバネ95を符号Xで示したX軸右方向に移動させると、動圧軸受用部材30Aが射出成形用金型から切り離され、落下する(符号Y)。   Next, as shown in FIG. 9, when the ejector pin 94 and the coil spring 95 are moved in the right direction of the X axis indicated by the symbol X, the dynamic pressure bearing member 30A is separated from the injection mold and dropped. (Symbol Y).

このような射出成形工程を経て、図1及び図9に示したような断面円形の底部52にスラスト軸受けSが、その近傍の円筒部50の内周面53に抜止ワッシャ係合溝57が、更にその円筒部50の中央部の内周面53の内周方向に、例えば、図25に示したような一連のV字形の動圧溝54からなるラジアル動圧部Ra、Rbが所定の間隔を開けて2段並列に形成された動圧軸受用部材30Aを製造することができる。   Through such an injection molding process, the thrust bearing S is formed on the bottom 52 having a circular cross section as shown in FIGS. 1 and 9, and the retaining washer engaging groove 57 is formed on the inner peripheral surface 53 of the cylindrical portion 50 in the vicinity thereof. Further, in the inner peripheral direction of the inner peripheral surface 53 of the central portion of the cylindrical portion 50, for example, radial dynamic pressure portions Ra and Rb including a series of V-shaped dynamic pressure grooves 54 as shown in FIG. 30A can be manufactured by opening the shaft and parallelly forming two stages.

前記の説明においては、コアピン60Aの無理抜き時に、そのコアピン60Aを符号Xrの方向(後記)に回動させ、そして符号XのX軸右方向に無理抜きすると説明したが、コアピン60Aを前記のように回動させることは必須要件ではない。しかし、コアピン60Aの無理抜き時にそのコアピン60Aを回動させることが好ましい。その好ましい理由を図10及び図11を用いて説明する。   In the above description, it has been described that when the core pin 60A is forcibly removed, the core pin 60A is rotated in the direction of Xr (described later) and forcibly removed in the right direction of the X axis of X. It is not an essential requirement to rotate in this manner. However, it is preferable to rotate the core pin 60A when the core pin 60A is forcibly removed. The preferable reason will be described with reference to FIGS.

図10はコアピンを動圧軸受用部材の軸方向(X軸方向)のみに無理抜きする場合の説明図であって、同図Aは動圧軸受用部材の内周面に形成されているラジアル動圧溝の展開図、同図Bは同図Aのラジアル動圧溝の展開図にコアピンの外周面に形成されている突起条の展開図を重ねた展開図、そして図11はコアピンを僅かに回動させ、そして動圧軸受用部材の軸方向に無理抜きする場合の説明図であって、同図Aは動圧軸受用部材の内周面に形成されているラジアル動圧溝の展開図、同図Bは同図Aのラジアル動圧溝の展開図にコアピンの外周面に形成されている突起条の展開図を重ねた展開図である。   FIG. 10 is an explanatory view when the core pin is forcibly removed only in the axial direction (X-axis direction) of the dynamic pressure bearing member, and FIG. 10A shows a radial formed on the inner peripheral surface of the dynamic pressure bearing member. FIG. 11B is a development view in which a development view of the protrusions formed on the outer peripheral surface of the core pin is superimposed on a development view of the radial dynamic pressure groove in FIG. FIG. 2A is an explanatory diagram of the case where the dynamic pressure bearing member is forcibly removed in the axial direction, and FIG. 3A is a development of the radial dynamic pressure groove formed on the inner peripheral surface of the dynamic pressure bearing member. FIG. 1 and FIG. 2B are developed views in which the developed views of the radial dynamic pressure grooves in FIG. 1A are overlapped with the developed views of the protrusions formed on the outer peripheral surface of the core pin.

前記実施例1の動圧軸受用部材の製造方法においては、動圧軸受用部材30Aからのコアピン60Aの無理抜きを行う際に、そのコアピン60Aを図7の状態で1回転以内の僅かな回動角度で回動させ、成形した動圧軸受用部材30Aから前記X軸右方向に無理抜きしている。   In the method of manufacturing the dynamic pressure bearing member of the first embodiment, when the core pin 60A is forcibly removed from the dynamic pressure bearing member 30A, the core pin 60A is slightly rotated within one rotation in the state of FIG. The dynamic pressure bearing member 30A is rotated at a dynamic angle and is forcibly removed in the right direction of the X axis.

もし、前記のようにコアピン60Aを回動させなければ、最初に無理抜きしたコアピン60Aのラジアル動圧軸受形成部62の一連の動圧溝形成部(突起条)62bが、図10Bに示したように、ラジアル動圧溝Raに落ち込んでしまう。即ち、例えば、図2に示したコアピン60Aの外周面61に形成されているV字状突起条からなる2段の動圧溝形成部62a、62bで、動圧軸受用部材30Aの円筒部50の内周面にV字の大きさ、角度、ピッチ、溝幅、溝の深さなどが全く同一の2段の動圧溝Ra、Rbを成形した場合に、このコアピン60Aから動圧軸受用部材30Aを無理抜きするとする。なお、図10Aは、前記動圧軸受用部材30Aの円筒部50の内周面53に形成されている前記2段の動圧溝54とランド部55からなるラジアル動圧溝Ra、Rbを360°の全周にわたって展開して示した展開図である。   If the core pin 60A is not rotated as described above, a series of dynamic pressure groove forming portions (protrusions) 62b of the radial dynamic pressure bearing forming portion 62 of the core pin 60A that has been forcibly removed first is shown in FIG. 10B. As described above, it falls into the radial dynamic pressure groove Ra. That is, for example, the two-stage hydrodynamic groove forming portions 62a and 62b made of V-shaped protrusions formed on the outer peripheral surface 61 of the core pin 60A shown in FIG. When the two-stage dynamic pressure grooves Ra and Rb having the same V size, angle, pitch, groove width, groove depth and the like are formed on the inner peripheral surface of the core pin 60A, the dynamic pressure bearing is used. It is assumed that the member 30A is forcibly removed. In FIG. 10A, the radial dynamic pressure grooves Ra and Rb formed by the two-stage dynamic pressure grooves 54 and the land portions 55 formed on the inner peripheral surface 53 of the cylindrical portion 50 of the dynamic pressure bearing member 30 </ b> A are 360. FIG. 4 is a development view showing the entire circumference of °.

このような場合、コアピン60Aを動圧軸受用部材30Aから前記のように符号Xで示したX軸右方向のみに無理抜きすると、コアピン60Aの突起条62a、62bはそれぞれラジアル動圧溝Ra、Rbから抜き出て、次に、ラジアル動圧溝Rbを形成した動圧溝形成部62bは、図10Bに斜線で示したように、ラジアル動圧溝Raの各動圧溝54に落ち込んでしまう。そして更に無理抜きすることにより、始めてコアピン60Aは動圧軸受用部材30Aから完全に抜き去ることができるようになる。   In such a case, if the core pin 60A is forcibly removed from the dynamic pressure bearing member 30A only in the right direction of the X-axis indicated by the symbol X as described above, the protrusions 62a and 62b of the core pin 60A are respectively exposed to the radial dynamic pressure grooves Ra, Next, the dynamic pressure groove forming portion 62b, which is extracted from Rb and formed with the radial dynamic pressure groove Rb, falls into the respective dynamic pressure grooves 54 of the radial dynamic pressure groove Ra as shown by hatching in FIG. 10B. . Further, by further forcibly removing, the core pin 60A can be completely removed from the dynamic pressure bearing member 30A for the first time.

前記の無理抜き状態から明らかなように、ラジアル動圧溝Raは動圧溝形成部62aと続いて動圧溝形成部62bで無理抜きされることになり、ラジアル動圧溝Raは突起条62a、62bの形状によっては傷或いは変形を受け易い状態に曝されることになる。更に本発明の場合、コアピン60Aの先端部分にラジアル動圧軸受形成部62の直径より太い抜止ワッシャ係合溝成形環状突起64が形成されていることから、抜止ワッシャ係合溝成形環状突起64で各ラジアル動圧溝Ra、Rbが傷付きやすい。ラジアル動圧溝Ra、Rbが傷付いたり、変形することは良好な流体動圧を発生させるには好ましいことではない。   As is apparent from the forcibly removed state, the radial dynamic pressure groove Ra is forcibly removed by the dynamic pressure groove forming part 62a and then the dynamic pressure groove forming part 62b, and the radial dynamic pressure groove Ra is formed by the protrusion 62a. , 62b depending on the shape, it is exposed to a state in which it is easily damaged or deformed. Further, in the case of the present invention, the retaining washer engaging groove forming annular protrusion 64 having a diameter larger than the diameter of the radial dynamic pressure bearing forming portion 62 is formed at the tip portion of the core pin 60A. Each radial dynamic pressure groove Ra, Rb is easily damaged. Scratching or deforming the radial dynamic pressure grooves Ra and Rb is not preferable for generating a good fluid dynamic pressure.

そこで、本実施例の動圧軸受用部材の製造方法においては、図6乃至図8及び図11に示したように、コアピン60Aを、符号Xrで示した方向、即ち、V字状動圧溝Ra、RbのV字の尖端部方向に1回転以内の僅かな回動角度で回動させた後、符号Xで示すX軸右方向に動圧軸受用部材30Aの軸方向に、例えば、カム、シャフト機構(不図示)などを用いて動圧軸受用部材30Aから無理抜きする。このような無理抜き方法であると、先ず、コアピン60Aの動圧溝形成部(突起条)62a、62bがそれぞれラジアル動圧溝Ra、Rbから抜き出て、次にコアピン60Aのスラスト軸受成形部63A側の動圧溝形成部62bは、図11Bに示したように、ラジアル動圧溝Raを構成する各動圧溝54の位置に向かうが、それらの動圧溝54からずれて落ち込むことなく動圧軸受用部材30Aからコアピン60Aを無理抜きすることができる。   Therefore, in the method of manufacturing the dynamic pressure bearing member of the present embodiment, as shown in FIGS. 6 to 8 and 11, the core pin 60A is placed in the direction indicated by the symbol Xr, that is, the V-shaped dynamic pressure groove. For example, in the axial direction of the dynamic pressure bearing member 30A in the right direction of the X-axis indicated by the symbol X, after rotating in the direction of the V-shaped tip of Ra and Rb with a slight rotation angle within one rotation, for example, a cam Then, the dynamic pressure bearing member 30A is forcibly removed using a shaft mechanism (not shown) or the like. In such a forced extraction method, first, the dynamic pressure groove forming portions (protrusions) 62a and 62b of the core pin 60A are extracted from the radial dynamic pressure grooves Ra and Rb, respectively, and then the thrust bearing forming portion of the core pin 60A. As shown in FIG. 11B, the dynamic pressure groove forming portion 62b on the 63A side is directed to the position of each dynamic pressure groove 54 constituting the radial dynamic pressure groove Ra, but does not fall off from the dynamic pressure grooves 54. The core pin 60A can be forcibly removed from the dynamic pressure bearing member 30A.

問題は抜止ワッシャ係合溝成形環状突起64がラジアル動圧溝Ra、Rbを通過する時に、それらのラジアル動圧溝Ra、Rbに傷を付けず、或いは変形させないことである。本発明のコアピン60Aを動圧軸受用部材30Aから無理抜きする場合、その動圧軸受用部材30Aから可動側金型91及び可動側金型用ホルダー93が存在しないことから、成形された動圧軸受用部材30Aの外周面61は自由空間になっているため、動圧溝形成部62a、62b及びこれらより太い直径の抜止ワッシャ係合溝成形環状突起64が無理抜きされる時、動圧軸受用部材30Aの筒部50が僅かに外方に膨らむことができる。従って、コアピン60Aの動圧溝形成部62a、62b及び抜止ワッシャ係合溝成形環状突起64は動圧軸受用部材30Aのラジアル動圧溝Ra、Rbを殆ど傷付けることなく、或いは殆ど変形させることなく、動圧軸受用部材30A内からコアピン60Aを無理抜きすることができる。   The problem is that when the retaining washer engaging groove forming annular protrusion 64 passes through the radial dynamic pressure grooves Ra and Rb, the radial dynamic pressure grooves Ra and Rb are not scratched or deformed. When the core pin 60A of the present invention is forcibly removed from the dynamic pressure bearing member 30A, the movable side mold 91 and the movable side mold holder 93 do not exist from the dynamic pressure bearing member 30A. Since the outer peripheral surface 61 of the bearing member 30A is free space, when the dynamic pressure groove forming portions 62a and 62b and the locking washer engaging groove forming annular projection 64 having a diameter larger than these are forcibly removed, the dynamic pressure bearing The cylindrical part 50 of the member 30A can bulge slightly outward. Therefore, the dynamic pressure groove forming portions 62a and 62b of the core pin 60A and the retaining washer engaging groove forming annular projection 64 hardly damage or deform the radial dynamic pressure grooves Ra and Rb of the dynamic pressure bearing member 30A. The core pin 60A can be forcibly removed from the dynamic pressure bearing member 30A.

前記実施例の説明においては、コアピン60Aを成形された動圧軸受用部材30Aから無理抜きすると記したが、逆に成形された動圧軸受用部材30Aをコアピン60Aから無理抜きするように射出成形用金型を構成してもよく、同一の作用効果が得られることは容易に理解されよう。   In the description of the above embodiment, it has been described that the core pin 60A is forcibly removed from the molded dynamic pressure bearing member 30A, but conversely, the injection molded so that the molded dynamic pressure bearing member 30A is forcibly removed from the core pin 60A. It will be readily understood that a working mold may be constructed and the same effects are obtained.

前記のように、コアピン60Aの無理抜き時、前記動圧軸受用部材30Aのラジアル動圧溝Ra、Rbはできるだけ傷付けたり、変形させずにコアピン60Aを無理抜きすることが望ましい。コアピン60Aの動圧溝形成部62a、62bの形状、構造は、図26に示したようなコアピン9Aや図29に示したようなコアピン9bのような形状、構造でもよいが、より一層、動圧溝Ra、Rbを変形させずに動圧軸受用部材30Aを成形するには、図12乃至図14に示したようなコアピンを用いることが好ましい。   As described above, when the core pin 60A is forcibly removed, it is desirable to forcibly remove the core pin 60A without damaging or deforming the radial dynamic pressure grooves Ra and Rb of the dynamic pressure bearing member 30A as much as possible. The shape and structure of the dynamic pressure groove forming portions 62a and 62b of the core pin 60A may be the shape and structure of the core pin 9A as shown in FIG. 26 or the core pin 9b as shown in FIG. 29. In order to form the dynamic pressure bearing member 30A without deforming the pressure grooves Ra and Rb, it is preferable to use a core pin as shown in FIGS.

図12は本発明に用いて好適な第1実施例の第1変形態のコアピン及びこのコアピンで成形された第1変形態の動圧軸受用部材の一部分を示した断面図、図13は本発明に用いて好適な第1実施例の第2変形態のコアピン及びこのコアピンで成形された第2変形態の動圧軸受用部材の一部分を示した断面図、そして図14は本発明に用いて好適な第3変形態のコアピン及びこのコアピンで成形された第3変形態の動圧軸受用部材の一部分を示した断面図である。   FIG. 12 is a cross-sectional view showing a part of a first modified core pin of the first embodiment suitable for use in the present invention and a first modified hydrodynamic bearing member formed with the core pin, and FIG. FIG. 14 is a cross-sectional view showing a part of a second modified core pin of the first embodiment suitable for use in the invention and a part of a second modified dynamic pressure bearing member formed with the core pin, and FIG. 14 is used in the present invention. It is sectional drawing which showed a part of core member of the 3rd modified form and the member for dynamic pressure bearings of the 3rd modified form formed with this core pin.

図12に示した第1変形態のコアピン60Aaは、その外周面61に、動圧軸受用部材30Aaの内周面53に後記の動圧溝54Aを形成する、断面が前方斜面65と後方斜面66とが対称的な傾斜角で形成されている台形の突起条67Aが形成されている。これらの台形状突起条67Aの矢印Xで示す無理抜き方向における前方斜面65と後方斜面66の、コアピン60Aaの外周面61に対する傾斜角が30゜から45゜に形成されており、前記各台形状突起条67Aの表面角部67a及び前記各台形突起条67Aの基部67bが面取りされ、またはほぼR形状に形成されている金型である。   The core pin 60Aa according to the first modification shown in FIG. 12 has a hydrodynamic groove 54A, which will be described later, formed on the inner circumferential surface 53 of the dynamic pressure bearing member 30Aa on the outer circumferential surface 61. A trapezoidal protrusion 67 </ b> A, which is formed at an inclination angle symmetrical to 66, is formed. The slopes of the front slope 65 and the back slope 66 in the forcible removal direction indicated by the arrow X of these trapezoidal protrusions 67A with respect to the outer peripheral surface 61 of the core pin 60Aa are formed from 30 ° to 45 °, This is a mold in which the surface corners 67a of the protrusions 67A and the bases 67b of the trapezoidal protrusions 67A are chamfered or formed in a substantially R shape.

このようなコアピン60Aaを、図3及び図4に示した可動側金型91の中央部に挿入してキャビティ92を形成し、このキャビティ92内にゲート85bから溶融樹脂を注入すると、各台形状突起条67Aに対応した形状の台形凹状動圧溝54Aが動圧軸受用部材30Aaとなる円筒の内周面53に転写される。   When such a core pin 60Aa is inserted into the central portion of the movable mold 91 shown in FIGS. 3 and 4 to form a cavity 92 and molten resin is injected into the cavity 92 from the gate 85b, each trapezoidal shape is obtained. The trapezoidal concave dynamic pressure groove 54A having a shape corresponding to the protrusion 67A is transferred to the inner peripheral surface 53 of the cylinder that becomes the dynamic pressure bearing member 30Aa.

即ち、この動圧軸受用部材30Aaは、射出成形により円筒部の内周全周の円周方向に一連の溝で連続的に形成され、ラジアル軸受面が形成される。それらの台形凹状動圧溝54Aの傾斜した前方傾斜面58と後方傾斜面59とは、動圧軸受用部材30Aaの無理抜き方向Xに対して垂直な面ではなく、それらの後方傾斜面59の傾斜角は135゜から150゜の角度で形成されている。前方傾斜面58の角度は後方傾斜面59の角度と対称的に形成される。そして台形凹状動圧溝54Aの底角部54a及び開口角部54bが面取り、またはほぼR形状に形成されている。   In other words, the dynamic pressure bearing member 30Aa is continuously formed by a series of grooves in the circumferential direction of the entire inner circumference of the cylindrical portion by injection molding to form a radial bearing surface. The inclined front inclined surface 58 and the rear inclined surface 59 of the trapezoidal concave dynamic pressure grooves 54A are not surfaces perpendicular to the forcible removal direction X of the dynamic pressure bearing member 30Aa, but are not the rear inclined surfaces 59. The inclination angle is formed at an angle of 135 ° to 150 °. The angle of the front inclined surface 58 is formed symmetrically with the angle of the rear inclined surface 59. The bottom corner portion 54a and the opening corner portion 54b of the trapezoidal concave dynamic pressure groove 54A are chamfered or formed in a substantially R shape.

次に、図13を参照しながら、第2変形態のコアピン60Abとこのコアピン60Abで成形された第2形態の動圧軸受用部材40Bとを説明する。これらも図12と同様にそれぞれの一部分を断面図で示した。   Next, a second modified core pin 60Ab and a second form hydrodynamic bearing member 40B formed by the core pin 60Ab will be described with reference to FIG. Each of these is also shown in a sectional view as in FIG.

このコアピン60Abは、その外周面61に、後記する本変形態の動圧軸受用部材30Abの台形凹状動圧溝54Bを形成する、断面がコアピン60Abの外周面61からほぼ垂直に立ち上がっている前方垂直面65vと前記第1変形態の台形状突起条67Aの後方斜面66と同様の角度の後方傾斜面66とで非対称的な台形状突起条67Bが形成されている。これらの台形状突起条67Bの矢印Xで示す無理抜き方向における後方斜面66の、コアピン60Abの外周面61に対する傾斜角が30゜から45゜に形成されており、前記各台形状突起条67Bの表面角部67a及び前記各台形突起条67Bの基部67bが面取り、またはほぼR形状に形成されている金型である。   The core pin 60Ab has a trapezoidal concave dynamic pressure groove 54B of a hydrodynamic bearing member 30Ab of the present modified embodiment, which will be described later, formed on the outer peripheral surface 61 thereof, and has a cross section rising substantially vertically from the outer peripheral surface 61 of the core pin 60Ab. An asymmetric trapezoidal projection 67B is formed by the vertical surface 65v and the rear inclined surface 66 having the same angle as the rear inclined surface 66 of the trapezoidal projection 67A of the first variation. The inclination angle of the rear inclined surface 66 in the forcible removal direction indicated by the arrow X of these trapezoidal protrusions 67B with respect to the outer peripheral surface 61 of the core pin 60Ab is formed from 30 ° to 45 °. The surface corner portion 67a and the base portion 67b of each of the trapezoidal protrusions 67B are molds that are chamfered or substantially R-shaped.

このようなコアピン60Abを、図3及び図4に示した可動側金型91の中央貫通孔91bに挿入してキャビティ92を形成し、このキャビティ92内にゲート85bから溶融樹脂Mrを射出注入すると、各台形状突起条67Bに対応した形状の台形凹状動圧溝54Bが動圧軸受用部材30Abとなる円筒の内周面53に転写される。   When such a core pin 60Ab is inserted into the central through hole 91b of the movable mold 91 shown in FIGS. 3 and 4, a cavity 92 is formed, and molten resin Mr is injected into the cavity 92 from the gate 85b. The trapezoidal concave dynamic pressure groove 54B having a shape corresponding to each of the trapezoidal protrusions 67B is transferred to the inner peripheral surface 53 of the cylinder that becomes the dynamic pressure bearing member 30Ab.

即ち、この動圧軸受用部材30Abには、射出成形により樹脂製円筒の内周面方向に断面が台形凹状動圧溝54Bで形成された一連の溝で前記内周面53の全周に連続的に形成され、ラジアル軸受面が形成される。それらの台形凹状動圧溝54Bは、その無理抜き方向Xに対して垂直な面ではなく、傾斜した後方傾斜面59で形成される。その後方傾斜面59の傾斜角は135゜から145゜の角度で形成されている。前方垂直面65vの角度は後方傾斜面59の角度より急峻なため無理抜き方向にはならない。そして台形凹状動圧溝54Bの底角部54a及び開口角部54bが面取り、またはほぼR形状に形成されている。   That is, the dynamic pressure bearing member 30Ab has a series of grooves formed by a trapezoidal concave dynamic pressure groove 54B in the direction of the inner peripheral surface of the resin cylinder by injection molding, and continues to the entire circumference of the inner peripheral surface 53. And a radial bearing surface is formed. These trapezoidal concave dynamic pressure grooves 54B are formed not by a plane perpendicular to the forcibly removing direction X but by an inclined rear inclined surface 59. The inclination angle of the rear inclined surface 59 is formed at an angle of 135 ° to 145 °. Since the angle of the front vertical surface 65v is steeper than the angle of the rear inclined surface 59, the direction is not forced. The bottom corner portion 54a and the opening corner portion 54b of the trapezoidal concave dynamic pressure groove 54B are chamfered or formed in a substantially R shape.

次に、図14を参照しながら、第3変形態のコアピン60Acとこのコアピン60Acで成形された第3変形態の樹脂製動圧軸受用部材30Acを説明する。これらも図12及び図13と同様にそれぞれの一部分を断面図で示した。   Next, a third modified core pin 60Ac and a third modified resin dynamic pressure bearing member 30Ac molded with the core pin 60Ac will be described with reference to FIG. Each of these is also shown in a sectional view in the same manner as in FIGS.

本変形態におけるコアピン60Acは、その外周面61に一部円弧状突起条67Cが形成されており、そして一部円弧状突起条67Cの基部67bを面取り、或いはほぼR形状に形成されている金型である。   The core pin 60Ac in this variation has a partially arcuate protrusion 67C formed on its outer peripheral surface 61, and a base 67b of the partially arcuate protrusion 67C is chamfered or formed in a substantially R shape. It is a type.

従って、このような構造のコアピン60Acを図3及び図4に示した可動側金型91の中央部に挿入してキャビティ92を形成し、このキャビティ92内にゲート85bから溶融樹脂Mrを注入すると、一部円弧状突起条67Cに対応した形状の断面が一部凹部円弧状の動圧溝54Cが動圧軸受用部材30Acとなる円筒の内周面53に転写される。そして一部凹部円弧状動圧溝54Cの開口角部44bが面取り、またはほぼR形状に形成される。   Accordingly, when the core pin 60Ac having such a structure is inserted into the central portion of the movable mold 91 shown in FIGS. 3 and 4, a cavity 92 is formed, and molten resin Mr is injected into the cavity 92 from the gate 85b. The hydrodynamic groove 54C having a partially concave arc-shaped cross section corresponding to the partially arcuate protrusion 67C is transferred to the inner peripheral surface 53 of the cylinder serving as the hydrodynamic bearing member 30Ac. Then, the opening corner 44b of the partially recessed arc-shaped dynamic pressure groove 54C is chamfered or formed in a substantially R shape.

本変形態のコアピン60Acの突起条は、前記のように一部円弧状突起条67Cである。従って、各一部円弧状突起条67Cと各一部凹部円弧状動圧溝54Cとは垂直な面で対向する面では無いことから、動圧軸受用部材30Acはコアピン60Acからの容易に無理抜きすることができる。
前記何れの形態の動圧軸受用部材30Aa、30Ab、30Acのそれぞれの動圧溝54A、54B、54CもV字状の溝で形成することが望ましく、動圧軸受用部材30Aa、30Ab、30Acのそれぞれの内周面53の全周に連続的に形成して構成されている。
As described above, the protrusion of the core pin 60Ac according to the present modification is a partially arc-shaped protrusion 67C. Accordingly, each of the partially arcuate protrusions 67C and each of the partially recessed arcuate dynamic pressure grooves 54C are not perpendicular surfaces and are not opposed to each other, so that the dynamic pressure bearing member 30Ac can be easily and easily removed from the core pin 60Ac. can do.
It is desirable that the dynamic pressure grooves 54A, 54B, 54C of the dynamic pressure bearing members 30Aa, 30Ab, 30Ac in any form are formed as V-shaped grooves. Each inner peripheral surface 53 is continuously formed on the entire circumference.

また、前記の動圧溝54A、54B、54Cが軸方向に所定の間隔を開けて2段以上の連続溝として形成することが望ましい。   Further, it is desirable that the dynamic pressure grooves 54A, 54B, 54C are formed as continuous grooves having two or more steps at predetermined intervals in the axial direction.

これら何れかのコアピン60Aa、60Ab、60Acを用いて円筒形状の動圧軸受用部材30Aa、60Ab、60Acの内周面53に射出成形で動圧溝54A、54B、54Cを形成する製造方法においては、コアピン60Aa、60Ab、60Acは台形状突起条67A、67B、或いは一部凹部円弧状動圧溝54Cが無理抜き方向Xに対して傾斜面42、43、或いは一部円弧面で形成されており、また、台形状突起条67A、67Bのそれぞれの表面角部67a及びそれぞれの台形突起条67Bの基部67bが面取り、またはほぼR形状に形成されており、また、第3変形態のコアピン60Acの一部凹部円弧状突起条67Cの基部67bが面取り、またはほぼR形状に形成されていることから、それらのコアピン60Aa、60Ab、60Acを挿入した金型のキャビティ92内に溶融樹脂を射出注入して成形し、成形後に動圧軸受用部材30Aa、30Ab、30Acを無理抜きした場合、その無理抜き力を各コアピン60Aa、60Ab、60Acと各動圧軸受用部材30Aa、60Ab、60Acとを面滑りさせることにより逃がし、成形された動圧軸受用部材30Aa、60Ab、60Acの各動圧溝54A、54B、54Cが傷付いたり、変形したりすることを防止できる。   In the manufacturing method of forming the dynamic pressure grooves 54A, 54B, 54C by injection molding on the inner peripheral surface 53 of the cylindrical dynamic pressure bearing members 30Aa, 60Ab, 60Ac using any of these core pins 60Aa, 60Ab, 60Ac The core pins 60Aa, 60Ab, 60Ac are formed with trapezoidal protrusions 67A, 67B or partially concave arcuate dynamic pressure grooves 54C with inclined surfaces 42, 43 or partially arcuate surfaces with respect to the forcing direction X. In addition, the surface corners 67a of the trapezoidal protrusions 67A and 67B and the base 67b of the trapezoidal protrusions 67B are chamfered or formed in a substantially R shape, and the core pin 60Ac of the third variant is formed. Since the base portion 67b of the partially recessed arc-shaped protrusion 67C is chamfered or formed substantially in an R shape, the core pins 60Aa, 60 thereof are formed. b, when the molten resin is injected and molded into the cavity 92 of the mold into which the 60Ac has been inserted, and the dynamic pressure bearing members 30Aa, 30Ab, 30Ac are forcibly removed after the molding, the forcible removal force is applied to each core pin 60Aa, 60Ab, 60Ac and each of the dynamic pressure bearing members 30Aa, 60Ab, 60Ac escape by sliding, and the dynamic pressure grooves 54A, 54B, 54C of the formed dynamic pressure bearing members 30Aa, 60Ab, 60Ac are damaged. Can be prevented from being deformed.

動圧軸受用部材60A、60Aa、60Ab、60Acの寸法の一例を挙げると、円筒部50の外径が6.5mm、内径が1.5mm、動圧軸受用部材30Aの全長が8.6mm、円筒部50の長さが4.7mm、動圧溝Ra、Rbのそれぞれの溝の形状がV字状で、それらの幅が1mm〜1.5mm、動圧溝Ra、Rb間の間隔が0.6mm程度、溝の深さが0.01mm程度、抜止ワッシャ係合溝57の深さが0.05mm程度である。   As an example of the dimensions of the dynamic pressure bearing members 60A, 60Aa, 60Ab, and 60Ac, the outer diameter of the cylindrical portion 50 is 6.5 mm, the inner diameter is 1.5 mm, and the total length of the dynamic pressure bearing member 30A is 8.6 mm. The length of the cylindrical portion 50 is 4.7 mm, the shape of each of the dynamic pressure grooves Ra and Rb is V-shaped, their width is 1 mm to 1.5 mm, and the distance between the dynamic pressure grooves Ra and Rb is 0 About 6 mm, the depth of the groove is about 0.01 mm, and the depth of the retaining washer engaging groove 57 is about 0.05 mm.

従来技術の樹脂製動圧軸受用部材に使用する一般的な樹脂としては、動圧軸受に要求される寸法精度と軸受部材に要求される剛性を達成するために、可成り高い弾性率の材料を使用する必要がある。本発明の動圧軸受用部材においては、動圧軸受用部材30A或いはコアピン60Aの無理抜き時に、可動側金型91が成形された動圧軸受用部材30Aから後退しており、その動圧軸受用部材30Aの外方は自由空間となっているため、コアピン60Aのラジアル動圧溝Ra、Rbや抜止ワッシャ係合溝成形環状突起64が通過するとき、動圧軸受用部材30Aの筒部50を僅かに外方に押し広げる力が働くことから、筒部50の内周面53に形成されているラジアル動圧溝Ra、Rbは傷付き難く、変形もし難い。   As a general resin used for a conventional resin dynamic pressure bearing member, in order to achieve the dimensional accuracy required for the dynamic pressure bearing and the rigidity required for the bearing member, a material having a considerably high elastic modulus is used. Need to use. In the dynamic pressure bearing member of the present invention, when the dynamic pressure bearing member 30A or the core pin 60A is forcibly removed, the movable side die 91 is retracted from the molded dynamic pressure bearing member 30A. Since the outer side of the member 30A is a free space, when the radial dynamic pressure grooves Ra and Rb of the core pin 60A and the retaining washer engaging groove forming annular protrusion 64 pass, the cylindrical portion 50 of the dynamic pressure bearing member 30A. Since the force which pushes outward slightly is exerted, the radial dynamic pressure grooves Ra and Rb formed on the inner peripheral surface 53 of the cylindrical portion 50 are hardly damaged and are not easily deformed.

また、前記のようにコアピン60Aの無理抜き方向Xに対する動圧溝の凹部の後方面を傾斜面としたことにより、本発明の第1実施例の動圧軸受用部材30Aはその成形後、コアピン60Aから容易に無理抜きすることができるので、高剛性の材料も使用することができる。その例として、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルフアイド樹脂の他、ポリプチレンテレフタレー卜樹脂、ポリエチレンテレフタレート樹脂などを例示することができる。   Further, as described above, the rear surface of the concave portion of the dynamic pressure groove with respect to the forcibly removing direction X of the core pin 60A is formed as an inclined surface, whereby the dynamic pressure bearing member 30A of the first embodiment of the present invention is formed after the molding. Since it can be easily removed from 60A, a highly rigid material can also be used. Examples thereof include polyether ether ketone resin and polyphenylene sulfide resin, as well as polybutylene terephthalate resin and polyethylene terephthalate resin.

また、動圧軸受用部材30A、30A、60Ab、60Acの外形形状は通常円筒であるが、本発明においては、円筒に限定されるものではなく、動圧軸受用部材の取付場所に応じて、例えば、断面正方形の形状などに成形することができることを付言しておく。   Further, the outer shape of the fluid dynamic bearing members 30A, 30A, 60Ab, 60Ac is usually a cylinder, but in the present invention, it is not limited to a cylinder, depending on the mounting location of the fluid dynamic bearing member, For example, it is added that it can be formed into a square cross section.

次に、図15を用いて、本実施例1の動圧軸受用部材30Aに、例えば、モータの回転軸31を(図21)を装着する方法を説明する。   Next, with reference to FIG. 15, a method of mounting the rotating shaft 31 of the motor (FIG. 21) on the dynamic pressure bearing member 30 </ b> A of the first embodiment will be described.

図15は本発明の動圧軸受用部材の筒部に回転軸を装着する組立工程を説明するための説明図であって、同図Aは抜止ワッシャを動圧軸受用部材に装着している途中を示した両者の断面図、同図Bは抜止ワッシャが動圧軸受用部材の抜止ワッシャ係合溝に装着された状態を示した両者の断面図、同図Cは抜止ワッシャに回転軸を挿通して抜け止めされた状態を示した動圧軸受用部材、抜止ワッシャ、回転軸の断面図である。   FIG. 15 is an explanatory view for explaining an assembly process for mounting the rotating shaft on the cylindrical portion of the dynamic pressure bearing member of the present invention. FIG. 15A shows that a retaining washer is mounted on the dynamic pressure bearing member. A cross-sectional view of the both showing the middle, FIG. B is a cross-sectional view of both showing the state where the retaining washer is mounted in the retaining washer engaging groove of the dynamic pressure bearing member, and FIG. It is sectional drawing of the member for dynamic pressure bearings, the prevention washer, and the rotating shaft which showed the state which was inserted and was prevented from falling out.

先ず、図15Aに示したように、第1実施例の動圧軸受用部材30Aの筒部50の回転軸挿入口51aから軸受け穴51内に抜止ワッシャWを挿入する。抜止ワッシャWの材質はナイロンなどの柔軟なプラスチック製のもので、その直径は軸受け穴51の直径形よりも大で、抜止ワッシャ係合溝57に丁度嵌り込み、そしてその中央部に回転軸31を挿通できる孔が開いており、その孔から円周縁部に向けて複数本の切り込みが入っている円板状のものである。図示の状態は抜止ワッシャWを押し込んでいるため、下方に撓んでいる状態を示している。   First, as shown in FIG. 15A, the retaining washer W is inserted into the bearing hole 51 from the rotary shaft insertion port 51a of the cylindrical portion 50 of the dynamic pressure bearing member 30A of the first embodiment. The material of the retaining washer W is made of a flexible plastic such as nylon, and the diameter thereof is larger than the diameter shape of the bearing hole 51, and is fitted into the retaining washer engaging groove 57, and the rotary shaft 31 is located at the center thereof. Is a disc-shaped one in which a plurality of cuts are made from the hole toward the circumferential edge of the circle. The state shown in the figure shows a state where the retaining washer W is pushed in and is bent downward.

更に押し込めば、同図Bに示したように、抜止ワッシャWは抜止ワッシャ係合溝57に嵌り込み、動圧軸受用部材30A内に装着された状態となる。   When further pushed in, as shown in FIG. B, the retaining washer W is fitted into the retaining washer engaging groove 57 and is mounted in the dynamic pressure bearing member 30A.

この状態の抜止ワッシャWの中央孔に向けて、同図Cに示したように、先端部の外周面にワッシャ係合溝31eが形成されている回転軸31を回転軸挿入口51aから挿入すると、回転軸31の先端部は抜止ワッシャWの中央孔を貫通し、その中央孔の抜止ワッシャWの縁がワッシャ係合溝31eに嵌り込む。   When the rotary shaft 31 in which the washer engaging groove 31e is formed on the outer peripheral surface of the tip portion is inserted from the rotary shaft insertion port 51a toward the central hole of the retaining washer W in this state, as shown in FIG. The tip of the rotating shaft 31 passes through the central hole of the retaining washer W, and the edge of the retaining washer W in the central hole is fitted into the washer engaging groove 31e.

このため回転軸31は抜止ワッシャWで動圧軸受用部材30Aに係合された状態となり、回転軸31は回転軸穴51から抜け出ることを防止できる。   Therefore, the rotating shaft 31 is engaged with the dynamic pressure bearing member 30 </ b> A by the retaining washer W, and the rotating shaft 31 can be prevented from coming out of the rotating shaft hole 51.

次に、図16乃至図20を用いて、本発明の第2実施例の動圧軸受用部材、その成形金型及びその製造方法を説明する。   Next, a dynamic pressure bearing member, a molding die thereof, and a manufacturing method thereof according to a second embodiment of the present invention will be described with reference to FIGS.

図16は本発明の第2実施例の動圧軸受用部材の断面図、図17は図16に示した動圧軸受用部材を成形するための可動側金型の断面図、図18は図17に示した可動側金型と固定側金型とを締結した状態で示した成形金型の断面図、図19は図18に示した成形金型で本発明の動圧軸受用部材を成形した後、可動側金型を固定側金型から開いた状態の動圧軸受用部材及びその成形金型の断面図、そして図20は成形した動圧軸受用部材をコアピンから無理抜きする状態を示した動圧軸受用部材及びその成形金型の断面図である。   16 is a sectional view of a fluid dynamic bearing member according to a second embodiment of the present invention, FIG. 17 is a sectional view of a movable side mold for molding the fluid dynamic bearing member shown in FIG. 16, and FIG. FIG. 19 is a cross-sectional view of a molding die shown in a state in which the movable side die and the fixed side die shown in FIG. 17 are fastened together. FIG. 19 is a diagram showing the molding die shown in FIG. After that, the dynamic pressure bearing member in a state where the movable side mold is opened from the fixed side mold and the sectional view of the molding die, and FIG. 20 shows the state in which the molded dynamic pressure bearing member is forcibly removed from the core pin. It is sectional drawing of the member for dynamic pressure bearings shown, and its molding die.

なお、本実施例において、本発明の第1実施例の動圧軸受用部材と成形金型の構造、構成と同一の構造、構成部分には同一の符号を付して詳細な説明を省略する。   In this embodiment, the same reference numerals are given to the same structure and components of the dynamic pressure bearing member and the molding die of the first embodiment of the present invention, and the detailed description is omitted. .

先ず、図16を用いて、本発明の第2実施例の動圧軸受用部材の構造を説明する。この動圧軸受用部材30Bの構造は筒部50Aにある。この筒部50Aは回転軸穴51と同心円の円筒形スリット51Sが筒部50Aの端面を縦に割る状態で入っていて、内側筒部50Bと外側筒部50Cとの二重構造に形成されている。   First, the structure of the fluid dynamic bearing member of the second embodiment of the present invention will be described with reference to FIG. The structure of the dynamic pressure bearing member 30B is in the cylindrical portion 50A. The cylindrical portion 50A is formed in a state in which a cylindrical slit 51S concentric with the rotation shaft hole 51 divides the end surface of the cylindrical portion 50A vertically, and is formed in a double structure of an inner cylindrical portion 50B and an outer cylindrical portion 50C. Yes.

この円筒形スリット51Sを入れた二重構造を採ることにより、内側筒部50Bの剛性を落とすことができ、かつ内側筒部50Bの外周に自由空間を形成することができる。従って、内側筒部50Bは大幅に撓みやすくなる。   By adopting a double structure including the cylindrical slit 51S, the rigidity of the inner cylinder part 50B can be reduced, and a free space can be formed on the outer periphery of the inner cylinder part 50B. Therefore, the inner cylinder portion 50B is greatly easily bent.

この二重構造の筒部50Aの外側筒部50Cはコアピン60Aの無理抜き時には不必要であるので元々の筒部50Aの厚みを薄くしておけば良いのであるが、例えば、図21に示したようなモータ1の軸受けユニット30に用いるような場合、既存のコア15を用いた方が安価にモータ1を製造することができる。既存のコア15の内径寸法は規格化されていることから前記外側筒部50Cの外径寸法は既存のコア15の所定の外形寸法に合わせておく必要がある。また、電子機器に組み込む場合でも、筒部50Aは一定の太さがある方が取り扱い易い。従って、特別な場合を除き、筒部50Aを細くしない方が得策である。   The outer cylindrical portion 50C of the double-structured cylindrical portion 50A is unnecessary when the core pin 60A is forcibly removed, so the thickness of the original cylindrical portion 50A may be reduced. For example, as shown in FIG. When used for the bearing unit 30 of such a motor 1, the motor 1 can be manufactured at a lower cost by using the existing core 15. Since the inner diameter of the existing core 15 is standardized, the outer diameter of the outer cylindrical portion 50C needs to be matched with the predetermined outer dimension of the existing core 15. Even when incorporated in an electronic device, the cylindrical portion 50A is easier to handle if it has a certain thickness. Therefore, it is better not to make the cylindrical portion 50A thinner except in special cases.

次に、図17を用いて、この動圧軸受用部材30Bを成形するために用いる可動側金型91Bの構造を説明する。   Next, the structure of the movable mold 91B used for forming the dynamic pressure bearing member 30B will be described with reference to FIG.

この可動側金型91Bには、その基部61Baからフランジ部キャビティ92a側に向かって、その基部Baの中心部に開けられているコアピン60A用の貫通孔91bを中心にして同心円でリング状に突出した円筒形スリット形成突環91Sが形成されている。従って、キャビティ92としては、前記フランジ部キャビティ7a、コアピン60Aの動圧溝形成部62a、62bの外周面と前記円筒形スリット形成突環91Sの内周面側との間に形成された内側筒部形成キャビティ92b、そして円筒形スリット形成突環91Sの外周面と外側筒部形成キャビティ92cとからなる。その他の構成部品、組付け方などは図3を用いて説明したものと同じであるので、それらの説明を省略する。   The movable mold 91B protrudes in a concentric ring shape from the base 61Ba toward the flange cavity 92a side, centering on a through hole 91b for the core pin 60A opened at the center of the base Ba. A cylindrical slit forming protrusion 91S is formed. Therefore, as the cavity 92, an inner cylinder formed between the outer peripheral surface of the flange cavity 7a and the dynamic pressure groove forming portions 62a and 62b of the core pin 60A and the inner peripheral surface side of the cylindrical slit forming protrusion 91S. The portion forming cavity 92b, and the outer peripheral surface of the cylindrical slit forming protrusion 91S and the outer cylindrical portion forming cavity 92c. Since other components and assembly methods are the same as those described with reference to FIG. 3, their descriptions are omitted.

次に、この可動側金型91Bと前記固定側金型85とを用いて、動圧軸受用部材30Bを成形する成形方法を説明する。   Next, a molding method for molding the dynamic pressure bearing member 30B using the movable side mold 91B and the fixed side mold 85 will be described.

先ず、固定側金型85のパーティング面85cと可動側金型91Bのパーティング面91aとを密着させて締結し、密閉されたキャビティ92を形成し、このキャビティ92内にゲート85bから溶融樹脂Mrを射出注入し、充填する。充填された溶融樹脂Mrはフランジ部キャビティ7aから注入され、内側筒部形成キャビティ92b及び外側筒部形成キャビティ92cへと均一に広がって行く。   First, the parting surface 85c of the fixed side mold 85 and the parting surface 91a of the movable side mold 91B are brought into close contact with each other to form a sealed cavity 92, and a molten resin is formed in the cavity 92 from the gate 85b. Mr is injected and filled. The filled molten resin Mr is injected from the flange portion cavity 7a, and spreads uniformly into the inner tube portion forming cavity 92b and the outer tube portion forming cavity 92c.

次に、図19に示したように、溶融樹脂Mrが硬化すると、固定側金型85と可動側金型91Bとの締結を解除し、成形された動圧軸受用部材30Bのフランジ部56を複数本のエジェクターピン94とコイルバネ95で固定側金型85のパーティング面85cに押圧したまま、そしてコアピン60Aも抜かないままの状態で、可動側金型91B及び可動側金型用ホルダー93のみを矢印Xの右方向に後退させる。   Next, as shown in FIG. 19, when the molten resin Mr is cured, the fastening between the fixed mold 85 and the movable mold 91B is released, and the flange portion 56 of the molded hydrodynamic bearing member 30B is removed. Only the movable mold 91B and the movable mold holder 93 are pressed with the plurality of ejector pins 94 and the coil spring 95 pressed against the parting surface 85c of the fixed mold 85 and without removing the core pin 60A. Is moved backward in the right direction of arrow X.

続いて、図20に示したように、可動側90全体を固定側金型85のパーティング面85cから僅かであるが更に後退させ、成形された動圧軸受用部材30Bのフランジ部56の裏面をゲート85bから切り離す。   Subsequently, as shown in FIG. 20, the entire movable side 90 is slightly retracted from the parting surface 85 c of the fixed side mold 85, but the back surface of the flange portion 56 of the molded hydrodynamic bearing member 30 </ b> B. Is separated from the gate 85b.

図示していないが、動圧軸受用部材30Aの製造工程で説明したように、エジェクターピン94及びコイルバネ95は動圧軸受用部材30Bのフランジ部56を押圧した状態のまま動圧軸受用部材30Bからコアピン60Aを前記のようにラジアル動圧溝Ra、Rbの各V字の尖端部方向に1回転以内の僅かな回動角度でXr方向に回動させ、そしてX軸右方向に無理抜きする。完全に抜き終わると、図16に示したような筒部50Aが内側筒部50Bと外側筒部50Cとに別れた構造の動圧軸受用部材30Bが得られる。   Although not shown in the drawings, as described in the manufacturing process of the dynamic pressure bearing member 30A, the ejector pin 94 and the coil spring 95 remain pressed against the flange portion 56 of the dynamic pressure bearing member 30B. As described above, the core pin 60A is rotated in the Xr direction at a slight rotation angle within one rotation in the direction of the V-shaped tip of each of the radial dynamic pressure grooves Ra and Rb, and forcibly removed in the right direction of the X axis. . When completely removed, the dynamic pressure bearing member 30B having a structure in which the cylindrical portion 50A as shown in FIG. 16 is divided into an inner cylindrical portion 50B and an outer cylindrical portion 50C is obtained.

このように厚みの薄い内側筒部50Bからコアピン60Aを無理抜きするので、第1実施例の動圧軸受用部材30Aで説明したように、コアピン60Aを無理抜きする際に内側筒部50Bが動圧軸受用部材30Aの筒部50Aよりも一層外方に広がり易くなり、動圧溝形成部62a、62bや抜止ワッシャ係合溝成形環状突起64が通過する時、内側筒部50Bが広がり、それらが軸受け穴51の内周面53に成形されている動圧溝Ra、Rbに対してより一層傷付けることや変形させること無く、良質の動圧軸受用部材30Bを得ることができる。   Since the core pin 60A is forcibly removed from the thin inner cylinder part 50B as described above, the inner cylinder part 50B is moved when the core pin 60A is forcibly removed as described in the hydrodynamic bearing member 30A of the first embodiment. It becomes easier to expand outward than the cylindrical portion 50A of the pressure bearing member 30A, and when the dynamic pressure groove forming portions 62a, 62b and the retaining washer engaging groove forming annular projection 64 pass, the inner cylindrical portion 50B expands, Can be obtained without damaging or deforming the dynamic pressure grooves Ra and Rb formed on the inner peripheral surface 53 of the bearing hole 51.

前記の各実施例の説明においては、本発明の動圧軸受用部材30A、30Bからコアピン60Aを無理抜きする時に、先ずコアピン60Aをラジアル動圧溝Ra、Rbの各V字の尖端部方向に1回転以内の僅かな回動角度で回動させて符号Xで示すX軸右方向に無理抜きすると説明したが、本発明においては、このような無理抜き方法に限定されるものではなく、コアピン60Aを動圧軸受用部材30A、30Bから無理抜きする時に、少なくともコアピン60Aの先端が動圧軸受用部材30A、30Bの底部52にある成形状態からラジアル動圧溝Raまでの間に、そのラジアル動圧溝Ra、Rbの各V字の尖端部方向に1回転以内の僅かな回動角度で回動させながら同時にX軸右方向に無理抜きするようにコアピン60Aの無理抜きを行うようにしてもよいことを付言しておく。   In the description of each of the above-described embodiments, when the core pin 60A is forcibly removed from the dynamic pressure bearing members 30A and 30B of the present invention, the core pin 60A is first moved in the direction of the V-shaped tip of each of the radial dynamic pressure grooves Ra and Rb. Although it has been described that it is rotated by a slight rotation angle within one rotation and forcibly removed in the right direction of the X-axis indicated by the symbol X, the present invention is not limited to such a method for forcibly removing the core pin. When 60A is forcibly removed from the dynamic pressure bearing members 30A and 30B, at least the tip of the core pin 60A is in the radial state between the molded state where the bottom 52 of the dynamic pressure bearing members 30A and 30B is located and the radial dynamic pressure groove Ra. The core pin 60A is forcibly removed in the right direction of the X-axis while being rotated at a slight rotation angle within one rotation in the direction of the V-shaped tip of each of the dynamic pressure grooves Ra and Rb. Keep additional remark that may be so.

なお、エジェクターピン94による動圧軸受用部材の突き出し位置はフランジ部56の面に限られるものではなく、成形品である動圧軸受用部材の開口部端面を突き出すように構成しても良い。   The protruding position of the dynamic pressure bearing member by the ejector pin 94 is not limited to the surface of the flange portion 56, and the opening end face of the dynamic pressure bearing member that is a molded product may be protruded.

本発明は電子モータ産業、軸受け製造産業などで利用可能である。   The present invention can be used in the electronic motor industry, the bearing manufacturing industry, and the like.

本発明の第1実施例の動圧軸受用部材の断面拡大図である。It is a cross-sectional enlarged view of the member for dynamic pressure bearings of 1st Example of this invention. 図1に示した動圧軸受用部材を成形するために用いるコアピンの拡大側面図である。It is an enlarged side view of the core pin used in order to shape | mold the member for dynamic pressure bearings shown in FIG. 図2に示したコアピンとエジェクターピンとを組み付けた可動側金型の拡大断面側面図である。FIG. 3 is an enlarged cross-sectional side view of a movable mold in which a core pin and an ejector pin shown in FIG. 2 are assembled. 本発明の動圧軸受用部材を射出成形するための固定側金型と可動側金型とから構成され、両者が締結された状態で表した射出成形用金型の一例の断面図である。It is sectional drawing of an example of the injection mold comprised from the stationary side metal mold | die and movable side metal mold | die for injection-molding the member for dynamic pressure bearings of this invention, and having represented both. 図4に示した射出成形用金型を開いた状態の断面図である。It is sectional drawing of the state which opened the injection die shown in FIG. 図5に示した動作に続く動作を示していて、硬化した動圧軸受用部材が固定側金型のパーティング面から離型した状態を示した断面図である。FIG. 6 is a cross-sectional view showing an operation subsequent to the operation shown in FIG. 5 and showing a state where the hardened dynamic pressure bearing member is released from the parting surface of the fixed side mold. 図6に示した動作に続く動作を示していて、可動側金型のコアピンと動圧軸受用部材とを無理抜きした瞬間を示した断面図である。FIG. 7 is a cross-sectional view illustrating an operation subsequent to the operation illustrated in FIG. 6 and illustrating a moment when the core pin of the movable mold and the dynamic pressure bearing member are forcibly removed. 図7に示した動作に続く動作を示していて、可動側金型のコアピンと動圧軸受用部材とを完全に無理抜きした状態を示した断面図である。FIG. 8 is a cross-sectional view illustrating an operation subsequent to the operation illustrated in FIG. 7, in which the core pin and the dynamic pressure bearing member of the movable mold are completely forcibly removed. 図8に続く動作を示していて、本発明の動圧軸受用部材の製造方法により得られた状態の動圧軸受用部材と射出成形用金型の関係を示した断面図である。FIG. 9 is a cross-sectional view showing the operation following FIG. 8 and showing the relationship between the dynamic pressure bearing member and the injection mold in a state obtained by the method for manufacturing a dynamic pressure bearing member of the present invention. コアピンを動圧軸受用部材の軸方向(X軸方向)のみに無理抜きする場合の説明図であって、同図Aは動圧軸受用部材の内周面に形成されているラジアル動圧溝の展開図、同図Bは同図Aのラジアル動圧溝の展開図にコアピンの外周面に形成されている突起条の展開図を重ねた展開図である。It is explanatory drawing when forcibly extracting a core pin only to the axial direction (X-axis direction) of the member for dynamic pressure bearings, The same figure A is a radial dynamic pressure groove formed in the internal peripheral surface of the member for dynamic pressure bearings FIG. 5B is a development view in which the development view of the protrusions formed on the outer peripheral surface of the core pin is superimposed on the development view of the radial dynamic pressure groove in FIG. コアピンを僅かに回動させ、そして動圧軸受用部材の軸方向に無理抜きする場合の説明図であって、同図Aは動圧軸受用部材の内周面に形成されているラジアル動圧溝の展開図、同図Bは同図Aのラジアル動圧溝の展開図にコアピンの外周面に形成されている突起条の展開図を重ねた展開図である。It is explanatory drawing at the time of rotating a core pin slightly and forcibly removing in the axial direction of the member for dynamic pressure bearings, The figure A is radial dynamic pressure formed in the internal peripheral surface of the member for dynamic pressure bearings FIG. 7B is a development view in which a development view of the protrusion formed on the outer peripheral surface of the core pin is superimposed on the development view of the radial dynamic pressure groove in FIG. 本発明に用いて好適な第1実施例の第1変形態のコアピン及びこのコアピンで成形された第1変形態の動圧軸受用部材の一部分を示した断面図である。It is sectional drawing which showed a part of core member of the 1st modification of the 1st example suitable for use in the present invention, and a member for hydrodynamic bearings of the 1st modification formed with this core pin. 本発明に用いて好適な第1実施例の第2変形態のコアピン及びこのコアピンで成形された第2変形態の動圧軸受用部材の一部分を示した断面図である。It is sectional drawing which showed a part of core member of the 2nd modification of 1st Example suitable for use in this invention, and the member for dynamic pressure bearings of the 2nd modification shape | molded with this core pin. 本発明に用いて好適な第3変形態のコアピン及びこのコアピンで成形された第3変形態の動圧軸受用部材の一部分を示した断面図である。It is sectional drawing which showed a part of core member of the 3rd modification suitable for use in this invention, and the member for dynamic pressure bearings of the 3rd modification shape | molded with this core pin. 本発明の動圧軸受用部材の筒部に回転軸を装着する組立工程を説明するための説明図であって、同図Aは抜止ワッシャを動圧軸受用部材に装着している途中を示した両者の断面図、同図Bは抜止ワッシャが動圧軸受用部材の抜止ワッシャ係合溝に装着された状態を示した両者の断面図、同図Cは抜止ワッシャに回転軸を挿通して抜け止めされた状態を示した動圧軸受用部材、抜止ワッシャ、回転軸の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing for demonstrating the assembly process which mounts a rotating shaft to the cylinder part of the member for dynamic pressure bearings of this invention, Comprising: The same figure A shows the middle of mounting | wearing with the retaining washer to the member for dynamic pressure bearings. FIG. 4B is a sectional view showing the state where the retaining washer is mounted in the retaining washer engaging groove of the dynamic pressure bearing member, and FIG. It is sectional drawing of the member for dynamic pressure bearings, the prevention washer, and the rotating shaft which showed the state with which prevention was carried out. 本発明の第2実施例の動圧軸受用部材の断面図である。It is sectional drawing of the member for dynamic pressure bearings of 2nd Example of this invention. 図16に示した動圧軸受用部材を成形するための可動側金型の断面図である。It is sectional drawing of the movable side metal mold | die for shape | molding the member for dynamic pressure bearings shown in FIG. 図17に示した可動側金型と固定側金型とを締結した状態で示した成形金型の断面図である。It is sectional drawing of the shaping die shown in the state which fastened the movable side metal mold | die shown in FIG. 17, and the fixed side metal mold | die. 図18に示した成形金型で本発明の動圧軸受用部材を成形した後、可動側金型を固定側金型から開いた状態の動圧軸受用部材及びその成形金型の断面図である。FIG. 18 is a cross-sectional view of a dynamic pressure bearing member in a state in which the movable side mold is opened from the fixed side mold after the dynamic pressure bearing member of the present invention is molded with the molding die shown in FIG. 18. is there. 成形した動圧軸受用部材をコアピンから無理抜きする状態を示した動圧軸受用部材及びその成形金型の断面図である。It is sectional drawing of the member for dynamic pressure bearings which showed the state which forcibly removes the member for dynamic pressure bearings shape | molded from the core pin, and its molding die. 小型電子機器に用いられている一例の小型のモータの断面図である。It is sectional drawing of the small motor of an example used for the small electronic device. 図21に示したモータに用いることができる第1形態の軸受ユニットの断面側面図である。It is a cross-sectional side view of the bearing unit of the 1st form which can be used for the motor shown in FIG. 図22に示した軸受けユニットに組み込まれている動圧軸受用部材の断面斜視図である。It is a cross-sectional perspective view of the member for dynamic pressure bearings integrated in the bearing unit shown in FIG. 図21に示したモータに用いことができる第2形態の軸受ユニットの断面側面図である。It is a cross-sectional side view of the bearing unit of the 2nd form which can be used for the motor shown in FIG. 第3形態の軸受けユニットに組み込める従来技術の動圧軸受用部材を示していて、同図Aはその断面側面図、同図Bは同図Aの一部拡大図である。The prior art hydrodynamic bearing member that can be incorporated into the bearing unit of the third embodiment is shown. FIG. A is a sectional side view thereof, and FIG. B is a partially enlarged view of FIG. 第3形態の動圧軸受用部材を射出成形する場合に用いられる第1例のコアピンを示していて、同図Aはその側面図、同図Bはその要部の拡大断面図である。The core pin of the 1st example used when carrying out injection molding of the member for hydrodynamic bearings of the 3rd form is shown, The figure A is the side view, The figure B is the expanded sectional view of the principal part. 図26に示したコアピンを用いて射出成形するための射出成形用金型の一例を示した要部断面図である。It is principal part sectional drawing which showed an example of the injection mold for injection molding using the core pin shown in FIG. 図27に示した射出成形用金型で成形した動圧軸受用部材の離型方法を説明するため図27に示した一部射出成形用金型及び動圧軸受用部材の断面図である。FIG. 28 is a cross-sectional view of the partial injection molding die and the dynamic pressure bearing member shown in FIG. 27 for illustrating a method of releasing the dynamic pressure bearing member molded by the injection molding die shown in FIG. 27. 従来技術の第3例のコアピンの要部の拡大断面図である。It is an expanded sectional view of the principal part of the core pin of the 3rd example of conventional technology. 図29のコアピンを用いて射出成形した第2例の動圧軸受用部材の要部の拡大断面図である。It is an expanded sectional view of the principal part of the member for dynamic pressure bearings of the 2nd example injection-molded using the core pin of FIG.

符号の説明Explanation of symbols

30A…本発明の第1実施例の動圧軸受用部材、30Aa…第1変形態の動圧軸受用部材、30Ab…第2変形態の動圧軸受用部材、30Ac…第3変形態の動圧軸受用部材、
30B…本発明の第2実施例の動圧軸受用部材、50,50A…筒部、50B…内周筒部、50C…外周筒部、51…軸受け穴、51a…回転軸挿入口、51S…円形スリット、52…底部、53…軸受け穴51の内周面、54…動圧溝、55…ランド部、56…フランジ部、57…抜止ワッシャ係合溝、60A…コアピン、61…コアピン60Aの外周面、62a,62b…動圧溝形成部、63A…スラスト軸受成形部、64…抜止ワッシャ係合溝成形環状突起、80…固定側、85…固定側金型、85b…ゲート、85c…固定側金型85のパーティング面、90…本発明の可動側、91…本発明の第1実施例の可動側金型、91a…可動側金型91のパーティング面、92…キャビティ、92a…フランジ部キャビティ、92b…円筒部キャビティ(内側筒部形成キャビティ)、92c…外側筒部形成キャビティ、93…可動側金型用ホルダー、94…エジェクターピン、R…ラジアル軸受部、Ra,Rb…ラジアル軸受部Rを構成する動圧溝、S…スラスト軸受部、W…抜止ワッシャ
30A ... Dynamic pressure bearing member of the first embodiment of the present invention, 30Aa ... Dynamic pressure bearing member of the first modified form, 30Ab ... Dynamic pressure bearing member of the second modified form, 30Ac ... Dynamic of the third modified form Pressure bearing components,
30B ... Dynamic pressure bearing member according to the second embodiment of the present invention, 50, 50A ... cylindrical portion, 50B ... inner peripheral cylindrical portion, 50C ... outer peripheral cylindrical portion, 51 ... bearing hole, 51a ... rotary shaft insertion port, 51S ... Circular slit, 52 ... bottom part, 53 ... inner peripheral surface of bearing hole 51, 54 ... dynamic pressure groove, 55 ... land part, 56 ... flange part, 57 ... retaining washer engaging groove, 60A ... core pin, 61 ... core pin 60A Outer peripheral surface, 62a, 62b ... dynamic pressure groove forming portion, 63A ... thrust bearing forming portion, 64 ... retaining washer engaging groove forming annular projection, 80 ... fixed side, 85 ... fixed side mold, 85b ... gate, 85c ... fixed Parting surface of side mold 85, 90 ... movable side of the present invention, 91 ... movable side mold of the first embodiment of the present invention, 91a ... parting surface of movable side mold 91, 92 ... cavity, 92a ... Flange cavity, 92b ... Cylinder Cavity (inner cylinder forming cavity), 92c ... outer cylinder forming cavity, 93 ... movable mold holder, 94 ... ejector pin, R ... radial bearing, Ra, Rb ... dynamic pressure constituting the radial bearing R Groove, S ... Thrust bearing, W ... Stop washer

Claims (32)

所定の長さを備え、回転軸が挿入される内部の断面が円形の穴が開けられ、一端が回転軸挿入口として開口した有底の樹脂製筒部からなり、該筒部の前記円形穴の内周面に所定形状のラジアル動圧溝が、前記底部にスラスト軸受部が、そして該スラスト軸受部の近傍上方に抜止ワッシャ係合溝が一体的に形成されていることを特徴とする動圧軸受用部材。   The circular hole in the cylindrical portion has a predetermined length, and is formed of a bottomed resin cylindrical portion in which a circular cross section is inserted into which the rotary shaft is inserted, and one end is opened as a rotary shaft insertion port. A dynamic hydrodynamic groove having a predetermined shape is integrally formed on the inner peripheral surface, a thrust bearing portion is integrally formed on the bottom portion, and a retaining washer engaging groove is integrally formed above the thrust bearing portion. Pressure bearing member. 前記回転軸挿入口側の前記樹脂製筒部の端面に開口する所定の長さの円形スリットが前記円形穴の軸方向に、そして同心円的に形成されていること
を特徴とする請求項1に記載の動圧軸受用部材。
The circular slit having a predetermined length that opens on an end surface of the resin cylindrical portion on the rotating shaft insertion port side is formed in the axial direction of the circular hole and concentrically. The member for a hydrodynamic bearing as described.
前記筒部の前記スラスト軸受部の外側にフランジ部が一体的に形成されていることを特徴とする請求項1、請求項2に記載の動圧軸受用部材。   The dynamic pressure bearing member according to claim 1, wherein a flange portion is integrally formed outside the thrust bearing portion of the cylindrical portion. 前記スラスト軸受部が球形の一部で形成されていることを特徴とする請求項1、請求項2に記載の動圧軸受用部材。   3. The dynamic pressure bearing member according to claim 1, wherein the thrust bearing portion is formed as a part of a sphere. 前記円形スリットが前記スラスト軸受部まで延在するように形成されていることを特徴とする請求項2に記載の動圧軸受用部材。   The dynamic pressure bearing member according to claim 2, wherein the circular slit is formed to extend to the thrust bearing portion. 前記筒部内周面に2段以上の動圧溝が軸方向に形成されていることを特徴とする請求項1に記載の動圧軸受用部材。   The dynamic pressure bearing member according to claim 1, wherein two or more stages of dynamic pressure grooves are formed in the axial direction on the inner peripheral surface of the cylindrical portion. 前記動圧溝が連続したV字状溝で形成されていることを特徴とする請求項1、請求項6に記載の動圧軸受用部材。   The dynamic pressure bearing member according to claim 1, wherein the dynamic pressure groove is formed by a continuous V-shaped groove. 前記動圧軸受用部材が樹脂の射出成形により形成され、前記動圧軸受用部材を射出成形金型から無理抜きする場合のその無理抜き方向における前記動圧溝の断面形状が台形凹状に形成されていて、前記台形凹状の無理抜き方向における少なくとも後方の傾斜面の傾斜角が135゜から150゜の角度で形成されており、前記動圧溝の底角部及び開口角部が面取り、またはほぼR形状に形成されていることを特徴とする請求項1、請求項6または請求項7に記載の動圧軸受用部材。   The dynamic pressure bearing member is formed by resin injection molding, and when the dynamic pressure bearing member is forcibly removed from the injection mold, the cross-sectional shape of the dynamic pressure groove in the direction of forced removal is formed in a trapezoidal concave shape. And the angle of inclination of at least the rear inclined surface in the direction of forced removal of the trapezoidal concave is formed from 135 ° to 150 °, and the bottom corner and the opening corner of the dynamic pressure groove are chamfered or substantially 8. The dynamic pressure bearing member according to claim 1, wherein the member is formed in an R shape. 前記動圧軸受用部材が樹脂の射出成形により形成され、前記動圧軸受用部材を射出成形金型から無理抜きする場合のその無理抜き方向における前記動圧溝の断面形状が円弧状凹面に形成されていることを特徴とする請求項1、請求項6または請求項7に記載の動圧軸受用部材。   The dynamic pressure bearing member is formed by resin injection molding, and when the dynamic pressure bearing member is forcibly removed from the injection mold, the sectional shape of the dynamic pressure groove in the direction of forced removal is formed in an arcuate concave surface. The dynamic pressure bearing member according to claim 1, wherein the dynamic pressure bearing member is provided. 所定の長さを備え、回転軸が挿入される内部の断面が円形の軸受け穴が開けられ、一端が回転軸挿入口として開口した有底の樹脂製筒部からなり、該筒部の前記軸受け穴の内周面に所定形状のラジアル動圧溝が、前記底部にスラスト軸受部が、そして該スラスト軸受部の近傍上方に抜止ワッシャ係合溝が一体的に形成されている動圧軸受用部材を成形する射出成形用金型であって、
前記軸受け穴、前記ラジアル動圧溝、スラスト軸受部、抜止ワッシャ係合溝を形成するコアピンと、
前記筒部を形成する固定側金型と、
前記筒部を形成する可動側金型と
を備え、
該可動側金型と前記コアピンとが個別に同一方向に移動できるように構成されており、そして必要に応じて前記コアピンが回動できるように構成されていること
を特徴とする射出成形用金型。
A bearing hole having a predetermined length and having a circular inner cross-section into which the rotary shaft is inserted is formed, and one end is opened as a rotary shaft insertion port. A member for a hydrodynamic bearing in which a radial dynamic pressure groove having a predetermined shape is formed on the inner peripheral surface of the hole, a thrust bearing portion is integrally formed on the bottom, and a retaining washer engagement groove is integrally formed above the thrust bearing portion. An injection mold for molding
A core pin that forms the bearing hole, the radial dynamic pressure groove, a thrust bearing portion, and a retaining washer engaging groove;
A fixed mold for forming the cylindrical portion;
A movable mold for forming the cylindrical portion;
The mold for injection molding characterized in that the movable side mold and the core pin can be individually moved in the same direction, and the core pin can be rotated as necessary. Type.
所定の長さを備え、回転軸が挿入される内部の断面が円形の軸受け穴が開けられ、一端が回転軸挿入口として開口した有底の樹脂製筒部からなり、該筒部の前記軸受け穴の内周面に所定形状のラジアル動圧溝が、前記底部にスラスト軸受部が、そして該スラスト軸受部の近傍上方に抜止ワッシャ係合溝が一体的に形成されている動圧軸受用部材を成形する射出成形用金型であって、
外周面に前記動圧軸受用部材の前記ラジアル動圧溝を形成するための所定形状の突起条と、先端部側に前記動圧軸受用部材の前記抜止ワッシャ係合溝を形成するための抜止ワッシャ係合溝形成突起と、先端面に前記動圧軸受用部材の前記スラスト軸受部を形成するためのスラスト軸受成形部とが形成されているコアピン
を備えて構成されていることを特徴とする射出成形用金型。
A bearing hole having a predetermined length and having a circular inner cross-section into which the rotary shaft is inserted is formed, and one end is opened as a rotary shaft insertion port. A member for a hydrodynamic bearing in which a radial dynamic pressure groove having a predetermined shape is formed on the inner peripheral surface of the hole, a thrust bearing portion is integrally formed on the bottom, and a retaining washer engagement groove is integrally formed above the thrust bearing portion. An injection mold for molding
A protrusion having a predetermined shape for forming the radial dynamic pressure groove of the dynamic pressure bearing member on the outer peripheral surface, and a retaining for forming the retaining washer engaging groove of the dynamic pressure bearing member on the tip side. A core pin having a washer-engaging groove forming protrusion and a thrust bearing forming portion for forming the thrust bearing portion of the dynamic pressure bearing member on a tip end surface thereof is provided. Injection mold.
所定の長さを備え、回転軸が挿入される内部の断面が円形の穴が開けられ、一端が回転軸挿入口として開口した有底の樹脂製筒部からなり、該筒部の前記円形穴の内周面に所定形状のラジアル動圧溝が、前記底部にスラスト軸受部が、そして該スラスト軸受部の近傍上方に抜止ワッシャ係合溝が一体的に形成されており、更に前記回転軸挿入口側の前記樹脂製筒部の端面に開口する所定の長さの円形スリットを前記円形穴の軸方向に、そして同心円的に形成されている動圧軸受用部材を成形する射出成形用金型であって、
外周面に前記動圧軸受用部材の前記ラジアル動圧溝を形成するための所定形状の突起条と、先端部側に前記動圧軸受用部材の前記抜止ワッシャ係合溝を形成するための抜止ワッシャ係合溝形成突起と、先端面に前記動圧軸受用部材の前記スラスト軸受部を形成するためのスラスト軸受成形部とが形成されているコアピンと、
前記筒部を形成する円筒部キャビティと該円筒部キャビティに連続して前記スラスト軸受成形部を形成するキャビティとを形成する断面円形の内周面を備えた前記筒部を成形する前記円筒突起と該円筒突起の中間に同心円的に前記円形スリットを形成する円筒突起とが形成されている可動側金型と
を備えて構成されていることを特徴とする射出成形用金型。
The circular hole in the cylindrical portion has a predetermined length, and is formed of a bottomed resin cylindrical portion in which a circular cross section is inserted into which the rotary shaft is inserted, and one end is opened as a rotary shaft insertion port. A radial dynamic pressure groove having a predetermined shape is formed on the inner peripheral surface, a thrust bearing portion is integrally formed on the bottom portion, and a retaining washer engagement groove is integrally formed above the thrust bearing portion. An injection mold for molding a dynamic pressure bearing member formed concentrically with a circular slit having a predetermined length opening in an end face of the resin cylindrical portion on the mouth side in the axial direction of the circular hole Because
A protrusion having a predetermined shape for forming the radial dynamic pressure groove of the dynamic pressure bearing member on the outer peripheral surface, and a retaining for forming the retaining washer engaging groove of the dynamic pressure bearing member on the tip side. A core pin in which a washer engagement groove forming protrusion and a thrust bearing molding portion for forming the thrust bearing portion of the dynamic pressure bearing member on the tip surface are formed;
A cylindrical projection for forming the cylindrical portion having an inner circumferential surface having a circular cross section that forms a cylindrical portion cavity forming the cylindrical portion and a cavity forming the thrust bearing forming portion continuous with the cylindrical portion cavity; A mold for injection molding, comprising: a movable mold in which a cylindrical projection that concentrically forms the circular slit is formed in the middle of the cylindrical projection.
前記コアピンの先端部付近に形成されている前記抜止ワッシャ係合溝形成突起の前記筒部側が低くなるテーパー面またはR形状に形成されていることを特徴とする請求項11、請求項12に記載の射出成形用金型。   13. The taper surface or R shape which becomes low in the said cylinder part side of the said protrusion washer engaging groove formation protrusion formed in the front-end | tip part vicinity of the said core pin is characterized by the above-mentioned. Mold for injection molding. 前記コアピンの外周面の前記突起条がその軸方向に所定の間隔を開けて2段以上に形成されていることを特徴とする請求項11または請求項12に記載の射出成形用金型。   The injection mold according to claim 11 or 12, wherein the protrusions on the outer peripheral surface of the core pin are formed in two or more stages with a predetermined interval in the axial direction thereof. 前記コアピンの外周面の前記突起条が連続したV字状突起であることを特徴とする請求項11または請求項12に記載の射出成形用金型。   The injection mold according to claim 11 or 12, wherein the protrusion on the outer peripheral surface of the core pin is a continuous V-shaped protrusion. 前記コアピンの外周面に形成されている突起条の角が面取りされていることを特徴とする請求項11または請求項12に記載の射出成形用金型。   The mold for injection molding according to claim 11 or 12, wherein corners of the protrusions formed on the outer peripheral surface of the core pin are chamfered. 前記コアピンの外周面に形成されている突起条の断面形状が前記動圧軸受用部材の無理抜き方向に対し、そして前記コアピンの前記外周面を基準として鋭角で、該鋭角が30゜から45゜の角度で突起条が形成されていることを特徴とする請求項11、または請求項12に記載の射出成形用金型。   The cross-sectional shape of the protrusion formed on the outer peripheral surface of the core pin is an acute angle with respect to the direction in which the dynamic pressure bearing member is forcibly pulled out, and with respect to the outer peripheral surface of the core pin, and the acute angle is 30 ° to 45 °. 13. The injection mold according to claim 11 or 12, wherein the protrusions are formed at an angle of. 前記コアピンの外周面に前記動圧溝形状に対応する断面形状が台形の突起条で形成されていて、前記台形状突起条の無理抜き方向における少なくとも後方の斜面の傾斜角が前記コアピンの前記外周面を基準として鋭角で、該鋭角が30゜から45゜の角度で形成されており、前記各台形状突起条の表面角部及び前記各台形突起条の基部が面取りされ、またはほぼR形状に形成されていることを特徴とする請求項11または請求項12に記載の射出成形用金型。   A cross-sectional shape corresponding to the shape of the dynamic pressure groove is formed on the outer peripheral surface of the core pin by a trapezoidal protrusion, and an inclination angle of at least a rear slope in the forcibly removing direction of the trapezoidal protrusion is the outer periphery of the core pin. An acute angle with respect to the surface, the acute angle being formed at an angle of 30 ° to 45 °, and the surface corner of each trapezoidal protrusion and the base of each trapezoidal protrusion are chamfered or substantially R-shaped. The injection mold according to claim 11 or 12, wherein the injection mold is formed. 前記コアピンの外周面に前記動圧溝形状に対応する断面形状が一部円弧状の突起条で形成されていて、前記一部円弧状突起条の基部が面取り、またはほぼR形状に形成されていることを特徴とする請求項11または請求項12に記載の射出成形用金型。   A cross-sectional shape corresponding to the shape of the dynamic pressure groove is formed on the outer peripheral surface of the core pin by a partially arc-shaped protrusion, and a base portion of the partially arc-shaped protrusion is chamfered or formed substantially in an R shape. The injection mold according to claim 11 or 12, wherein the mold is an injection mold. 所定の長さを備え、回転軸が挿入される内部の断面が円形の穴が開けられ、一端が回転軸挿入口として開口した有底の樹脂製筒部からなり、該筒部の前記円形穴の内周面に所定形状のラジアル動圧溝が、前記底部にスラスト軸受部が、そして該スラスト軸受部の近傍上方に抜止ワッシャ係合溝が一体的に形成されている動圧軸受用部材を射出成形により製造するに当たり、
パーティング面側に臨んで溶融樹脂射出ゲートが形成されて固定側金型と、
前記固定側金型に対して前進、後退でき、かつ前記パーティング面に密着できるパーティング面を備え、該パーティング面に貫通する断面円形の貫通孔と成形しようとする動圧軸受用部材の少なくとも一部分を形成するキャビティとが形成されている可動側金型と、
前記可動側金型の前記貫通孔に挿通できる太さで、少なくとも前記キャビティに面し、その外周面に前記動圧軸受用部材の前記ラジアル動圧溝を形成するための所定形状の突起条と、先端部側に前記動圧軸受用部材の前記抜止ワッシャ係合溝を形成するための抜止ワッシャ係合溝形成突起と、先端面に前記動圧軸受用部材の前記スラスト軸受部を形成するためのスラスト軸受成形部が形成されていて前記可動側金型の動きと同一方向に移動できるが、個別に移動するコアピンと
を備えて構成されている射出成形用金型を用い、
前記可動側金型の前記貫通孔内の所定位置に前記コアピンを挿通した状態で前記固定側金型の前記パーティング面に前記可動側金型の前記パーティング面とを衝合、密着させて締結し、
前記固定側金型と前記可動側金型とで形成されたキャビティ内に前記溶融樹脂射出ゲートから溶融樹脂を射出注入、充填し、
該射出注入、充填された前記溶融樹脂が硬化した後、前記固定側金型と前記可動側金型との締結を解除し、
前記固定側金型のパーティング面及び硬化した前記動圧軸受用部材の外周面から前記可動側金型を後退させ、
その後、硬化した前記動圧軸受用部材の周辺に前記可動側金型が存在しない状態で、前記動圧軸受用部材から前記コアピンを、或いは前記コアピンを前記動圧軸受用部材から前記動圧軸受用部材の軸方向に無理抜きして、前記動圧軸受用部材を得ること
を特徴とする動圧軸受用部材の製造方法。
The circular hole in the cylindrical portion has a predetermined length, and is formed of a bottomed resin cylindrical portion in which a circular cross section is inserted into which the rotary shaft is inserted, and one end is opened as a rotary shaft insertion port. A dynamic pressure bearing member in which a radial dynamic pressure groove having a predetermined shape is formed on the inner peripheral surface of the shaft, a thrust bearing portion is integrally formed on the bottom, and a retaining washer engagement groove is integrally formed above the thrust bearing portion. In manufacturing by injection molding,
A molten resin injection gate is formed facing the parting surface, and a fixed mold,
A fluid pressure bearing member to be formed with a through hole having a circular cross-section penetrating the parting surface and having a parting surface capable of moving forward and backward with respect to the fixed-side mold and closely contacting the parting surface. A movable mold in which a cavity forming at least a part is formed;
A protrusion having a predetermined shape for forming the radial dynamic pressure groove of the dynamic pressure bearing member on the outer peripheral surface of the movable side mold with a thickness that can be inserted into the through hole of the movable side mold. A stopper washer engaging groove forming projection for forming the stopper washer engaging groove of the dynamic pressure bearing member on the tip end side, and the thrust bearing portion of the fluid dynamic bearing member on the tip surface. The thrust bearing molding part is formed and can be moved in the same direction as the movement of the movable mold, but using an injection mold configured with an individually moving core pin,
With the core pin inserted into a predetermined position in the through-hole of the movable mold, the parting surface of the movable mold is abutted and brought into close contact with the parting surface of the fixed mold. Conclude,
Injecting and filling molten resin from the molten resin injection gate into a cavity formed by the fixed side mold and the movable side mold,
After the injection injection and the filled molten resin is cured, the fastening between the fixed side mold and the movable side mold is released,
Retreating the movable side mold from the parting surface of the fixed side mold and the outer peripheral surface of the cured dynamic pressure bearing member;
Thereafter, the core pin from the dynamic pressure bearing member or the core pin from the dynamic pressure bearing member to the dynamic pressure bearing in a state where the movable die is not present around the cured dynamic pressure bearing member. A method for producing a fluid dynamic bearing member, wherein the fluid dynamic bearing member is obtained by forcibly removing the member in the axial direction.
所定の長さを備え、回転軸が挿入される内部の断面が円形の穴が開けられ、一端が回転軸挿入口として開口した有底の樹脂製筒部からなり、該筒部の前記円形穴の内周面に所定形状のラジアル動圧溝が、前記底部にスラスト軸受部が、そして該スラスト軸受部の近傍上方に抜止ワッシャ係合溝が一体的に形成されており、更に前記回転軸挿入口側の前記樹脂製筒部の端面に開口する所定の長さの円形スリットを前記円形穴の軸方向に、そして同心円的に形成されている動圧軸受用部材を射出成形により製造するに当たり、
パーティング面側に臨んで溶融樹脂射出ゲートが形成されて固定側金型と、
該固定側金型に対して前進、後退でき、かつ前記パーティング面に密着できるパーティング面を備え、成形しようとする動圧軸受用部材の少なくとも前記筒部を形成する円筒部キャビティと該円筒部キャビティに連続して前記スラスト軸受成形部を形成するキャビティとを形成する断面円形の内周面を備えた前記筒部を成形する前記円筒突起と該円筒突起の中間に同心円的に前記円形スリットを形成する円筒突起とが形成されている可動側金型と、
前記可動側金型の前記貫通孔に挿通できる太さで、少なくとも前記キャビティに面し、その外周面に動圧溝を形成するための所定形状の突起条が、その先端部の周辺の外周に抜止ワッシャ係合溝形成突起が、そしてその先端面にスラスト軸受形成部が形成されていて、前記可動側金型の動きと一体して同一方向に移動し、或いは前記可動側金型の動きと同一方向に移動できるが、個別に移動するコアピンと
を備えて構成されている射出成形用金型を用い、
前記可動側金型の前記貫通孔内の所定位置に前記コアピンを挿通した状態で前記固定側金型の前記パーティング面に前記可動側金型の前記パーティング面とを衝合、密着させて締結し、
前記固定側金型と前記可動側金型とで形成されたキャビティ内に前記溶融樹脂射出ゲートから溶融樹脂を射出注入、充填し、
該射出注入、充填された前記溶融樹脂が硬化した後、前記固定側金型と前記可動側金型との締結を解除し、
前記固定側金型のパーティング面及び硬化した前記動圧軸受用部材の外周面から前記可動側金型を前記動圧軸受用部材から前記動圧軸受用部材の軸方向に無理抜きして、前記動圧軸受用部材を得ること
を特徴とする動圧軸受用部材の製造方法。
The circular hole in the cylindrical portion has a predetermined length, and is formed of a bottomed resin cylindrical portion in which a circular cross section is inserted into which the rotary shaft is inserted, and one end is opened as a rotary shaft insertion port. A radial dynamic pressure groove having a predetermined shape is formed on the inner peripheral surface, a thrust bearing portion is integrally formed on the bottom portion, and a retaining washer engagement groove is integrally formed above the thrust bearing portion. In manufacturing a hydrodynamic bearing member formed concentrically with a circular slit having a predetermined length opening in the end surface of the resin cylindrical portion on the mouth side in the axial direction of the circular hole,
A molten resin injection gate is formed facing the parting surface, and a fixed mold,
A cylindrical part cavity that includes a parting surface that can be moved forward and backward relative to the stationary mold and that can be in close contact with the parting surface, and that forms at least the cylindrical part of a member for a hydrodynamic bearing to be molded, and the cylinder The cylindrical projection for forming the cylindrical portion having an inner circumferential surface having a circular cross section that forms a cavity forming the thrust bearing molding portion continuously with the portion cavity, and the circular slit concentrically between the cylindrical projections A movable side mold formed with a cylindrical projection forming
Protruding strips of a predetermined shape for forming a dynamic pressure groove on the outer peripheral surface of the movable side mold with a thickness that can be inserted into the through-hole of the movable side mold are formed on the outer periphery around the tip portion. The retaining washer engaging groove forming projection and the thrust bearing forming portion are formed on the tip surface thereof, and move in the same direction as the movement of the movable mold, or the movement of the movable mold Using an injection mold that can move in the same direction but is configured with a core pin that moves individually,
With the core pin inserted into a predetermined position in the through-hole of the movable mold, the parting surface of the movable mold is abutted and brought into close contact with the parting surface of the fixed mold. Conclude,
Injecting and filling molten resin from the molten resin injection gate into the cavity formed by the fixed side mold and the movable side mold,
After the injection injection and the filled molten resin is cured, the fastening between the stationary mold and the movable mold is released,
Forcibly removing the movable side mold from the dynamic pressure bearing member in the axial direction of the dynamic pressure bearing member from the parting surface of the fixed side mold and the outer peripheral surface of the cured dynamic pressure bearing member, A method for producing a fluid dynamic bearing member, comprising: obtaining the fluid dynamic bearing member.
前記コアピンを回動させ、そして前記コアピンを前記動圧軸受用部材の軸方向に無理抜きすることを特徴とする請求項20または請求項21に記載の動圧軸受用部材の製造方法。   The method of manufacturing a dynamic pressure bearing member according to claim 20 or 21, wherein the core pin is rotated and the core pin is forcibly removed in an axial direction of the dynamic pressure bearing member. 前記コアピンの外周面の前記突起条がその軸方向に所定の間隔を開けて2段以上に形成されていることを特徴とする請求項20または請求項21に記載の動圧軸受用部材の製造方法。   The member for a hydrodynamic bearing according to claim 20 or 21, wherein the protrusions on the outer peripheral surface of the core pin are formed in two or more stages at predetermined intervals in the axial direction thereof. Method. 前記コアピンの外周面の前記突起条が連続したV字状突起であることを特徴とする請求項20乃至請求項23に記載の動圧軸受用部材の製造方法。   24. The method for manufacturing a fluid dynamic bearing member according to claim 20, wherein the protrusions on the outer peripheral surface of the core pin are continuous V-shaped protrusions. 前記コアピンの回動方向は前記V字状突起条の尖端方向であることを特徴とする請求項24に記載の動圧軸受用部材の製造方法。   The method for manufacturing a member for a hydrodynamic bearing according to claim 24, wherein a turning direction of the core pin is a pointed direction of the V-shaped protrusion. 前記円筒部内周面に2段以上の動圧溝が形成されている動圧軸受用部材の軸方向に前記コアピンを無理抜きする際に、前記コアピンを回動させる角度は、前記コアピンを無理抜きする軸方向における隣接する前記動圧溝に前記コアピンの一連の突起条が嵌り込まない角度であることを特徴とする請求項22乃至24に記載の動圧軸受用部材の製造方法。   When the core pin is forcibly removed in the axial direction of the dynamic pressure bearing member in which two or more stages of dynamic pressure grooves are formed on the inner peripheral surface of the cylindrical portion, the angle at which the core pin is rotated is forcibly removed. 25. The method for manufacturing a member for a hydrodynamic bearing according to claim 22, wherein the angle is such that a series of protrusions of the core pin do not fit into the adjacent dynamic pressure grooves in the axial direction. 前記コアピンの外周面に形成されている突起条の角が面取りされていることを特徴とする請求項20または請求項21に記載の動圧軸受用部材の製造方法。   The method for manufacturing a member for a hydrodynamic bearing according to claim 20 or 21, wherein the corners of the protrusions formed on the outer peripheral surface of the core pin are chamfered. 前記コアピンの外周面に形成されている突起条の断面形状が前記動圧軸受用部材の無理抜き方向に対し、そして前記コアピンの前記外周面を基準として鋭角で、該鋭角が30゜から45゜の角度で突起条が形成されていることを特徴とする請求項20または請求項21に記載の動圧軸受用部材の製造方法。   The cross-sectional shape of the protrusion formed on the outer peripheral surface of the core pin is an acute angle with respect to the direction in which the dynamic pressure bearing member is forcibly pulled out, and with respect to the outer peripheral surface of the core pin, and the acute angle is 30 ° to 45 °. The method for manufacturing a member for a hydrodynamic bearing according to claim 20 or 21, wherein the protrusions are formed at an angle of. 前記コアピンの外周面に前記動圧溝形状に対応する断面形状が台形の突起条で形成されていて、前記台形状突起条の無理抜き方向における少なくとも後方の斜面の傾斜角が前記コアピンの前記外周面を基準として鋭角で、該鋭角が30゜から45゜の角度で形成されており、前記各台形状突起条の表面角部及び前記各台形突起条の基部が面取りされ、またはほぼR形状に形成されていることを特徴とする請求項20または請求項21に記載の動圧軸受用部材の製造方法。   A cross-sectional shape corresponding to the shape of the dynamic pressure groove is formed on the outer peripheral surface of the core pin by a trapezoidal protrusion, and an inclination angle of at least a rear slope in the forcibly removing direction of the trapezoidal protrusion is the outer periphery of the core pin. An acute angle with respect to the surface, the acute angle being formed at an angle of 30 ° to 45 °, and the surface corner of each trapezoidal protrusion and the base of each trapezoidal protrusion are chamfered or substantially R-shaped. The method for manufacturing a member for a hydrodynamic bearing according to claim 20 or 21, wherein the member is formed. 前記コアピンの外周面に前記動圧溝形状に対応する断面形状が一部円弧状の突起条で形成されていて、前記一部円弧状突起条の基部が面取り、またはほぼR形状に形成されていることを特徴とする請求項20または請求項21に記載の動圧軸受用部材の製造方法。   A cross-sectional shape corresponding to the shape of the dynamic pressure groove is formed on the outer peripheral surface of the core pin by a partially arc-shaped protrusion, and a base portion of the partially arc-shaped protrusion is chamfered or formed substantially in an R shape. The method for producing a member for a hydrodynamic bearing according to claim 20 or 21, wherein: 前記コアピンの前記突起条はV字状をなす突起が前記外周面の周りに連続するように形成して構成されていることを特徴とする請求項20または請求項21に記載の動圧軸受用部材の製造方法。   The hydrodynamic bearing according to claim 20 or 21, wherein the protrusions of the core pin are formed such that protrusions having a V shape are continuous around the outer peripheral surface. Manufacturing method of member. 所定の長さを備え、回転装置用回転軸が挿入される内部の断面が円形の穴が開けられ、一端が回転軸挿入口として開口した有底の樹脂製筒部からなり、該筒部の前記円形穴の内周面に所定形状のラジアル動圧溝が、前記底部にスラスト軸受部が、そして該スラスト軸受部の上方近傍に抜止ワッシャ係合溝が一体的に形成されている動圧軸受用部材と、
該抜止ワッシャ係合溝内に嵌り込む直径で、中心部に前記回転軸を挿入できる直径の回転軸挿入孔が形成されており、該回転軸挿入孔から放射状に周辺部に向かって複数本の切り込みが入り、撓む厚みのプラスチック製円板状抜止ワッシャと、
前記スラスト軸受部に軸受けされる端面が、前記ラジアル軸受部に軸支される外周面が、前記端面の近傍上方の前記外周面に抜止ワッシャ係合溝が形成されている前記回転装置用回転軸と
からなり、
前記抜止ワッシャが前記動圧軸受用部材の前記回転軸挿入口から撓ませて挿入し、前記抜止ワッシャ係合溝に前記抜止ワッシャの外周縁が嵌め込まれ、
前記回転軸を前記回転軸挿入口から前記抜止ワッシャの前記回転軸挿入孔に挿入し、前記抜止ワッシャの前記回転軸挿入孔の内周縁が前記回転軸の抜止ワッシャ係合溝に嵌め込んで装着し、前記回転軸が前記動圧軸受用部材から抜けないように構成されていること
を特徴とする動圧軸受。
It has a predetermined length, and is formed of a bottomed resin cylinder part with a circular hole in the inside section into which the rotation shaft for the rotating device is inserted, and one end opened as a rotation axis insertion port. A hydrodynamic bearing in which a radial dynamic pressure groove having a predetermined shape is formed on an inner peripheral surface of the circular hole, a thrust bearing portion is integrally formed on the bottom, and a retaining washer engagement groove is integrally formed near the upper portion of the thrust bearing portion. Members for
A rotation shaft insertion hole having a diameter that can be inserted into the retaining washer engaging groove and capable of inserting the rotation shaft at the center is formed, and a plurality of radial rotation holes are formed radially from the rotation shaft insertion hole toward the periphery. A plastic disc-shaped retaining washer with a thickness that cuts and bends,
The rotary shaft for a rotating device in which an end face supported by the thrust bearing portion, an outer peripheral surface supported by the radial bearing portion, and a retaining washer engaging groove are formed in the outer peripheral surface near the end surface And
The retaining washer is bent and inserted from the rotary shaft insertion port of the dynamic pressure bearing member, and the outer peripheral edge of the retaining washer is fitted into the retaining washer engaging groove,
The rotation shaft is inserted into the rotation shaft insertion hole of the retaining washer from the rotation shaft insertion port, and the inner peripheral edge of the rotation shaft insertion hole of the retaining washer is fitted into the retaining washer engaging groove of the rotation shaft. The rotary shaft is configured so that the rotating shaft does not come off from the member for the dynamic pressure bearing.
JP2005370686A 2005-12-22 2005-12-22 Member for dynamic pressure bearing, mould for moulding same, method for manufacturing same, and dynamic pressure bearing Pending JP2007170578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005370686A JP2007170578A (en) 2005-12-22 2005-12-22 Member for dynamic pressure bearing, mould for moulding same, method for manufacturing same, and dynamic pressure bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005370686A JP2007170578A (en) 2005-12-22 2005-12-22 Member for dynamic pressure bearing, mould for moulding same, method for manufacturing same, and dynamic pressure bearing

Publications (1)

Publication Number Publication Date
JP2007170578A true JP2007170578A (en) 2007-07-05

Family

ID=38297387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005370686A Pending JP2007170578A (en) 2005-12-22 2005-12-22 Member for dynamic pressure bearing, mould for moulding same, method for manufacturing same, and dynamic pressure bearing

Country Status (1)

Country Link
JP (1) JP2007170578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154889A1 (en) * 2017-02-27 2018-08-30 三菱重工業株式会社 Injection molding device, die assembly, and composite material part manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154889A1 (en) * 2017-02-27 2018-08-30 三菱重工業株式会社 Injection molding device, die assembly, and composite material part manufacturing method
GB2578941A (en) * 2017-02-27 2020-06-03 Mitsubishi Heavy Ind Ltd Injection molding device, die assembly, and composite material part manufacturing method
US11207811B2 (en) 2017-02-27 2021-12-28 Mitsubishi Heavy Industries, Ltd. Injection-molding machine
GB2578941B (en) * 2017-02-27 2022-05-11 Mitsubishi Heavy Ind Ltd Injection-molding machine and method of manufacturing composite material part

Similar Documents

Publication Publication Date Title
US20070065064A1 (en) Bearing Retainer Unit and Electric Motor Furnished Therewith
KR100934061B1 (en) Chucking device, brushless motor with chucking device and disc drive unit with brushless motor
US20040135462A1 (en) Spindle motor
CN101258014B (en) Method for forming dynamic pressure groove
CN101517251B (en) Hydrodynamic bearing device
JP2011054260A (en) Turntable
CN103825419A (en) Motor, disk drive apparatus and motor manufacturing method
US20070183698A1 (en) Fluid dynamic bearing, spindle motor, disk drive, and manufacturing method of fluid dynamic bearing
CN110729832A (en) Rotor unit
JP2007170578A (en) Member for dynamic pressure bearing, mould for moulding same, method for manufacturing same, and dynamic pressure bearing
JP2002361678A (en) Manufacturing method of rotor and molding equipment therefor
CN102385882B (en) Turntable and method for manufacturing the same
US6938265B2 (en) Turntable for disk storage medium and disk drive including the turntable
CN101908352B (en) Turntable and method for manufacturing the same
JP6297309B2 (en) Fluid dynamic bearing device and manufacturing method thereof
JP2006150675A (en) Mold assembly
JP2011067084A (en) Motor and recording disk drive apparatus
JP2009225607A (en) Permanent magnet rotor and manufacturing method therefor
JP4302462B2 (en) DYNAMIC PRESSURE BEARING DEVICE, ITS MANUFACTURING METHOD, AND RECORDING DISC DRIVE DEVICE
JP4238038B2 (en) Rotor for electric water pump and method for manufacturing the rotor
JP2007170577A (en) Method for manufacturing member for dynamic pressure bearing
JP2005006439A (en) Assembling method and device for spindle motor
JP4683350B2 (en) Turntable and method for manufacturing turntable
JP4347481B2 (en) Synthetic resin cage for ball bearing and method of manufacturing the same
JP5445832B2 (en) Turntable and method for manufacturing turntable