JP2007169766A - Porous metallic foil and method for manufacturing the same - Google Patents

Porous metallic foil and method for manufacturing the same Download PDF

Info

Publication number
JP2007169766A
JP2007169766A JP2005372825A JP2005372825A JP2007169766A JP 2007169766 A JP2007169766 A JP 2007169766A JP 2005372825 A JP2005372825 A JP 2005372825A JP 2005372825 A JP2005372825 A JP 2005372825A JP 2007169766 A JP2007169766 A JP 2007169766A
Authority
JP
Japan
Prior art keywords
foil
metal foil
porous metal
porous
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005372825A
Other languages
Japanese (ja)
Other versions
JP4518019B2 (en
Inventor
Toshiyuki Osako
敏行 大迫
Tetsushi Komukai
哲史 小向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005372825A priority Critical patent/JP4518019B2/en
Publication of JP2007169766A publication Critical patent/JP2007169766A/en
Application granted granted Critical
Publication of JP4518019B2 publication Critical patent/JP4518019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtering Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous metallic foil which has the penetrating micropores made finer in submicron order and uniform in diameter and which can maintain a structure even in the absence of a substrate and a method for manufacturing the same. <P>SOLUTION: A thin film prepared by dispersing metal and hetero-phase component incompatible with the metal is formed on the substrate composed of a material incompatible with the metal by a sputtering method or vacuum vapor deposition method in such a manner that the volume fraction of the hetero-phase component attains 20 to 65% and the thickness attains ≥1 μm. The resultant thin film is subjected to heat treatment and the grain size of the metal and hetero-phase component in the thin film is adjusted and thereafter the substrate and the hetero-phase component are selectively dissolved away to obtain the porous metallic foil. Portions or the whole of the micropores included in the resulted porous metallic foil penetrate above and below in the metallic foil and the diameter of the micropores is 0.01 to 1 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多孔質金属箔およびその製造方法に関し、さらに詳しくは貫通した微細孔を有する多孔質金属箔およびその製造方法に関する。   The present invention relates to a porous metal foil and a method for producing the same, and more particularly to a porous metal foil having through-holes and a method for producing the same.

金属材料の多孔質化は従来から行われており、微細孔を有する板状あるいは薄膜状の金属多孔質体が、機能性材料として広く利用されている。具体的には、各種フィルター、多孔質支持体、大表面積を利用した触媒、シート状電極用途等に広く利用されている。   A porous metal material has been conventionally used, and a plate-like or thin-film metal porous body having fine pores is widely used as a functional material. Specifically, it is widely used for various filters, porous supports, catalysts utilizing a large surface area, sheet-like electrodes and the like.

金属多孔質体の機能は、表面積や細孔構造、厚さ等の影響を強く受ける。このため、できるだけ径が均一で、かつ、微細な貫通微細孔を有するとともに、薄型である金属多孔質体を作製する努力が、製造プロセス技術や細孔制御技術の面からなされている。   The function of the metal porous body is strongly influenced by the surface area, pore structure, thickness, and the like. For this reason, efforts have been made in terms of manufacturing process technology and pore control technology to produce a metal porous body that is as uniform in diameter as possible and has fine through-holes and is thin.

金属多孔質体は、微細な金属粉末や繊維を成形あるいは塗布した後に焼成して作製することができる。例えば、特許文献1では、金属粉末、樹脂ビーズ、有機バインダおよび溶媒を混合したスラリーをキャリアシート上に塗布し、乾燥させた後にキャリアシートから取り外してグリーンシートとし、このグリーンシートを脱脂、焼成して有機バインダ、樹脂ビーズを消失させるとともに、金属粉末を焼結させてシート状金属多孔質体を製造する方法が開示されている。   The metal porous body can be produced by molding or applying a fine metal powder or fiber, followed by firing. For example, in Patent Document 1, a slurry in which metal powder, resin beads, an organic binder, and a solvent are mixed is applied onto a carrier sheet, dried and then removed from the carrier sheet to form a green sheet. The green sheet is degreased and fired. In addition, a method for producing a sheet-like metal porous body by eliminating organic binder and resin beads and sintering metal powder is disclosed.

しかしながら、このような方法で得られる多孔質体の細孔構造は出発原料の金属粉末および樹脂ビーズの粒径に支配されるため、細孔構造をサブミクロンオーダーで微細化することは難しい。また、焼結時にはシートが収縮するため細孔径の制御が難しい。さらに、製法上、薄型化にも限界がある。   However, since the pore structure of the porous body obtained by such a method is governed by the particle size of the starting metal powder and resin beads, it is difficult to refine the pore structure on the order of submicrons. Further, since the sheet shrinks during sintering, it is difficult to control the pore diameter. Furthermore, there is a limit to reducing the thickness of the manufacturing method.

このように、従来、サブミクロンオーダーで微細化され、かつ、径が均一な貫通微細孔を有する多孔質金属箔を作製することは困難であった。   Thus, conventionally, it has been difficult to produce a porous metal foil having through-micropores that are refined in the order of submicron and have a uniform diameter.

また、各種フィルター、多孔質支持体等として用いるためには、金属多孔質体と基板が一体となった状態では、求められる機能を発揮することが困難である。そのため、微細孔を有する板状あるいは薄膜状の金属多孔質体は、基板がなくても構造を維持することが求められる。   Moreover, in order to use as various filters, porous supports, etc., it is difficult to perform the required function in a state where the metal porous body and the substrate are integrated. Therefore, a plate-like or thin-film metal porous body having fine pores is required to maintain the structure without a substrate.

特開2004−332069号公報JP 2004-332069 A

本発明は、かかる問題点に鑑みてなされたものであって、サブミクロンオーダーで微細化され、かつ、径が均一な貫通微細孔を有し、さらに、基板がなくても構造を維持することが可能な多孔質金属箔およびその製造方法を提供することを目的とする。   The present invention has been made in view of such a problem, and has fine through-holes with submicron order and uniform diameter, and further maintains the structure without a substrate. An object of the present invention is to provide a porous metal foil that can be used and a method for producing the same.

本発明に係る多孔質金属箔は、微細孔を有し、かつ、厚さが1μm以上の金属箔であって、該微細孔の一部または全部が貫通しており、該微細孔の直径は0.01〜1μmであり、かつ、該微細孔による空隙率は20〜65体積%であることを特徴とする。前記微細孔の直径が均一であることが好ましく、ここで、均一とは、微細孔の最大径を最小径で除した値が2以下となることをいう。   The porous metal foil according to the present invention is a metal foil having micropores and a thickness of 1 μm or more, and a part or all of the micropores penetrates, and the diameter of the micropores is It is 0.01-1 micrometer, and the porosity by this micropore is 20-65 volume%, It is characterized by the above-mentioned. The diameter of the micropores is preferably uniform. Here, the term “uniform” means that the value obtained by dividing the maximum diameter of the micropores by the minimum diameter is 2 or less.

前記多孔質金属箔は、Ta、Nb、Ta合金、Nb合金から選択された少なくとも一種から構成されていることが好ましい。   The porous metal foil is preferably made of at least one selected from Ta, Nb, Ta alloy, and Nb alloy.

本発明に係る多孔質金属箔の製造方法は、金属と、該金属と相溶しない異相成分とが分散してなる薄膜を、前記異相成分の体積分率が20〜65体積%、厚さが1μm以上となるように、前記金属と相溶しない材質からなる基板上に形成し、得られた薄膜を熱処理して、該薄膜中の前記金属および前記異相成分の粒度を調整し、その後、前記基板および前記異相成分を選択的に溶解除去することを特徴とする。   In the method for producing a porous metal foil according to the present invention, a thin film in which a metal and a heterophasic component incompatible with the metal are dispersed has a volume fraction of the heterophasic component of 20 to 65% by volume and a thickness of It is formed on a substrate made of a material that is incompatible with the metal so as to be 1 μm or more, and the obtained thin film is heat-treated to adjust the particle size of the metal and the heterophasic component in the thin film. The substrate and the heterogeneous component are selectively dissolved and removed.

前記薄膜を形成するに際して、成膜法としてスパッタリング法または真空蒸着法を用いることが好ましい。   In forming the thin film, it is preferable to use a sputtering method or a vacuum evaporation method as a film forming method.

前記金属を、Ta、Nb、Ta合金、Nb合金から選択された少なくとも一種とすることが好ましく、この場合、前記基板としては、Cu箔またはAg箔を用いることが好ましい。   The metal is preferably at least one selected from Ta, Nb, Ta alloy, and Nb alloy. In this case, it is preferable to use Cu foil or Ag foil as the substrate.

前記異相成分を、多孔質金属箔を構成する前記金属に対して熱力学的に安定な酸化物とすることが好ましく、例えばMgOおよび/またはCaOとすることが好ましい。   The heterophasic component is preferably an oxide that is thermodynamically stable with respect to the metal constituting the porous metal foil, and is preferably MgO and / or CaO, for example.

前記異相成分を、多孔質金属箔を構成する前記金属に対して相溶性を持たない金属とすることが好ましく、例えば、多孔質金属箔を構成する前記金属を、Ta、Nb、Ta合金、Nb合金からなる群から選択された少なくとも一種とする場合、Cu、Ag、Ca、Mgからなる群から選択された少なくとも一種とすることが好ましい。   The heterophase component is preferably a metal that is not compatible with the metal constituting the porous metal foil. For example, the metal constituting the porous metal foil may be Ta, Nb, Ta alloy, Nb. In the case of using at least one selected from the group consisting of alloys, it is preferable to use at least one selected from the group consisting of Cu, Ag, Ca, and Mg.

本発明に係る多孔質金属箔は、サブミクロンオーダーで微細化され、かつ、径が均一な貫通微細孔を有し、さらに、基板がなくても、その構造を維持することが可能であり、単体でハンドリング可能であることから、各種フィルター、多孔質支持体、大表面積を利用した触媒やシート状電極用途などに好適に用いることができ、機能性多孔質材料として種々の用途に好適に用いることができる。   The porous metal foil according to the present invention has through micropores that are refined in the submicron order and have a uniform diameter, and can maintain the structure without a substrate. Since it can be handled by itself, it can be suitably used for various filters, porous supports, catalysts using large surface areas, sheet-like electrode applications, etc., and it is suitably used for various applications as a functional porous material. be able to.

本発明に係る多孔質金属箔は、微細孔を有し、かつ、厚さが1μm以上の金属箔であって、該微細孔の一部または全部が貫通しており、該微細孔の直径は0.01〜1μmであり、かつ、該微細孔による空隙率は20〜65体積%である。   The porous metal foil according to the present invention is a metal foil having micropores and a thickness of 1 μm or more, and a part or all of the micropores penetrates, and the diameter of the micropores is It is 0.01-1 micrometer, and the porosity by this micropore is 20-65 volume%.

微細孔は、その一部または全部が多孔質金属箔を上下に貫通している必要がある。貫通していることで、各種フィルターや多孔質支持体等に好適に用いることができるからである。   Some or all of the micropores need to penetrate the porous metal foil vertically. It is because it can use suitably for various filters, a porous support body, etc. by penetrating.

また、微細孔の直径は、0.01〜1μmであることが必要である。直径が0.01μm未満の微細孔では、微細孔の中に触媒や電解質を浸透させることが困難となり、触媒用途やシート状電極用途等に用いることが困難となる。一方、直径が1μmを上回る微細孔では、表面積を十分に大きくすることができない。微細孔の直径は、水銀圧入法やガス吸着法による細孔分布測定で求めることもできるが、ここでは、電子顕微鏡などで箔の表面と直交する断面を観察することにより目視により確認して計測したものである。   Moreover, the diameter of a micropore needs to be 0.01-1 micrometer. In the case of micropores having a diameter of less than 0.01 μm, it is difficult to permeate the catalyst and electrolyte into the micropores, making it difficult to use for catalyst applications, sheet-like electrode applications, and the like. On the other hand, the surface area cannot be made sufficiently large if the micropores have a diameter exceeding 1 μm. The diameter of the micropores can also be obtained by measuring the pore distribution by the mercury intrusion method or gas adsorption method, but here it is confirmed by visual observation by observing a cross section perpendicular to the surface of the foil with an electron microscope or the like. It is a thing.

さらに、微細孔による空隙率は65体積%以下であることが必要である。空隙率が65体積%を超えると箔強度が急激に低下してしまうおそれがある。一方、空隙率を小さくするに従って箔強度は大きくなるが、表面積や開口率といった多孔質金属箔の基本的な機能の低下を招いてしまうおそれがあるため、微細孔による空隙率は20体積%以上であることが必要である。   Furthermore, the porosity due to the fine pores needs to be 65% by volume or less. If the porosity exceeds 65% by volume, the foil strength may be drastically reduced. On the other hand, the foil strength increases as the porosity decreases, but the basic function of the porous metal foil such as the surface area and the aperture ratio may be reduced. It is necessary to be.

なお、微細孔の直径は、できるだけ均一であることが好ましい。細孔径が不均一の場合、多孔質箔表面や箔深さ方向での表面積の違いにより支持体、触媒、電極としての多孔質箔の機能のばらつきが発生してしまう。具体的には、微細孔の最大径を最小径で除した値が2以下となることが好ましい。   In addition, it is preferable that the diameter of a micropore is as uniform as possible. When the pore diameter is not uniform, the function of the porous foil as the support, the catalyst, and the electrode varies depending on the surface area of the porous foil surface and the depth direction of the foil. Specifically, it is preferable that the value obtained by dividing the maximum diameter of the fine holes by the minimum diameter is 2 or less.

多孔質金属箔の厚さは、十分な箔強度を得る観点から、1μm以上であることが必要である。また、厚さが100μmを超えても機能的な面で悪影響はないが、成膜時間や異相成分の除去にかかる時間などを考慮した生産効率と、多孔質支持体、フィルター、電極などのアプリケーションにおける実用的な厚さとを考慮すると、100μmを上限とすることが好ましい。ただし、アプリケーションによっては100μm以上の膜厚を採用しても良い。   The thickness of the porous metal foil is required to be 1 μm or more from the viewpoint of obtaining sufficient foil strength. In addition, even if the thickness exceeds 100 μm, there is no adverse effect in terms of functionality, but production efficiency considering the film formation time and the time taken to remove foreign phase components, and applications such as porous supports, filters, electrodes, etc. In consideration of the practical thickness in the case, it is preferable to set the upper limit to 100 μm. However, depending on the application, a film thickness of 100 μm or more may be adopted.

次に、本発明に係る多孔質金属箔の製造方法について説明する。   Next, the manufacturing method of the porous metal foil which concerns on this invention is demonstrated.

基板には、多孔質金属箔の構成成分である金属とは相溶しない材質からなるものを用いる。該基板上に成膜させる材料としては、多孔質金属箔の構成成分である金属と、その金属とは本質的に相溶しない異相成分とを混合し分散させた混合材料を用いる。該混合材料を前記基板上に成膜する方法としては、スパッタリング法や真空蒸着法がある。スパッタリング法を用いて成膜する場合は、前記混合材料をスパッタリングターゲットとして用いて、前記基板上に成膜する。そして、前記基板上に形成した膜から異相成分を選択的に溶解除去して、多孔質金属箔を得る。   The substrate is made of a material that is incompatible with the metal that is a constituent of the porous metal foil. As a material for forming a film on the substrate, a mixed material in which a metal that is a constituent component of the porous metal foil and a heterophasic component that is essentially incompatible with the metal is mixed and dispersed is used. Examples of a method for forming the mixed material on the substrate include a sputtering method and a vacuum evaporation method. In the case where a film is formed using a sputtering method, the mixed material is used as a sputtering target to form a film on the substrate. Then, the heterogeneous component is selectively dissolved and removed from the film formed on the substrate to obtain a porous metal foil.

最終的に得られる多孔質金属箔の空隙率は成膜時の異相成分の体積分率に相当する。このため、目標とする空隙率を考慮して、多孔質金属箔の構成成分である金属と異相成分との比率を決定してから成膜を行う。空隙率は、65体積%以下に調整する必要があるので、異相成分の体積分率も65体積%以下に調整する。空隙率が65体積%を超えると、箔強度が急激に低下して、プロセス中やハンドリング中に箔に割れを生じてしまうおそれがある。   The porosity of the finally obtained porous metal foil corresponds to the volume fraction of the heterogeneous component during film formation. For this reason, in consideration of the target porosity, the film is formed after determining the ratio of the metal and the heterogeneous component which are the constituent components of the porous metal foil. Since the porosity needs to be adjusted to 65% by volume or less, the volume fraction of the heterogeneous component is also adjusted to 65% by volume or less. When the porosity exceeds 65% by volume, the foil strength is drastically decreased, and the foil may be cracked during the process or handling.

また、最終的に得られる多孔質金属箔の微細孔が貫通しているかどうかは、多孔質金属箔を構成する金属と異相成分との比率の影響を受ける。すなわち、空隙率を小さくするに従って箔強度は大きくなるが、異相成分が20体積%未満になると、異相成分を選択的に溶解除去するのが難しくなり、箔を貫通した微細孔を得ることが困難になる。また、表面積や開口率といった多孔質金属箔の基本的な機能の低下を招いてしまうおそれもある。このため、異相成分の体積分率を20体積%以上とする。なお、多孔質金属箔を構成する金属と異相成分とが混在せず完全な積層構造となると、異相成分が箔の厚さ方向につながることができず、貫通孔を形成できなくなる。   In addition, whether or not the micropores of the finally obtained porous metal foil penetrates is influenced by the ratio of the metal constituting the porous metal foil to the heterogeneous component. That is, the foil strength increases as the porosity decreases, but if the heterogeneous component is less than 20% by volume, it is difficult to selectively dissolve and remove the heterophasic component, and it is difficult to obtain fine holes penetrating the foil. become. In addition, the basic functions of the porous metal foil such as surface area and aperture ratio may be reduced. For this reason, the volume fraction of a different phase component shall be 20 volume% or more. If the metal constituting the porous metal foil and the heterogeneous component do not coexist and a complete laminated structure is formed, the heterophasic component cannot be connected in the thickness direction of the foil, and a through hole cannot be formed.

微細孔の直径は、前述のように0.01〜1μmとすることが必要であるが、このためには、多孔質金属箔を構成する金属と異相成分とを、微細に、かつ、均一に分散させて成膜することが必要である。微細に、かつ、均一に分散させて成膜することで、その後の熱処理により金属と異相成分を粒成長させても、小さい粒子径で均一にそろえることができ、かつ、両成分を均一に分散させることができる。   As described above, the diameter of the micropores needs to be 0.01 to 1 μm. For this purpose, the metal and the heterogeneous component constituting the porous metal foil are finely and uniformly distributed. It is necessary to form a film in a dispersed manner. By forming the film finely and uniformly dispersed, even if the metal and the different phase component are grown by subsequent heat treatment, it can be evenly aligned with a small particle size, and both components can be evenly dispersed. Can be made.

多孔質金属箔を構成する金属と異相成分とを、微細に、かつ、均一に分散させて成膜するための方法としては、スパッタリング法や蒸着法が適している。スパッタリング法や蒸着法は、微細に均一に混合分散させた膜組織を再現性良く得るのに優れているからである。また、複数の蒸着源をもつスパッタリング装置や真空蒸着装置を用いて、多孔質金属箔を構成する金属と異相成分とを同時に蒸発させて基板に堆積させて成膜する場合には、蒸着源への投入電力を調整することで、多孔質金属箔を構成する金属と異相成分との組成調整を容易に行うことができるという利点もある。   A sputtering method or a vapor deposition method is suitable as a method for forming a film by finely and uniformly dispersing the metal constituting the porous metal foil and the heterophasic component. This is because the sputtering method and the vapor deposition method are excellent in obtaining a finely and uniformly mixed and dispersed film structure with good reproducibility. In addition, when using a sputtering apparatus or a vacuum evaporation apparatus having a plurality of evaporation sources to simultaneously evaporate the metal constituting the porous metal foil and the different phase components and deposit them on the substrate, to the evaporation source, There is also an advantage that the composition adjustment between the metal constituting the porous metal foil and the heterophasic component can be easily performed by adjusting the input power.

形成する膜の厚さは1μm以上にする。膜厚が1μm未満では十分な箔強度を得ることが難しく、プロセス中やハンドリング中に箔に割れを生じてしまうおそれがある。形成する膜の厚さの上限については、多孔質金属箔の機能的な面での制限はない。ただし、成膜時間や異相成分の除去にかかる時間などを考慮した生産効率と、多孔質支持体、フィルター、電極などのアプリケーションにおける実用的な厚さとを考慮すると、100μmが上限となる。なお、理論上は100μm以上の多孔質金属箔も形成可能であり、アプリケーションによっては100μm以上の膜厚を採用しても良い。   The thickness of the film to be formed is 1 μm or more. If the film thickness is less than 1 μm, it is difficult to obtain sufficient foil strength, and the foil may be cracked during the process or handling. There is no limitation on the functional aspect of the porous metal foil with respect to the upper limit of the thickness of the film to be formed. However, the upper limit is 100 μm in consideration of the production efficiency in consideration of the film formation time, the time taken to remove the heterogeneous component, and the like, and the practical thickness in applications such as porous supports, filters, and electrodes. Theoretically, a porous metal foil of 100 μm or more can be formed, and a film thickness of 100 μm or more may be adopted depending on the application.

多孔質金属箔の構成する金属としては種々の金属を使用することができるが、Ta、Nb、Ta合金、Nb合金から選ばれる少なくとも一種であることが好ましい。Ta、Nbは耐熱性に優れているため、高温の熱処理にも耐えることができ、熱処理時の構造制御が容易である。また、耐食性にも優れており、異相成分および基板成分を選択除去する際に硝酸等を用いることができる。   Various metals can be used as the metal constituting the porous metal foil, but at least one selected from Ta, Nb, Ta alloy, and Nb alloy is preferable. Since Ta and Nb are excellent in heat resistance, they can withstand high-temperature heat treatment, and the structure control during heat treatment is easy. Moreover, it is excellent also in corrosion resistance, and nitric acid etc. can be used when selectively removing the heterogeneous component and the substrate component.

成膜時に使用する基板としては、多孔質金属箔を構成する金属と相溶せず、選択除去が可能な種々の材質のものを使用することができる。前記条件に加えて、経済性、ハンドリング性、表面平坦度などを総合的に考慮して基板材質を決定する。例えば、多孔質金属箔を構成する金属がTa、Nb、Ta合金、Nb合金から選ばれる少なくとも一種の場合、基板としては、Ag箔またはCu箔を好適に使用することができる。   As the substrate used for film formation, various materials that are not compatible with the metal constituting the porous metal foil and can be selectively removed can be used. In addition to the above conditions, the substrate material is determined in consideration of economics, handling properties, surface flatness and the like. For example, when the metal constituting the porous metal foil is at least one selected from Ta, Nb, Ta alloy, and Nb alloy, an Ag foil or Cu foil can be suitably used as the substrate.

異相成分としては、多孔質金属箔を構成する金属に対して熱力学的に安定な酸化物または相溶性を持たない金属を使用することができる。例えば、MgOやCaOは大部分の金属に対して熱力学的に安定であり、無機酸などで簡単に溶解させることができるため、異相成分として好ましい。また、多孔質金属箔を構成する金属がTa、Nb、Ta合金、Nb合金から選ばれる少なくとも一種の場合、Cu、Ag、Ca、MgはTa、Nbに対する相溶性を持たないため、これらを異相成分として使用することもできる。   As the heterophasic component, an oxide that is thermodynamically stable with respect to the metal constituting the porous metal foil or a metal having no compatibility can be used. For example, MgO and CaO are preferable as heterogeneous components because they are thermodynamically stable to most metals and can be easily dissolved with an inorganic acid or the like. Further, when the metal constituting the porous metal foil is at least one selected from Ta, Nb, Ta alloy, and Nb alloy, Cu, Ag, Ca, and Mg do not have compatibility with Ta and Nb. It can also be used as an ingredient.

以上のようにして得られた膜を、基板ごとに不活性雰囲気中または真空中で熱処理して、多孔質金属箔を構成する金属と異相成分とを粒成長させる。低温で熱処理するほど粒成長が抑制され、最終的に得られる金属多孔質箔の細孔は微細になる。逆に高温で熱処理するほど粒成長が進行し、最終的に得られる多孔質金属箔の細孔径は大きくなる。熱処理の温度および雰囲気は、多孔質金属箔を構成する金属、異相成分、基板などの融点や蒸気圧、目標とする多孔質金属箔の細孔径を考慮して決定する。ただし、少なくとも、多孔質金属箔を構成する金属、異相成分、基板が溶解あるいは揮発しないような熱処理の温度および雰囲気とすることが必要である。例えば、多孔質金属箔の構成成分としてTaまたはNbを用い、異相成分としてCuを用いる場合、熱処理はCuの融点(1083℃)未満で行う必要がある。しかし、Cuの融点(1083℃)未満であっても、融点直下で真空中で熱処理を行うと、熱処理中にCuが揮発してしまい、同時に細孔のつぶれが起こるおそれがあるため、この場合はArなどの不活性雰囲気中で熱処理を行うことが好ましい。   The film obtained as described above is heat-treated for each substrate in an inert atmosphere or in vacuum to grow grains of the metal and the heterogeneous component constituting the porous metal foil. As the heat treatment is performed at a lower temperature, the grain growth is suppressed, and the pores of the finally obtained metal porous foil become finer. Conversely, the grain growth progresses as the heat treatment is performed at a higher temperature, and the pore diameter of the finally obtained porous metal foil becomes larger. The temperature and atmosphere of the heat treatment are determined in consideration of the metal constituting the porous metal foil, the heterogeneous component, the melting point and vapor pressure of the substrate, and the target pore diameter of the porous metal foil. However, at least the heat treatment temperature and atmosphere must be such that the metal, the heterogeneous component, and the substrate constituting the porous metal foil do not dissolve or volatilize. For example, when Ta or Nb is used as the constituent component of the porous metal foil and Cu is used as the heterogeneous component, the heat treatment needs to be performed at a temperature lower than the melting point of Cu (1083 ° C.). However, even if it is less than the melting point of Cu (1083 ° C.), if heat treatment is performed in a vacuum immediately below the melting point, Cu may volatilize during the heat treatment, and at the same time, crushing of pores may occur. Is preferably heat-treated in an inert atmosphere such as Ar.

なお、成膜をスパッタリング法や真空蒸着法で行う場合には、成膜後の熱処理ではなく、成膜中に基板加熱して多孔質金属箔を構成する金属と異相成分とを粒成長させることも可能であり、この場合、プロセスをより簡便化することができる。   When film formation is performed by sputtering or vacuum deposition, the substrate is heated during film formation, not the heat treatment after film formation, and the metal and the heterogeneous component constituting the porous metal foil are grown. In this case, the process can be simplified.

熱処理により粒度調整した後に、基板成分および異相成分を選択的に溶解除去し、純水洗浄して乾燥させることで多孔質金属箔を得ることができる。基板成分と異相成分を選択的に溶解除去するための溶液は、多孔質金属箔を構成する金属、異相成分、基板材質などを考慮し、酸、塩化物溶液などから選定する。例えば、多孔質金属箔を構成する金属がTa、Nb、Ta合金、Nb合金から選ばれる少なくとも一種であり、基板がCu箔またはAg箔であり、異相成分がMgOまたはCaOの場合、硝酸を用いて基板成分および異相成分を選択的に溶解除去することができる。多孔質金属箔を構成する金属がTa、Nb、Ta合金、Nb合金から選ばれる少なくとも一種であり、基板がCu箔またはAg箔であり、異相成分がCu、Ag、Ca、Mgのいずれかである場合にも、硝酸を用いて基板成分および異相成分を選択的に溶解除去することができる。   After adjusting the particle size by heat treatment, the substrate component and the heterogeneous component are selectively dissolved and removed, washed with pure water and dried to obtain a porous metal foil. A solution for selectively dissolving and removing the substrate component and the different phase component is selected from an acid, a chloride solution, etc. in consideration of the metal constituting the porous metal foil, the different phase component, the substrate material, and the like. For example, when the metal constituting the porous metal foil is at least one selected from Ta, Nb, Ta alloy, and Nb alloy, the substrate is Cu foil or Ag foil, and the heterogeneous component is MgO or CaO, nitric acid is used. Thus, the substrate component and the foreign phase component can be selectively dissolved and removed. The metal constituting the porous metal foil is at least one selected from Ta, Nb, Ta alloy, and Nb alloy, the substrate is Cu foil or Ag foil, and the different phase component is Cu, Ag, Ca, or Mg. In some cases, nitric acid can be used to selectively dissolve and remove the substrate component and the heterogeneous component.

以下、実施例により本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例1)
純度99.99%の水素化粉砕NbおよびMgOを体積率50%で混合し、2452MPa(250kgf/cm2)の圧力で1400℃、1時間のホットプレスを行い、直径60mmφ、厚さ5mmのターゲットを作製した。基板としては、厚さ10μm、幅10mm、長さ10mmの電解銅箔を用い、スパッタリング装置(SPF−210H,アネルバ株式会社製)内に載置した。そして、10mTorrのアルゴン雰囲気中でRFスパッタを行い、厚さ2μmの成膜を行った。これを基板ごと真空中で、600℃、1時間の熱処理を行い、その後、50vol%の硝酸中に1時間浸漬して、銅箔およびMgOを溶解除去し、水洗、乾燥してNb箔を得た。
Example 1
Hydrogenated pulverized Nb and MgO with a purity of 99.99% were mixed at a volume ratio of 50%, hot pressed at 1400 ° C. for 1 hour at a pressure of 2452 MPa (250 kgf / cm 2 ), and a target with a diameter of 60 mmφ and a thickness of 5 mm Was made. As a substrate, an electrolytic copper foil having a thickness of 10 μm, a width of 10 mm, and a length of 10 mm was used and placed in a sputtering apparatus (SPF-210H, manufactured by Anerva Corporation). Then, RF sputtering was performed in an argon atmosphere of 10 mTorr to form a film having a thickness of 2 μm. The substrate is heat-treated at 600 ° C. for 1 hour in vacuum, and then immersed in 50 vol% nitric acid for 1 hour to dissolve and remove the copper foil and MgO, washed with water and dried to obtain an Nb foil. It was.

得られたNb箔に対し、まず実体顕微鏡観察で箔表面を観察してクラックの有無を確認した。その後、電子顕微鏡で多孔質箔の表面および断面(箔と直交する断面)を観察し、細孔径のサイズを確認するとともに、箔を貫通した微細孔(以下、貫通微細孔と記す。)が形成されているかどうかを確認した。細孔径のサイズについては、箔表面と直交する断面の電子顕微鏡像を目視することで細孔の直径を求めた。   For the obtained Nb foil, first, the surface of the foil was observed with a stereoscopic microscope to check for cracks. Thereafter, the surface and cross section of the porous foil (cross section orthogonal to the foil) are observed with an electron microscope to confirm the size of the pore diameter, and micropores penetrating the foil (hereinafter referred to as through micropores) are formed. To see if it has been. About the size of a pore diameter, the diameter of the pore was calculated | required by visually observing the electron microscope image of the cross section orthogonal to the foil surface.

貫通微細孔が形成されているかどうかの判断は、箔と直交する断面の観察で緻密層(異相成分が溶解除去されずに残留した部分)が確認できるかどうかで判断し、内部に緻密層が観察されない孔は貫通微細孔であると判断した。貫通微細孔は、酸などが膜表面から内部に向かって浸透して異相成分が溶解除去されることで形成される。したがって、箔と直交する断面の観察を行い、多孔質金属箔の一方の面からもう一方の面に向かって、一様にポーラスな構造になっている場合は、膜の両表面から内部まで異相成分が完全に除去され、貫通微細孔が形成されていると判断できる。逆に、内部に緻密層が観察される場合は異相成分が残留して貫通微細孔が形成されていないと判断できる。   Judgment as to whether or not through-holes are formed is based on whether or not a dense layer (a portion where a different phase component remains without being dissolved and removed) can be confirmed by observing a cross section perpendicular to the foil. The holes that were not observed were judged to be through-holes. The through micropores are formed by acid or the like penetrating from the membrane surface toward the inside to dissolve and remove the different phase components. Therefore, when the cross-section perpendicular to the foil is observed and the porous metal foil has a uniform porous structure from one side to the other side, it is different from the both sides of the membrane to the inside. It can be determined that the components are completely removed and through-holes are formed. On the contrary, when a dense layer is observed inside, it can be judged that a different phase component remains and a through-hole is not formed.

得られたNb箔の評価結果を表1に示す。実体顕微鏡観察では、欠陥などは確認されなかった。電子顕微鏡観察では、貫通微細孔の直径は0.05〜0.1μmであること、および箔の表面と直交する断面(箔の厚さ方向と平行方向の断面)が一様にポーラスな構造になっていることを確認した。   The evaluation results of the obtained Nb foil are shown in Table 1. Observation with a stereomicroscope revealed no defects. In the electron microscope observation, the diameter of the through micropore is 0.05 to 0.1 μm, and the cross section perpendicular to the foil surface (the cross section in the direction parallel to the thickness direction of the foil) is uniformly porous. It was confirmed that

以上のことから、欠陥がなく、かつ、直径が0.05〜0.1μmの貫通微細孔を有する多孔質Nb箔が得られたことを確認できた。   From the above, it was confirmed that a porous Nb foil having no through holes and having through micropores having a diameter of 0.05 to 0.1 μm was obtained.

(実施例2)
純度99.99%のTaおよびCuの6インチターゲットを用い、厚さ10μm、幅20mm、長さ20mmの電解銅箔を基板として、多元スパッタリング装置(SH−450、株式会社アルバック製)を用いて、10mTorrのアルゴン雰囲気中でTaとCuの同時スパッタにより、Ta−60体積%Cuを9μm成膜した。これを基板ごと真空中で、800℃、1時間の熱処理を行ったのち、50体積%の硝酸中に1時間浸漬し、銅を溶解除去し、水洗、乾燥してTa箔を得た。
(Example 2)
Using a 6-inch target of Ta and Cu with a purity of 99.99%, using an electrolytic copper foil with a thickness of 10 μm, a width of 20 mm, and a length of 20 mm as a substrate, using a multi-source sputtering apparatus (SH-450, manufactured by ULVAC, Inc.) A Ta-60 volume% Cu film having a thickness of 9 μm was formed by simultaneous sputtering of Ta and Cu in an argon atmosphere of 10 mTorr. This was subjected to heat treatment at 800 ° C. for 1 hour together with the substrate in a vacuum, and then immersed in 50% by volume of nitric acid for 1 hour to dissolve and remove copper, washed with water and dried to obtain a Ta foil.

得られたTa箔について、実施例1と同様の評価を行った結果を表1に示す。また、得られた箔の表面と直交する断面を電子顕微鏡で観察した結果の写真を、図1に示す。図1において、黒い箇所が空隙であり、白い箇所が多孔質体を形成しているTa粒子である。   Table 1 shows the results of evaluation similar to that of Example 1 for the obtained Ta foil. Moreover, the photograph of the result of having observed the cross section orthogonal to the surface of the obtained foil with an electron microscope is shown in FIG. In FIG. 1, black portions are voids, and white portions are Ta particles forming a porous body.

以上のことから、欠陥がなく、かつ、直径が0.1〜0.2μmの貫通微細孔を有する多孔質Ta箔が得られたことを確認できた。   From the above, it was confirmed that a porous Ta foil having no through holes and having through micropores having a diameter of 0.1 to 0.2 μm was obtained.

(実施例3)
実施例2において、膜厚を2μm、真空熱処理温度を400℃とした以外は同様の操作を行ない、得られたTa箔について、実施例1と同様の評価を行った。評価結果を表1に示す。
(Example 3)
In Example 2, the same operation was performed except that the film thickness was 2 μm and the vacuum heat treatment temperature was 400 ° C., and the obtained Ta foil was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

その結果、欠陥がなく、かつ、直径が0.03〜0.06μmの貫通微細孔を有する多孔質Ta箔が得られたことが確認できた。   As a result, it was confirmed that a porous Ta foil having no through holes and having through micropores having a diameter of 0.03 to 0.06 μm was obtained.

(実施例4)
形成する膜の組成をTa−25vol%Cuとし、膜の厚さを2μmとした以外は実施例2と同様の操作を行ってTa箔を得た。得られたTa箔について、実施例1と同様の評価を行った結果を表1に示す。
Example 4
A Ta foil was obtained by performing the same operation as in Example 2 except that the composition of the film to be formed was Ta-25 vol% Cu and the thickness of the film was 2 μm. Table 1 shows the results of evaluation similar to that of Example 1 for the obtained Ta foil.

その結果、欠陥がなく、かつ、直径が0.1〜0.2μmの貫通微細孔を有する多孔質Ta箔が得られたことを確認できた。   As a result, it was confirmed that a porous Ta foil without defects and having through micropores with a diameter of 0.1 to 0.2 μm was obtained.

(実施例5)
純度99.99%のNbおよびCuの6インチターゲットを用い、厚さ10μm、幅20mm、長さ20mmの電解銅箔を基板として、多元スパッタリング装置(SH−450、アルバック製)を用いて、10mTorrのアルゴン雰囲気中でNbとCuの同時スパッタにより、Nb−60vol%Cuを20μm成膜した。これを基板ごとAr雰囲気中で、1050℃、1時間の熱処理を行い、その後、50vol%の硝酸中に1時間浸漬して、銅を溶解除去し、水洗、乾燥してNb箔を得た。得られたNb箔について、実施例1と同様の評価を行った結果を表1に示す。
(Example 5)
Using a 6 inch target of Nb and Cu with a purity of 99.99%, using an electrolytic copper foil with a thickness of 10 μm, a width of 20 mm, and a length of 20 mm as a substrate, using a multi-source sputtering apparatus (SH-450, ULVAC), 10 mTorr 20 μm of Nb-60 vol% Cu was formed by simultaneous sputtering of Nb and Cu in an argon atmosphere. This was heat treated for 1 hour at 1050 ° C. in an Ar atmosphere together with the substrate, and then immersed in 50 vol% nitric acid for 1 hour to dissolve and remove copper, washed with water and dried to obtain an Nb foil. The obtained Nb foil was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

その結果、クラックフリーで細孔径0.5〜0.7μmの貫通微細孔を有する多孔質Nb箔が得られたことを確認できた。   As a result, it was confirmed that a porous Nb foil having through micropores with a crack diameter of 0.5 to 0.7 μm and free of cracks was obtained.

(比較例1)
形成する膜の厚さを0.5μmとした以外は実施例4と同様の操作を行ってTa箔を得た。得られたTa箔について、実施例1と同様の評価を行った結果を表1に示す。
(Comparative Example 1)
A Ta foil was obtained in the same manner as in Example 4 except that the thickness of the film to be formed was changed to 0.5 μm. Table 1 shows the results of evaluation similar to that of Example 1 for the obtained Ta foil.

表1に示すように、直径が0.1〜0.2μmの貫通微細孔が形成されていたが、Cuを溶解除去している時および水洗時に、一部箔割れを起こした。また、箔表面には数μm幅のマイクロクラックが多数観察され、自己で構造維持可能な多孔質箔は得られなかった。   As shown in Table 1, through-micropores having a diameter of 0.1 to 0.2 μm were formed, but some foil cracking occurred when Cu was dissolved and removed and during water washing. In addition, many micro cracks having a width of several μm were observed on the foil surface, and a porous foil capable of maintaining the structure by itself was not obtained.

(比較例2)
形成する膜の組成をTa−70体積%Cuとした以外は実施例2と同様の操作を行ってTa箔を得た。得られたTa箔について、実施例1と同様の評価を行った結果を表1に示す。
(Comparative Example 2)
A Ta foil was obtained by performing the same operation as in Example 2 except that the composition of the film to be formed was Ta-70 volume% Cu. Table 1 shows the results of evaluation similar to that of Example 1 for the obtained Ta foil.

直径が0.1〜0.2μmの貫通微細孔が形成されていたが、Cuを溶解除去している時および水洗時に一部箔割れを起こした。また、箔表面には数μm幅のマイクロクラックが多数観察され、自己で構造維持可能な多孔質箔は得られなかった。   Although through-micropores having a diameter of 0.1 to 0.2 μm were formed, some foil cracks occurred when Cu was dissolved and removed and when washed with water. In addition, many micro cracks having a width of several μm were observed on the foil surface, and a porous foil capable of maintaining the structure by itself was not obtained.

(比較例3)
形成する膜の組成をTa−15体積%Cuとし、膜の厚さを2μmとした以外は実施例2と同様の操作を行ってTa箔を得た。得られたTa箔について、実施例1と同様の評価を行った結果を表1に示す。
(Comparative Example 3)
A Ta foil was obtained by performing the same operation as in Example 2 except that the composition of the film to be formed was Ta-15% by volume Cu and the thickness of the film was 2 μm. Table 1 shows the results of evaluation similar to that of Example 1 for the obtained Ta foil.

得られたTa箔には欠陥がなく、かつ、箔表面付近では直径が0.1〜0.2μmの微細孔が確認されたが、箔の断面には緻密層が観察され、箔を貫通する微細孔は形成されていなかった。   There was no defect in the obtained Ta foil, and micropores with a diameter of 0.1 to 0.2 μm were confirmed in the vicinity of the foil surface, but a dense layer was observed in the cross section of the foil and penetrated the foil. Micropores were not formed.

細孔による空隙率(異相成分の体積比)および膜厚が本発明の範囲内である実施例1〜5では、欠陥がなく、かつ、直径が0.01〜1μmの範囲にある貫通微細孔を有する多孔質金属箔が得られた。   In Examples 1 to 5 in which the porosity (volume ratio of heterophasic components) and the film thickness are within the scope of the present invention, there are no defects and the through micropores have a diameter in the range of 0.01 to 1 μm. A porous metal foil having the following was obtained.

これに対して、形成する膜の厚さを本発明の範囲の下限値である1μmよりも小さい0.5μmとした比較例1は、形成する膜の組成が実施例4と同じであるにも関わらず箔割れが生じてしまい、箔の強度に問題があることがわかった。   On the other hand, Comparative Example 1 in which the thickness of the film to be formed is 0.5 μm, which is smaller than 1 μm, which is the lower limit of the range of the present invention, has the same film composition as that of Example 4. Nevertheless, it was found that foil cracking occurred and there was a problem with the strength of the foil.

また、細孔による空隙率(異相成分の体積比)を本発明の範囲の上限値である65体積%よりも大きい70体積%とした比較例2は、形成する膜の厚さが9μmと十分に厚いにもかかわらず箔割れが生じてしまい、箔の強度に問題があることがわかった。   Further, Comparative Example 2 in which the porosity (volume ratio of the heterogeneous component) due to the pores is 70% by volume, which is larger than 65% by volume, which is the upper limit of the range of the present invention, has a sufficient film thickness of 9 μm. Although it was thick, foil cracking occurred, and it was found that there was a problem with the strength of the foil.

比較例1および2の結果より、細孔による空隙率(異相成分の体積比)が本発明の範囲の上限を上回るか、膜厚が本発明の範囲の下限を下回ると、多孔質構造は得られるものの、箔強度が不十分であり、自己で構造維持可能な多孔質箔は得られないと考えられる。   From the results of Comparative Examples 1 and 2, the porous structure is obtained when the porosity (volume ratio of heterogeneous components) due to pores exceeds the upper limit of the range of the present invention or the film thickness falls below the lower limit of the range of the present invention. However, it is considered that the foil strength is insufficient and a porous foil capable of maintaining the structure by itself cannot be obtained.

細孔による空隙率(異相成分の体積比)を本発明の範囲の下限値である20体積%よりも小さい15体積%とした比較例3は、箔割れは見られず箔強度に問題はないものの、細孔が形成されるのは箔表面のみであり、箔内部には残留したCuからなる緻密相が存在し、貫通微細孔の形成の点で問題があることがわかった。   In Comparative Example 3 in which the porosity (volume ratio of heterogeneous components) due to the pores was 15% by volume smaller than 20% by volume which is the lower limit of the range of the present invention, foil cracks were not observed and there was no problem in foil strength However, it was found that pores were formed only on the foil surface, and there was a dense phase consisting of Cu remaining inside the foil, which was problematic in terms of forming through-micropores.

実施例2に係る多孔質金属箔について、箔の表面と直交する断面を電子顕微鏡で観察した結果の写真である。It is the photograph of the result of having observed the cross section orthogonal to the surface of foil about the porous metal foil which concerns on Example 2 with the electron microscope.

Claims (11)

微細孔を有し、かつ、厚さが1μm以上の金属箔であって、該微細孔の一部または全部が貫通しており、該微細孔の直径は0.01〜1μmであり、かつ、該微細孔による空隙率は20〜65体積%であることを特徴とする多孔質金属箔。   A metal foil having a micropore and a thickness of 1 μm or more, wherein a part or all of the micropore penetrates, the diameter of the micropore is 0.01 to 1 μm, and The porous metal foil characterized by the porosity of the fine pores being 20 to 65% by volume. 前記微細孔の直径が均一である請求項1に記載の多孔質金属箔。   The porous metal foil according to claim 1, wherein the micropores have a uniform diameter. 前記多孔質金属箔が、Ta、Nb、Ta合金、Nb合金から選択された少なくとも一種から構成されていることを特徴とする請求項1または2に記載の多孔質金属箔。   The porous metal foil according to claim 1, wherein the porous metal foil is composed of at least one selected from Ta, Nb, Ta alloy, and Nb alloy. 金属と、該金属と相溶しない異相成分とが分散してなる薄膜を、前記異相成分の体積分率が20〜65体積%、厚さが1μm以上となるように、前記金属と相溶しない材質からなる基板上に形成し、得られた薄膜を熱処理して、該薄膜中の前記金属および前記異相成分の粒度を調整し、その後、前記基板および前記異相成分を選択的に溶解除去することを特徴とする多孔質金属箔の製造方法。   A thin film in which a metal and a heterophasic component incompatible with the metal are dispersed is not compatible with the metal so that the volume fraction of the heterophasic component is 20 to 65% by volume and the thickness is 1 μm or more. Forming on a substrate made of a material, heat-treating the obtained thin film to adjust the particle size of the metal and the heterogeneous component in the thin film, and then selectively dissolving and removing the substrate and the heterophasic component A method for producing a porous metal foil characterized by the above. 前記薄膜を形成するに際して、成膜法としてスパッタリング法または真空蒸着法を用いることを特徴とする請求項4に記載の多孔質金属箔の製造方法。   5. The method for producing a porous metal foil according to claim 4, wherein a sputtering method or a vacuum deposition method is used as a film forming method when forming the thin film. 前記金属を、Ta、Nb、Ta合金、Nb合金から選択された少なくとも一種とすることを特徴とする請求項4または5に記載の多孔質金属箔の製造方法。   The method for producing a porous metal foil according to claim 4 or 5, wherein the metal is at least one selected from Ta, Nb, Ta alloy, and Nb alloy. 前記基板を、Cu箔またはAg箔とすることを特徴とする請求項6に記載の多孔質金属箔の製造方法。   The method for producing a porous metal foil according to claim 6, wherein the substrate is a Cu foil or an Ag foil. 前記異相成分を、多孔質金属箔を構成する前記金属に対して熱力学的に安定な酸化物とすることを特徴とする請求項4〜7のいずれかに記載の多孔質金属箔の製造方法。   The method for producing a porous metal foil according to any one of claims 4 to 7, wherein the heterogeneous phase component is an oxide thermodynamically stable with respect to the metal constituting the porous metal foil. . 前記酸化物を、MgOおよび/またはCaOとすることを特徴とする請求項8に記載の多孔質金属箔の製造方法。   The method for producing a porous metal foil according to claim 8, wherein the oxide is MgO and / or CaO. 前記異相成分を、多孔質金属箔を構成する前記金属に対して相溶性を持たない金属とすることを特徴とする請求項4〜7のいずれかに記載の多孔質金属箔の製造方法。   The method for producing a porous metal foil according to any one of claims 4 to 7, wherein the heterophasic component is a metal having no compatibility with the metal constituting the porous metal foil. 前記異相成分を、Cu、Ag、Ca、Mgからなる群から選択された少なくとも一種とすることを特徴とする請求項6または7に記載の多孔質金属箔の製造方法。   The method for producing a porous metal foil according to claim 6 or 7, wherein the heterophasic component is at least one selected from the group consisting of Cu, Ag, Ca, and Mg.
JP2005372825A 2005-12-26 2005-12-26 Porous metal foil and method for producing the same Active JP4518019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005372825A JP4518019B2 (en) 2005-12-26 2005-12-26 Porous metal foil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005372825A JP4518019B2 (en) 2005-12-26 2005-12-26 Porous metal foil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007169766A true JP2007169766A (en) 2007-07-05
JP4518019B2 JP4518019B2 (en) 2010-08-04

Family

ID=38296704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005372825A Active JP4518019B2 (en) 2005-12-26 2005-12-26 Porous metal foil and method for producing the same

Country Status (1)

Country Link
JP (1) JP4518019B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066157A (en) * 2009-09-16 2011-03-31 Sumitomo Metal Mining Co Ltd Method of manufacturing porous electrode for electrolytic capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04351232A (en) * 1991-05-27 1992-12-07 Sudo Norito Porous metallic film and production thereof
JP2002134367A (en) * 2000-10-24 2002-05-10 Dainippon Ink & Chem Inc Porous compact made of tantalum metal powder, anode element for tantalum electrolytic capacitor and tantalum electrolytic capacitor using the same, and method of manufacturing anode element for tantalum electrolytic capacitor
JP2004237430A (en) * 2002-03-15 2004-08-26 Canon Inc Porous body and its manufacturing method
WO2004092440A1 (en) * 2003-04-16 2004-10-28 Bridgestone Corporation Method for forming porous thin film
JP2005167223A (en) * 2003-11-10 2005-06-23 Showa Denko Kk Niobium powder for capacitor, niobium sintered body, and capacitor
JP2006049816A (en) * 2004-07-05 2006-02-16 Sumitomo Metal Mining Co Ltd Porous bulb metal film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04351232A (en) * 1991-05-27 1992-12-07 Sudo Norito Porous metallic film and production thereof
JP2002134367A (en) * 2000-10-24 2002-05-10 Dainippon Ink & Chem Inc Porous compact made of tantalum metal powder, anode element for tantalum electrolytic capacitor and tantalum electrolytic capacitor using the same, and method of manufacturing anode element for tantalum electrolytic capacitor
JP2004237430A (en) * 2002-03-15 2004-08-26 Canon Inc Porous body and its manufacturing method
WO2004092440A1 (en) * 2003-04-16 2004-10-28 Bridgestone Corporation Method for forming porous thin film
JP2005167223A (en) * 2003-11-10 2005-06-23 Showa Denko Kk Niobium powder for capacitor, niobium sintered body, and capacitor
JP2006049816A (en) * 2004-07-05 2006-02-16 Sumitomo Metal Mining Co Ltd Porous bulb metal film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066157A (en) * 2009-09-16 2011-03-31 Sumitomo Metal Mining Co Ltd Method of manufacturing porous electrode for electrolytic capacitor

Also Published As

Publication number Publication date
JP4518019B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
KR101249153B1 (en) Sintered target and method for production of sintered material
US11980942B2 (en) Method for manufacturing metal foam
JP5875529B2 (en) Silicon melt contact member, method for producing the same, and method for producing crystalline silicon
TWI651742B (en) Electrode foil for aluminum electrolytic capacitor and method of manufacturing same
Kim et al. Improving mechanical fatigue resistance by optimizing the nanoporous structure of inkjet-printed Ag electrodes for flexible devices
TWI654315B (en) Sputtering target and process for producing it
KR101251101B1 (en) Porous valve metal thin film, method for production thereof and thin film capacitor
JP2005524766A (en) Method for producing porous titanium material article
TW201731801A (en) Ceramic structure, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP2006138005A (en) Spongeous sintered compact superior in compressive strength made from titanium or titanium alloy
JP4518019B2 (en) Porous metal foil and method for producing the same
US11569075B2 (en) Sputtering target
JP3396737B2 (en) Control method of porosity distribution of metallic porous body by combining electric discharge machining and plastic machining
JP6754198B2 (en) Manufacturing method of porous carbon material
JP4665889B2 (en) Manufacturing method of valve metal composite electrode foil
JP4665866B2 (en) Manufacturing method of valve metal composite electrode foil
JPWO2008072448A1 (en) Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
KR20140115953A (en) Cu-ga alloy sputtering target, molten product for the sputtering target, and method of producing same
JP5672252B2 (en) Cu-Ga sputtering target and manufacturing method thereof
CN112376096B (en) Preparation method of metal material surface microporous structure and metal material
KR102316360B1 (en) Sputtering target and production method
JP6007840B2 (en) Cu-Ga sputtering target and manufacturing method thereof
JP4562664B2 (en) ITO sintered body and ITO sputtering target
JP6168518B2 (en) Crucible for metal deposition
JP2008169463A (en) Cobalt-tungsten sputter target, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4518019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4