JP2007169677A - Film deposition apparatus and film deposition method - Google Patents

Film deposition apparatus and film deposition method Download PDF

Info

Publication number
JP2007169677A
JP2007169677A JP2005365281A JP2005365281A JP2007169677A JP 2007169677 A JP2007169677 A JP 2007169677A JP 2005365281 A JP2005365281 A JP 2005365281A JP 2005365281 A JP2005365281 A JP 2005365281A JP 2007169677 A JP2007169677 A JP 2007169677A
Authority
JP
Japan
Prior art keywords
vapor deposition
magnet members
charged particles
forming apparatus
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005365281A
Other languages
Japanese (ja)
Other versions
JP4694363B2 (en
Inventor
Yoshiaki Agawa
阿川  義昭
Atsushi Saito
敦史 齋藤
Yasuhiro Hara
原  泰博
Shigeru Amano
繁 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005365281A priority Critical patent/JP4694363B2/en
Publication of JP2007169677A publication Critical patent/JP2007169677A/en
Application granted granted Critical
Publication of JP4694363B2 publication Critical patent/JP4694363B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film deposition apparatus capable of efficiently depositing a thin film having a high film quality. <P>SOLUTION: The film deposition apparatus 1 includes a magnetic field forming device 5, and the magnetic field forming device 5 forms first and second magnetic line groups Ma, Mb being parallel to each other and having opposite directions at the inside of a vacuum tank 2. When first and second vapor deposition sources 30a, 30b are selected one by one and charged particles are discharged in order, it is possible to allow the charged particles discharged from the first and second vapor deposition sources 30a, 30b to reach the same substrate by forming the magnetic line groups capable of bending charged particles having the same charge, in the charged particles discharged from the first and second vapor deposition sources 30a, 30b, to the same direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は成膜装置と、その成膜装置を用いた成膜方法に関する。   The present invention relates to a film forming apparatus and a film forming method using the film forming apparatus.

図10の符号101は従来技術の成膜装置を示している。
この成膜装置101は真空槽102を有しており、真空槽102の底壁には蒸着源130が取り付けられている。
Reference numeral 101 in FIG. 10 denotes a conventional film forming apparatus.
The film forming apparatus 101 has a vacuum chamber 102, and a vapor deposition source 130 is attached to the bottom wall of the vacuum chamber 102.

蒸着源130は円筒状のアノード電極131と、アノード電極131内部に配置された放電部135とを有している。放電部135は、蒸着材料134と、トリガ電極132とを有しており、トリガ電極132と蒸着材料134はそれぞれ電源装置141に接続されている。   The vapor deposition source 130 includes a cylindrical anode electrode 131 and a discharge unit 135 disposed inside the anode electrode 131. The discharge unit 135 includes a vapor deposition material 134 and a trigger electrode 132, and the trigger electrode 132 and the vapor deposition material 134 are each connected to a power supply device 141.

真空槽102には真空排気系109が接続されており、真空排気系109によって真空槽102内部を真空排気して真空雰囲気を形成した後、アノード電極131を接地電位に置いた状態で、トリガ電極132と蒸着材料134との間にトリガ放電を起こすと、トリガ放電によってアノード電極131と蒸着材料134との間にアーク放電が誘起される。   An evacuation system 109 is connected to the vacuum chamber 102. After the vacuum chamber 102 is evacuated by the evacuation system 109 to form a vacuum atmosphere, the trigger electrode is placed with the anode electrode 131 at the ground potential. When a trigger discharge occurs between 132 and the vapor deposition material 134, an arc discharge is induced between the anode electrode 131 and the vapor deposition material 134 by the trigger discharge.

アーク放電が誘起されると、アノード電極131から蒸着材料134に向かってアーク電流が流れ、蒸着材料134の側面から蒸着材料134の粒子が放出される。蒸着材料の粒子のうち、荷電粒子はアーク電流が形成する磁界によって飛行以降が曲げられ、アノード電極131の開口136から真空槽102内部に放出される。   When the arc discharge is induced, an arc current flows from the anode electrode 131 toward the vapor deposition material 134, and particles of the vapor deposition material 134 are emitted from the side surface of the vapor deposition material 134. Among the particles of the vapor deposition material, the charged particles are bent after the flight by the magnetic field formed by the arc current, and are released into the vacuum chamber 102 from the opening 136 of the anode electrode 131.

基板ホルダ107は基板111を開口136と対向する位置を通過させるように水平面内で回転し、基板111が開口136と対向する位置を通過する時に、その表面に荷電粒子が到達して蒸着材料の薄膜が形成される。   The substrate holder 107 rotates in a horizontal plane so that the substrate 111 passes through a position facing the opening 136. When the substrate 111 passes through a position facing the opening 136, charged particles reach the surface of the substrate 111 and the deposition material A thin film is formed.

上述した成膜装置101では、アーク放電の回数で成膜量が決まるので、アーク放電の回数を設定することで非常に薄い膜(1〜2nm)でも制御よく成膜することが可能である。   In the above-described film forming apparatus 101, the amount of film formation is determined by the number of arc discharges. Therefore, even a very thin film (1 to 2 nm) can be formed with good control by setting the number of arc discharges.

また、蒸着源130から放出される粒子の飛行速度は10000m/秒以下(文献:J、Vac.Sec.Jpn(真空)Vol.47、No.9、2004 pl3)と早いため非常に平坦な膜が形成される(Ulvac techinical Journal No.49 1998 p9)。   Further, since the flight speed of particles emitted from the vapor deposition source 130 is as fast as 10,000 m / sec or less (reference: J, Vac. Sec. Jpn (vacuum) Vol. 47, No. 9, 2004 pl3), the film is very flat. (Ulvac technical Journal No. 49 1998 p9).

この特徴は磁性デバイス、特にMRAM等の磁性、非磁性材料をnmの薄膜で積層させていくプロセスに向いている。例えばCo・FeNi/Ta/Py/Ir・Mn等を膜厚がnmの単位で積層させなければならない時には、真空槽102内に蒸着源130を四個搭載した装置を用いれば、同じ基板の上に上記材料を積層させることができる。   This feature is suitable for a process of laminating magnetic and nonmagnetic materials such as MRAM with a thin film of nm, such as MRAM. For example, when it is necessary to stack Co.FeNi / Ta / Py / Ir.Mn or the like in units of nm, if an apparatus having four deposition sources 130 mounted in the vacuum chamber 102 is used, The above materials can be laminated.

図10に示した同軸型真空アーク蒸着源130ではカソード材(蒸着材料134)に用いた合金の比率と、成膜された薄膜中の合金の比率が略等しくなることが確認されており、所望の合金比率のカソード材を用いることで、所望の合金比率の薄膜が成膜される。   In the coaxial vacuum arc deposition source 130 shown in FIG. 10, it has been confirmed that the ratio of the alloy used for the cathode material (deposition material 134) and the ratio of the alloy in the formed thin film are substantially equal. By using a cathode material having an alloy ratio of, a thin film having a desired alloy ratio is formed.

ところで、アーク電流が流れる時には、蒸着材料134の一部が溶融し、その溶融部分から直径約50〜100μmの溶融物(ドロップレット)が放出される。 図11の符号146はそのドロップレットを示しており、ドロップレット146はそのまま開口136から放出されるか、アノード電極131の内壁面に衝突して直径約1〜5μmの細かいドロップレット146となって開口136から放出される。   By the way, when the arc current flows, a part of the vapor deposition material 134 is melted, and a melt (droplet) having a diameter of about 50 to 100 μm is discharged from the melted portion. Reference numeral 146 in FIG. 11 shows the droplet. The droplet 146 is discharged as it is from the opening 136 or collides with the inner wall surface of the anode electrode 131 to become a fine droplet 146 having a diameter of about 1 to 5 μm. Released from the opening 136.

従って、開口136からは荷電粒子145の他に、大小のドロップレット146が放出されることになる。このドロップレット146は大小いずれのものも直径が1μm以上であり、荷電粒子に比べて非常に大きい。このようなドロップレット146が成膜中の薄膜に混入すると膜質が悪くなり、成膜後に得られるデバイスの機能が低下する。   Therefore, large and small droplets 146 are emitted from the opening 136 in addition to the charged particles 145. The droplet 146 has a diameter of 1 μm or more, both large and small, and is very large compared to charged particles. When such droplets 146 are mixed into the thin film being formed, the film quality is deteriorated, and the function of the device obtained after the film formation is deteriorated.

このドロプレット146を除去するためには色々な方法が考案されている。その一つにはアーク蒸着源130の前方で水車のようなフィルタ(以下、Vane型フィルタと呼称する)を高速回転させて、ドロプレット146と、荷電粒子145の飛行速度の差から、荷電粒子145よりも飛行速度の遅い1μm以上のドロプレット146を捕獲するものである。但し、このVane型フィルタを用いる方法では、蒸着材料の種類によっては非常に高速に回転させなければならず、コストと安全面からも問題が多い。   Various methods have been devised for removing the droplet 146. For example, a filter such as a water wheel (hereinafter referred to as a “Vane type filter”) is rotated at a high speed in front of the arc deposition source 130, and the charged particle 145 is determined from the difference in flight speed between the droplet 146 and the charged particle 145. It captures a droplet 146 of 1 μm or more whose flight speed is slower than that. However, in the method using this Vane type filter, it must be rotated at a very high speed depending on the kind of the vapor deposition material, and there are many problems from the viewpoint of cost and safety.

他の方法としては、開口136から基板111に向かう進行方向に沿って磁力線を形成して、その磁力線を這わせて荷電粒子を輸送する方法がある(例えば特許文献2、3を参照)。この方法は装置が大掛かりになるだけではなく、開口136から基板111までの輸送空間の距離が長く、荷電粒子の基板111への到達量が減少してしまい、成膜効率が悪くなる。   As another method, there is a method of transporting charged particles by forming magnetic lines of force along the traveling direction from the opening 136 toward the substrate 111 (see, for example, Patent Documents 2 and 3). In this method, not only the apparatus becomes large, but also the distance of the transport space from the opening 136 to the substrate 111 is long, the amount of charged particles reaching the substrate 111 is reduced, and the film formation efficiency is deteriorated.

更に、その輸送空間を形成するために磁界形成手段を真空槽102内に配置すると、ドロップレットがその磁界形成手段に衝突して細かいドロップレットが発生し、そのドロップレットが成膜中の薄膜に混入するという新たな問題も生じた。   Further, when the magnetic field forming means is arranged in the vacuum chamber 102 to form the transport space, the droplet collides with the magnetic field forming means to generate fine droplets, and the droplets are formed on the thin film being formed. There was also a new problem of contamination.

また、ヨークと磁石を用いて90度以上折れ曲がった磁気回路を形成し、その磁気回路の磁力線と荷電粒子の拡散方向とを同じにして、荷電粒子の飛行方向を偏向させる方式では(例えば特許文献4を参照)、ドロプレットは低減できるが、磁力線が磁石上に近づくため磁束密度が高くなり、荷電粒子が収束し飛行粒子の密度が高くなり、大きな面積に均一に照射できない問題があった。   Further, in a system in which a magnetic circuit bent by 90 degrees or more is formed using a yoke and a magnet, and the magnetic field lines of the magnetic circuit and the diffusion direction of the charged particles are made the same to deflect the flight direction of the charged particles (for example, patent document) 4), the droplets can be reduced, but the magnetic flux line approaches the magnet, the magnetic flux density increases, the charged particles converge, the density of the flying particles increases, and there is a problem that the large area cannot be irradiated uniformly.

従って、従来技術では、膜厚nm単位で複数種類の膜を積層することはできても、ドロップレットの混入を防ぎ、広い面積に均一に各膜を形成することは困難であった。   Therefore, according to the prior art, even if a plurality of types of films can be stacked in units of nm, it is difficult to prevent droplets from being mixed and form each film uniformly over a wide area.

しかも、基板上に複数種類の膜を積層させるために、真空槽102に蒸着源130を複数搭載させる場合には、上述したVane型フィルタのような複雑な装置を、蒸着源130の数だけ真空槽102の内部に設置する必要があり、成膜装置101が大型になる上、その構造も複雑になるという問題があった。
「Journal of the Vacuum Society of Japan」2004年、第47巻 9号、p.l3 「Ulvac techinical Journal」、(株)アルバック・コーポレートセンター、1998年、 No.49、p.9 特開2000−8157号公報 特開2003−321769号公報 特開2004−197177号公報 特開2004−225107号公報
In addition, when a plurality of deposition sources 130 are mounted in the vacuum chamber 102 in order to stack a plurality of types of films on the substrate, a complicated apparatus such as the above-described Vane filter is vacuumed by the number of deposition sources 130. There is a problem that it is necessary to install in the tank 102, and the film forming apparatus 101 becomes large and the structure thereof is complicated.
“Journal of the Vacuum Society of Japan” 2004, Vol. 47, No. 9, p. l3 “Ulvac technical Journal”, ULVAC Corporate Center, Inc., 1998. 49, p. 9 JP 2000-8157 A JP 2003-321769 A JP 2004-197177 A JP 2004-225107 A

本発明は上記課題を解決するためのものであって、その目的は複数種類の膜を、ドロップレットの混入無しに、均一に形成することである。   The present invention is for solving the above-mentioned problems, and an object of the present invention is to uniformly form a plurality of types of films without mixing droplets.

上記課題を解決するために請求項1記載の発明は、真空槽と、前記真空槽の内部に荷電粒子を放出する第一、第二の蒸着源と、前記真空槽内部に磁力線を形成する磁界形成装置とを有し、前記磁界形成装置は、互いに異なる磁極が向き合い、前記磁極が向き合った偏向領域に前記磁力線を形成する第一、第二の磁石部材と、前記第一、第二の磁石部材の互いに向き合う磁極の極性を逆にし、前記磁力線の向きを逆向きにする反転装置とを有し、前記第一、第二の蒸着源は、前記偏向領域に反対方向から荷電粒子をそれぞれ入射させ、同じ電荷の荷電粒子に同じ方向のローレンツ力を及ぼすように構成された成膜装置である。
請求項2記載の発明は、請求項1記載の成膜装置であって、前記第一、第二の磁石部材は永久磁石で構成され、前記反転装置は、前記第一、第二の磁石部材のN極とS極の位置を入れ替えるように前記第一、第二の磁石部材を回転させる成膜装置である。
請求項3記載の発明は、請求項2記載の成膜装置であって、前記反転装置は、第一、第二の回転軸を有し、前記第一、第二の磁石部材は、前記第一、第二の回転軸の中心軸線を中心として回転するようにされた成膜装置である。
請求項4記載の発明は、請求項3記載の成膜装置であって、前記第一、第二の磁石部材は板状であって、一端部が前記第一、第二の回転軸に取り付けられた成膜装置である。
請求項5記載の発明は、請求項1乃至請求項4のいずれか1項記載の成膜装置であって、前記反転装置は、前記第一、第二の磁石部材を互いに異なる磁極が向き合う第一、第二の位置でそれぞれ静止させ、前記第一、第二の磁石部材は、前記第一の位置でそれぞれ静止した時と、前記第二の位置でそれぞれ静止した時に、互いに平行に向き合うようにされた成膜装置である。
請求項6記載の発明は、請求項5記載の成膜装置であって、前記第一、第二の蒸着源は前記第一、第二の磁石部材が前記第一の位置で静止した時に形成される磁力線と、前記第一、第二の磁石部材が前記第二の位置で静止した時に形成される磁力線の両方に対して垂直な方向に前記荷電粒子を放出する成膜装置である。
請求項7記載の発明は、請求項1記載の成膜装置であって、前記第一、第二の磁石部材は電磁石で構成され、前記反転装置は前記第一、第二の磁石部材に通電する電流の向きを変え、前記第一、第二の磁石部材の形成する前記磁力線の向きを変えるように構成された成膜装置である。
請求項8記載の発明は、前記第一、第二の磁石部材はヨークで構成され、前記反転装置は互いに異なる極性の磁極が形成された磁化手段を有し、前記磁化手段の前記磁極が前記第一、第二の磁石部材にそれぞれ接触すると、前記第一、第二の磁石部材の互いに向き合った位置に、異なる磁極が形成されるように構成された請求項1記載の成膜装置であって、前記反転装置は、前記磁化手段の、前記第一、第二の磁石部材に接触する磁極の極性を反転させるように構成された成膜装置である。
請求項9記載の発明は、請求項8記載の成膜装置であって、前記反転装置は前記磁化手段を回転させ、前記第一、第二の磁石部材に接触する磁極を交換するように構成された成膜装置である。
請求項10記載の発明は、請求項9記載の成膜装置であって、前記磁化手段の回転は、前記磁化手段に形成された前記磁極の間の中心を通る回転軸線を中心として回転させるように構成された成膜装置である。
請求項11記載の発明は、前記第一、第二の蒸着源は同一の放出空間に向けて互いに逆方向から前記荷電粒子を放出し、前記第一、第二の磁石部材は、前記第一、第二の蒸着源から放出される前記荷電粒子の飛行範囲の両側に配置された請求項8乃至請求項10のいずれか1項記載の成膜装置であって、前記放出空間に向け、互いに逆方向であって、前記第一、第二の蒸着源の前記荷電粒子の放出方向とは、略垂直方向に前記荷電粒子を放出する第三、第四の蒸着源と、前記第三、第四の蒸着源が放出する荷電粒子の飛行方向の両側に配置された前記第三、第四の磁石部材とを有し、前記第一〜第四の蒸着源は、前記第一、第二の蒸着源を結ぶ線分が、前記第三、第四の蒸着源を結ぶ線分と略垂直に交わるよう配置された成膜装置である。
請求項12記載の発明は、真空槽と、前記真空槽の内部に荷電粒子を放出する第一、第二の蒸着源と、前記真空槽内部に磁力線を形成する磁界形成装置とを有し、前記磁界形成装置は電源と、前記電源にそれぞれ接続され、前記荷電粒子が放出される空間を挟んで互いに向き合った二つの単位電磁石を2組有し、前記各単位電磁石は前記電源から電圧が印加されると、一方の組の前記単位電磁石の間に形成される第一の磁力線と、他方の組の前記単位電磁石の間に形成される第二の磁力線とが互いに平行になるよう配置され、前記電源は、前記第一の磁力線と、前記第二の磁力線の他方の向きが互いに逆向きになるように電圧を印加するよう構成され、前記第一、第二の蒸着源は、前記第一、第二の磁力線にそれぞれ異なる向きから荷電粒子を入射させ、同じ電荷の荷電粒子に同じ方向のローレンツ力を及ぼすように構成された成膜装置である。
請求項13記載の発明は、請求項12記載の成膜装置であって、前記電源は、一方の組の前記単位電磁石に通電するときには、他方の組の前記単位電磁石に通電をしないよう構成された成膜装置である。
請求項14記載の発明は、真空槽と、同一円周上で等間隔位置に配置され、前記円周の前記真空槽内部に位置する中心に向かって開口から荷電粒子を放出する四個の蒸着源と、前記円周の中心から外側に向かう放射方向の、前記開口よりも後方にそれぞれ位置する4個のヨークと、前記円周の中心を通り、前記円周が位置する平面と垂直に交差する回転軸線の延長線上に配置され、前記回転軸線を中心として回転可能な磁化手段とを有し、前記磁化手段は、前記円周の中心に反対方向から荷電粒子を放出する前記開口の後方に位置する前記ヨークに接触可能にされ、前記磁化手段の前記ヨークと接触する位置には異なる極性の磁極が形成された成膜装置である。
請求項15記載の発明は、請求項14記載の成膜装置であって、前記磁化手段を前記ヨーク着脱可能な移動機構と、前記ヨークから離間した前記磁化手段を前記回転軸線を中心として回転させる回転機構とを有する成膜装置である。
In order to solve the above-mentioned problems, a first aspect of the present invention provides a vacuum chamber, first and second vapor deposition sources that emit charged particles inside the vacuum chamber, and a magnetic field that forms lines of magnetic force in the vacuum chamber. The magnetic field forming device includes: first and second magnet members that form different magnetic poles facing each other, and form the lines of magnetic force in a deflection region in which the magnetic poles face each other; and the first and second magnets A reversing device for reversing the polarities of the magnetic poles facing each other and reversing the direction of the lines of magnetic force, and the first and second vapor deposition sources respectively enter charged particles from opposite directions into the deflection region And a film forming apparatus configured to exert a Lorentz force in the same direction on charged particles having the same charge.
A second aspect of the present invention is the film forming apparatus according to the first aspect, wherein the first and second magnet members are composed of permanent magnets, and the reversing device is the first and second magnet members. The film forming apparatus rotates the first and second magnet members so that the positions of the N pole and the S pole are switched.
A third aspect of the present invention is the film forming apparatus according to the second aspect, wherein the reversing device has first and second rotating shafts, and the first and second magnet members are the first and second rotating shafts. The film forming apparatus is configured to rotate around the central axis of the first and second rotating shafts.
According to a fourth aspect of the present invention, in the film forming apparatus according to the third aspect, the first and second magnet members are plate-shaped, and one end portions are attached to the first and second rotating shafts. The film forming apparatus.
A fifth aspect of the present invention is the film forming apparatus according to any one of the first to fourth aspects, wherein the reversing device is configured such that the first and second magnet members have different magnetic poles facing each other. The first and second magnet members are arranged to face each other in parallel when they are stationary at the first position and at the second position, respectively. The film forming apparatus.
The invention according to claim 6 is the film forming apparatus according to claim 5, wherein the first and second vapor deposition sources are formed when the first and second magnet members are stationary at the first position. A film forming apparatus that discharges the charged particles in a direction perpendicular to both the magnetic field lines formed and the magnetic field lines formed when the first and second magnet members are stationary at the second position.
A seventh aspect of the present invention is the film forming apparatus according to the first aspect, wherein the first and second magnet members are composed of electromagnets, and the reversing device energizes the first and second magnet members. A film forming apparatus configured to change the direction of the magnetic field lines formed by the first and second magnet members.
According to an eighth aspect of the present invention, the first and second magnet members are yokes, and the reversing device includes magnetizing means in which magnetic poles having different polarities are formed, and the magnetic poles of the magnetizing means are 2. The film forming apparatus according to claim 1, wherein different magnetic poles are formed at positions of the first and second magnet members facing each other when contacting the first and second magnet members, respectively. The reversing device is a film forming device configured to reverse the polarity of the magnetic poles of the magnetizing means contacting the first and second magnet members.
A ninth aspect of the present invention is the film forming apparatus according to the eighth aspect, wherein the reversing device rotates the magnetizing means and exchanges the magnetic poles in contact with the first and second magnet members. The film forming apparatus.
A tenth aspect of the present invention is the film forming apparatus according to the ninth aspect, wherein the magnetization means rotates about a rotation axis passing through a center between the magnetic poles formed on the magnetization means. It is the film-forming apparatus comprised in this.
According to an eleventh aspect of the present invention, the first and second vapor deposition sources emit the charged particles from opposite directions toward the same emission space, and the first and second magnet members are the first and second magnet members, respectively. 11. The film forming apparatus according to claim 8, which is disposed on both sides of a flight range of the charged particles emitted from the second vapor deposition source, toward each of the emission spaces. The discharge direction of the charged particles of the first and second vapor deposition sources is a reverse direction, and the third and fourth vapor deposition sources that emit the charged particles in a substantially vertical direction, and the third and fourth vapor deposition sources. The third and fourth magnet members disposed on both sides in the flight direction of the charged particles emitted by the four deposition sources, and the first to fourth deposition sources are the first and second The film forming apparatus is arranged so that a line segment connecting the vapor deposition sources intersects with the line segments connecting the third and fourth vapor deposition sources substantially perpendicularly.
Invention of Claim 12 has a vacuum chamber, the 1st and 2nd vapor deposition source which discharge | releases a charged particle inside the said vacuum chamber, and the magnetic field formation apparatus which forms a magnetic force line in the said vacuum chamber, The magnetic field forming device includes a power source and two sets of two unit electromagnets connected to the power source and facing each other across a space from which the charged particles are emitted, and each unit electromagnet is applied with a voltage from the power source. Then, the first magnetic field lines formed between the unit electromagnets of one set and the second magnetic field lines formed between the unit electromagnets of the other set are arranged in parallel to each other, The power source is configured to apply a voltage so that the other direction of the first magnetic field lines and the second magnetic field lines are opposite to each other, and the first and second evaporation sources are the first , Charged particles from different directions on the second magnetic field lines Is incident, it is configured film forming apparatus to exert a Lorentz force in the same direction to the charged particles of the same charge.
A thirteenth aspect of the present invention is the film forming apparatus according to the twelfth aspect, wherein the power source is configured not to energize the other set of unit electromagnets when energized to the one set of unit electromagnets. Film forming apparatus.
The invention according to claim 14 is the four vapor depositions that are arranged at equal intervals on the same circumference as the vacuum chamber and discharge charged particles from the opening toward the center located inside the vacuum chamber on the circumference. A source, four yokes in the radial direction from the center of the circumference to the outside, each positioned behind the opening, and passing through the center of the circumference and perpendicularly intersecting the plane on which the circumference is located Magnetizing means arranged on an extension line of the rotating axis and rotating around the rotating axis, the magnetizing means being behind the opening that emits charged particles from the opposite direction to the center of the circumference. It is a film forming apparatus in which a magnetic pole having a different polarity is formed at a position where it comes into contact with the yoke that is positioned and contacts the yoke of the magnetizing means.
A fifteenth aspect of the present invention is the film forming apparatus according to the fourteenth aspect, wherein the magnetizing unit is rotated about the rotation axis with the moving mechanism that allows the yoke to be attached and detached, and the magnetizing unit that is separated from the yoke. A film forming apparatus having a rotation mechanism.

真空槽内部に異なる方向から荷電粒子を放出する蒸着源を複数設けても、各蒸着源から放出される荷電粒子のうち電子は、磁場によるローレンツ力によって曲げられ、イオンは電子流によるクーロン力によって電子軌道側に追従することで同じ方向に曲げられ、同じ基板に到達するので、基板の表面上に複数の薄膜を積層させることができる。   Even if multiple evaporation sources that emit charged particles from different directions are provided inside the vacuum chamber, electrons of the charged particles emitted from each evaporation source are bent by the Lorentz force due to the magnetic field, and ions are caused by the Coulomb force due to the electron flow. By following the electron orbit side, it is bent in the same direction and reaches the same substrate, so that a plurality of thin films can be stacked on the surface of the substrate.

電荷質量比の小さい巨大粒子や中性粒子は、磁力線によって飛行方向が曲げられず、直進するので、基板表面には電荷質量比が大きい荷電粒子だけが到達する。従って、基板表面には膜質の良い薄膜が積層される。第一、第二の磁石部材や反転装置は、従来のドロップレット除去手段の構造が簡易であり、設置スペースも少なくてすむ。第一、第二の磁石部材や反転装置は真空槽の外に設置可能なので、ドロップレットの衝突が起こらず、従来に比べてドロップレットの飛散も抑制される。   Large particles and neutral particles having a small charge-mass ratio are not bent in the flight direction due to the lines of magnetic force and travel straight, so that only charged particles having a large charge-mass ratio reach the substrate surface. Therefore, a thin film with good film quality is laminated on the substrate surface. The first and second magnet members and the reversing device have a simple structure of the conventional droplet removing means, and the installation space can be reduced. Since the first and second magnet members and the reversing device can be installed outside the vacuum chamber, the droplets do not collide and the scattering of the droplets is suppressed as compared with the conventional case.

図1の符号1は包括的な実施例の成膜装置であり、後述する図3〜図6の符号5a〜5dは上記包括的な実施例のより具体的な実施例である実施例1〜4の成膜装置を示している。   Reference numeral 1 in FIG. 1 is a film forming apparatus according to a comprehensive example, and reference numerals 5a to 5d in FIGS. 3 to 6 described later are examples 1 to 1 which are more specific examples of the above comprehensive example. 4 shows a film forming apparatus 4.

先ず、包括的な実施例の成膜装置1について説明すると、成膜装置1は真空槽2と、第一、第二の蒸着源30a、30bと、磁界形成装置5とを有しており、磁界形成装置5はそれぞれ同一方向に向かって伸びる第一の磁力線群Maと、第一の磁力線群Maと平行であって、かつ、逆方向に伸びる第二の磁力線群Mbを真空槽2内部の所定領域(偏向領域M)に形成可能に構成されている。   First, the film forming apparatus 1 of a comprehensive example will be described. The film forming apparatus 1 includes a vacuum chamber 2, first and second vapor deposition sources 30a and 30b, and a magnetic field forming device 5. The magnetic field forming device 5 includes a first magnetic force line group Ma extending in the same direction and a second magnetic force line group Mb parallel to the first magnetic force line group Ma and extending in the opposite direction. It can be formed in a predetermined area (deflection area M).

第一、第二の蒸着源30a、30bは第一、第二の磁力線群Ma、Mbと交差する直線上であって、偏向領域Mを挟んで一方の側と他方の側にそれぞれ配置されている。   The first and second vapor deposition sources 30a and 30b are arranged on a straight line intersecting the first and second magnetic force lines Ma and Mb, and are arranged on one side and the other side with the deflection region M in between. Yes.

第一、第二の蒸着源30a、30bは筒状のアノード電極31a、31bを有しており、アノード電極31a、31bは一端部がそれぞれ偏向領域Mに向けられ、その一端部の開口36a、36bが偏向領域Mを挟んで対向するようになっている。   The first and second vapor deposition sources 30a and 30b have cylindrical anode electrodes 31a and 31b. One end of each of the anode electrodes 31a and 31b is directed to the deflection region M, and an opening 36a at one end thereof, 36b faces each other with the deflection region M in between.

アノード電極31a、31bの内部で発生した荷電粒子の電子とイオンは、偏向領域Mに向けられた開口36a、36bからそれぞれ放出されるようになっており、従って、偏向領域Mには荷電粒子が異なる方向から入射する。   Electrons and ions of charged particles generated inside the anode electrodes 31a and 31b are emitted from the openings 36a and 36b directed to the deflection region M, respectively. Incident from different directions.

後述するように、荷電粒子はアノード電極31a、31bの中心軸線と平行な方向に放出され、ここではアノード電極31a、31bは中心軸線は同一直線上に位置するよう配置されているから、第一の蒸着源30aの荷電粒子の放出方向と、第二の蒸着源30bの荷電粒子の放出方向は互いに平行であって、かつ、逆向きになる。   As will be described later, the charged particles are emitted in a direction parallel to the central axis of the anode electrodes 31a and 31b. Here, the anode electrodes 31a and 31b are arranged so that the central axes are located on the same straight line. The discharge direction of the charged particles from the vapor deposition source 30a and the discharge direction of the charged particles from the second vapor deposition source 30b are parallel to each other and opposite to each other.

図1の符号Fa、Fbは第一、第二の蒸着源30a、30bから放出される荷電粒子の束の中心を通る軸線であって、荷電粒子が開口36a、36bから放出されるときの放出方向の延長線と平行な第一、第二の放出軸線を示している。   Reference numerals Fa and Fb in FIG. 1 are axes passing through the centers of the bundle of charged particles emitted from the first and second vapor deposition sources 30a and 30b, and are emitted when the charged particles are emitted from the openings 36a and 36b. The first and second emission axes parallel to the direction extension are shown.

磁界形成装置5は、第一の蒸着源30aから荷電粒子を放出するときには第一の磁力線群Maを形成し、第二の蒸着源30bから荷電粒子を放出するときには第二の磁力線群Mbを形成する。   The magnetic field forming device 5 forms a first magnetic line group Ma when discharging charged particles from the first vapor deposition source 30a, and forms a second magnetic line group Mb when discharging charged particles from the second vapor deposition source 30b. To do.

上述したように、第一、第二の放出軸線Fa、Fbが互いに平行であって、かつ逆向きであり、第一、第二の磁力線群Ma、Mbの向きも互いに平行であって、かつ、逆向きであるから、第一の蒸着源30aから放出される荷電粒子が第一の磁力線群Maに入射するときの入射角度と、第二の蒸着源30bから荷電粒子が第二の磁力線群Mbに入射するときの入射角度は略等しくなる。   As described above, the first and second discharge axes Fa and Fb are parallel to each other and in opposite directions, and the directions of the first and second magnetic force lines Ma and Mb are also parallel to each other, and Because of the reverse direction, the incident angle when the charged particles emitted from the first vapor deposition source 30a enter the first magnetic field line group Ma and the charged particles from the second vapor deposition source 30b are the second magnetic field line group. Incident angles when entering Mb are substantially equal.

第一、第二の蒸着源30a、30bから放出される荷電粒子には正の荷電粒子(例えばイオン)と負の荷電粒子(例えば電子)とがある。フレミング左手の法則で、正の荷電粒子の放出方向Fa、Fbを中指の指し示す方向とし、その荷電粒子が入射する磁力線群Ma、Mbの方向を人差し指の指し示す方向とした時に、正の荷電粒子に加えられるローレンツ力の向きは、第一の蒸着源30aから第一の磁力線群Maに入射する時と、第二の蒸着源30bから第二の磁力線群Mbに入射する時と同じになる。   The charged particles emitted from the first and second vapor deposition sources 30a and 30b include positive charged particles (for example, ions) and negative charged particles (for example, electrons). According to Fleming's left-hand rule, when positively charged particles are emitted in directions Fa and Fb, the direction indicated by the middle finger, and the direction of magnetic field lines Ma and Mb on which the charged particles are incident are indicated by the index finger, The direction of the applied Lorentz force is the same as when it enters the first magnetic field line group Ma from the first vapor deposition source 30a and when it enters the second magnetic field line group Mb from the second vapor deposition source 30b.

負の荷電粒子である電子は、正の荷電粒子に加えられるローレンツ力と反対方向の向きに曲がる力を受けるから、第一の蒸着源30aから放出される電子も、第二の蒸着源30bから放出される電子も同じ方向に曲がる。   Electrons that are negatively charged particles are subjected to a force that bends in the direction opposite to the Lorentz force applied to the positively charged particles. Therefore, electrons emitted from the first vapor deposition source 30a are also emitted from the second vapor deposition source 30b. The emitted electrons also bend in the same direction.

基板ホルダ7を電子が曲がる方向の先に配置した場合には、基板ホルダ7の近傍に電子雲が形成される。図2の符号45は正の荷電粒子のうち電荷質量比(電荷/質量)が大きい微小荷電粒子を示しており、微小荷電粒子45はクーロン力とローレンツ力との差の力による影響が大きい。   When the substrate holder 7 is arranged ahead of the direction in which electrons are bent, an electron cloud is formed in the vicinity of the substrate holder 7. Reference numeral 45 in FIG. 2 indicates a minute charged particle having a large charge mass ratio (charge / mass) among positively charged particles, and the minute charged particle 45 is greatly influenced by a difference between the Coulomb force and the Lorentz force.

第一の蒸着源30aから荷電粒子を放出する時、第二の蒸着源30bから荷電粒子30bを放出する時のいずれの場合も、電子雲が成長してクーロン力がローレンツ力よりも大きくなるまで荷電粒子の放出を続ければ、微小荷電粒子45の飛行方向が基板ホルダ7側に曲がる。   When discharging charged particles from the first vapor deposition source 30a and when discharging charged particles 30b from the second vapor deposition source 30b, the electron cloud grows until the Coulomb force becomes larger than the Lorentz force. If the discharge of the charged particles is continued, the flight direction of the minute charged particles 45 is bent toward the substrate holder 7 side.

電荷質量比の小さい巨大粒子46はクーロン力による影響も、ローレンツ力による影響も小さく、その飛行方向が曲げられず直進するから、基板ホルダ7をいずれの側に配置した場合も巨大粒子46は基板ホルダ7に到達しない。
従って、基板ホルダ7に保持された基板11には第一、第二の蒸着源30a、30bから微小荷電粒子45だけが到達し、膜質の良い薄膜が形成される。
The giant particles 46 having a small charge-mass ratio are less affected by the Coulomb force and the Lorentz force, and the flight direction of the giant particles 46 is not bent. The holder 7 is not reached.
Therefore, only the minute charged particles 45 reach the substrate 11 held by the substrate holder 7 from the first and second vapor deposition sources 30a and 30b, and a thin film with good film quality is formed.

第一、第二の蒸着源30から異なる種類の蒸着材料の荷電粒子を放出させれば、同じ基板11上に異なる種類の薄膜が積層される。例えば、Co・FeNi/Ta/Py/Ir・Mn等の磁性、非磁性材料を、膜厚がnm単位の薄膜で積層させ、磁性デバイス、特にMRAM等を製造することができる。
また、第一、第二の蒸着源30から同じ種類の蒸着材料の荷電粒子を放出させれば、同じ基板11上に1種類の薄膜を成長させることができる。
If charged particles of different types of vapor deposition materials are emitted from the first and second vapor deposition sources 30, different types of thin films are stacked on the same substrate 11. For example, magnetic devices such as Co.FeNi / Ta / Py / Ir.Mn and nonmagnetic materials can be laminated with a thin film having a thickness of nm unit to manufacture a magnetic device, particularly an MRAM.
Further, if charged particles of the same kind of vapor deposition material are emitted from the first and second vapor deposition sources 30, one kind of thin film can be grown on the same substrate 11.

次に、磁界形成装置5の具体的な構成を下記の具体的な実施例1〜4として説明すると、実施例1〜4の成膜装置1a〜1dは磁界形成装置5a〜5dが互いに異なるが、それ以外は上記包括的な実施例とそれぞれ同じ構造を有している。   Next, the specific configuration of the magnetic field forming device 5 will be described as the following specific examples 1 to 4. The film forming devices 1a to 1d of the examples 1 to 4 are different from each other in the magnetic field forming devices 5a to 5d. Otherwise, it has the same structure as the above-described comprehensive embodiment.

先ず、実施例1の成膜装置1aについて説明すると、この成膜装置1aの磁界形成装置5aは、第一、第二の磁石部材52a、52bと、反転装置50とを有している(図3)。   First, the film forming apparatus 1a of Example 1 will be described. The magnetic field forming apparatus 5a of the film forming apparatus 1a includes first and second magnet members 52a and 52b and a reversing device 50 (see FIG. 3).

反転装置50は真空槽2の外部に立設された第一、第二の回転軸51a、51bを有しており、真空槽2内部の上記第一、第二の放出軸線Fa、Fbが通る空間を放出空間とすると、第一、第二の回転軸51a、51bは放出空間の一方の側と他方の側にそれぞれ位置している。   The reversing device 50 has first and second rotating shafts 51 a and 51 b erected outside the vacuum chamber 2, and the first and second discharge axes Fa and Fb inside the vacuum chamber 2 pass through. Assuming that the space is the discharge space, the first and second rotating shafts 51a and 51b are located on one side and the other side of the discharge space, respectively.

第一、第二の磁石部材52a、52bは板状の永久磁石であって、その一端が第一、第二の回転軸51a、51bにそれぞれ接続されている。従って、第一、第二の磁石部材52a、52bは真空槽2の外部であって、放出空間の一方の側と他方の側にそれぞれ位置している。   The first and second magnet members 52a and 52b are plate-like permanent magnets, and one ends thereof are connected to the first and second rotating shafts 51a and 51b, respectively. Accordingly, the first and second magnet members 52a and 52b are located outside the vacuum chamber 2 and on one side and the other side of the discharge space, respectively.

第一、第二の回転軸51a、51bは不図示のモータに接続されており、モータの動力を第一、第二の回転軸51a、51bに伝達させると、第一、第二の回転軸51a、51bは、その中心軸線が真空槽2に対して静止した状態で、その中心軸線を回転軸線として回転するように構成されている。   The first and second rotating shafts 51a and 51b are connected to a motor (not shown), and when the power of the motor is transmitted to the first and second rotating shafts 51a and 51b, the first and second rotating shafts. The central axes 51a and 51b are configured to rotate with the central axis as a rotation axis while the central axis is stationary with respect to the vacuum chamber 2.

図3の符号59a、59bは第一、第二の回転軸51a、51bの回転軸線をそれぞれ示しており、第一、第二の回転軸51a、51bが回転すると、第一、第二の磁石部材52a、52bも回転軸線59a、59bを中心として回転し、第一、第二の磁石部材52a、52bの表面と裏面の向きが変る。   Reference numerals 59a and 59b in FIG. 3 indicate the rotation axes of the first and second rotation shafts 51a and 51b, respectively, and when the first and second rotation shafts 51a and 51b rotate, the first and second magnets are rotated. The members 52a and 52b also rotate about the rotation axes 59a and 59b, and the directions of the front and back surfaces of the first and second magnet members 52a and 52b change.

例えば、第一、第二の磁石部材52a、52bの表面が放出空間に向けて互いに平行配置される場所(第一の位置A)から、表面が放出空間から離れる方向に第一、第二の磁石部材52a、52bを180°回転させると、第一、第二の磁石部材52a、52bは裏面が放出空間に向けて互いに平行配置される第二の位置Bに移動する。   For example, the first and second magnet members 52a and 52b are arranged in a direction in which the surfaces are separated from the discharge space from the place where the surfaces of the first and second magnet members 52a and 52b are arranged in parallel with each other toward the discharge space. When the magnet members 52a and 52b are rotated by 180 °, the first and second magnet members 52a and 52b move to the second position B where the back surfaces are arranged in parallel with each other toward the discharge space.

第一、第二の回転軸51a、51bは回転方向を逆転可能に構成されており、第一、第二の磁石部材52a、52bを逆方向に180°回転させると、第一、第二の磁石部材52a、52bは第二の位置Bから第一の位置Aに戻り、表面が放出空間に向けられる。   The first and second rotating shafts 51a and 51b are configured to be able to reverse the rotation direction. When the first and second magnet members 52a and 52b are rotated 180 ° in the reverse direction, the first and second rotating shafts 51a and 51b The magnet members 52a and 52b return from the second position B to the first position A, and their surfaces are directed to the discharge space.

ここでは、反転装置50は不図示のストッパを有しており、第一、第二の磁石部材52a、52bは、正方向に回転する時には裏面が第二の位置Bでストッパに接触して静止し、逆方向に回転する時には表面が第一の位置Aでストッパに接触して静止する。従って、第一、第二の磁石部材52a、52bは真空槽2に接触することなく、第一、第二の位置A、Bの間を移動する。   Here, the reversing device 50 has a stopper (not shown), and when the first and second magnet members 52a and 52b rotate in the forward direction, the back surface contacts the stopper at the second position B and stops. When rotating in the opposite direction, the surface comes into contact with the stopper at the first position A and stops. Accordingly, the first and second magnet members 52 a and 52 b move between the first and second positions A and B without contacting the vacuum chamber 2.

第二の磁石部材52a、52bは表面と裏面に異なる極性の磁極が形成されており、第一の磁石部材52aの表面にS極が、裏面にN極が形成された時には、第二の磁石部材52bの表面にN極が、裏面にS極が形成され、第一の磁石部材52aの表面にN極が、裏面にS極が形成された時には、第二の磁石部材52bの表面にS極が、裏面にN極が形成されている。   The second magnet members 52a and 52b are formed with magnetic poles having different polarities on the front surface and the back surface. When the S pole is formed on the front surface of the first magnet member 52a and the N pole is formed on the back surface, the second magnet member 52a, 52b When the N pole is formed on the surface of the member 52b, the S pole is formed on the back surface, the N pole is formed on the surface of the first magnet member 52a, and the S pole is formed on the back surface, the S pole is formed on the surface of the second magnet member 52b. An N pole is formed on the back surface.

従って、第一、第二の磁石部材52a、52bが第一の位置Aにある時には、互いに異なる磁極が形成された表面同士が対向し、その表面の間が偏向領域Mとなって磁力線が形成され、第二の位置Bにある時には互いに異なる磁極が形成された裏面同士が対向し、その裏面の間が偏向領域Mとなって磁力線が形成される。   Therefore, when the first and second magnet members 52a and 52b are at the first position A, the surfaces on which the different magnetic poles are formed face each other, and the magnetic field lines are formed between the surfaces as the deflection region M. When they are at the second position B, the back surfaces on which different magnetic poles are formed face each other, and a magnetic field line is formed between the back surfaces as a deflection region M.

上述したように、第一、第二の磁石部材52a、52bは真空槽2の外部に位置しているが、ここでは真空槽2が透磁性材料で構成されており、形成される磁力線群は真空槽2の壁を通過して真空槽2の内部を通る。   As described above, the first and second magnet members 52a and 52b are located outside the vacuum chamber 2, but here the vacuum chamber 2 is made of a magnetically permeable material, and the magnetic field lines formed are It passes through the wall of the vacuum chamber 2 and passes through the inside of the vacuum chamber 2.

第一、第二の磁石部材52a、52bは第一、第二の位置A、Bの間を移動すると、真空槽2側の面が表面から裏面に変更されるから、移動によって真空槽2側の面の磁極が反転する。従って、第一、第二の磁力線群Ma、Mbはその向きが互いに逆向きになる。
第一、第二の磁石部材52a、52bの形状や大きさと、第一、第二の位置A,Bでの配置は、第一、第二の磁力線群Ma、Mbが互いに平行になるよう設定されている。
When the first and second magnet members 52a and 52b move between the first and second positions A and B, the surface on the vacuum chamber 2 side is changed from the front surface to the back surface. The magnetic poles on the surface of this are reversed. Therefore, the directions of the first and second magnetic force lines Ma and Mb are opposite to each other.
The shape and size of the first and second magnet members 52a and 52b and the arrangement at the first and second positions A and B are set so that the first and second magnetic force lines Ma and Mb are parallel to each other. Has been.

例えば、第一、第二の磁石部材52a、52bは同じ形状同じ大きさであって、第一の位置Aでは表面同士が正対して、その表面に垂直な第一の磁力線群Maが形成され、第二の位置Bでは裏面同士が正対して、その裏面に垂直な第二の磁力線群Mbが形成されるようになっている。   For example, the first and second magnet members 52a and 52b have the same shape and the same size, and at the first position A, the surfaces face each other, and a first magnetic field line group Ma perpendicular to the surfaces is formed. In the second position B, the back surfaces face each other, and a second magnetic field line group Mb perpendicular to the back surface is formed.

第一、第二の位置A、B間の移動は、第一、第二の磁石部材52a、52bが180°回転して、その表面が第一の位置Aにある時の平面と、その裏面が第二の位置Bにある時の平面が同一になるから、第一、第二の磁力線群Ma、Mbは互いに平行になる。   The movement between the first and second positions A and B includes a plane when the first and second magnet members 52a and 52b are rotated 180 ° and the front surface is at the first position A, and the back surface thereof. Since the planes at the second position B are the same, the first and second magnetic force lines Ma and Mb are parallel to each other.

上述したように、第一、第二の蒸着源30a、30bは互いに平行であって、かつ、逆向きの方向に荷電粒子を放出するから、第一、第二の蒸着源30a、30bからの荷電粒子が第一、第二の磁力線群Ma、Mbに入射する時の入射角度は等しくなる。   As described above, since the first and second vapor deposition sources 30a and 30b are parallel to each other and emit charged particles in opposite directions, the first and second vapor deposition sources 30a and 30b The incident angles when charged particles are incident on the first and second magnetic field lines Ma and Mb are equal.

以上は、第一、第二の磁石部材52a、52bの一端部を第一、第二の回転軸51a、51bに接続させる場合について説明したが、本発明はこれに限定されるものではなく、第一、第二の回転軸51a、51bを第一、第二の磁石部材52a、52bに挿通させることも可能である。   The above describes the case where one end of the first and second magnet members 52a, 52b is connected to the first and second rotating shafts 51a, 51b, but the present invention is not limited to this, It is also possible to insert the first and second rotating shafts 51a and 51b through the first and second magnet members 52a and 52b.

第一、第二の回転軸51a、51bを第一、第二の磁石部材52a、52bに挿通させる場合には、第一、第二の磁石部材52a、52bを第一、第二の位置A、Bの間で回転させる時に、第一、第二の磁石部材52a、52bの一端部が真空槽2に近づくよう回転するため、第一、第二の回転軸51a、51bと真空槽2との間の距離を広くする必要がある。   When the first and second rotating shafts 51a and 51b are inserted through the first and second magnet members 52a and 52b, the first and second magnet members 52a and 52b are moved to the first and second positions A, respectively. , B, since one end of the first and second magnet members 52a, 52b rotates so as to approach the vacuum chamber 2, the first and second rotary shafts 51a, 51b and the vacuum chamber 2 It is necessary to increase the distance between the two.

上述した実施例1の成膜装置1aと、後述する実施例2の成膜装置1bでは、第一、第二の磁石部材52a、52bや反転装置50を真空槽2の内部に配置してもよいが、それらの部材を真空槽2外部に配置した方が装置の構造が簡易になり、メンテナンスも容易になる。   In the film forming apparatus 1a of the first embodiment described above and the film forming apparatus 1b of the second embodiment to be described later, the first and second magnet members 52a and 52b and the reversing device 50 may be arranged inside the vacuum chamber 2. However, the arrangement of these members outside the vacuum chamber 2 simplifies the structure of the apparatus and facilitates maintenance.

第一、第二の磁石部材52a、52bを第一、第二の位置A、B間で移動させる時の回転角度も180°に限定されず、互いに平行でかつ逆向きの第一、第二の磁力線群Ma、Mbが形成されるのであれば、その回転角度は180°未満であってもよいし、180°を超えてもよい。   The rotation angle when the first and second magnet members 52a and 52b are moved between the first and second positions A and B is not limited to 180 °, and the first and second are parallel and opposite to each other. If the magnetic field lines Ma and Mb are formed, the rotation angle may be less than 180 ° or may exceed 180 °.

次に、図4に示した実施例2の成膜装置1bについて説明する。この成膜装置1bの磁界形成装置5bは、電磁石で構成された第一、第二の磁石部材62a、62bと、電源装置で構成された反転装置60とを有しており、第一、第二の磁石部材62a、62bはそれぞれ反転装置60に接続され、反転装置60から第一、第二の磁石部材62a、62bのコイルに電流が供給されると、第一、第二の磁石部材62a、62bが磁化される。   Next, the film forming apparatus 1b of Example 2 shown in FIG. 4 will be described. The magnetic field forming device 5b of the film forming apparatus 1b includes first and second magnet members 62a and 62b made of electromagnets, and a reversing device 60 made of a power supply device. The two magnet members 62a and 62b are respectively connected to the reversing device 60, and when current is supplied from the reversing device 60 to the coils of the first and second magnet members 62a and 62b, the first and second magnet members 62a. 62b are magnetized.

第一、第二の磁石部材62a、62bは真空槽2の外部であって、荷電粒子が放出される放出空間の一方の側と他方の側にそれぞれ配置されている。第一、第二の磁石部材62a、62bの磁極が形成される側の面は放出空間に向けられ、反転装置60が供給する電流の向きは、第一の磁石部材62aの放出空間側の面と、第二の磁石部材62bの放出空間側の面に、互いに異なる極性の磁極が形成されるようになっている。   The first and second magnet members 62a and 62b are disposed outside the vacuum chamber 2 and on one side and the other side of the discharge space from which charged particles are discharged, respectively. The surfaces of the first and second magnet members 62a and 62b on the side where the magnetic poles are formed are directed to the discharge space, and the direction of the current supplied by the reversing device 60 is the surface of the first magnet member 62a on the discharge space side. In addition, magnetic poles having different polarities are formed on the surface of the second magnet member 62b on the discharge space side.

従って、この成膜装置1bでは第一の磁石部材62aの放出空間側の面と、第二の磁石部材62bの放出空間側の面の間が偏向領域Mとなり、真空槽2が透磁性材料で構成された場合には、偏向領域Mの磁力線は真空槽2内部を通る。   Therefore, in this film forming apparatus 1b, the space between the surface on the discharge space side of the first magnet member 62a and the surface on the discharge space side of the second magnet member 62b becomes the deflection region M, and the vacuum chamber 2 is made of a magnetically permeable material. When configured, the magnetic field lines in the deflection region M pass through the vacuum chamber 2.

ここでは、第一、第二の磁石部材62a、62bはコイルの中心軸線が同一軸線上に位置するようにされ、第一、第二の磁石部材62a、62bの内部に形成される磁力線の中心軸線も同一軸線上に位置するから、偏向領域Mに形成される磁力線群はその同一軸線に沿った直線状になる。   Here, the first and second magnet members 62a and 62b are such that the central axis of the coil is positioned on the same axis, and the center of the magnetic field lines formed inside the first and second magnet members 62a and 62b. Since the axes are also located on the same axis, the lines of magnetic force formed in the deflection region M are linear along the same axis.

反転装置60は第一、第二の磁石部材62a、62bに供給する電流の向きを逆転可能になっており、第一、第二の磁石部材62a、62bに逆向きの電流を流すと、放出空間側の面の磁極の極性が逆になる。   The reversing device 60 is capable of reversing the direction of the current supplied to the first and second magnet members 62a and 62b, and discharges when a reverse current is passed through the first and second magnet members 62a and 62b. The polarity of the magnetic poles on the space side surface is reversed.

第一の磁石部材62aの放出空間側の面の磁極と、第二の磁石部材62bの放出空間の面の磁極の両方の極性を逆転させると、磁力線群が消滅し、同じ場所に逆向きの磁力線群が形成される。   When the polarities of both the magnetic poles on the surface of the first magnet member 62a on the emission space side and the magnetic poles on the surface of the emission space of the second magnet member 62b are reversed, the magnetic field lines disappear and reverse to the same place. Magnetic field lines are formed.

この磁界形成装置5bは、第一、第二の磁石部材62a、62bを相対的に静止した状態で磁極の極性だけを反転させるので、同じ場所に互いに平行であって、かつ、逆向きの第一、第二の磁力線群が形成されることになる。   Since the magnetic field forming device 5b reverses only the polarity of the magnetic poles with the first and second magnet members 62a and 62b relatively stationary, the first and second magnet members 62a and 62b are parallel to each other at the same place and in the opposite directions. First and second magnetic field lines are formed.

次に、図5に示した実施例3の成膜装置1cについて説明する。この成膜装置1cの磁界形成装置5cは、真空槽2外部に配置された電源80と、真空槽2外部に配置され、電源80にそれぞれ接続された四個の単位電磁石81a〜81dとを有している。
四個の単位電磁石81a〜81dは二個で一組として、各組の二個の単位電磁石81a〜81dが放出空間の一方の側と他方の側にそれぞれ位置していいる。
Next, the film forming apparatus 1c of Example 3 shown in FIG. 5 will be described. The magnetic field forming device 5c of the film forming apparatus 1c has a power source 80 disposed outside the vacuum chamber 2 and four unit electromagnets 81a to 81d disposed outside the vacuum chamber 2 and connected to the power source 80, respectively. is doing.
Four unit electromagnets 81a to 81d are formed as a set, and two unit electromagnets 81a to 81d of each set are located on one side and the other side of the discharge space, respectively.

単位電磁石81a〜81dは不図示のコイルを有しており、電源80から単位電磁石81a〜81dのコイルに通電すると、単位電磁石81a〜81dが磁化され、各単位電磁石81a〜81dにS極とN極の二個の磁極が形成される。単位電磁石81a〜81dは一方の磁極が放出空間に向けられ、他方の磁極が放出空間とは反対側に向けられている。   The unit electromagnets 81a to 81d have coils (not shown), and when the coil of the unit electromagnets 81a to 81d is energized from the power supply 80, the unit electromagnets 81a to 81d are magnetized, and the unit electromagnets 81a to 81d have an S pole and N. Two magnetic poles are formed. In the unit electromagnets 81a to 81d, one magnetic pole is directed to the emission space, and the other magnetic pole is directed to the side opposite to the emission space.

電源80は、各組の二個の単位電磁石81a〜81dのうち、一方の単位電磁石81a、81cの放出空間側の面と、他方の単位電磁石81b、81dの放出空間側の面に、互いに反対の極性の磁極が形成されるよう電流を供給し、真空槽2が透磁性材料で構成された場合には、各組の2枚の単位電磁石81a〜81dのうち、一方の単位電磁石81a、81cと、他方の単位電磁石81b、81dの間に放出空間を通る第一、第二の磁力線群Ma、Mbが形成される。   The power supply 80 is opposite to the discharge space side surface of one of the unit electromagnets 81a and 81c and the discharge space side surface of the other unit electromagnets 81b and 81d of the two unit electromagnets 81a to 81d of each set. When a current is supplied so as to form a magnetic pole of the polarity and the vacuum chamber 2 is made of a magnetically permeable material, one unit electromagnet 81a, 81c of the two unit electromagnets 81a-81d of each set. The first and second magnetic field lines Ma and Mb passing through the discharge space are formed between the other unit electromagnets 81b and 81d.

各組の2枚の単位電磁石81a〜81dのうち、一方の単位電磁石81a、81cは放出空間の一方の側、他方の単位電磁石81b、81dは放出空間の他方の側に配置されているから、放出空間の一方の側と、他方の側には、それぞれ二個の単位電磁石81a〜81dが配置されたことになる。   Of the two unit electromagnets 81a to 81d in each group, one unit electromagnet 81a, 81c is arranged on one side of the emission space, and the other unit electromagnet 81b, 81d is arranged on the other side of the emission space. Two unit electromagnets 81a to 81d are arranged on one side and the other side of the discharge space, respectively.

電源80は、放出空間の同じ側にある二個の単位電磁石81a〜81dには、放出空間側の面に異なる極性の磁極が形成される電流を供給するよう設定されており、従って第一、第二の磁力線群Ma、Mbはその向きが逆になる。   The power supply 80 is set so as to supply the two unit electromagnets 81a to 81d on the same side of the emission space with currents that form magnetic poles of different polarities on the surface of the emission space. The directions of the second magnetic field lines Ma and Mb are reversed.

各組の二個の単位電磁石81a〜81dは、コイルの中心軸線、即ち、単位電磁石81a〜81d内部に形成される磁力線の中心軸線が同一軸線上に位置するよう配置されており、従って、第一、第二の磁力線群Ma、Mbはその軸線に沿った直線状となる。   The two unit electromagnets 81a to 81d of each set are arranged so that the central axis of the coil, that is, the central axis of the magnetic force lines formed inside the unit electromagnets 81a to 81d is located on the same axis. The first and second magnetic force lines Ma and Mb are linear along the axis.

一方の組の二個の単位電磁石81a、81bと、他方の組の二個の単位電磁石81c、81dは、その内部に形成される磁力線の中心軸線が互いに平行になるよう配置されており、従って第一、第二の磁力線群Ma、Mbの向きは平行になる。   The two unit electromagnets 81a and 81b in one set and the two unit electromagnets 81c and 81d in the other set are arranged so that the central axes of the magnetic lines of force formed therein are parallel to each other. The directions of the first and second magnetic force lines Ma and Mb are parallel.

上述したように、放出空間の同じ側にある二個の単位電磁石81a〜81dには、放出空間側の面に異なる極性の磁極が形成されるから、その二個の単位電磁石81a〜81dに同時に通電すると、その二個の単位電磁石81a〜81dの間に放出空間を通らない磁力線群が形成されてしまう。   As described above, since the two unit electromagnets 81a to 81d on the same side of the emission space are formed with magnetic poles having different polarities on the surface of the emission space, the two unit electromagnets 81a to 81d are simultaneously provided with the two unit electromagnets 81a to 81d. When energized, a group of lines of magnetic force that do not pass through the discharge space is formed between the two unit electromagnets 81a to 81d.

ここでは、電源80はスイッチ89を有しており、スイッチ89の切替によって、一方の組の二個の単位電磁石81a、81bにそれぞれ電流を供給する時には、他方の組の二個の単位電磁石81c、81dのいずれにも電流が供給されないようにされている。   Here, the power source 80 includes a switch 89, and when the switch 89 is switched to supply current to the two unit electromagnets 81a and 81b in one set, the other unit electromagnet 81c in the other set. , 81d so that no current is supplied.

従って、上記第一の磁力線群Maか第二の磁力線群Mbのいずれか一方だけが形成され、放出空間の同じ側にある二個の単位電磁石81a〜81dの間には磁力線群が形成されない。   Accordingly, only one of the first magnetic field line group Ma and the second magnetic field line group Mb is formed, and no magnetic field line group is formed between the two unit electromagnets 81a to 81d on the same side of the emission space.

以上は、単位電磁石81a〜81dをそれぞれ真空槽2の外部に配置する場合について説明したが、本発明はこれに限定されず、単位電磁石81a〜81dのいずれか1つ、又は全部を真空槽2内部に配置してもよいが、各単位電磁石81a〜81dを真空槽2の外部に配置した方が、装置の構造とメンテナンスが簡易になる。   The case where the unit electromagnets 81a to 81d are arranged outside the vacuum chamber 2 has been described above. However, the present invention is not limited to this, and any one or all of the unit electromagnets 81a to 81d are disposed in the vacuum chamber 2. Although the unit electromagnets 81 a to 81 d may be arranged outside the vacuum chamber 2, the structure and maintenance of the apparatus are simplified.

次に、図6に示した実施例4の成膜装置1dについて説明する。この成膜装置1dは、第一、第二の磁石部材72a、72bと、反転装置とを有しており、反転装置は磁化手段72cを有する。   Next, the film forming apparatus 1d of Example 4 shown in FIG. 6 will be described. The film forming apparatus 1d includes first and second magnet members 72a and 72b and a reversing device, and the reversing device includes a magnetizing unit 72c.

磁化手段72cは細長の板状のヨーク73と、ヨーク73の長手方向の中央部分に取り付けられた磁石74とを有しており、ヨーク73は磁石74によって磁化され、長手方向の一端部と他端部に互いに反対の極性の磁極が形成されている。   The magnetizing means 72c has an elongated plate-like yoke 73 and a magnet 74 attached to the central portion in the longitudinal direction of the yoke 73. The yoke 73 is magnetized by the magnet 74, and one end portion in the longitudinal direction and the other. Magnetic poles having opposite polarities are formed at the ends.

反転装置は磁化手段72cのほかに不図示の回転機構を有しており、回転機構は、磁化手段72cを、ヨーク73の表面と垂直であって、その表面の中心を通る回転軸線79を中心として水平面内で回転可能に構成されている。上述したように、N極とS極の2つの磁極はヨーク73の一端と他端に形成されているから、回転軸線79は2つの磁極の間を通り、磁化手段72cが180°回転させて、長手方向の一端部と他端部を入れ替えると、2つの磁極の位置が入れ替わる。   The reversing device has a rotating mechanism (not shown) in addition to the magnetizing means 72c. The rotating mechanism moves the magnetizing means 72c around a rotation axis 79 perpendicular to the surface of the yoke 73 and passing through the center of the surface. It is configured to be rotatable in a horizontal plane. As described above, since the two magnetic poles of the N pole and the S pole are formed at one end and the other end of the yoke 73, the rotation axis 79 passes between the two magnetic poles, and the magnetizing means 72c rotates 180 °. When the one end and the other end in the longitudinal direction are exchanged, the positions of the two magnetic poles are exchanged.

第一、第二の磁石部材72a、72bは板状であって、表面を回転軸線79の延長線と平行に向けた状態で、表面が回転軸線79の延長線を挟んで対向するように配置されている。   The first and second magnet members 72 a and 72 b are plate-like, and are arranged so that the surfaces face each other across the extension line of the rotation axis 79 in a state where the surface is parallel to the extension line of the rotation axis 79. Has been.

反転装置は、磁化手段72cを回転軸線79の延長線に沿って移動させる不図示の移動機構を有している。第一、第二の磁石部材72a、72bの間の距離は、磁化手段72cのヨーク73の長さよりも短くされており、磁化手段72cを回転軸線79に沿って、第一、第二の磁石部材72a、72bに近づく方向に移動させると、一端が第一の磁石部材72aに、他端が第二の磁石部材72bにそれぞれ接触する。   The reversing device has a moving mechanism (not shown) that moves the magnetizing means 72 c along the extension line of the rotation axis 79. The distance between the first and second magnet members 72a and 72b is shorter than the length of the yoke 73 of the magnetizing means 72c, and the magnetizing means 72c is moved along the rotation axis 79 along the first and second magnets. When moved in a direction approaching the members 72a and 72b, one end contacts the first magnet member 72a and the other end contacts the second magnet member 72b.

上述したように、ヨーク73の一端と他端は磁石74によって異なる極性の磁極が形成されているから、第一、第二の磁石部材72a、72bは互いに異なる極性の磁極に接触したことになる。   As described above, since the magnetic poles having different polarities are formed by the magnet 74 at one end and the other end of the yoke 73, the first and second magnet members 72a and 72b are in contact with the magnetic poles having different polarities. .

第一、第二の磁石部材72a、72bは継鉄のような磁化材料で構成されており、磁極と非接触な状態では磁化されていないが、磁極と接触すると磁化され、接触した磁極と同じ極性になる。   The first and second magnet members 72a and 72b are made of a magnetized material such as a yoke, and are not magnetized in a non-contact state with the magnetic pole, but are magnetized when in contact with the magnetic pole and are the same as the contacted magnetic pole Become polar.

従って、第一、第二の磁石部材72a、72bは互いに異なる極性に磁化され、第一、第二の磁石部材72a、72bの互いに対向する表面の間が偏向空間となって、その偏向空間に第一の磁力線群Maが形成される。   Accordingly, the first and second magnet members 72a and 72b are magnetized to have different polarities, and the space between the opposing surfaces of the first and second magnet members 72a and 72b becomes a deflection space, A first magnetic field line group Ma is formed.

次に、磁化手段72cを回転軸線79に沿って第一、第二の磁石部材72a、72bから遠ざかる方向に移動させると、磁化手段72cが第一、第二の磁石部材72a、72bから分離し、第一、第二の磁石部材72a、72bの磁極が消滅して第一の磁力線群Maが消える。   Next, when the magnetizing means 72c is moved in the direction away from the first and second magnet members 72a and 72b along the rotation axis 79, the magnetizing means 72c is separated from the first and second magnet members 72a and 72b. The magnetic poles of the first and second magnet members 72a and 72b disappear and the first magnetic field line group Ma disappears.

磁化手段72cを第一、第二の磁石部材72a、72bから分離した状態で、上述したように磁化手段72cを回転させて磁極の位置を入れ替えた後、磁化手段72cを第一、第二の磁石部材72a、72bに近づく方向に移動させると、第一、第二の磁石部材72a、72bには、第一の磁力線群Maを形成した時と逆の極性の磁極がそれぞれ接触し、第一、第二の磁石部材72a、72bの間に第一の磁力線群Maとは逆向きの第二の磁力線群Mbが形成される。   After the magnetizing means 72c is separated from the first and second magnet members 72a and 72b, the magnetizing means 72c is rotated as described above to change the position of the magnetic pole, and then the magnetizing means 72c is changed to the first and second magnet members 72c and 72b. When moved in the direction approaching the magnet members 72a and 72b, the first and second magnet members 72a and 72b are respectively contacted with magnetic poles having opposite polarities to those when the first magnetic field lines Ma are formed. Between the second magnet members 72a and 72b, a second magnetic field line group Mb opposite to the first magnetic field line group Ma is formed.

第一、第二の磁石部材72a、72bは相対的に静止しており、第一、第二の磁石部材72a、72bにそれぞれ形成される磁極の極性だけが反転するので、第一、第二の磁力線群Ma、Mbは同じ場所に形成され、その向きは互いに平行で、かつ逆向きになる。   The first and second magnet members 72a and 72b are relatively stationary, and only the polarities of the magnetic poles formed on the first and second magnet members 72a and 72b are reversed. The magnetic field lines Ma and Mb are formed at the same place, and their directions are parallel to each other and opposite to each other.

第一、第二の蒸着源30a、30bは第一、第二の磁力線群Ma、Mbが形成される偏向領域の一方の側と他方の側で、荷電粒子の放出軸線が第一、第二の磁力線群Ma、Mbと略垂直に交わるよう配置されており、従って第一、第二の磁力線群Ma、Mbに、第一、第二の蒸着源30a、30bからの荷電粒子が入射する時の角度は略等しくなる。   The first and second vapor deposition sources 30a and 30b are arranged on the one side and the other side of the deflection region where the first and second magnetic force lines Ma and Mb are formed. When the charged particles from the first and second vapor deposition sources 30a and 30b are incident on the first and second magnetic force line groups Ma and Mb, respectively. Are substantially equal.

上記実施例4の成膜装置1dでは、第一、第二の磁石部材72a、72bと、磁化手段72cはそれぞれ真空槽2の内部に設けてもよいし、真空槽2の外部に設けてもよいが、第一、第二の磁石部材72a、72bと、磁化手段72cを真空槽2の外部に設けた方が、装置の構造とメンテナンスが簡易になる。第一、第二の磁石部材72a、72bと磁化手段72cを真空槽2の外部に設ける場合には、真空槽2を透磁性材料で構成すれば、第一、第二の磁力線群Ma、Mbが真空槽2内部を通る。   In the film forming apparatus 1d of the fourth embodiment, the first and second magnet members 72a and 72b and the magnetizing unit 72c may be provided inside the vacuum chamber 2 or outside the vacuum chamber 2, respectively. Although the first and second magnet members 72a and 72b and the magnetizing means 72c are provided outside the vacuum chamber 2, the structure and maintenance of the apparatus are simplified. When the first and second magnet members 72a and 72b and the magnetizing means 72c are provided outside the vacuum chamber 2, if the vacuum chamber 2 is made of a magnetically permeable material, the first and second magnetic field lines Ma and Mb Passes through the vacuum chamber 2.

第一、第二の磁石部材72a、72bと、磁化手段72cの移動は、第一、第二の磁石部材72a、72bが相対的に静止した状態で、第一、第二の磁石部材72a、72bに対して磁化手段72cが相対的に移動するのであれば、磁化手段72cを静止させた状態で、第一、第二の磁石部材72a、72bを移動させてもよいし、第一、第二の磁石部材72a、72bと磁化手段72cを全て移動させてもよい。   The first and second magnet members 72a and 72b and the magnetizing means 72c are moved while the first and second magnet members 72a and 72b are relatively stationary. If the magnetizing means 72c moves relative to 72b, the first and second magnet members 72a and 72b may be moved while the magnetizing means 72c is stationary. The second magnet members 72a and 72b and the magnetizing means 72c may all be moved.

次に、上記包括的な実施例とは異なる実施例である実施例5の成膜装置について説明する。
図7の符号76は実施例5の成膜装置を有している。この成膜装置76は不図示の真空槽と、四個の蒸着源30a〜30dと、磁界形成装置77とを有している。
Next, a film forming apparatus of Example 5 which is an example different from the above comprehensive example will be described.
Reference numeral 76 in FIG. 7 has the film forming apparatus of the fifth embodiment. The film forming apparatus 76 includes a vacuum chamber (not shown), four vapor deposition sources 30a to 30d, and a magnetic field forming apparatus 77.

各蒸着源30a〜30dは上記包括的実施例の第一、第二の蒸着源30a、30bと同じ構造を有しており、各蒸着源30a〜30dの4つアノード電極31a〜31dは、一端部がそれぞれ真空槽内部に気密に挿通されている。従って、アノード電極31a〜31dの一端部の開口36a〜36dは真空槽2の内部に位置する。   Each of the vapor deposition sources 30a to 30d has the same structure as the first and second vapor deposition sources 30a and 30b in the above-described comprehensive example, and the four anode electrodes 31a to 31d of the vapor deposition sources 30a to 30d have one end. Each part is inserted in an airtight manner inside the vacuum chamber. Accordingly, the openings 36 a to 36 d at one end portions of the anode electrodes 31 a to 31 d are located inside the vacuum chamber 2.

蒸着源30a〜30dは、2つが一組となって、各組の2つの蒸着源30a〜30dは、そのアノード電極31a、31bは中心軸線が同一直線上に位置し、開口36a〜36dが互いに対向するようにされている。従って、各組の2つの蒸着源30a〜30dからは真空槽2の内部に向かって互いに正反対の方向から荷電粒子を放出する。   The two evaporation sources 30a to 30d form a set. The two evaporation sources 30a to 30d in each set have anode electrodes 31a and 31b whose central axes are located on the same straight line, and the openings 36a to 36d are mutually connected. It is made to oppose. Accordingly, charged particles are emitted from the two vapor deposition sources 30a to 30d in each set toward the inside of the vacuum chamber 2 from opposite directions.

一方の組の2つの蒸着源30a、30bと、他方の組の2つの蒸着源30c、30dは、アノード電極31a〜31dの中心軸線が位置する直線(第一、第二の直線91、92)が同一平面内で互いに略垂直に交わるように位置している。
従って、一方の組の2つの蒸着源30a、30bを結ぶ線分と、他方の組の2つの蒸着源30c、30dを結ぶ線分は略垂直に交わる。
The two evaporation sources 30a and 30b in one set and the two evaporation sources 30c and 30d in the other set are straight lines (first and second straight lines 91 and 92) on which the central axes of the anode electrodes 31a to 31d are located. Are positioned so as to cross each other substantially perpendicularly in the same plane.
Accordingly, the line segment connecting the two vapor deposition sources 30a and 30b in one set and the line segment connecting the two vapor deposition sources 30c and 30d in the other set intersect substantially perpendicularly.

上述したように、アノード電極31a〜31dの中心軸線と荷電粒子の放出方向は一致するから、一方の組の2つの蒸着源30a、30bから放出される荷電粒子の飛行方向は、他方の組の2つの蒸着源30c、30dから放出される荷電粒子の放出方向と略垂直に交わる。   As described above, since the central axes of the anode electrodes 31a to 31d coincide with the emission direction of the charged particles, the flight direction of the charged particles emitted from the two vapor deposition sources 30a and 30b in one set is the same as that in the other set. It intersects with the emission direction of the charged particles emitted from the two vapor deposition sources 30c and 30d substantially perpendicularly.

アノード電極31a〜31dは、開口36a〜36dの中心から第一、第二の直線91、92の交点までの距離が互いに等しくなるよう真空槽に挿通されており、従って蒸着源30a〜30dは第一、第二の直線91、92の交点を中心Cとする円周上に等間隔に並べられ、各開口36a〜36dからはその中心Cに向かって荷電粒子がそれぞれ放出される。   The anode electrodes 31a to 31d are inserted into the vacuum chamber so that the distances from the centers of the openings 36a to 36d to the intersections of the first and second straight lines 91 and 92 are equal to each other. Arranged at equal intervals on the circumference centered at the intersection of the first and second straight lines 91 and 92, charged particles are emitted from the openings 36a to 36d toward the center C, respectively.

磁界形成装置77は4個のヨーク75a〜75d(第一〜第四の磁石部材)と、上記実施例4の成膜装置1dと同じ磁化手段72cとを有している。
各ヨーク75a〜75dは板状であって、真空槽2の外部位置で一枚のヨーク75a〜75dに一つのアノード電極31a〜31dが裏面から表面に挿通されるように取り付けられている(図8(a))。
The magnetic field forming device 77 has four yokes 75a to 75d (first to fourth magnet members) and the same magnetizing means 72c as the film forming device 1d of the fourth embodiment.
Each yoke 75a-75d is plate-shaped, and is attached to one yoke 75a-75d so that one anode electrode 31a-31d is inserted from the back surface to the surface at a position outside the vacuum chamber 2 (FIG. 8 (a)).

従って、ヨーク75a〜75dは2枚一組となって、一方の組の蒸着源30a、30bを結ぶ線分の延長線上と、他方の組の蒸着源30c、30dを結ぶ線分の延長線上にそれぞれ配置されている。   Therefore, two yokes 75a to 75d are formed as a set, on an extension line of a line connecting one set of vapor deposition sources 30a and 30b and on an extension line of a line connecting the other set of vapor deposition sources 30c and 30d. Each is arranged.

ヨーク75a〜75dは真空槽2外部であって、開口36a〜36dは真空槽2内部に配置されているから、ヨーク75a〜75dは上記円周の中心Cから外側に向かう放射方向の、開口36a〜36dよりも後方にあり、ヨーク75a〜75dは各開口36a〜36dから放出される荷電粒子を遮らず、荷電粒子は中心Cに向かって飛行する。
磁化手段72cは、上述した回転軸線79の延長線が、蒸着源30a〜30dが並べられた円周に対して略垂直な方向にその中心Cを貫くよう配置されている。
Since the yokes 75a to 75d are outside the vacuum chamber 2 and the openings 36a to 36d are arranged inside the vacuum chamber 2, the yokes 75a to 75d are radially open from the center C of the circumference to the outside 36a. The yokes 75a to 75d do not block charged particles emitted from the openings 36a to 36d, and the charged particles fly toward the center C.
The magnetizing means 72c is arranged so that the extension line of the rotation axis 79 described above penetrates the center C in a direction substantially perpendicular to the circumference where the vapor deposition sources 30a to 30d are arranged.

磁化手段72cは実施例4の成膜装置1dと同様の移動機構と回転機構にそれぞれ接続されており、回転軸線79を中心として回転させると、磁化手段72cの2つの磁極が回転軸線79を中心とする円周上を移動し、磁化手段72cを回転軸線79に沿って一方向に移動させると蒸着源30a〜30dが並べられた円周に近づき、磁化手段72cを回転軸線79に沿って逆方向に移動させると蒸着源30a〜30dが並べられた円周から遠ざかる。   The magnetizing means 72c is connected to the same moving mechanism and rotating mechanism as the film forming apparatus 1d of the fourth embodiment, and when rotated around the rotation axis 79, the two magnetic poles of the magnetizing means 72c are centered on the rotation axis 79. When the magnetizing means 72c is moved in one direction along the rotation axis 79, it approaches the circumference where the vapor deposition sources 30a to 30d are arranged, and the magnetizing means 72c is reversed along the rotation axis 79. When it is moved in the direction, it moves away from the circumference where the vapor deposition sources 30a to 30d are arranged.

各組の2枚のヨーク75a〜75dの間の距離は、上記第一、第二の磁石部材72a、72dの間の距離と同様に、磁化手段72cの異なる極性の磁極にそれぞれ接触可能になっており、各組の2枚のヨーク75a〜75dが磁化手段72cの異なる極性の磁極にそれぞれ接触すると、そのヨーク75a〜75dが異なる極性に磁化され、真空槽2が透磁性材料で構成されている場合には、真空槽2内部に磁力線群が形成される。   Similarly to the distance between the first and second magnet members 72a and 72d, the distance between the two yokes 75a to 75d in each group can be in contact with the magnetic poles having different polarities of the magnetizing means 72c. When the two yokes 75a to 75d of each set come into contact with the magnetic poles having different polarities of the magnetizing means 72c, the yokes 75a to 75d are magnetized to different polarities, and the vacuum chamber 2 is made of a magnetically permeable material. If there is, a group of magnetic force lines is formed inside the vacuum chamber 2.

上述したように、アノード電極31a〜31dはヨーク75a〜75dに挿通され、その開口36a〜36dがヨーク75a〜75dの表面から突き出されているから、磁力線群の形状は、開口36a〜36dと、該開口36a〜36dと対向する開口36a〜36dの間の空間を取り囲む筒状となる。   As described above, the anode electrodes 31a to 31d are inserted into the yokes 75a to 75d, and the openings 36a to 36d are protruded from the surfaces of the yokes 75a to 75d. Therefore, the shape of the magnetic field lines is the openings 36a to 36d. It becomes a cylinder shape surrounding the space between the openings 36a to 36d facing the openings 36a to 36d.

磁化手段72cの大きさは、一方の組の2枚のヨーク75a、75bに接触する時には、他方の組の2枚のヨーク75c、75dには接触しないようなっているので、いずれか一方の組の2枚のヨーク75a〜75dの間だけに磁力線が形成される。   The size of the magnetizing means 72c is such that when it comes into contact with the two yokes 75a and 75b in one set, it does not come into contact with the two yokes 75c and 75d in the other set. Magnetic field lines are formed only between the two yokes 75a to 75d.

磁化手段72cを回転軸線79に沿って逆方向に移動させ、各組の2枚のヨーク75a〜75dが磁化手段72cから分離させた状態で、上述したように磁化手段72cの磁極の位置を入れ替えると、磁極の位置を入れ替える前とは逆向きの磁力線が形成される。   The magnetizing means 72c is moved in the opposite direction along the rotation axis 79, and the positions of the magnetic poles of the magnetizing means 72c are switched as described above in a state where the two yokes 75a to 75d of each set are separated from the magnetizing means 72c. Then, magnetic field lines are formed in the direction opposite to that before the position of the magnetic pole is changed.

図8(b)は一方の組の2つのヨーク75a、75bに磁化手段72cの2つの磁極を接触させた状態を示している。
一方の組の2枚のヨーク75a、75bと、他方の組の2枚のヨーク75c、75dは、上述したように互いに直交する線分の上にそれぞれ位置しているから、第一、第二の磁石部材72a、72bから磁化手段72cを分離させて、磁化手段72cを90°回転させてから、磁化手段72cを回転軸線79に沿って一方向に移動させると、磁化手段72cの異なる極性の磁極が、他方の組の2つのヨーク75c、75dに接触し、その2つのヨーク75c、75dにそれぞれ異なる磁極が形成される。
FIG. 8B shows a state in which the two magnetic poles of the magnetizing means 72c are in contact with the two yokes 75a and 75b of one set.
Since the two yokes 75a and 75b in one set and the two yokes 75c and 75d in the other set are respectively positioned on the line segments orthogonal to each other as described above, the first and second When the magnetizing means 72c is separated from the magnet members 72a and 72b, the magnetizing means 72c is rotated by 90 °, and the magnetizing means 72c is moved in one direction along the rotation axis 79, the magnetizing means 72c has different polarities. The magnetic poles are in contact with the other two yokes 75c and 75d, and different magnetic poles are formed on the two yokes 75c and 75d, respectively.

従って、この磁界形成装置77は各組の2つのヨーク75a〜75dの間に、逆方向の磁力線群をそれぞれ形成するから、結局4種類の磁力線群を形成可能になっている。   Accordingly, since the magnetic field forming device 77 forms the magnetic field lines in the opposite directions between the two yokes 75a to 75d of each group, it is possible to form four types of magnetic field lines after all.

ここでは、各組の2枚のヨーク75a〜75dは表面が互いに平行にされた状態で対向し、その2枚のヨーク75a〜75dの間には表面に対して垂直な磁力線群が形成される。   Here, the two yokes 75a to 75d in each set face each other with their surfaces parallel to each other, and a group of magnetic force lines perpendicular to the surface is formed between the two yokes 75a to 75d. .

ヨーク75a〜75dは、そのヨーク75a〜75dに挿通されたアノード電極31a〜31dの中心軸線に対して、表面が垂直になるよう配置されており、従って各組の2つのヨーク75a〜75dの間に形成される磁力線群は、そのヨーク75a〜75dに挿通されたアノード電極31a〜31dの中心軸線と平行になる。   The yokes 75a to 75d are arranged so that the surfaces thereof are perpendicular to the central axes of the anode electrodes 31a to 31d inserted through the yokes 75a to 75d, and therefore, between the two yokes 75a to 75d of each set. The magnetic lines of force formed in parallel to the central axes of the anode electrodes 31a to 31d inserted through the yokes 75a to 75d.

上述したように、荷電粒子の開口36a〜36dからの放出方向はアノード電極31a〜31dの中心軸線と一致するから、一方の組の2つの蒸着源30a〜30dから放出される荷電粒子は、他方の組の2つの蒸着源30a〜30dが取り付けられたヨーク75a〜75dが形成する磁力線群に対して略垂直に入射する。   As described above, since the emission direction of the charged particles from the openings 36a to 36d coincides with the central axis of the anode electrodes 31a to 31d, the charged particles emitted from one of the two vapor deposition sources 30a to 30d are the other. It enters substantially perpendicularly to the magnetic field lines formed by the yokes 75a to 75d to which the two vapor deposition sources 30a to 30d are attached.

四個の蒸着源30a〜30dのうち、蒸着源を1個ずつ選択して荷電粒子を放出させる場合、荷電粒子が略垂直に入射する磁力線群であって、かつ、各蒸着源30a〜30dの同じ電荷の荷電粒子がローレンツ力で同じ方向に曲げられる磁力線群を選択して発生させると、図2に示した成膜装置1と同様に、正の微小荷電粒子45は常に同じ方向に飛行方向が曲げられる。   In the case where one of the four vapor deposition sources 30a to 30d is selected to emit charged particles one by one, the charged particles are a group of lines of magnetic force on which the charged particles are incident substantially vertically, and each of the vapor deposition sources 30a to 30d When a group of lines of magnetic force in which charged particles of the same charge are bent in the same direction by Lorentz force is generated, the positive minute charged particles 45 always fly in the same direction as in the film forming apparatus 1 shown in FIG. Is bent.

曲げられたその飛行方向の先に基板ホルダ7を配置すれば、基板11表面上には四個の蒸着源30a〜30dから放出される微小荷電粒子が順次到達し、四個の蒸着源30a〜30dがそれぞれ異なる蒸着材料の荷電粒子を放出する時には、基板11表面上に4種類の膜が積層され、四個の蒸着源30a〜30bがそれぞれ同じ蒸着材料の荷電粒子を放出するときには、基板11表面上に1種類の膜が形成される。   If the substrate holder 7 is arranged ahead of the bent flight direction, minute charged particles emitted from the four vapor deposition sources 30a to 30d sequentially reach the surface of the substrate 11, and the four vapor deposition sources 30a to 30a. When 30d emits charged particles of different vapor deposition materials, four types of films are stacked on the surface of the substrate 11, and when the four vapor deposition sources 30a to 30b emit charged particles of the same vapor deposition material, the substrate 11 One type of film is formed on the surface.

尚、ヨーク75a〜75dや磁化手段72cは真空槽2の内部に配置してもよいが、真空槽2の外部に配置した方が成膜装置1の構造とメンテナンスが容易になる。   The yokes 75a to 75d and the magnetizing means 72c may be disposed inside the vacuum chamber 2, but the structure and maintenance of the film forming apparatus 1 are easier if they are disposed outside the vacuum chamber 2.

また、ヨーク75a〜75dの数と、蒸着源30a〜30dも特に限定されず、同じ電荷の荷電粒子を同じ方向に曲げられるのであれば、4枚のヨーク75a〜75dと四個の蒸着源30a〜30dに加え、2枚一組のヨークと、2個一組の蒸着源をそれぞれ1組以上設けてもよい。   Further, the number of yokes 75a to 75d and the vapor deposition sources 30a to 30d are not particularly limited. If the charged particles having the same charge can be bent in the same direction, the four yokes 75a to 75d and the four vapor deposition sources 30a. In addition to ˜30d, one set of two or more yokes and one set of two evaporation sources may be provided.

以上は、アノード電極31a〜31dをヨーク75a〜75dに挿通させる場合について説明したが、ヨーク75a〜75dが開口36a〜36dから放出される荷電粒子を遮らない位置であって、かつ、そのヨーク75a〜75dが取り付けられた蒸着源30a〜30dとは異なる組の2つの蒸着源30a〜30dから、荷電粒子が入射可能な磁力線を形成するものであれば、その配置は特に限定されるものではない。   The above describes the case where the anode electrodes 31a to 31d are inserted through the yokes 75a to 75d. However, the yokes 75a to 75d are positions where the charged particles emitted from the openings 36a to 36d are not blocked, and the yoke 75a. The arrangement is not particularly limited as long as it forms magnetic lines of force on which charged particles can be incident from two vapor deposition sources 30a to 30d of a set different from the vapor deposition sources 30a to 30d to which ~ 75d is attached. .

具体的には、ヨーク75a〜75dを蒸着源30a〜30dの側方に1つずつ配置してもよいし、蒸着源30a〜30dの側方に複数のヨークを配置して、一つの蒸着源30a〜30dの近傍に配置された複数のヨークで1つの磁石部材を構成してもよい。   Specifically, the yokes 75a to 75d may be arranged one by one on the sides of the vapor deposition sources 30a to 30d, or a plurality of yokes may be arranged on the sides of the vapor deposition sources 30a to 30d to form one vapor deposition source. You may comprise one magnet member with the some yoke arrange | positioned in the vicinity of 30a-30d.

上記実施例4、5に用いられる磁化手段72cは、上述したヨーク73と永久磁石74の組み合わせに限定されず、例えば、電磁石からなる磁化手段を用い、その電磁石に流す電流の向きを変えることで磁極の位置を入れ替えてもよい。   The magnetizing means 72c used in the fourth and fifth embodiments is not limited to the combination of the yoke 73 and the permanent magnet 74 described above. For example, the magnetizing means made of an electromagnet is used and the direction of the current flowing through the electromagnet is changed. You may replace the position of a magnetic pole.

尚、本発明の成膜装置1に用いられる基板ホルダ7の一例について詳細に説明すると、真空槽2の天井には軸状の回転力伝達手段20が気密に挿通されており、回転力伝達手段20は外軸23と、外軸23に挿通された内軸22とを有している。基板ホルダ7は円盤状であって、真空槽2の内部で水平にされた状態で外軸23に接続されている(図9)。   An example of the substrate holder 7 used in the film forming apparatus 1 of the present invention will be described in detail. A shaft-like rotational force transmission means 20 is inserted into the ceiling of the vacuum chamber 2 in an airtight manner, and the rotational force transmission means. 20 has an outer shaft 23 and an inner shaft 22 inserted through the outer shaft 23. The substrate holder 7 has a disk shape, and is connected to the outer shaft 23 in a state of being horizontal in the vacuum chamber 2 (FIG. 9).

基板ホルダ7には、その円盤の放射方向の中央位置から所定距離離間した場所に複数の取り付け部8がそれぞれ設けられており、各取り付け部8は成膜対象物11である基板を略水平に保持するよう構成されている。図9は各取り付け部8に基板11がそれぞれ保持された状態を示している。   The substrate holder 7 is provided with a plurality of attachment portions 8 at positions separated from the center position in the radial direction of the disk by a predetermined distance, and each attachment portion 8 makes the substrate as the film formation target 11 substantially horizontal. Configured to hold. FIG. 9 shows a state in which the substrate 11 is held on each mounting portion 8.

外軸23と内軸22はそれぞれ真空槽2外部の動力手段26、27に接続されている。基板ホルダ7には外軸23によって動力手段27の動力が伝達され、基板ホルダ7は円盤の中心を回転中心C1として水平面内で回転する。   The outer shaft 23 and the inner shaft 22 are connected to power means 26 and 27 outside the vacuum chamber 2, respectively. The power of the power means 27 is transmitted to the substrate holder 7 by the outer shaft 23, and the substrate holder 7 rotates in the horizontal plane with the center of the disk as the rotation center C1.

取り付け部8には内軸22によって動力手段26の動力が伝達されるように構成されており、その動力が取り付け部8に伝達されると、基板11は基板ホルダ7の回転中心C1を中心とした円周に沿って移動しながら、基板11の中心C2と基板ホルダ7の回転中心C1とが相対的に静止した状態で、その中心C2を回転中心として水平面内で回転するように構成されている。   The mounting portion 8 is configured such that the power of the power means 26 is transmitted by the inner shaft 22, and when the power is transmitted to the mounting portion 8, the substrate 11 is centered on the rotation center C <b> 1 of the substrate holder 7. The center C2 of the substrate 11 and the rotation center C1 of the substrate holder 7 are relatively stationary while moving along the circumference, and the center C2 is configured to rotate in the horizontal plane with the center C2 as the rotation center. Yes.

基板ホルダ7と、上記磁界形成装置5a〜5fとの位置関係は、飛行方向が曲げられた微小荷電粒子45が、基板11が移動する円周の一部(成膜領域6)に到達するように構成されており、飛行方向が曲げられた微小荷電粒子45は成膜領域6を通過する基板11の表面に入射して薄膜が成長する。   The positional relationship between the substrate holder 7 and the magnetic field forming devices 5a to 5f is such that the minute charged particles 45 whose flight direction is bent reach a part of the circumference (film formation region 6) in which the substrate 11 moves. The minute charged particles 45 whose flight direction is bent are incident on the surface of the substrate 11 passing through the film formation region 6 and a thin film grows.

基板11はその中心C2として回転しながら成膜領域6を通過するので、基板11表面の各部分に到達する微小荷電粒子45の量が均一化され、基板11表面には膜厚均一な薄膜が形成される。   Since the substrate 11 passes through the film formation region 6 while rotating as its center C2, the amount of the minute charged particles 45 reaching each part of the surface of the substrate 11 is made uniform, and a thin film having a uniform film thickness is formed on the surface of the substrate 11. It is formed.

次に、本発明に用いられる蒸着源30a〜30dの一例について説明すると、各蒸着源30a〜30dは荷電粒子の放出方向が異なる以外は同じ構造を有しており、1つの蒸着源(第一の蒸着源)30aを例に取って説明すると、蒸着源30aは筒状のアノード電極31を有している。   Next, an example of the vapor deposition sources 30a to 30d used in the present invention will be described. Each vapor deposition source 30a to 30d has the same structure except that the emission direction of charged particles is different, and one vapor deposition source (first The vapor deposition source 30 a has a cylindrical anode electrode 31.

アノード電極31は一端部が真空槽2に気密に挿通されている。図9の符号36はアノード電極31の筒の開口のうち、真空槽2内部に配置された開口を示しており、後述するようにアノード電極31の内部で粒子が発生すると、粒子は開口36から真空槽2内部に放出される。   One end of the anode electrode 31 is inserted into the vacuum chamber 2 in an airtight manner. Reference numeral 36 in FIG. 9 denotes an opening disposed inside the vacuum chamber 2 among the openings of the cylinder of the anode electrode 31. When particles are generated inside the anode electrode 31 as described later, the particles are released from the opening 36. It is discharged into the vacuum chamber 2.

蒸着源30aはアノード電極31の他に放電部35を有している。放電部35は棒状であって、先端を開口36に向けた状態でアノード電極31の内部に配置されている。放電部35は蒸着材料34とトリガ電極32とを有しており、蒸着材料34は放電部35の先端に配置され、トリガ電極32は蒸着材料34よりもアノード電極31底壁側に配置されている。   The vapor deposition source 30 a has a discharge part 35 in addition to the anode electrode 31. The discharge part 35 is rod-shaped and is disposed inside the anode electrode 31 with the tip directed toward the opening 36. The discharge part 35 has a vapor deposition material 34 and a trigger electrode 32, the vapor deposition material 34 is disposed at the tip of the discharge part 35, and the trigger electrode 32 is disposed closer to the bottom wall side of the anode electrode 31 than the vapor deposition material 34. Yes.

ここでは、蒸着材料34はアノード電極31の内径よりも小径の柱状であって、その中心軸線がアノード電極31の中心軸線と一致しており、従って蒸着材料34の側面と、アノード電極31の内壁面との間には隙間がある。   Here, the vapor deposition material 34 has a columnar shape smaller in diameter than the inner diameter of the anode electrode 31, and its central axis coincides with the central axis of the anode electrode 31. There is a gap between the walls.

真空槽2の外部には電源装置41が配置されている。ここでは電源装置41はトリガ電源42と、アーク電源43と、コンデンサユニット44とを有しており、アーク電源43を動作させるとコンデンサユニット44が充電される。
トリガ電源42はトリガ電極32と蒸着材料34の間に電圧を印加するよう構成されている。
A power supply device 41 is disposed outside the vacuum chamber 2. Here, the power supply device 41 includes a trigger power supply 42, an arc power supply 43, and a capacitor unit 44. When the arc power supply 43 is operated, the capacitor unit 44 is charged.
The trigger power source 42 is configured to apply a voltage between the trigger electrode 32 and the vapor deposition material 34.

トリガ電極32と蒸着材料34の間には絶縁碍子33が配置されており、真空槽2に接続された真空排気系9を動作させて真空槽2内部に真空雰囲気を形成し、アノード電極31と真空槽2とを接地電位に置いた状態で、トリガ電極32と蒸着材料34の間に電圧を印加すると、絶縁碍子33の側面に沿面放電が発生し、蒸着材料34と絶縁碍子33の境界から電子が放出される(トリガ放電)。   An insulator 33 is disposed between the trigger electrode 32 and the vapor deposition material 34, and the vacuum exhaust system 9 connected to the vacuum chamber 2 is operated to form a vacuum atmosphere inside the vacuum chamber 2. When a voltage is applied between the trigger electrode 32 and the vapor deposition material 34 with the vacuum chamber 2 placed at the ground potential, creeping discharge is generated on the side surface of the insulator 33, and from the boundary between the vapor deposition material 34 and the insulator 33. Electrons are emitted (trigger discharge).

コンデンサユニット44は蒸着材料34に接続されており、トリガ放電が起こるとアノード電極31と蒸着材料34との間の隙間の絶縁耐性が低下してコンデンサユニット44が放電し(アーク放電)、アノード電極31から蒸着材料34に多量の電流(1400A〜2000A、アーク電流)が流れる。
蒸着材料34にアーク電流が流れると、蒸着材料34から上述した微小荷電粒子45と電子が放出される。
The capacitor unit 44 is connected to the vapor deposition material 34, and when trigger discharge occurs, the insulation resistance of the gap between the anode electrode 31 and the vapor deposition material 34 decreases, and the capacitor unit 44 discharges (arc discharge). A large amount of current (1400 A to 2000 A, arc current) flows from 31 to the vapor deposition material 34.
When an arc current flows through the vapor deposition material 34, the above-described minute charged particles 45 and electrons are emitted from the vapor deposition material 34.

蒸着材料34は、その形状が柱状の時にはその中心軸線がアノード電極31の中心軸線と一致し、その形状がリング状の時にはリング中心をアノード電極31の中心軸線が通るように配置されており、アノード電極31の中心軸線の周りには均等に蒸着材料34が配置されているので、微小荷電粒子45と電子はアノード電極31の中心軸線を中心とする範囲に発生する。   The vapor deposition material 34 is arranged such that when the shape is columnar, the center axis thereof coincides with the center axis of the anode electrode 31, and when the shape is ring-shaped, the center axis of the anode electrode 31 passes through the center of the ring. Since the vapor deposition material 34 is uniformly arranged around the central axis of the anode electrode 31, the minute charged particles 45 and electrons are generated in a range centered on the central axis of the anode electrode 31.

蒸着材料34から放出された電子は、蒸着材料34から放出された直後はアノード電極31の内壁面に向かうが、自身の飛行により形成される磁界によってその飛行方向が開口36側に曲げられ、正の微小荷電粒子45は電子に引き寄せられてその飛行方向が電子と同じ方向に曲げられ、開口36から、開口36を構成する平面と垂直な方向に放出される。   The electrons emitted from the vapor deposition material 34 are directed toward the inner wall surface of the anode electrode 31 immediately after being emitted from the vapor deposition material 34, but the flight direction is bent toward the opening 36 by the magnetic field formed by the flight of itself. The minute charged particles 45 are attracted by electrons and the flight direction thereof is bent in the same direction as the electrons, and emitted from the opening 36 in a direction perpendicular to the plane constituting the opening 36.

アノード電極31の中心軸線は開口36を構成する平面と垂直に交わるから、その中心軸線は電子と微小荷電粒子45の放出方向と平行になる。
荷電粒子はアノード電極31の中心軸線を中心とする範囲に発生するから、開口36から放出される微小荷電粒子45と電子の束は、その中心がアノード電極31の中心軸線と一致する。従って、上述した第一、第二の放出軸線Fa、Fbはアノード電極31の中心軸線と一致する。
Since the central axis of the anode electrode 31 intersects with the plane constituting the opening 36 perpendicularly, the central axis is parallel to the emission direction of the electrons and the minute charged particles 45.
Since charged particles are generated in a range centered on the central axis of the anode electrode 31, the center of the minute charged particles 45 and the electron bundle emitted from the opening 36 coincides with the central axis of the anode electrode 31. Accordingly, the first and second emission axes Fa and Fb described above coincide with the central axis of the anode electrode 31.

尚、蒸着材料34にアーク電流が流れる時には蒸着材料34が高温に昇温し、その一部が溶融すると、その溶融した部分から直径約50μm〜100μmの液滴が飛散し、その液滴がアノード電極31の内壁面に衝突すると直径約1〜5μmの微小液滴となる。   When an arc current flows through the vapor deposition material 34, the vapor deposition material 34 is heated to a high temperature, and when a part thereof is melted, a droplet having a diameter of about 50 μm to 100 μm is scattered from the melted portion. When it collides with the inner wall surface of the electrode 31, it becomes a micro droplet having a diameter of about 1 to 5 μm.

微小液滴や液滴のような巨大粒子46は電荷質量比が小さいので、開口36から放出されたとしても、上述したように基板ホルダ7が位置する方向には飛行せず、薄膜に混入されない。   Since the large particle 46 such as a micro droplet or a droplet has a small charge-mass ratio, even if it is emitted from the opening 36, it does not fly in the direction in which the substrate holder 7 is located and is not mixed into the thin film as described above. .

尚、本発明で巨大粒子46とは直径1μm以上のものを示し、微小荷電粒子45とは1000個以上2000個以下の原子が集合したクラスタ粒子や、クラスタ粒子よりも質量が小さい原子状粒子であって、直径が1μm未満のものを示す。   In the present invention, the giant particle 46 is a particle having a diameter of 1 μm or more, and the minute charged particle 45 is a cluster particle in which 1000 to 2000 atoms are gathered, or an atomic particle having a mass smaller than that of the cluster particle. The diameter is less than 1 μm.

蒸着源30を構成する部材の形状や材質は特に限定されないが、その一例を述べると、直径10mmの円柱状の蒸着材料34と、円板状の絶縁碍子33と、円筒状のトリガ電極32とが不図示のネジで密着して取り付けられた放電部35が、内径(開口36の直径)が30mmのアノード電極31内に配置された物があり、絶縁碍子33の材質は例えばアルミナであり、トリガ電極32とアノード電極31の材質は例えばステンレスである。   The shape and material of the members constituting the vapor deposition source 30 are not particularly limited. For example, a columnar vapor deposition material 34 having a diameter of 10 mm, a disk-shaped insulator 33, a cylindrical trigger electrode 32, and the like. , The discharge part 35 attached in close contact with a screw (not shown) is disposed in the anode electrode 31 having an inner diameter (diameter of the opening 36) of 30 mm, and the insulator 33 is made of alumina, for example. The material of the trigger electrode 32 and the anode electrode 31 is stainless steel, for example.

蒸着源30の配置も特に限定されないが、その一例を述べるとアノード電極31の中心軸線から基板11表面までの高さが100mm、基板11の中心C2から開口36が位置する平面までの距離が50mmである。   The arrangement of the vapor deposition source 30 is not particularly limited. For example, the height from the central axis of the anode electrode 31 to the surface of the substrate 11 is 100 mm, and the distance from the center C2 of the substrate 11 to the plane on which the opening 36 is located is 50 mm. It is.

また、上記図9に示した電源装置41を詳細に説明すると、コンデンサユニット44は1つの容量が2200μF(耐圧:160V)のコンデンサが四個並列に接続されたものを用い、トリガ電源42はパルストランスからなり、入力200Vのμsのパルス電圧を約17倍に変圧して3.4kV(数μA)極性:プラスを出力するものを用いることができる。   Further, the power supply device 41 shown in FIG. 9 will be described in detail. The capacitor unit 44 uses four capacitors each having a capacitance of 2200 μF (withstand voltage: 160 V) connected in parallel. It is possible to use a transformer which outputs a 3.4 kV (several μA) polarity: plus by transforming a pulse voltage of μs of 200 V input by about 17 times.

アーク電源43は、例えば100V数Aの容量の直流電源であり、トリガ放電を起こす前に100Vで電荷をコンデンサユニット44を充電しておく。コンデンサユニット44を充電するのに約1秒間必要とするので、この電源装置41では8800μFで放電を繰り返す場合の周期は1Hzで行われる。   The arc power supply 43 is a direct current power supply having a capacity of, for example, 100 V and several A, and charges the capacitor unit 44 with a charge of 100 V before trigger discharge occurs. Since it takes about 1 second to charge the capacitor unit 44, in this power supply device 41, the cycle when discharging is repeated at 8800 μF is performed at 1 Hz.

トリガ電源42のプラス出力端子をトリガ電極32に接続し、マイナス端子はアーク電源43のマイナス側出力端子と同じ電位に接続し、蒸着材料34に接続させる。アーク電源43のプラス端子はグランド電位に接地させ、アノード電極31に接続させる。コンデンサユニット44の両端子はアーク電源43のプラスおよびマイナス端子間に接続させる。   The positive output terminal of the trigger power source 42 is connected to the trigger electrode 32, the negative terminal is connected to the same potential as the negative side output terminal of the arc power source 43, and the vapor deposition material 34 is connected. The plus terminal of the arc power supply 43 is grounded to the ground potential and connected to the anode electrode 31. Both terminals of the capacitor unit 44 are connected between the positive and negative terminals of the arc power supply 43.

真空排気系9も特に限定されないが、例えばターボ分子ポンプ、バルブ、ロータリポンプとを有し、ターボ分子ポンプからロータリポンプまでは金属製の真空配管で接続され、真空槽2内部を真空排気可能なものが用いられる。また、成膜を行う時の真空槽2内部の圧力は、例えば10-5Pa以下である。 The evacuation system 9 is not particularly limited. For example, the evacuation system 9 includes a turbo molecular pump, a valve, and a rotary pump. The turbo molecular pump to the rotary pump are connected by a metal vacuum pipe, and the inside of the vacuum chamber 2 can be evacuated. Things are used. Further, the pressure inside the vacuum chamber 2 at the time of film formation is, for example, 10 −5 Pa or less.

真空槽2にガス供給系を接続し、ガス供給系から微小荷電粒子45と反応する反応ガスを供給しながら成膜を行えば、微小荷電粒子45と反応ガスとの反応物からなる薄膜を形成することができる。   If a film is formed while a gas supply system is connected to the vacuum chamber 2 and a reaction gas that reacts with the minute charged particles 45 is supplied from the gas supply system, a thin film made of a reaction product of the minute charged particles 45 and the reaction gas is formed. can do.

上述した複数の蒸着源30a〜30dのうち、いずれか1つの蒸着源だけから荷電粒子を放出させる方法としては、例えば、選択した蒸着源だけに通電してアーク放電を起こす方法がある。また、全ての蒸着源でアーク放電を起こし、荷電粒子を発生させても、不要な蒸着源の開口を遮蔽板で覆えば、不要な蒸着源からの荷電粒子は遮蔽板に付着して磁力線群に入射せず、選択した蒸着源から放出される荷電粒子だけが磁力線群に入射する。
尚、本発明に用いるヨークは継鉄のような磁化材料であって、磁極と離れたときには磁化されておらず、磁極が近接した時には磁化されるものである。
As a method for emitting charged particles from only one of the plurality of vapor deposition sources 30a to 30d described above, for example, there is a method in which only selected vapor deposition sources are energized to cause arc discharge. In addition, even if an arc discharge is generated in all the vapor deposition sources and charged particles are generated, if the unnecessary vapor deposition source openings are covered with a shielding plate, the charged particles from the unnecessary vapor deposition source adhere to the shielding plate and the magnetic field lines Only the charged particles emitted from the selected deposition source enter the magnetic field lines.
The yoke used in the present invention is a magnetized material such as a yoke, and is not magnetized when it is separated from the magnetic pole, but magnetized when the magnetic pole is close.

第一の磁力線群Maに入射する荷電粒子と、第二の磁力線群Mbに入射する荷電粒子が、同じ方向にその飛行方向が曲げられるのであれば、第一、第二の磁力線群Ma、Mbの向きは平行でなくてもよい。   If the flight direction of the charged particles incident on the first magnetic field line group Ma and the charged particles incident on the second magnetic field line group Mb are bent in the same direction, the first and second magnetic field line groups Ma, Mb The orientations of may not be parallel.

本願の成膜装置及び製造方法は、半導体のゲート電極やゲート絶縁膜、半導体のトレンチに形成するバリア層、磁性デバイスの磁性材料の成膜、更に機械部品のコーティング、カーボンなのチューブの触媒層形成等種々の分野に使用することができる。   The film forming apparatus and manufacturing method of the present application include a semiconductor gate electrode, a gate insulating film, a barrier layer formed in a semiconductor trench, a magnetic material for a magnetic device, a coating of a mechanical part, and a catalyst layer for a carbon tube. And can be used in various fields.

包括的な実施例の成膜装置を説明する断面図Sectional drawing explaining the film-forming apparatus of a comprehensive Example 微小荷電粒子と磁力線群との関係を説明する拡大断面図Enlarged sectional view explaining the relationship between micro charged particles and magnetic field lines 実施例1の成膜装置を説明する断面図Sectional drawing explaining the film-forming apparatus of Example 1 実施例2の成膜装置を説明する断面図Sectional drawing explaining the film-forming apparatus of Example 2 実施例3の成膜装置を説明する断面図Sectional drawing explaining the film-forming apparatus of Example 3 実施例4の成膜装置を説明する断面図Sectional drawing explaining the film-forming apparatus of Example 4 実施例5の成膜装置を説明する断面図Sectional drawing explaining the film-forming apparatus of Example 5 (a)実施例5の成膜装置の平面図、(b)実施例5の成膜装置の側面図(A) Plan view of film forming apparatus of Example 5 (b) Side view of film forming apparatus of Example 5 基板ホルダと蒸着源の位置関係を説明する断面図Sectional drawing explaining the positional relationship between the substrate holder and the evaporation source 従来技術の成膜装置を説明する断面図Sectional drawing explaining the film-forming apparatus of a prior art 従来技術の成膜装置で荷電粒子が放出された状態を説明する断面図Sectional drawing explaining the state by which the charged particle was discharge | released with the film-forming apparatus of a prior art

符号の説明Explanation of symbols

1……成膜装置 2……真空槽 5a〜5f……磁界形成装置 11……基板 30a〜30d……蒸着源 32……トリガ電極 34……蒸着材料 36……開口 45……荷電粒子 52a、52b、62a、62b、72a、72b……第一、第二の磁石部材 72c……磁化手段 75a〜75d……ヨーク   DESCRIPTION OF SYMBOLS 1 ... Film-forming apparatus 2 ... Vacuum chamber 5a-5f ... Magnetic field formation apparatus 11 ... Substrate 30a-30d ... Deposition source 32 ... Trigger electrode 34 ... Deposition material 36 ... Opening 45 ... Charged particle 52a , 52b, 62a, 62b, 72a, 72b... First and second magnet members 72c... Magnetizing means 75a to 75d.

Claims (15)

真空槽と、
前記真空槽の内部に荷電粒子を放出する第一、第二の蒸着源と、
前記真空槽内部に磁力線を形成する磁界形成装置とを有し、
前記磁界形成装置は、互いに異なる磁極が向き合い、前記磁極が向き合った偏向領域に前記磁力線を形成する第一、第二の磁石部材と、
前記第一、第二の磁石部材の互いに向き合う磁極の極性を逆にし、前記磁力線の向きを逆向きにする反転装置とを有し、
前記第一、第二の蒸着源は、前記偏向領域に反対方向から荷電粒子をそれぞれ入射させ、同じ電荷の荷電粒子に同じ方向のローレンツ力を及ぼすように構成された成膜装置。
A vacuum chamber;
First and second vapor deposition sources for discharging charged particles into the vacuum chamber;
A magnetic field forming device for forming magnetic lines of force inside the vacuum chamber;
The magnetic field forming device includes first and second magnet members that face different magnetic poles and form the lines of magnetic force in a deflection region where the magnetic poles face each other.
A reversing device for reversing the polarity of the magnetic poles facing each other of the first and second magnet members and reversing the direction of the lines of magnetic force,
The first and second evaporation sources are film forming apparatuses configured to cause charged particles to enter the deflection region from opposite directions and to apply Lorentz forces in the same direction to charged particles having the same charge.
前記第一、第二の磁石部材は永久磁石で構成され、
前記反転装置は、前記第一、第二の磁石部材のN極とS極の位置を入れ替えるように前記第一、第二の磁石部材を回転させる請求項1記載の成膜装置。
The first and second magnet members are composed of permanent magnets,
The film forming apparatus according to claim 1, wherein the reversing device rotates the first and second magnet members so that positions of the N pole and the S pole of the first and second magnet members are switched.
前記反転装置は、第一、第二の回転軸を有し、
前記第一、第二の磁石部材は、前記第一、第二の回転軸の中心軸線を中心として回転するようにされた請求項2記載の成膜装置。
The reversing device has first and second rotation axes,
The film forming apparatus according to claim 2, wherein the first and second magnet members are configured to rotate around a central axis of the first and second rotation shafts.
前記第一、第二の磁石部材は板状であって、一端部が前記第一、第二の回転軸に取り付けられた請求項3記載の成膜装置。   The film forming apparatus according to claim 3, wherein the first and second magnet members are plate-shaped, and one end portions are attached to the first and second rotating shafts. 前記反転装置は、前記第一、第二の磁石部材を互いに異なる磁極が向き合う第一、第二の位置でそれぞれ静止させ、
前記第一、第二の磁石部材は、前記第一の位置でそれぞれ静止した時と、前記第二の位置でそれぞれ静止した時に、互いに平行に向き合うようにされた請求項1乃至請求項4のいずれか1項記載の成膜装置。
The reversing device stops the first and second magnet members at first and second positions where different magnetic poles face each other,
5. The first and second magnet members according to claim 1, wherein the first and second magnet members face each other in parallel when stationary at the first position and when stationary at the second position, respectively. The film-forming apparatus of any one of Claims.
前記第一、第二の蒸着源は前記第一、第二の磁石部材が前記第一の位置で静止した時に形成される磁力線と、前記第一、第二の磁石部材が前記第二の位置で静止した時に形成される磁力線の両方に対して垂直な方向に前記荷電粒子を放出する請求項5記載の成膜装置。   The first and second vapor deposition sources include magnetic lines formed when the first and second magnet members are stationary at the first position, and the first and second magnet members are at the second position. The film forming apparatus according to claim 5, wherein the charged particles are emitted in a direction perpendicular to both of the magnetic field lines formed when the film is stationary. 前記第一、第二の磁石部材は電磁石で構成され、
前記反転装置は前記第一、第二の磁石部材に通電する電流の向きを変え、前記第一、第二の磁石部材の形成する前記磁力線の向きを変えるように構成された請求項1記載の成膜装置。
The first and second magnet members are composed of electromagnets,
2. The reversing device according to claim 1, wherein the reversing device is configured to change a direction of a current supplied to the first and second magnet members and to change a direction of the magnetic force lines formed by the first and second magnet members. Deposition device.
前記第一、第二の磁石部材はヨークで構成され、
前記反転装置は互いに異なる極性の磁極が形成された磁化手段を有し、
前記磁化手段の前記磁極が前記第一、第二の磁石部材にそれぞれ接触すると、前記第一、第二の磁石部材の互いに向き合った位置に、異なる磁極が形成されるように構成された請求項1記載の成膜装置であって、
前記反転装置は、前記磁化手段の、前記第一、第二の磁石部材に接触する磁極の極性を反転させるように構成された成膜装置。
The first and second magnet members are composed of yokes,
The reversing device has magnetizing means in which magnetic poles having different polarities are formed,
The magnetic poles of the magnetizing means are configured so that different magnetic poles are formed at positions of the first and second magnet members facing each other when the magnetic poles of the magnetizing means come into contact with the first and second magnet members, respectively. The film forming apparatus according to 1, wherein
The reversing device is a film forming device configured to reverse the polarity of the magnetic poles of the magnetizing means contacting the first and second magnet members.
前記反転装置は前記磁化手段を回転させ、前記第一、第二の磁石部材に接触する磁極を交換するように構成された請求項8記載の成膜装置。   The film forming apparatus according to claim 8, wherein the reversing device is configured to rotate the magnetizing unit and exchange magnetic poles in contact with the first and second magnet members. 前記磁化手段の回転は、前記磁化手段に形成された前記磁極の間の中心を通る回転軸線を中心として回転させるように構成された請求項9記載の成膜装置。   The film forming apparatus according to claim 9, wherein the magnetization unit is configured to rotate about a rotation axis passing through a center between the magnetic poles formed on the magnetization unit. 前記第一、第二の蒸着源は同一の放出空間に向けて互いに逆方向から前記荷電粒子を放出し、
前記第一、第二の磁石部材は、前記第一、第二の蒸着源から放出される前記荷電粒子の飛行範囲の両側に配置された請求項8乃至請求項10のいずれか1項記載の成膜装置であって、
前記放出空間に向け、互いに逆方向であって、前記第一、第二の蒸着源の前記荷電粒子の放出方向とは、略垂直方向に前記荷電粒子を放出する第三、第四の蒸着源と、
前記第三、第四の蒸着源が放出する荷電粒子の飛行方向の両側に配置された前記第三、第四の磁石部材とを有し、
前記第一〜第四の蒸着源は、前記第一、第二の蒸着源を結ぶ線分が、前記第三、第四の蒸着源を結ぶ線分と略垂直に交わるよう配置された成膜装置。
The first and second vapor deposition sources emit the charged particles from opposite directions toward the same emission space,
The said 1st, 2nd magnet member is arrange | positioned on either side of the flight range of the said charged particle discharge | released from said 1st, 2nd vapor deposition source of any one of Claims 8 thru | or 10. A film forming apparatus,
Third and fourth vapor deposition sources for emitting the charged particles in a direction substantially opposite to the discharge direction of the charged particles of the first and second vapor deposition sources toward the emission space. When,
The third and fourth magnet members disposed on both sides in the flight direction of the charged particles emitted by the third and fourth vapor deposition sources,
The first to fourth vapor deposition sources are arranged such that the line segment connecting the first and second vapor deposition sources intersects the line segment connecting the third and fourth vapor deposition sources substantially perpendicularly. apparatus.
真空槽と、
前記真空槽の内部に荷電粒子を放出する第一、第二の蒸着源と、
前記真空槽内部に磁力線を形成する磁界形成装置とを有し、
前記磁界形成装置は電源と、
前記電源にそれぞれ接続され、前記荷電粒子が放出される空間を挟んで互いに向き合った二つの単位電磁石を2組有し、
前記各単位電磁石は前記電源から電圧が印加されると、一方の組の前記単位電磁石の間に形成される第一の磁力線と、他方の組の前記単位電磁石の間に形成される第二の磁力線とが互いに平行になるよう配置され、
前記電源は、前記第一の磁力線と、前記第二の磁力線の他方の向きが互いに逆向きになるように電圧を印加するよう構成され、
前記第一、第二の蒸着源は、前記第一、第二の磁力線にそれぞれ異なる向きから荷電粒子を入射させ、同じ電荷の荷電粒子に同じ方向のローレンツ力を及ぼすように構成された成膜装置。
A vacuum chamber;
First and second vapor deposition sources for discharging charged particles into the vacuum chamber;
A magnetic field forming device for forming magnetic lines of force inside the vacuum chamber;
The magnetic field forming device includes a power source,
Two sets of two unit electromagnets connected to the power source and facing each other across a space from which the charged particles are emitted,
When a voltage is applied to each unit electromagnet from the power source, a first magnetic field line formed between one unit of the unit electromagnets and a second magnetic field formed between the other unit of the unit electromagnets. Arranged so that the magnetic field lines are parallel to each other,
The power source is configured to apply a voltage so that the other direction of the first magnetic field lines and the second magnetic field lines are opposite to each other;
The first and second vapor deposition sources are configured such that charged particles are incident on the first and second magnetic lines of force from different directions, respectively, and a Lorentz force in the same direction is applied to charged particles having the same charge. apparatus.
前記電源は、一方の組の前記単位電磁石に通電するときには、他方の組の前記単位電磁石に通電をしないよう構成された請求項12記載の成膜装置。   13. The film forming apparatus according to claim 12, wherein the power source is configured not to energize the other set of unit electromagnets when energizing the set of unit electromagnets. 真空槽と、
同一円周上で等間隔位置に配置され、前記円周の前記真空槽内部に位置する中心に向かって開口から荷電粒子を放出する四個の蒸着源と、
前記円周の中心から外側に向かう放射方向の、前記開口よりも後方にそれぞれ位置する4個のヨークと、
前記円周の中心を通り、前記円周が位置する平面と垂直に交差する回転軸線の延長線上に配置され、前記回転軸線を中心として回転可能な磁化手段とを有し、
前記磁化手段は、前記円周の中心に反対方向から荷電粒子を放出する前記開口の後方に位置する前記ヨークに接触可能にされ、
前記磁化手段の前記ヨークと接触する位置には異なる極性の磁極が形成された成膜装置。
A vacuum chamber;
Four vapor deposition sources that are arranged at equal intervals on the same circumference and emit charged particles from the opening toward the center located inside the vacuum chamber of the circumference,
Four yokes respectively located behind the opening in the radial direction from the center of the circumference to the outside;
Magnetizing means that passes through the center of the circumference and is arranged on an extension line of a rotation axis that intersects the plane in which the circumference is located perpendicularly, and is rotatable about the rotation axis.
The magnetizing means is capable of contacting the yoke located behind the opening for discharging charged particles from the opposite direction to the center of the circumference;
A film forming apparatus in which magnetic poles having different polarities are formed at positions of the magnetizing means in contact with the yoke.
前記磁化手段を前記ヨーク着脱可能な移動機構と、
前記ヨークから離間した前記磁化手段を前記回転軸線を中心として回転させる回転機構とを有する請求項14記載の成膜装置。
A moving mechanism capable of attaching and detaching the yoke with the magnetizing means;
The film forming apparatus according to claim 14, further comprising: a rotation mechanism that rotates the magnetizing unit spaced apart from the yoke about the rotation axis.
JP2005365281A 2005-12-19 2005-12-19 Deposition equipment Expired - Fee Related JP4694363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005365281A JP4694363B2 (en) 2005-12-19 2005-12-19 Deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005365281A JP4694363B2 (en) 2005-12-19 2005-12-19 Deposition equipment

Publications (2)

Publication Number Publication Date
JP2007169677A true JP2007169677A (en) 2007-07-05
JP4694363B2 JP4694363B2 (en) 2011-06-08

Family

ID=38296627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005365281A Expired - Fee Related JP4694363B2 (en) 2005-12-19 2005-12-19 Deposition equipment

Country Status (1)

Country Link
JP (1) JP4694363B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150340A (en) * 1993-11-29 1995-06-13 Nissin Electric Co Ltd Thin film forming device
JP2005002454A (en) * 2003-06-13 2005-01-06 Nissin Electric Co Ltd Deflecting magnetic field-type vacuum arc deposition apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150340A (en) * 1993-11-29 1995-06-13 Nissin Electric Co Ltd Thin film forming device
JP2005002454A (en) * 2003-06-13 2005-01-06 Nissin Electric Co Ltd Deflecting magnetic field-type vacuum arc deposition apparatus

Also Published As

Publication number Publication date
JP4694363B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP3868483B2 (en) Rectangular vacuum arc plasma source
TWI287048B (en) Equipment for cathode-sputtering
JP2002352765A (en) Ion implantion apparatus
JP2007299733A (en) Plasma generating device
US20090314206A1 (en) Sheet Plasma Film-Forming Apparatus
KR100343033B1 (en) Vacuum arc evaporation source and vacuum arc deposition apparatus
US20150083586A1 (en) Deposition apparatus
JP5300084B2 (en) Thin film sputtering equipment
CN102598195A (en) Distributed ion source acceleration column
WO2007099658A1 (en) Plasma gun and plasma gun film forming apparatus provided with same
KR20150102020A (en) Plasma enhanced chemical vapor deposition(pecvd) source
US5997705A (en) Rectangular filtered arc plasma source
WO2011007830A1 (en) Film-forming apparatus
JP4981046B2 (en) Plasma film forming apparatus and film manufacturing method
JP4694363B2 (en) Deposition equipment
US9624570B2 (en) Compact, filtered ion source
JP4795174B2 (en) Sputtering equipment
JP4647476B2 (en) Deposition equipment
JP2003321769A (en) Vapor deposition apparatus
JP2006249558A (en) Vapor deposition apparatus
KR20010021341A (en) Arc type ion plating apparatus
JP4629394B2 (en) Deposition source and deposition equipment
JP2010138423A (en) Magnetron sputtering apparatus, and magnetron sputtering method
JP2010132992A (en) Apparatus for forming film with sheet plasma
JP2004018899A (en) Evaporation source and film-formation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101129

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees