JP2007169108A - Method for purifying nitric oxide - Google Patents

Method for purifying nitric oxide Download PDF

Info

Publication number
JP2007169108A
JP2007169108A JP2005369542A JP2005369542A JP2007169108A JP 2007169108 A JP2007169108 A JP 2007169108A JP 2005369542 A JP2005369542 A JP 2005369542A JP 2005369542 A JP2005369542 A JP 2005369542A JP 2007169108 A JP2007169108 A JP 2007169108A
Authority
JP
Japan
Prior art keywords
gas
nitric oxide
raw material
liquid contact
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005369542A
Other languages
Japanese (ja)
Other versions
JP4641255B2 (en
JP2007169108A5 (en
Inventor
Kenji Hamada
健児 濱田
Kazuyuki Nakayama
和幸 中山
Kazuyuki Maeda
和幸 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2005369542A priority Critical patent/JP4641255B2/en
Publication of JP2007169108A publication Critical patent/JP2007169108A/en
Publication of JP2007169108A5 publication Critical patent/JP2007169108A5/ja
Application granted granted Critical
Publication of JP4641255B2 publication Critical patent/JP4641255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas Separation By Absorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for purifying nitric oxide suitable for suppressing the formation of a by-product and improving the purity of nitric oxide gas and the recovery rate. <P>SOLUTION: The method for purifying nitric oxide contains a process in which a raw gas containing nitric oxide, nitrogen dioxide, and water is contacted to sulfur dioxide in a gas-liquid contact vessel 1a and nitrogen dioxide is reduced to nitric oxide. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、一酸化窒素を精製するための方法に関する。   The present invention relates to a method for purifying nitric oxide.

一酸化窒素は、例えば、半導体プロセスにおいてシリコン表面に酸窒化膜を形成するための材料ガスとして用いられる場合がある。一酸化窒素は、アンモニア酸化法、硫酸第一鉄と亜硝酸ソーダとを反応させる方法、硝酸と亜硫酸ガスとを反応させる方法など様々な方法で生成され得るが、一般に、これらの方法で得られた粗一酸化窒素ガスには、二酸化窒素や水分が不純物ないし副生成物として含まれる。半導体プロセスにおいて上述の酸窒化膜を形成するうえでは、材料ガスとしての一酸化窒素については、より高純度であることが望まれる。   Nitric oxide may be used as a material gas for forming an oxynitride film on a silicon surface in a semiconductor process, for example. Nitric oxide can be produced by various methods such as an ammonia oxidation method, a method of reacting ferrous sulfate and sodium nitrite, a method of reacting nitric acid and sulfite gas, and is generally obtained by these methods. The crude nitrogen monoxide gas contains nitrogen dioxide and moisture as impurities or by-products. In forming the above-described oxynitride film in a semiconductor process, it is desired that nitric oxide as a material gas has higher purity.

一酸化窒素を高純度化ないし精製するための手法のうち比較的簡易な方法として、活性アルミナ、ゼオライト、シリカゲルなどの無機系吸着剤に所定条件で粗一酸化窒素ガス(原料ガス)を通流する手法が知られている。この手法によると、原料ガス中の主に水分が、無機系吸着剤に吸着されて除去される。無機系吸着剤を利用するこのような手法は、例えば、下記の特許文献1および特許文献2に記載されている。   As a relatively simple method for purifying or purifying nitric oxide, crude nitrogen monoxide gas (raw material gas) is passed through inorganic adsorbents such as activated alumina, zeolite, and silica gel under specified conditions. There is a known technique to do this. According to this method, mainly moisture in the raw material gas is adsorbed and removed by the inorganic adsorbent. Such a technique using an inorganic adsorbent is described in, for example, Patent Document 1 and Patent Document 2 below.

また、一酸化窒素を高純度化ないし精製するための手法のうち、二酸化窒素のような酸性ガスを処理する比較的簡易な方法として、アルカリ水溶液に原料ガスを接触させる手法が知られている。この手法によると、原料ガス中の主に二酸化窒素が、アルカリ水溶液に吸収除去される(例えば、特許文献3参照)。   Further, among methods for purifying or purifying nitric oxide, a method for bringing a raw material gas into contact with an alkaline aqueous solution is known as a relatively simple method for treating an acidic gas such as nitrogen dioxide. According to this method, mainly nitrogen dioxide in the raw material gas is absorbed and removed by the alkaline aqueous solution (see, for example, Patent Document 3).

しかしながら、例えばアルカリ水溶液として水酸化ナトリウム水溶液を用いた従来の一酸化窒素精製手法では、原料ガス中の二酸化窒素は有意に除去されるが、一酸化窒素が水酸化ナトリウムと反応して亜酸化窒素が生成されることが知られている(例えば、4NO+2NaOH→2NaNO2+N2O+H2O)。そのため、従来の技術においては、充分に高純度な一酸化窒素を得られない場合がある。 However, in the conventional nitric oxide purification method using, for example, an aqueous sodium hydroxide solution as an alkaline aqueous solution, nitrogen dioxide in the raw material gas is significantly removed. However, nitric oxide reacts with sodium hydroxide to react with nitrous oxide. Is known to be produced (for example, 4NO + 2NaOH → 2NaNO 2 + N 2 O + H 2 O). Therefore, in the conventional technique, there may be a case where sufficiently high purity nitric oxide cannot be obtained.

また、一酸化窒素と二酸化窒素がアルカリ水溶液と反応すると亜硝酸塩などの窒素化合物が生成される(NO+NO2+2NaOH→2NaNO2+H2O)が、このような窒素化合物は水質汚濁防止法などの規制の対象物質であり、当該窒素化合物を含むアルカリ水溶液(処理液)は、排水時の規制に対応できない虞がある。 Nitrogen monoxide and nitrogen dioxide react with an alkaline aqueous solution to produce nitrogen compounds such as nitrite (NO + NO 2 + 2NaOH → 2NaNO 2 + H 2 O). Such nitrogen compounds are regulated by the Water Pollution Control Law The alkaline aqueous solution (treatment liquid) containing the nitrogen compound may not be able to comply with regulations during drainage.

さらに、アルカリ水溶液を用いた従来の一酸化窒素精製方法では、原料ガス中の二酸化窒素が除去されるため、原料ガスに対する一酸化窒素の回収率は、原料ガスにおける二酸化窒素の含有率に応じて低下することになる。   Furthermore, in the conventional nitric oxide purification method using an alkaline aqueous solution, nitrogen dioxide in the raw material gas is removed. Will be reduced.

特開平8−319104号公報JP-A-8-319104 米国特許第4153429号明細書U.S. Pat. No. 4,153,429 特開昭47−38594号公報JP 47-38594 A

本発明は、このような事情のもとに考え出されたものであって、一酸化窒素ガスの純度および回収率を高めるのに適した一酸化窒素精製方法を提供することを目的とする。   The present invention has been conceived under such circumstances, and an object thereof is to provide a nitric oxide purification method suitable for increasing the purity and recovery rate of nitric oxide gas.

本発明によって提供される一酸化窒素精製方法は、一酸化窒素、二酸化窒素および水分を含む原料ガスを二酸化硫黄と接触させて二酸化窒素を一酸化窒素に還元させるための二酸化窒素還元工程を含む。   The nitric oxide purification method provided by the present invention includes a nitrogen dioxide reduction step for bringing a raw material gas containing nitric oxide, nitrogen dioxide and moisture into contact with sulfur dioxide to reduce nitrogen dioxide to nitric oxide.

本発明に係る二酸化窒素還元工程においては、粗一酸化窒素ガス(原料ガス)に含まれる二酸化窒素および水分が、二酸化硫黄と反応することにより還元されて一酸化窒素になる(NO2+SO2+H2O→NO+H2SO4)。このような二酸化窒素還元工程を含む本精製方法によると、高純度の一酸化窒素を得ることができる。また、二酸化窒素還元工程では、実質的に、不要成分である二酸化窒素が一酸化窒素に変換されることになり、当該一酸化窒素は目的ガスとして回収され得る。したがって、本精製方法によると、従来採用されていた原料ガスから二酸化窒素を除去する精製方法に比べて、原料ガスに対する一酸化窒素の回収率を高めることができる。 In the nitrogen dioxide reduction process according to the present invention, nitrogen dioxide and water contained in the crude nitrogen monoxide gas (raw material gas) are reduced to react with sulfur dioxide to become nitric oxide (NO 2 + SO 2 + H). 2 O → NO + H 2 SO 4 ). According to this purification method including such a nitrogen dioxide reduction step, high-purity nitric oxide can be obtained. Further, in the nitrogen dioxide reduction step, nitrogen dioxide, which is an unnecessary component, is substantially converted into nitric oxide, and the nitric oxide can be recovered as the target gas. Therefore, according to the present purification method, the recovery rate of nitrogen monoxide with respect to the raw material gas can be increased as compared with the purification method in which nitrogen dioxide is removed from the raw material gas that has been conventionally employed.

また、本精製方法に付される原料ガスとしては、アンモニア酸化法により得られたガスが好適である。すなわち、アンモニア酸化法においては、アンモニアを酸素で酸化して一酸化窒素を生成させるが、この際アンモニア濃度が爆発範囲に入らないように反応は水蒸気中で行われる。その結果、生成するガスには90体積%以上の水蒸気(水分)が含まれる。本精製方法では、二酸化窒素還元工程での反応によって水分が消費されるため、このような水分濃度が高いガスを原料ガスとして用いるのに適する。   Moreover, the gas obtained by the ammonia oxidation method is suitable as the raw material gas subjected to the present purification method. That is, in the ammonia oxidation method, ammonia is oxidized with oxygen to produce nitric oxide. At this time, the reaction is performed in water vapor so that the ammonia concentration does not enter the explosion range. As a result, the generated gas contains 90% by volume or more of water vapor (water). In the present purification method, moisture is consumed by the reaction in the nitrogen dioxide reduction step, and therefore, such a gas having a high moisture concentration is suitable for use as a raw material gas.

本精製方法において、好ましくは、二酸化窒素還元工程における原料ガスと二酸化硫黄との接触は、硫酸水溶液を介して行なう。具体的には、当該接触は、原料ガスを二酸化硫黄ガスとともに気液接触槽などに受容された硫酸水溶液中に放出することにより、効率よく行なうことができる。ここで、二酸化窒素還元反応(NO2+SO2+H2O→NO+H2SO4)によって副生する硫酸は、二酸化窒素還元工程において気液接触を担う液体(硫酸水溶液)の原料物質と同一である。このため、反応で副生した硫酸水溶液を反応媒体として有効活用することもできる。 In the present purification method, preferably, the contact between the raw material gas and sulfur dioxide in the nitrogen dioxide reduction step is performed via an aqueous sulfuric acid solution. Specifically, the contact can be efficiently performed by releasing the raw material gas together with sulfur dioxide gas into an aqueous sulfuric acid solution received in a gas-liquid contact tank or the like. Here, the sulfuric acid produced as a by-product by the nitrogen dioxide reduction reaction (NO 2 + SO 2 + H 2 O → NO + H 2 SO 4 ) is the same as the raw material material of the liquid (sulfuric acid aqueous solution) responsible for gas-liquid contact in the nitrogen dioxide reduction process. . For this reason, the sulfuric acid aqueous solution byproduced by reaction can also be effectively used as a reaction medium.

好ましくは、原料ガスと二酸化硫黄および水分との接触に用いられる硫酸水溶液は、所定濃度にて常圧で沸点となるようにその温度が調整されている。このような構成によれば、例えば原料ガスに含まれる水分のうち、二酸化窒素還元反応で消費される以外については、その一部が二酸化窒素還元反応によって副生する硫酸との間で所定濃度の硫酸水溶液となるように凝縮し、その余が水蒸気として吹き抜けることになる。したがって、二酸化窒素還元反応に供される硫酸水溶液の濃度は、二酸化窒素還元反応が進んでも低下することはなく、所定濃度に維持される。その結果、新しい硫酸水溶液を供給することなく、二酸化窒素還元反応を継続させることができる。   Preferably, the temperature of the aqueous sulfuric acid solution used for contacting the raw material gas with sulfur dioxide and moisture is adjusted to a boiling point at normal pressure and at a predetermined concentration. According to such a configuration, for example, a part of the moisture contained in the source gas is consumed at a predetermined concentration with sulfuric acid by-produced by the nitrogen dioxide reduction reaction, except for being consumed by the nitrogen dioxide reduction reaction. It condenses to become an aqueous sulfuric acid solution, and the remainder is blown out as water vapor. Therefore, the concentration of the aqueous sulfuric acid solution used for the nitrogen dioxide reduction reaction does not decrease even if the nitrogen dioxide reduction reaction proceeds, and is maintained at a predetermined concentration. As a result, the nitrogen dioxide reduction reaction can be continued without supplying a new sulfuric acid aqueous solution.

次に、添付図面に基づき、本発明の好ましい実施形態について説明する。   Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明に係る一酸化窒素(NO)精製方法を実行するのに使用することのできる精製ラインX1の概略構成図である。精製ラインX1は、当該精製ラインX1外から供給される粗NOガスを精製するように構成されており、二酸化窒素(NO2)還元用の気液接触装置1と、水分(H2O)除去用の吸着管2と、開閉弁4a〜4dと、NO導出口5と、パージガス導入口6と、パージガス排出口7と、これらを連結する配管とを備える。 FIG. 1 is a schematic configuration diagram of a purification line X1 that can be used to perform a nitric oxide (NO) purification method according to the present invention. The purification line X1 is configured to purify crude NO gas supplied from outside the purification line X1, and includes a gas-liquid contact device 1 for nitrogen dioxide (NO 2 ) reduction and moisture (H 2 O) removal. Adsorption pipe 2, open / close valves 4a to 4d, NO outlet 5, purge gas inlet 6, purge gas outlet 7, and piping connecting them.

粗NOガスは、NO、NO2およびH2Oを含み、原料ガスとして所定の圧力にて精製ラインX1に供給されるものである。 The crude NO gas contains NO, NO 2 and H 2 O, and is supplied to the purification line X1 at a predetermined pressure as a raw material gas.

気液接触装置1は、原料ガスを二酸化硫黄(SO2)ガスとともに受容液体に効率よく接触させるためのものであり、気液接触槽1a、気液分離槽1b、原料ガス導入管1c、SO2ガス導入管1d、SO2ガス導入口1e、ガス導出口1f、液体排出口1g、攪拌翼1h、軸封部1j、回転軸1k,1m、および駆動部1nを備える。 The gas-liquid contact device 1 is for efficiently bringing the raw material gas into contact with the receiving liquid together with the sulfur dioxide (SO 2 ) gas. The gas-liquid contact tank 1a, the gas-liquid separation tank 1b, the raw material gas introduction pipe 1c, the SO 2 gas inlet pipe 1d, SO 2 gas inlet 1e, gas outlet 1f, liquid outlet 1g, stirring blade 1h, shaft seal 1j, rotary shafts 1k and 1m, and drive 1n are provided.

気液接触槽1aは容器状とされており、その内部には受容液体としての水または水を含有する所定の薬液が受容されている。薬液としては、所定濃度に調整された硫酸水溶液が好適である。   The gas-liquid contact tank 1a is formed in a container shape, and water as a receiving liquid or a predetermined chemical solution containing water is received in the inside thereof. As the chemical solution, an aqueous sulfuric acid solution adjusted to a predetermined concentration is suitable.

気液分離槽1bは、気液接触装置1から排出ないし導出される液体およびガスが一時的に貯留ないし通過する部位であり、気液接触槽1aと連通している。気液分離槽1bには、ガス導出口1fおよび液体排出口1gが設けられている。   The gas-liquid separation tank 1b is a part where liquid and gas discharged or led out from the gas-liquid contact apparatus 1 are temporarily stored or passed, and communicates with the gas-liquid contact tank 1a. The gas / liquid separation tank 1b is provided with a gas outlet 1f and a liquid outlet 1g.

原料ガス導入管1cは、原料ガスを気液接触槽1aに導入するためのものであり、気液接触槽1aの内部において下方に延出している。原料ガス導入管1cの下端部は受容液体中にて開放されている。   The source gas introduction pipe 1c is for introducing the source gas into the gas-liquid contact tank 1a, and extends downward in the gas-liquid contact tank 1a. The lower end of the source gas introduction pipe 1c is opened in the receiving liquid.

SO2ガス導入管1dは、気液接触槽1aの外部に位置するSO2ガス導入口1eから供給されるSO2ガスを気液接触槽1aに導入するためのものであり、気液接触槽1aの内部において下方に延出している。SO2ガス導入管1dの下端部は受容液体中にて開放されている。 SO 2 gas introduction pipe 1d is for introducing the SO 2 gas supplied from the SO 2 gas inlet 1e located outside the gas-liquid contact vessel 1a to the gas-liquid contact tank 1a, the gas-liquid contact vessel It extends downward in the interior of 1a. The lower end of the SO 2 gas introduction pipe 1d is opened in the receiving liquid.

攪拌翼1hは、原料ガスおよびSO2ガスを受容液体中にて効率よく分散させるためのものであり、原料ガス導入管1cの下端部およびSO2導入管1dの下端部に対向して配置されている。回転軸1kは、攪拌翼1hに対して固定されるとともに軸封部1jを介して回転軸1mと連結されている。軸封部1jは、気液接触槽1aからの液漏れを防ぎつつ回転軸1k,1mの回転動を実現するためのものであり、気液接触槽1aの底部に嵌設されている。駆動部1nは、攪拌翼1hを回転駆動するためのものであり、回転軸1k,1mを介して攪拌翼1hと機械的に連結されている。駆動部1nは、例えばモータや歯車類から構成されている。また、気液接触装置1には、気液接触槽1a内の受容液体を所定の温度に維持するための温度調整機構(図示せず)が取り付けられている。 The stirring blade 1h is for efficiently dispersing the raw material gas and the SO 2 gas in the receiving liquid, and is disposed to face the lower end portion of the raw material gas introduction pipe 1c and the lower end portion of the SO 2 introduction pipe 1d. ing. The rotary shaft 1k is fixed to the stirring blade 1h and is connected to the rotary shaft 1m via a shaft sealing portion 1j. The shaft sealing part 1j is for realizing the rotational movement of the rotary shafts 1k and 1m while preventing liquid leakage from the gas-liquid contact tank 1a, and is fitted on the bottom of the gas-liquid contact tank 1a. The drive unit 1n is for rotationally driving the stirring blade 1h, and is mechanically connected to the stirring blade 1h via the rotation shafts 1k and 1m. The drive unit 1n is composed of, for example, a motor and gears. Further, the gas-liquid contact device 1 is provided with a temperature adjustment mechanism (not shown) for maintaining the receiving liquid in the gas-liquid contact tank 1a at a predetermined temperature.

このような構成の気液接触装置1においては、原料ガス導入管1cおよびSO2ガス導入管1dを介して受容液体中に原料ガスおよびSO2ガスを放出しながら攪拌翼1hを所定の回転速度で回転させると、当該原料ガスおよびSO2ガスは、攪拌翼1hの回転により受容液体中に生じる渦流に従って放射旋回状に、微細気泡として分散される。このようにして受容液体中で原料ガスおよびSO2ガスを微細に気泡化することにより、受容液体、原料ガス、およびSO2ガスを相互に効率よく接触させることができる。このような構成の気液接触装置1としては、例えば、「ロータリーアトマイザ」と呼称される公知の微細気泡発生装置(例えば、特開2004−330123号公報参照)を使用することができる。 In the gas-liquid contact device 1 having such a configuration, the stirring blade 1h is driven at a predetermined rotational speed while discharging the source gas and the SO 2 gas into the receiving liquid through the source gas introduction pipe 1c and the SO 2 gas introduction pipe 1d. , The raw material gas and the SO 2 gas are dispersed as fine bubbles in a radial swirl according to the vortex generated in the receiving liquid by the rotation of the stirring blade 1h. Thus, by finely bubbling the source gas and the SO 2 gas in the receiving liquid, the receiving liquid, the source gas, and the SO 2 gas can be brought into contact with each other efficiently. As the gas-liquid contact device 1 having such a configuration, for example, a known fine bubble generating device called “rotary atomizer” (for example, see Japanese Patent Application Laid-Open No. 2004-330123) can be used.

吸着管2は、ガスが通過可能に構成されており、本実施形態では円筒形状を有する。吸着管2の内部には、H2O吸着能を発揮し得る無機系吸着剤が充填されている。そのような無機系吸着剤としては、活性アルミナ、ゼオライト、およびシリカゲルを採用することができる。これら吸着剤は、単独で用いてもよいし、混合して用いてもよい。また、吸着管2には、その内部温度を調整するための温度調整機構(図示せず)が取り付けられている。 The adsorption tube 2 is configured to allow gas to pass through and has a cylindrical shape in the present embodiment. The inside of the adsorption tube 2 is filled with an inorganic adsorbent capable of exhibiting H 2 O adsorption ability. As such an inorganic adsorbent, activated alumina, zeolite, and silica gel can be employed. These adsorbents may be used alone or in admixture. The adsorption pipe 2 is attached with a temperature adjustment mechanism (not shown) for adjusting the internal temperature.

開閉弁4a〜4dは、各々、ガスの通過を許容する開状態と阻止する閉状態とが選択可能に構成されている。   Each of the on-off valves 4a to 4d is configured to be selectable between an open state that allows passage of gas and a closed state that blocks gas.

精製ラインX1を使用して本発明のNO精製方法を実行する際には、開閉弁4a,4cを開状態とし且つ開閉弁4b,4dを閉状態とする。そして、原料ガス導入管1cから気液接触槽1aに原料ガス(粗NOガス)を供給し続け、同時にSO2ガス導入口1eからSO2ガス導入管1dを経て気液接触槽1aにSO2ガスを供給し続け、気液接触装置1にてNO2還元工程を実行する。 When performing the NO purification method of the present invention using the purification line X1, the on-off valves 4a and 4c are opened and the on-off valves 4b and 4d are closed. The continuously supplied raw material gas to the gas-liquid contact vessel 1a (crude NO gas) from the raw material gas introduction pipe 1c, SO 2 in the gas-liquid contact vessel 1a via the SO 2 gas introduction pipe 1d simultaneously from SO 2 gas inlet 1e The gas is continuously supplied, and the NO 2 reduction step is executed by the gas-liquid contact device 1.

原料ガスは、上述のようにNO、NO2およびH2Oを含むが、例えばアンモニア酸化法を経て得られたガスが用いられる。原料ガス導入管1cから供給される原料ガスのNO濃度、NO2濃度およびH2O濃度は、それぞれ、例えば1.2〜6体積%、0.8〜4体積%、90〜98体積%である。原料ガス導入管1cから供給されるガスの圧力は、例えば0.05〜20MPaであり、好ましくは0.1〜2MPaである。気液接触槽1aへの原料ガスの供給量は、例えば実験室規模であれば50〜3000ml/minである。 The source gas contains NO, NO 2, and H 2 O as described above. For example, a gas obtained through an ammonia oxidation method is used. The NO gas concentration, NO 2 concentration, and H 2 O concentration of the raw material gas supplied from the raw material gas introduction pipe 1c are, for example, 1.2 to 6% by volume, 0.8 to 4% by volume, and 90 to 98% by volume, respectively. is there. The pressure of the gas supplied from the raw material gas introduction pipe 1c is, for example, 0.05 to 20 MPa, and preferably 0.1 to 2 MPa. The supply amount of the source gas to the gas-liquid contact tank 1a is, for example, 50 to 3000 ml / min in a laboratory scale.

SO2ガス導入口1eから供給されるSO2ガスは、気液接触装置1への供給量において、NO2量に対するSO2量のモル比(SO2量/NO2量)にして等モル以上であればよいが、経済性の観点から当該モル比は1.1〜1.2であることが好ましい。 SO 2 gas supplied from the SO 2 gas inlet 1e, in supply to the gas-liquid contact apparatus 1, SO 2 amount molar ratio of relative NO 2 amount (SO 2 amount / NO 2 amount) in equimolar amounts with more The molar ratio is preferably 1.1 to 1.2 from the viewpoint of economy.

本NO精製方法では、気液接触槽1a内に受容させる受容液体として所定濃度に調整された硫酸水溶液を用いる。ここで、硫酸水溶液の濃度としては、反応促進の観点から50重量%以上であるのが好ましい。また、気液接触槽1a内の硫酸水溶液の温度を、温度調整機構により常圧での当該硫酸水溶液の沸点に維持する。例えば、受容液体として濃度が50重量%の硫酸水溶液を用いる場合には、当該硫酸水溶液の温度を50重量%硫酸水溶液の沸点である123℃に維持する。   In this NO purification method, an aqueous sulfuric acid solution adjusted to a predetermined concentration is used as a receiving liquid to be received in the gas-liquid contact tank 1a. Here, the concentration of the sulfuric acid aqueous solution is preferably 50% by weight or more from the viewpoint of promoting the reaction. Further, the temperature of the aqueous sulfuric acid solution in the gas-liquid contact tank 1a is maintained at the boiling point of the aqueous sulfuric acid solution at normal pressure by a temperature adjustment mechanism. For example, when a 50% by weight sulfuric acid aqueous solution is used as the receiving liquid, the temperature of the sulfuric acid aqueous solution is maintained at 123 ° C., which is the boiling point of the 50% by weight sulfuric acid aqueous solution.

NO2還元工程では、攪拌翼1hを所定の回転速度で回転させつつ、原料ガス導入管1cの下端部から原料ガスが、またSO2ガス導入管1dの下端部からSO2ガスが放出される。これにより、硫酸水溶液中にて原料ガスおよびSO2ガスが微細気泡として分散され、硫酸水溶液、原料ガス、およびSO2ガスが相互に効率よく接触する。そして、当該接触により、原料ガスに含まれるNO2と、SO2ガス中のSO2と、原料ガス中のH2Oまたは硫酸水溶液中のH2Oとが反応し(NO2+SO2+H2O→NO+H2SO4)、NO2は還元されてNOとなる(以下、当該反応式に示す反応をNO2還元反応という。)。この反応によりNOが増加した原料ガス(NO富化ガス)は、気液分離槽1bを経てガス導出口1fから気液接触装置1外に導出される。 In the NO 2 reduction step, the source gas is released from the lower end of the source gas introduction pipe 1c and the SO 2 gas is released from the lower end of the SO 2 gas introduction pipe 1d while rotating the stirring blade 1h at a predetermined rotational speed. . Thereby, the raw material gas and the SO 2 gas are dispersed as fine bubbles in the sulfuric acid aqueous solution, and the sulfuric acid aqueous solution, the raw material gas, and the SO 2 gas come into efficient contact with each other. Then, by the contact, and NO 2 contained in the raw material gas, and SO 2 of SO 2 gas, and of H 2 O H 2 O or in aqueous sulfuric acid in the raw material gas reacts (NO 2 + SO 2 + H 2 O → NO + H 2 SO 4 ), NO 2 is reduced to NO (hereinafter, the reaction shown in the reaction formula is referred to as NO 2 reduction reaction). The raw material gas (NO-enriched gas) in which NO has increased by this reaction is led out of the gas-liquid contact device 1 from the gas outlet 1f through the gas-liquid separation tank 1b.

また、上記反応式に示すように、NO2還元反応によって硫酸が副生するが、その一方で気液接触槽1aに受容される硫酸水溶液は所定濃度にて常圧で沸点となるようにその温度が維持されている。このため、原料ガスに含まれるH2Oのうち、NO2還元反応で消費される以外については、その一部が上記反応によって副生する硫酸との間で上記所定濃度の硫酸水溶液となるように凝縮し、その余が水蒸気としてNO富化ガスに含まれて気液接触装置1外に導出される。したがって、気液接触槽1a内の硫酸水溶液の濃度は、NO2還元反応が進んでも低下することはなく、上記所定濃度に維持される。その結果、気液接触槽1aに新しい硫酸水溶液(受容液体)を供給することなく、NO2還元反応が継続する。なお、NO2還元反応が継続すると気液接触槽1a内の硫酸水溶液の量が増加するが、一定量を超える硫酸水溶液についてはオーバーフローし、気液分離槽1bを経て液体排出口1gから排出液として排出される。 In addition, as shown in the above reaction formula, sulfuric acid is by-produced by the NO 2 reduction reaction. On the other hand, the sulfuric acid aqueous solution received in the gas-liquid contact tank 1a has a boiling point at normal pressure at a predetermined concentration. The temperature is maintained. For this reason, a part of the H 2 O contained in the raw material gas, except that it is consumed in the NO 2 reduction reaction, becomes a sulfuric acid aqueous solution having the predetermined concentration with the sulfuric acid by-produced by the reaction. The remainder is contained in the NO-enriched gas as water vapor and led out of the gas-liquid contact device 1. Therefore, the concentration of the sulfuric acid aqueous solution in the gas-liquid contact tank 1a is maintained at the predetermined concentration without decreasing even if the NO 2 reduction reaction proceeds. As a result, the NO 2 reduction reaction continues without supplying a new sulfuric acid aqueous solution (accepting liquid) to the gas-liquid contact tank 1a. If the NO 2 reduction reaction continues, the amount of sulfuric acid aqueous solution in the gas-liquid contact tank 1a increases. However, the sulfuric acid aqueous solution exceeding a certain amount overflows, and the liquid discharged from the liquid discharge port 1g passes through the gas-liquid separation tank 1b. As discharged.

気液接触装置1でのNO2還元工程を終えた原料ガス(NO富化ガス)は、次に、開閉弁4aを経て吸着管2に至り、吸着工程に付される。吸着工程では、吸着管2内の無機系吸着剤にNO富化ガスを通流させ、主としてH2Oを当該無機系吸着剤に吸着ないし保持させたうえで、非吸着ガスを吸着管2外に導出する。吸着管2の内部温度は、例えば−40〜50℃であり、好ましくは0〜30℃である。このような吸着工程は、例えばH2Oが充分に吸収され、破過が始まる時点(破過点)まで実行してもよいし、破過点より前に終了してもよい。精製ラインX1に原料ガスを供給し続けつつも、開閉弁4cを閉状態とし且つ開閉弁4dを開状態とすることにより、吸着工程を終了することができる。吸着工程終了時まで、吸着管2を経たガスを精製NOガスとしてNO導出口5から取り出すことができる。 The raw material gas (NO-enriched gas) that has finished the NO 2 reduction process in the gas-liquid contact device 1 then reaches the adsorption pipe 2 via the on-off valve 4a and is subjected to the adsorption process. In the adsorption process, the NO-rich gas is passed through the inorganic adsorbent in the adsorption tube 2 to mainly adsorb or hold H 2 O on the inorganic adsorbent, and then the non-adsorbed gas is removed from the adsorption tube 2. To derive. The internal temperature of the adsorption tube 2 is, for example, −40 to 50 ° C., preferably 0 to 30 ° C. Such an adsorption process may be performed until, for example, H 2 O is sufficiently absorbed and breakthrough starts (breakthrough point), or may be terminated before the breakthrough point. While continuing to supply the source gas to the purification line X1, the adsorption process can be completed by closing the on-off valve 4c and opening the on-off valve 4d. Until the end of the adsorption process, the gas passing through the adsorption pipe 2 can be taken out from the NO outlet 5 as purified NO gas.

以上のようにして、不純物としてNO2およびH2Oを含む粗NOガス(原料ガス)を精製して高純度NOガスを得ることができる。 As described above, crude NO gas (raw material gas) containing NO 2 and H 2 O as impurities can be purified to obtain high-purity NO gas.

本発明に係るNOガス精製方法を精製ラインX1にて繰り返し実行するためには、上述のような精製プロセス終了後に吸着管2ないしその内部の無機系吸着剤を再生または洗浄する。   In order to repeatedly execute the NO gas purification method according to the present invention in the purification line X1, the adsorption pipe 2 or the inorganic adsorbent inside thereof is regenerated or washed after the purification process as described above is completed.

吸着管2ないし内部の無機系吸着剤の再生または洗浄に際しては、開閉弁4a,4cを閉状態とし且つ開閉弁4b,4dを開状態とする。そして、パージガス導入口6を介して精製ラインX1に不活性ガスを導入し続ける。パージガス導入口6から導入される不活性ガスは、図外のヒータにて予め所定温度に昇温されており、開閉弁4d、吸着管2、および開閉弁4bを経てパージガス排出口7からライン外に排出される。不活性ガスとしては、例えばN2やHeを採用することができる。上記ヒータにより実現される不活性ガスの温度は、例えば100〜300℃であり、好ましくは150〜300℃である。このようにして、吸着管2ないしその内部の無機系吸着剤に所定量かつ所定圧力の不活性ガスを通流することにより、当該吸着管2ないし無機系吸着剤を再生または洗浄することができる。 When regenerating or cleaning the adsorption pipe 2 or the internal inorganic adsorbent, the on-off valves 4a and 4c are closed and the on-off valves 4b and 4d are opened. Then, the inert gas is continuously introduced into the purification line X1 through the purge gas inlet 6. The inert gas introduced from the purge gas introduction port 6 is heated to a predetermined temperature in advance by a heater (not shown), and goes out of the line from the purge gas discharge port 7 via the on-off valve 4d, the adsorption pipe 2, and the on-off valve 4b. To be discharged. For example, N 2 or He can be used as the inert gas. The temperature of the inert gas realized by the heater is, for example, 100 to 300 ° C, and preferably 150 to 300 ° C. In this way, the adsorbing tube 2 or the inorganic adsorbent can be regenerated or washed by passing an inert gas of a predetermined amount and a predetermined pressure through the adsorbing tube 2 or the inorganic adsorbent in the adsorbing tube 2. .

本発明に係るNO精製方法によると、気液接触装置1での上述のNO2還元工程にて、原料ガスに含まれるNO2がSO2およびH2Oと反応することにより還元されてNOになる(NO2+SO2+H2O→NO+H2SO4)。このようなNO2還元工程を含むNO精製方法によると、高純度のNOを得ることができる。また、NO2還元工程では、実質的に、不要成分であるNO2がNOに変換されることになる。そして、当該変換されたNOは目的ガスとして回収される。したがって、本NO精製方法によると、従来採用されていた原料ガスからNO2を除去する精製方法に比べて、原料ガスに対するNOの回収率を高めることができる。 According to NO purification method according to the present invention, by the above-mentioned NO 2 reduction step in the gas-liquid contact apparatus 1, NO 2 contained in the raw material gas is reduced by reacting with SO 2 and H 2 O to NO (NO 2 + SO 2 + H 2 O → NO + H 2 SO 4 ) According to the NO purification method including such a NO 2 reduction step, high-purity NO can be obtained. Further, in the NO 2 reduction step, substantially, so that it is unnecessary components NO 2 is converted to NO. Then, the converted NO is recovered as a target gas. Therefore, according to the present NO purification method, the NO recovery rate with respect to the source gas can be increased as compared with the conventionally used purification method for removing NO 2 from the source gas.

本NO精製方法のNO2還元工程を実行するための気液接触装置としては、受容液体、原料ガス、およびSO2ガスを相互に効率よく接触させることができる構成であればよく、上記実施形態の構成に限定されるものではない。他の構成からなる気液接触装置としては、例えば、「スタティックミキサー」と呼称される公知の静止型混合装置(例えば、特開2005−34750号公報参照)を使用することができる。図2は、静止型混合装置として構成された気液接触装置1’の概略構成を示す。気液接触装置1’では、受容液体の液面よりも上方においてSO2ガス導入管1d’が原料ガス導入管1c’に接続されるとともに、原料ガス導入管1c’の端部には混合管1p’が接続されている。混合管1p’は、当該混合管1p’内を通過する流体を分割・攪拌するためのエレメント(図示せず)を内部に備え、気液接触槽1a’内の受容液体に浸漬されている。混合管1p’を通過する原料ガスおよびSO2ガスは充分に混合されるとともに微細気泡化され、上記実施形態と同様にしてNO2還元反応がなされる。 The gas-liquid contact device for performing the NO 2 reduction step of the present NO purification method may be any configuration that can efficiently contact the receiving liquid, the raw material gas, and the SO 2 gas with each other. It is not limited to the configuration of As the gas-liquid contact device having another configuration, for example, a known static mixing device called “static mixer” (for example, see JP-A-2005-34750) can be used. FIG. 2 shows a schematic configuration of a gas-liquid contact device 1 ′ configured as a static mixing device. In the gas-liquid contact device 1 ′, an SO 2 gas introduction pipe 1d ′ is connected to the source gas introduction pipe 1c ′ above the liquid level of the receiving liquid, and a mixing pipe is provided at the end of the source gas introduction pipe 1c ′. 1p ′ is connected. The mixing tube 1p ′ includes therein an element (not shown) for dividing and stirring the fluid passing through the mixing tube 1p ′, and is immersed in the receiving liquid in the gas-liquid contact tank 1a ′. The source gas and SO 2 gas passing through the mixing tube 1p ′ are sufficiently mixed and made into fine bubbles, and the NO 2 reduction reaction is performed in the same manner as in the above embodiment.

本実施例においては、上記実施形態に係る気液接触装置1を使用して、本NO精製方法におけるNO2還元工程を実行した。本実施例では、気液接触槽1aとして容量1リットルのフラスコを採用し、受容液体としての50重量%硫酸水溶液を気液接触槽1a内に500ml受容させた。また、気液接触装置1は、気液接触槽1a内の液量が一定量を超えたらオーバーフローして気液分離槽1bを経て気液接触装置1外に排出しうる構成とした。温度調整機構により気液接触槽1aの温度を50重量%硫酸水溶液の沸点である123℃に維持し、攪拌翼1hにより当該硫酸水溶液を攪拌した。この状態にて、原料ガスとしての粗NOガス (NO含量=3体積%、NO2含量=2体積%、水分含量=95体積%)を原料ガス導入管1cを介して気液接触槽1aに供給しつつ、純度がほぼ100%のSO2ガスをSO2導入管1dを介して気液接触槽1aに供給した。気液接触槽1aへの各種ガスの供給量は、原料ガスが1750ml/min、SO2ガスが38.5ml/minとした。このようにしてNO2還元工程を行なった。各種ガスの供給開始後1時間経過した時に気液接触装置1から導出されるガスを分析した結果、NO含量は5体積%、NO2含量は0.04体積%であった。また、硫酸水溶液中の硝酸は、0.003重量%、亜硝酸は0.001重量%以下であった。 In this example, the NO 2 reduction step in the present NO purification method was performed using the gas-liquid contact device 1 according to the above embodiment. In this example, a 1 liter flask was adopted as the gas-liquid contact tank 1a, and 500 ml of a 50 wt% sulfuric acid aqueous solution as the receiving liquid was received in the gas-liquid contact tank 1a. Further, the gas-liquid contact device 1 is configured to overflow when the amount of liquid in the gas-liquid contact tank 1a exceeds a certain amount and to be discharged out of the gas-liquid contact apparatus 1 through the gas-liquid separation tank 1b. The temperature of the gas-liquid contact tank 1a was maintained at 123 ° C., which is the boiling point of the 50 wt% sulfuric acid aqueous solution, by the temperature adjustment mechanism, and the sulfuric acid aqueous solution was stirred by the stirring blade 1h. In this state, crude NO gas (NO content = 3% by volume, NO 2 content = 2% by volume, moisture content = 95% by volume) as a source gas is supplied to the gas-liquid contact tank 1a through the source gas introduction pipe 1c. While being supplied, SO 2 gas having a purity of almost 100% was supplied to the gas-liquid contact tank 1a via the SO 2 introduction pipe 1d. The supply amounts of various gases to the gas-liquid contact tank 1a were 1750 ml / min for the source gas and 38.5 ml / min for the SO 2 gas. In this way, the NO 2 reduction step was performed. As a result of analyzing the gas derived from the gas-liquid contact device 1 after 1 hour from the start of the supply of various gases, the NO content was 5% by volume and the NO 2 content was 0.04% by volume. Further, nitric acid in the sulfuric acid aqueous solution was 0.003% by weight, and nitrous acid was 0.001% by weight or less.

NO2還元工程に付される前の原料ガスのNO2含量とNO2還元工程を経たガスのNO2含量とを比較すると理解できるように、NO2還元工程では、原料ガスに含まれていたNO2のほぼすべてがなくなった。これは、NO2還元反応によりNO2がNOに還元されたことに起因すると考えられる。したがって、NO2還元工程を経たガスにおいては、NO2還元工程にて反応に消費されたNO2ガス量と同量のNOが増加しており、NOを高純度化するとともにNOの回収率を高めることができた。 As it can be understood that compared with the NO 2 content of the gas passing through the NO 2 content and NO 2 reduction step before the raw material gas to be subjected to NO 2 reduction step, the NO 2 reduction step, were included in the raw material gas Almost all of NO 2 is gone. This is considered to be caused by NO 2 being reduced to NO by the NO 2 reduction reaction. Accordingly, in the gas passed through the NO 2 reduction step, NO 2 and consumed in the reaction in the reduction step the NO 2 gas the same amount of NO is increased, the recovery rate of NO as well as highly purified NO I was able to increase it.

本発明に係る一酸化窒素精製方法を実行するのに使用することのできる精製ラインの概略構成図である。It is a schematic block diagram of the refinement | purification line which can be used to implement the nitric oxide refinement | purification method concerning this invention. 本発明に係る一酸化窒素精製方法の二酸化窒素還元工程を実行するための装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the apparatus for performing the nitrogen dioxide reduction process of the nitric oxide refinement | purification method which concerns on this invention.

符号の説明Explanation of symbols

X1 精製ライン
1,1’ 気液接触装置
2 吸着管
3 減圧弁
4a〜4d 開閉弁
5 NO導出口
6 パージガス導入口
7 パージガス排出口
X1 purification line 1,1 'gas-liquid contact device 2 adsorption pipe 3 pressure reducing valve 4a-4d on-off valve 5 NO outlet 6 purge gas inlet 7 purge gas outlet

Claims (3)

一酸化窒素、二酸化窒素、および水分を含む原料ガスを二酸化硫黄と接触させて二酸化窒素を一酸化窒素に還元させるための二酸化窒素還元工程を含む、一酸化窒素精製方法。   A method for purifying nitrogen monoxide, comprising a nitrogen dioxide reduction step for bringing a raw material gas containing nitrogen monoxide, nitrogen dioxide, and moisture into contact with sulfur dioxide to reduce nitrogen dioxide to nitrogen monoxide. 上記二酸化窒素還元工程における原料ガスと二酸化硫黄との接触は、硫酸水溶液を介して行なう、請求項1に記載の一酸化窒素精製方法。   The method for purifying nitrogen monoxide according to claim 1, wherein the contact between the raw material gas and sulfur dioxide in the nitrogen dioxide reduction step is performed via a sulfuric acid aqueous solution. 上記硫酸水溶液は、所定濃度にて常圧で沸点となるようにその温度が調整されている、請求項2に記載の一酸化窒素精製方法。

The nitric oxide purification method according to claim 2, wherein the temperature of the sulfuric acid aqueous solution is adjusted so as to have a boiling point at normal pressure and at a predetermined concentration.

JP2005369542A 2005-12-22 2005-12-22 Nitric oxide purification method Active JP4641255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369542A JP4641255B2 (en) 2005-12-22 2005-12-22 Nitric oxide purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005369542A JP4641255B2 (en) 2005-12-22 2005-12-22 Nitric oxide purification method

Publications (3)

Publication Number Publication Date
JP2007169108A true JP2007169108A (en) 2007-07-05
JP2007169108A5 JP2007169108A5 (en) 2008-12-18
JP4641255B2 JP4641255B2 (en) 2011-03-02

Family

ID=38296170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369542A Active JP4641255B2 (en) 2005-12-22 2005-12-22 Nitric oxide purification method

Country Status (1)

Country Link
JP (1) JP4641255B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057497A (en) * 2009-09-09 2011-03-24 Sumitomo Seika Chem Co Ltd Method and apparatus for producing nitrogen monoxide gas
JP2012502770A (en) * 2008-09-22 2012-02-02 ゲノ エルエルシー Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
CN103693629A (en) * 2012-09-27 2014-04-02 住友精化株式会社 Method for purifying nitric oxide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522868A (en) * 1975-06-24 1977-01-10 Kobe Steel Ltd Nox_rich exhaust gas treatment process
JPS5235770A (en) * 1975-09-17 1977-03-18 Sumitomo Chem Eng Kk Method of simultaneous removing sox and nox
JPH0686061U (en) * 1993-05-27 1994-12-13 株式会社堀場製作所 Gas analyzer using ultraviolet absorption method
JPH0857242A (en) * 1994-07-07 1996-03-05 Boc Group Inc:The Refining process of nitrogen oxide
JPH09118508A (en) * 1995-09-18 1997-05-06 Hoechst Ag Production of nitrogen-dioxide-free nitrogen monoxide
JPH10505315A (en) * 1994-06-07 1998-05-26 ヘキスト・アクチェンゲゼルシャフト Method for producing NO-2 free nitric oxide using sulfur-containing polymer and filter
JP2000325755A (en) * 1999-05-21 2000-11-28 Kobe Steel Ltd Nitrogen dioxide removing process
JP2001503366A (en) * 1995-05-04 2001-03-13 メタルゲゼルシャフト・アクチエンゲゼルシャフト Method for removing NO ▲ × ▼ from nitrosyl sulfuric acid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522868A (en) * 1975-06-24 1977-01-10 Kobe Steel Ltd Nox_rich exhaust gas treatment process
JPS5235770A (en) * 1975-09-17 1977-03-18 Sumitomo Chem Eng Kk Method of simultaneous removing sox and nox
JPH0686061U (en) * 1993-05-27 1994-12-13 株式会社堀場製作所 Gas analyzer using ultraviolet absorption method
JPH10505315A (en) * 1994-06-07 1998-05-26 ヘキスト・アクチェンゲゼルシャフト Method for producing NO-2 free nitric oxide using sulfur-containing polymer and filter
JPH0857242A (en) * 1994-07-07 1996-03-05 Boc Group Inc:The Refining process of nitrogen oxide
JP2001503366A (en) * 1995-05-04 2001-03-13 メタルゲゼルシャフト・アクチエンゲゼルシャフト Method for removing NO ▲ × ▼ from nitrosyl sulfuric acid
JPH09118508A (en) * 1995-09-18 1997-05-06 Hoechst Ag Production of nitrogen-dioxide-free nitrogen monoxide
JP2000325755A (en) * 1999-05-21 2000-11-28 Kobe Steel Ltd Nitrogen dioxide removing process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502770A (en) * 2008-09-22 2012-02-02 ゲノ エルエルシー Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11511252B2 (en) 2008-09-22 2022-11-29 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US12059661B2 (en) 2008-09-22 2024-08-13 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
JP2011057497A (en) * 2009-09-09 2011-03-24 Sumitomo Seika Chem Co Ltd Method and apparatus for producing nitrogen monoxide gas
CN103693629A (en) * 2012-09-27 2014-04-02 住友精化株式会社 Method for purifying nitric oxide
KR20140041339A (en) * 2012-09-27 2014-04-04 스미토모 세이카 가부시키가이샤 Method for purifying nitric oxide
JP2014069977A (en) * 2012-09-27 2014-04-21 Sumitomo Seika Chem Co Ltd Nitric oxide purification method
TWI619674B (en) * 2012-09-27 2018-04-01 住友精化股份有限公司 Refining method of nitric oxide
KR102101999B1 (en) * 2012-09-27 2020-04-17 스미토모 세이카 가부시키가이샤 Method for purifying nitric oxide

Also Published As

Publication number Publication date
JP4641255B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
US8574521B2 (en) Gas stream purification apparatus and method
EP1405827A1 (en) Process and apparatus for treating nitrogen compound containing water
US9272908B2 (en) Gas stream purification apparatus
JP4641255B2 (en) Nitric oxide purification method
US5139753A (en) Continuous process for mass transfer of a liquid reagent with two different gases
JP4862314B2 (en) Method and apparatus for desulfurization of gas containing hydrogen sulfide
JP5963304B2 (en) Biogas treatment method and treatment system
JP6680501B2 (en) Method for purifying hazardous substance-containing liquid and apparatus for purifying hazardous substance-containing liquid for carrying out the method
JPH0947790A (en) Treatment of waste stack gas desulfurization effluent
JP6196434B2 (en) Nitric oxide purification method
Zhu et al. Removal of nitric oxide and sulfur dioxide from flue gases using a Fe II-ethylenediamineteraacetate solution
EP3218084A1 (en) Process for removing and recovering h2s from a gas stream by cyclic adsorption
JP4666275B2 (en) Treatment method for wastewater containing sulfite ions
JP5142462B2 (en) Water purification device and water purification method
JP2007169108A5 (en)
CN105174583B (en) A kind of recycling processing method of diluted alkaline waste water
JPH0117734B2 (en)
JP4010847B2 (en) Method for purifying nitrogen trifluoride gas
JP2008100193A (en) Method of treating nitrogen oxide-containing gas and apparatus for treating nitrogen oxide-containing gas
JPS5976592A (en) Treatment of waste water
RU1792340C (en) Method of separation of flue gases from sulphur oxides
JP2024071553A (en) High-purity nitric oxide production method
JPH02262544A (en) Acidic gas-scrubbing composition
JPS63123417A (en) Refining method for methane
JPH0159004B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

R150 Certificate of patent or registration of utility model

Ref document number: 4641255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250