JP2007167265A - Magnetic induction system and magnetic field modulation device - Google Patents

Magnetic induction system and magnetic field modulation device Download PDF

Info

Publication number
JP2007167265A
JP2007167265A JP2005367430A JP2005367430A JP2007167265A JP 2007167265 A JP2007167265 A JP 2007167265A JP 2005367430 A JP2005367430 A JP 2005367430A JP 2005367430 A JP2005367430 A JP 2005367430A JP 2007167265 A JP2007167265 A JP 2007167265A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
state
shielded
modulation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005367430A
Other languages
Japanese (ja)
Other versions
JP4803720B2 (en
Inventor
Tadao Kakizoe
忠生 垣添
Hisamitsu Kobayashi
寿光 小林
Katsunori Tamagawa
克紀 玉川
Kunitoshi Ikeda
邦利 池田
Kenichi Ohara
健一 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
National Cancer Center Japan
Tamakawa Co Ltd
Original Assignee
Pentax Corp
National Cancer Center Japan
Tamakawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentax Corp, National Cancer Center Japan, Tamakawa Co Ltd filed Critical Pentax Corp
Priority to JP2005367430A priority Critical patent/JP4803720B2/en
Publication of JP2007167265A publication Critical patent/JP2007167265A/en
Application granted granted Critical
Publication of JP4803720B2 publication Critical patent/JP4803720B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic induction system capable of modulating an induced magnetic field without using a coil or power supply for generating an alternating-current magnetic field. <P>SOLUTION: The magnetic induction system comprises a magnetic field generating part for generating a certain magnetic field for inducing a member to be induced and a magnetic field modulation device disposed in the periphery of the magnetic field generating part. The magnetic field modulation device selectively achieves a state to shield the magnetic field generated by the magnetic field generating part, a state to shield a part of the magnetic field, and a state not to shield the magnetic field. The magnetic field formed with the magnetic field generated by the magnetic field generating part is modulated by the operation of the magnetic field modulation device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被誘導部材を、磁気を用いて誘導させる磁気誘導システム、及び、このシステムに用いられる磁場変調装置に関する。   The present invention relates to a magnetic induction system that induces a guided member using magnetism, and a magnetic field modulation device used in the system.

磁界によって被誘導部材を誘導可能とする磁気誘導システムにおいて、被誘導部材の誘導のために発生させた誘導磁界に対して、変調した交流磁界を加えて制御することは、被誘導部材に振動を加えることができるため、被誘導部材と物体内部との接触抵抗を減らして誘導を補助する点で有用であると考えられている(特許文献1)。また、このように誘導磁界と交流磁界を併用することによって、被誘導部材の位置や方向を正確に検知することが検討されている。
特開平4−22326
In a magnetic induction system in which a guided member can be guided by a magnetic field, control by adding a modulated AC magnetic field to the induced magnetic field generated for guiding the guided member causes vibration to the guided member. Since it can be added, it is considered useful in terms of assisting guidance by reducing the contact resistance between the guided member and the inside of the object (Patent Document 1). In addition, it has been studied to accurately detect the position and direction of the guided member by using the induced magnetic field and the alternating magnetic field together.
JP-A-4-22326

しかしながら、上述の磁気誘導システムでは、誘導磁界と交流磁界を発生させるための装置がそれぞれ必要となるためコストが高くなり、システムが大型化する。とくに、誘導磁界の発生及び交流磁界の発生のためにそれぞれコイルを用いる場合は、両コイルに電流を供給するための電源がそれぞれ必要となる。さらに、インダクタンスの大きなコイルに変調電流を供給する場合には、コイル電流を供給する電源の容量や制御能力を大きくする必要があり、システムが高価かつ大型になり、消費電力が増加するという問題があった。 However, the above-described magnetic induction system requires a device for generating an induction magnetic field and an alternating magnetic field, respectively, which increases costs and enlarges the system. In particular, when coils are respectively used for generating an induction magnetic field and an AC magnetic field, a power source for supplying current to both coils is required. Furthermore, when a modulation current is supplied to a coil having a large inductance, it is necessary to increase the capacity and control capability of the power source that supplies the coil current, which increases the system cost and size and increases the power consumption. there were.

上記課題を解決するために、本発明の磁気誘導システムは、被誘導部材を誘導するための一定の磁界を発生する磁界発生部と、磁界発生部の周囲に配置され、磁界発生部が発生した磁界を遮蔽する状態、一部遮蔽する状態、及び、遮蔽しない状態を選択的に実現する磁場変調装置と、を備え、磁場変調装置の動作により、磁界発生部が発生した磁界により形成される磁場を変調することを特徴としている。   In order to solve the above-described problems, a magnetic induction system according to the present invention includes a magnetic field generator that generates a constant magnetic field for guiding a guided member, and a magnetic field generator that is disposed around the magnetic field generator. A magnetic field modulation device that selectively realizes a magnetic field shielding state, a partial shielding state, and a non-shielding state, and a magnetic field formed by the magnetic field generated by the magnetic field generation unit by the operation of the magnetic field modulation device It is characterized by modulating.

上記磁場変調装置は、磁性流体が充填される充填容器と、充填容器内に充填される磁性流体の量を調整する調整機構と、を有し、調整機構の動作により、充填容器に充填される磁性流体の量を調整して、磁界発生部が発生した磁界を遮蔽する状態、一部遮蔽する状態、及び、遮蔽しない状態を選択的に実現することができる。   The magnetic field modulation device includes a filling container filled with a magnetic fluid and an adjusting mechanism for adjusting the amount of the magnetic fluid filled in the filling container, and the filling container is filled by the operation of the adjusting mechanism. By adjusting the amount of the magnetic fluid, it is possible to selectively realize a state in which the magnetic field generated by the magnetic field generator is shielded, a state in which it is partially shielded, and a state in which it is not shielded.

上記磁場変調装置は、磁性部分と非磁性部分を備えた磁場変調部材、及び、磁場変調部材の磁性部分及び非磁性部分と磁界発生部との相対的な位置関係を変更する相対位置変更部材、を有し、相対位置変更部材の動作により、磁界発生部が発生した磁界を遮蔽する状態、一部遮蔽する状態、及び、遮蔽しない状態を選択的に実現することができる。   The magnetic field modulation device includes a magnetic field modulation member having a magnetic part and a nonmagnetic part, and a relative position changing member that changes a relative positional relationship between the magnetic part and the nonmagnetic part of the magnetic field modulation member and the magnetic field generation part, With the operation of the relative position changing member, it is possible to selectively realize a state where the magnetic field generated by the magnetic field generation unit is shielded, a state where it is partially shielded, and a state where it is not shielded.

上記磁場変調装置は、温度によって磁気特性が変化する磁性体を有する磁気シールド部材と、磁気シールド部材の温度を調整する温度調整部材と、を備え、温度調整部材の動作により、磁性体の磁気特性を制御して、磁界発生部が発生した磁界を遮蔽する状態、一部遮蔽する状態、及び、遮蔽しない状態を選択的に実現することができる。   The magnetic field modulation device includes a magnetic shield member having a magnetic body whose magnetic characteristics change with temperature, and a temperature adjustment member that adjusts the temperature of the magnetic shield member, and the magnetic characteristics of the magnetic body are adjusted by the operation of the temperature adjustment member. And a state where the magnetic field generated by the magnetic field generator is shielded, a partly shielded state, and a state where the magnetic field is not shielded can be selectively realized.

上記磁気シールド部材の磁性体は超電導体であり、温度調整部材の動作により磁気シールド部材の温度を変更することにより、磁性体の超電導状態及び非超電導状態を選択的に実現し、これにより磁界発生部が発生した磁界を遮蔽する状態、一部遮蔽する状態、及び、遮蔽しない状態を選択的に実現することができる。   The magnetic body of the magnetic shield member is a superconductor. By changing the temperature of the magnetic shield member by the operation of the temperature adjustment member, the superconductor state and non-superconductor state of the magnetic body are selectively realized, thereby generating a magnetic field. A state in which the magnetic field generated by the part is shielded, a partly shielded state, and a state in which the magnetic field is not shielded can be selectively realized.

上記磁界発生部は、コイルと、コイルに対して、被誘導部材を誘導するための一定の磁界を発生するための電流を供給する電源と、を備えるとよい。   The magnetic field generation unit may include a coil and a power source that supplies a current for generating a constant magnetic field for inducing the guided member to the coil.

本発明に係る磁場変調装置は、被誘導部材を誘導するための一定の磁界を発生する磁界発生部の周囲に配置され、磁界発生部が発生した磁界を遮蔽する状態、一部遮蔽する状態、及び、遮蔽しない状態を選択的に実現することにより、磁界発生部が発生した磁界により形成される磁場を変調することを特徴としている。   A magnetic field modulation device according to the present invention is disposed around a magnetic field generation unit that generates a constant magnetic field for guiding a guided member, and shields the magnetic field generated by the magnetic field generation unit, partially shields the state, And the magnetic field formed by the magnetic field which the magnetic field generation | occurrence | production part generate | occur | produced by selectively implement | achieving the state which is not shielded is characterized by the above-mentioned.

本発明によると、交流磁界発生のための電流を供給する電源を用いる必要のない磁気誘導システムを提供することにより、大きなインダクタンスを有する磁界発生部材に電流を供給する必要がある場合であっても、コストの低減及びシステムの小型化を可能とする磁気誘導システムを提供することができる。   According to the present invention, even if it is necessary to supply a current to a magnetic field generating member having a large inductance by providing a magnetic induction system that does not require the use of a power supply that supplies a current for generating an alternating magnetic field. Thus, it is possible to provide a magnetic induction system that can reduce costs and reduce the size of the system.

以下、本発明に係る実施形態を、図面を参照しつつ詳しく説明する。
<第1実施形態>(図1、図2)
第1実施形態は、本発明に係る磁気誘導システムを構成する磁場変調装置を、磁性流体の充填量を変動させることにより実現したものである。図1に示すように、第1実施形態に係る磁気誘導システムは、磁界発生部10と、磁場変調装置30と、を備える。
Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.
First Embodiment (FIGS. 1 and 2)
1st Embodiment implement | achieves the magnetic field modulation apparatus which comprises the magnetic induction system which concerns on this invention by fluctuating the filling amount of a magnetic fluid. As shown in FIG. 1, the magnetic guidance system according to the first embodiment includes a magnetic field generation unit 10 and a magnetic field modulation device 30.

磁界発生部10は、内部に磁性体(例えば、純鉄、鉄合金、プラチナマグネット、希土類磁石、金属磁石などの磁石)を挿通させた閉磁路型のコイル11と、このコイル11に電流を供給する電源12(図2)と、を備える。電源12は制御部20によりその動作が制御される。制御部20には入力部25が接続され、この入力部25を操作することにより、操作者が所望する磁界の大きさに対応する量の電流がコイル11に流れて一定の磁界が形成される。なお、磁界発生部10は、永久磁石を用いることにより、コイル11及び電源12を用いない構成とすることもでき、これによりシステムの小型化及びコストダウンを図ることができる。永久磁石としては、例えば、ネオジウム磁石(ネオジム、鉄、ホウ素を主成分とした希土類磁石)、ネオジウム磁石以外の希土類磁石(例えばサマリウムを含む希土類磁石)、及び、これら以外の磁石(例えば、純鉄、鉄合金、プラチナマグネット、テルビウム・ディスプロシウム・鉄合金、フェライト、アルニコ、コバルト・フェライト)がある。   The magnetic field generating unit 10 includes a closed magnetic circuit type coil 11 having a magnetic material (for example, magnets such as pure iron, iron alloy, platinum magnet, rare earth magnet, and metal magnet) inserted therein, and supplies current to the coil 11. Power supply 12 (FIG. 2). The operation of the power supply 12 is controlled by the control unit 20. An input unit 25 is connected to the control unit 20, and by operating the input unit 25, an amount of current corresponding to the magnitude of the magnetic field desired by the operator flows through the coil 11 to form a constant magnetic field. . The magnetic field generation unit 10 can be configured not to use the coil 11 and the power source 12 by using a permanent magnet, thereby reducing the size and cost of the system. Examples of permanent magnets include neodymium magnets (rare earth magnets mainly composed of neodymium, iron and boron), rare earth magnets other than neodymium magnets (for example, rare earth magnets containing samarium), and magnets other than these (for example, pure iron) , Iron alloys, platinum magnets, terbium / dysprosium / iron alloys, ferrites, alnicos, cobalt ferrites).

磁場変調装置30は、磁性流体充填容器31と、磁性流体タンク32と、を備える。磁性流体充填容器31は、非磁性材料(例えば非磁性ステンレスやチタン合金)からなり、内部に磁界発生部10を収容する中空の略直方体形状を備えている。磁性流体充填容器31を構成する面は、その内部に、磁性流体を充填可能なように互いに連通した充填空間31aが形成されている。磁性流体タンク32は中空の略直方体形状の容器であって、内部に磁性流体80が貯蔵される。   The magnetic field modulation device 30 includes a magnetic fluid filling container 31 and a magnetic fluid tank 32. The magnetic fluid filling container 31 is made of a non-magnetic material (for example, non-magnetic stainless steel or titanium alloy), and has a hollow, substantially rectangular parallelepiped shape that accommodates the magnetic field generator 10 therein. The surface constituting the magnetic fluid filling container 31 is formed with a filling space 31a communicating with each other so that the magnetic fluid can be filled therein. The magnetic fluid tank 32 is a hollow, substantially rectangular parallelepiped container in which the magnetic fluid 80 is stored.

磁性流体充填容器31の充填空間31aと磁性流体タンク32は、3本の流通管61、62、63により互いに連結され、磁性流体タンク32内の磁性流体80を所望量だけ充填空間31a内に充填したり、充填空間31aから磁性流体80を所望量だけ排出して磁性流体タンク32に戻したりできる。すなわち、磁性流体充填容器31は、磁性流体充填容器31側から順に配置された電磁弁41及びポンプ51を介して、磁性流体を磁性流体充填容器31に注入充填するための流通管61により、磁性流体タンク32と接続されている。また、磁性流体充填容器31は、磁性流体充填容器31側から順に配置された流量センサ72、ポンプ52、及び、電磁弁42を介して、磁性流体を磁性流体充填容器31から排出の流通管62により、磁性流体タンク32と接続されている。さらに、磁性流体充填容器31は、磁性流体充填容器31側から順に配置された流量センサ73および電磁弁43を介して、磁性流体充填容器31から磁性流体タンク32までの配管中の空気の排気、及び、充填空間31aからオーバーフローした磁性流体80を磁性流体タンク32へ排出するための流通管63により、磁性流体タンク32と接続されている。また、磁性流体タンク32は、空気抜きポート32aを備えている。なお、以上のような配管は、溶接、又は、オーリングや金属ガスケットなどを介したボルト・ナット締めにより構成する。電磁弁41〜43、ポンプ51、52、流量センサ72、73、及び磁性流体タンク32によって、磁性流体充填容器31内に充填される磁性流体80の量を調整する調整機構が構成される。電磁弁41〜43、ポンプ51、52、及び、流量センサ72、73はそれぞれ制御部20に接続されている。この制御部20は入力部25に接続されており、入力部25の操作により、磁場変調装置30は操作者の所望する動作を行う。なお、電磁弁41〜43に代えて、ニューマチックバルブを用いることもできる。   The filling space 31a of the magnetic fluid filling container 31 and the magnetic fluid tank 32 are connected to each other by three flow pipes 61, 62, 63, and the filling space 31a is filled with a desired amount of the magnetic fluid 80 in the magnetic fluid tank 32. Or a desired amount of the magnetic fluid 80 can be discharged from the filling space 31a and returned to the magnetic fluid tank 32. In other words, the magnetic fluid filling container 31 is magnetized by the flow pipe 61 for injecting and filling the magnetic fluid into the magnetic fluid filling container 31 through the electromagnetic valve 41 and the pump 51 arranged in order from the magnetic fluid filling container 31 side. A fluid tank 32 is connected. The magnetic fluid filling container 31 is a flow pipe 62 for discharging the magnetic fluid from the magnetic fluid filling container 31 via the flow sensor 72, the pump 52, and the electromagnetic valve 42 arranged in this order from the magnetic fluid filling container 31 side. Thus, the magnetic fluid tank 32 is connected. Further, the magnetic fluid filling container 31 is configured to exhaust air in a pipe from the magnetic fluid filling container 31 to the magnetic fluid tank 32 via a flow sensor 73 and an electromagnetic valve 43 that are sequentially arranged from the magnetic fluid filling container 31 side. In addition, the magnetic fluid tank 32 is connected to the magnetic fluid tank 32 by a flow pipe 63 for discharging the magnetic fluid 80 overflowing from the filling space 31 a to the magnetic fluid tank 32. The magnetic fluid tank 32 includes an air vent port 32a. In addition, the above piping is comprised by welding, or bolt and nut tightening via an O ring or a metal gasket. The electromagnetic valves 41 to 43, the pumps 51 and 52, the flow sensors 72 and 73, and the magnetic fluid tank 32 constitute an adjustment mechanism that adjusts the amount of the magnetic fluid 80 filled in the magnetic fluid filling container 31. The solenoid valves 41 to 43, the pumps 51 and 52, and the flow rate sensors 72 and 73 are connected to the control unit 20, respectively. The control unit 20 is connected to the input unit 25, and the magnetic field modulation device 30 performs an operation desired by the operator by operating the input unit 25. A pneumatic valve can be used in place of the electromagnetic valves 41 to 43.

磁性流体80は、例えば表面を界面活性剤で覆った強磁性微粒子を溶媒中に高濃度(例えば50%程度)で安定に分散させたものを用いてもよい。強磁性微粒子としては、例えば、マグネタイト若しくはマンガン−亜鉛系複合フェライト、又は、コバルト、鉄、若しくはニッケルを含む金属磁性コロイドを用いることができる。界面活性剤としては、例えば、オレイン酸などの長鎖不飽和脂肪酸を使うことができる。さらに、溶媒としては、例えば、水、炭化水素オイル、フッ素系オイルを使用することができる。   The magnetic fluid 80 may be, for example, a material in which ferromagnetic fine particles whose surface is covered with a surfactant are stably dispersed in a solvent at a high concentration (for example, about 50%). As the ferromagnetic fine particles, for example, magnetite or manganese-zinc composite ferrite, or a metal magnetic colloid containing cobalt, iron, or nickel can be used. As the surfactant, for example, a long-chain unsaturated fatty acid such as oleic acid can be used. Further, as the solvent, for example, water, hydrocarbon oil, or fluorine oil can be used.

つづいて、第1実施形態に係る磁気誘導システムの動作について説明する。あらかじめ磁性流体80を貯蔵した磁性流体タンク32から、磁性流体充填容器31への磁性流体80の注入、充填は次のように行う。まず、電磁弁42を閉じた状態で、電磁弁41と電磁弁43を開ける。これによって、流通管61及び63により磁性流体充填容器31と磁性流体タンク32が連通した状態とする。ここで、ポンプ51を動作させて磁性流体タンク32内の磁性流体80を吸引すると、この磁性流体80は、流通管61を通じて、磁性流体タンク32から磁性流体充填容器31へ注入される。磁性流体充填容器31に磁性流体80が完全に充填されると、余剰の磁性流体80が流通管63を通じて排出され始める。流量センサ73が、流通管63に磁性流体80が流れていることを検知すると、制御部20の制御により、電磁弁41と電磁弁43は閉じられ、ポンプ51は停止され、磁性流体タンク32から磁性流体充填容器31への磁性流体80の注入は停止される。   Subsequently, the operation of the magnetic induction system according to the first embodiment will be described. The injection and filling of the magnetic fluid 80 from the magnetic fluid tank 32 in which the magnetic fluid 80 is stored in advance into the magnetic fluid filling container 31 are performed as follows. First, the electromagnetic valve 41 and the electromagnetic valve 43 are opened with the electromagnetic valve 42 closed. As a result, the magnetic fluid filling container 31 and the magnetic fluid tank 32 are in communication with each other through the flow pipes 61 and 63. Here, when the pump 51 is operated to suck the magnetic fluid 80 in the magnetic fluid tank 32, the magnetic fluid 80 is injected from the magnetic fluid tank 32 into the magnetic fluid filling container 31 through the flow pipe 61. When the magnetic fluid filling container 31 is completely filled with the magnetic fluid 80, excess magnetic fluid 80 starts to be discharged through the flow pipe 63. When the flow sensor 73 detects that the magnetic fluid 80 is flowing through the flow pipe 63, the electromagnetic valve 41 and the electromagnetic valve 43 are closed and the pump 51 is stopped under the control of the control unit 20. Injection of the magnetic fluid 80 into the magnetic fluid filling container 31 is stopped.

一方、磁性流体80を磁性流体充填容器31から排出する動作は以下のように行う。まず、電磁弁43および電磁弁42を開けて、流通管62と流通管63により、磁性流体充填容器31と磁性流体タンク32が連通した状態とする。つづいて、ポンプ52を動作させることにより、磁性流体充填容器31内の磁性流体80を吸引して、磁性流体タンク32に排出する。磁性流体80がすべて磁性流体充填容器31から磁性流体タンク32へ排出されると、流通管62内に磁性流体80が流通しない状態となる。流量センサ72が、磁性流体80が流通管62を流れていないことを検知すると、制御部20の制御により、ポンプ52は停止され、電磁弁43と電磁弁42は閉じられ、磁性流体充填容器31から磁性流体タンク32への磁性流体80の排出は停止される。   On the other hand, the operation of discharging the magnetic fluid 80 from the magnetic fluid filling container 31 is performed as follows. First, the electromagnetic valve 43 and the electromagnetic valve 42 are opened, and the magnetic fluid filling container 31 and the magnetic fluid tank 32 are in communication with each other through the flow pipe 62 and the flow pipe 63. Subsequently, by operating the pump 52, the magnetic fluid 80 in the magnetic fluid filling container 31 is sucked and discharged to the magnetic fluid tank 32. When all the magnetic fluid 80 is discharged from the magnetic fluid filling container 31 to the magnetic fluid tank 32, the magnetic fluid 80 does not flow through the flow pipe 62. When the flow sensor 72 detects that the magnetic fluid 80 does not flow through the flow pipe 62, the pump 52 is stopped, the electromagnetic valve 43 and the electromagnetic valve 42 are closed, and the magnetic fluid filling container 31 is controlled by the control of the control unit 20. The magnetic fluid 80 is discharged from the magnetic fluid tank 32 to the magnetic fluid tank 32.

以上の注入、充填、及び排出の動作により、磁界発生部10が発生した磁界(磁場)を減少又は変調させることができる。すなわち、磁性流体充填容器31に磁性流体80が充填されている状態では、磁性流体80が磁気シールド(遮蔽)の働きをするため、磁界発生部10が発生する磁界(磁性流体充填容器31の外部に配置される被誘導部材(例えば磁気アンカー、磁性体を備えた内視鏡)に作用させる磁界)は減少する。これに対して、磁性流体充填容器31中の磁性流体80を排出してその量を減少させていくと、磁気シールドの効果が低減するため、磁界発生部10が発生する磁界の減少量が少なくなり、磁性流体充填容器31内の磁性流体80がすべて排出されると磁界発生部10が発生する磁界は減少することなく、磁性流体充填容器31の外部に至る。   The magnetic field (magnetic field) generated by the magnetic field generator 10 can be reduced or modulated by the above injection, filling, and discharging operations. That is, in a state where the magnetic fluid filling container 31 is filled with the magnetic fluid 80, the magnetic fluid 80 functions as a magnetic shield (shielding), so that the magnetic field generated by the magnetic field generation unit 10 (the outside of the magnetic fluid filling container 31). The magnetic field acting on the guided member (for example, a magnetic anchor, an endoscope provided with a magnetic body) disposed in the position decreases. On the other hand, if the magnetic fluid 80 in the magnetic fluid filling container 31 is discharged and the amount thereof is reduced, the effect of the magnetic shield is reduced, so that the amount of reduction of the magnetic field generated by the magnetic field generator 10 is small. Thus, when all the magnetic fluid 80 in the magnetic fluid filling container 31 is discharged, the magnetic field generated by the magnetic field generator 10 does not decrease and reaches the outside of the magnetic fluid filling container 31.

このように磁性流体充填容器31内の磁性流体80の量を調整することにより、磁界発生部10が発生した磁界を遮蔽する状態(完全に遮蔽する状態)と、一部だけを遮蔽する状態と、遮蔽しない状態(まったく遮蔽しない状態)と、を選択的に実現することができる。よって、磁界発生部10が発生する磁界を所望量だけ減少させることができるとともに、磁性流体充填容器31に磁性流体80を充填する動作と、磁性流体充填容器31から排出する操作を、一定周期で行うことにより、磁界発生部10で発生させる磁気誘導用主磁界に、変調を加えることができる。   By adjusting the amount of the magnetic fluid 80 in the magnetic fluid filling container 31 in this way, a state where the magnetic field generated by the magnetic field generator 10 is shielded (a state where it is completely shielded) and a state where only a part is shielded. , And a state of not shielding (a state of not shielding at all) can be selectively realized. Therefore, the magnetic field generated by the magnetic field generator 10 can be reduced by a desired amount, and the operation of filling the magnetic fluid filling container 31 with the magnetic fluid 80 and the operation of discharging from the magnetic fluid filling container 31 are performed at regular intervals. By doing so, it is possible to modulate the main magnetic field for magnetic induction generated by the magnetic field generator 10.

第1実施形態の変形例として、磁性流体充填容器31を例えばゴムなどの柔軟な部材で構成してもよい。この場合、磁性流体充填容器31の一部に磁性流体が充填された状態で、磁性流体充填容器31に外部から圧力を加える状態と圧力を開放する状態を、一定周期で行うことにより、磁性流体充填容器31の形状を、一定周期で変化させることにより、磁界発生部10で発生させる磁気誘導用主磁界に、変調を加えることができる。
<第2実施形態>(図3、図4)
第2実施形態は、本発明に係る磁気誘導システムを構成する磁場変調装置を、磁性体シート部及び非磁性体シート部を備える磁場変調シート(磁場変調部材)140を移動させることにより実現したものである。図3に示すように、第2実施形態に係る磁気誘導システムは、磁界発生部10と、磁場変調装置130と、を備える。なお、磁界発生部10については第1実施形態と同様であるため、重複した説明は省略する。
As a modification of the first embodiment, the magnetic fluid filling container 31 may be formed of a flexible member such as rubber. In this case, the magnetic fluid is filled with a magnetic fluid in a part of the magnetic fluid filling container 31, and the magnetic fluid filling container 31 is subjected to a state in which a pressure is applied from the outside and a state in which the pressure is released in a constant cycle. By changing the shape of the filling container 31 at a constant period, the main magnetic field for magnetic induction generated by the magnetic field generator 10 can be modulated.
Second Embodiment (FIGS. 3 and 4)
2nd Embodiment implement | achieved the magnetic field modulation apparatus which comprises the magnetic induction system which concerns on this invention by moving the magnetic field modulation sheet (magnetic field modulation member) 140 provided with a magnetic material sheet part and a nonmagnetic material sheet part It is. As shown in FIG. 3, the magnetic guidance system according to the second embodiment includes a magnetic field generation unit 10 and a magnetic field modulation device 130. The magnetic field generation unit 10 is the same as that in the first embodiment, and a duplicate description is omitted.

磁場変調装置130は、磁場変調シート140、ガイドローラ151、及びガイドローラ152を有する。磁場変調シート140は、略長方形状のシートであって、その長手方向の両端部がガイドローラ151及びガイドローラ152に巻き回され、ガイドローラ151とガイドローラ152との間で伸張した部分がコイル11の磁極面11aに対向するように配置される。この磁場変調シート140は、その長手方向中央の境界線145において、磁性体シート部(磁性部分)141と、非磁性体シート部(非磁性部分)142と、が結合されて構成されている。磁場変調シート140の幅は、磁極面11aの幅よりも大きいことが好ましく、磁場変調シート140の長手方向における磁性体シート部141と非磁性体シート部142の長さも、磁極面11aの長さより大きいことが好ましい。   The magnetic field modulation device 130 includes a magnetic field modulation sheet 140, a guide roller 151, and a guide roller 152. The magnetic field modulation sheet 140 is a substantially rectangular sheet, and both ends in the longitudinal direction are wound around the guide roller 151 and the guide roller 152, and a portion extended between the guide roller 151 and the guide roller 152 is a coil. 11 are arranged so as to face the 11 magnetic pole surfaces 11a. The magnetic field modulation sheet 140 includes a magnetic sheet part (magnetic part) 141 and a non-magnetic sheet part (non-magnetic part) 142 coupled at a boundary line 145 at the center in the longitudinal direction. The width of the magnetic field modulation sheet 140 is preferably larger than the width of the magnetic pole surface 11a, and the lengths of the magnetic sheet portion 141 and the nonmagnetic material sheet portion 142 in the longitudinal direction of the magnetic field modulation sheet 140 are also longer than the length of the magnetic pole surface 11a. Larger is preferred.

磁場変調シート140は、その長手方向に、複数の長手方向中央の境界線145をもち、一定方向にシートを移動させただけでも、磁性体シート部(磁性部分)141と、非磁性体シート部(非磁性部分)142と、が交互に磁極面11aの前面に現れるようにしてもよい。   The magnetic field modulation sheet 140 has a plurality of longitudinal center boundary lines 145 in the longitudinal direction, and the magnetic sheet portion (magnetic portion) 141 and the non-magnetic sheet portion even when the sheet is moved in a certain direction. (Non-magnetic portions) 142 may alternately appear on the front surface of the magnetic pole surface 11a.

磁場変調シート140は、略長方形状の非磁性のシート(例えば、プラスチック、布)の半分に、磁性材料を溶融させた樹脂や液体を塗布又は噴霧した後に、乾燥させることにより、この塗布部分を磁性体シート部141とし、それ以外を非磁性体シート部142としたものである。磁性体シート部141に用いる磁性体としては、例えば、マンガン−亜鉛系などの軟磁性複合フェライト、Fe−Si−B−Nb−Cu、Fe−Co−Si−B−Nb−Cuなどの軟磁性アモルファス、又は、パーマロイなどのFe−Ni合金がある。   The magnetic field modulation sheet 140 is formed by applying or spraying a resin or liquid in which a magnetic material is melted on half of a substantially rectangular nonmagnetic sheet (for example, plastic or cloth), and then drying the applied part. The magnetic sheet portion 141 is used, and the other portions are non-magnetic sheet portions 142. Examples of the magnetic material used in the magnetic sheet portion 141 include soft magnetic composite ferrite such as manganese-zinc-based, and soft magnetism such as Fe-Si-B-Nb-Cu and Fe-Co-Si-B-Nb-Cu. There are amorphous or Fe-Ni alloys such as permalloy.

磁場変調シート140は、上述の構成に代えて、磁性材料を含む薄い帯状体と、非磁性材料(例えばプラスチック、ゴム)からなる薄い帯状体と、を柔軟な非磁性のシート(例えば、プラスチック、ゴム、布)上に、接着剤(例えばエポキシ系接着剤)を用いて張り合わせて構成してもよい。また、このような磁性材料を含む薄い帯状体を積層させて磁性体シート部を構成すると、その厚さ方向の電気抵抗を増加させ、渦電流による損失を低減させることができる。この薄状体は、磁性材料が金属(例えばパーマロイ)であれば機械加工によって製造でき、アモルファスやフェライトであれば、溶媒(例えばプラスチック、ゴム材料)に高濃度に分散させて一体成型することができる。さらにまた、磁場変調シート140の長手方向にそって、磁性体シート部141と非磁性体シート部142を交互に配置して、磁場変調シート140を構成することもできる。この構成によれば、磁場変調シート140を一方向に一定速度で移動することによって、一定周期の変調を行うことができる。   The magnetic field modulation sheet 140 is a flexible non-magnetic sheet (e.g. plastic, e.g., a thin strip including a magnetic material and a thin strip made of a non-magnetic material (e.g. plastic, rubber) instead of the above-described configuration. A rubber (cloth) may be laminated with an adhesive (for example, an epoxy adhesive). In addition, when a magnetic sheet portion is formed by laminating thin strips containing such a magnetic material, the electrical resistance in the thickness direction can be increased, and loss due to eddy current can be reduced. This thin body can be manufactured by machining if the magnetic material is a metal (for example, permalloy), and if it is amorphous or ferrite, it can be integrally molded by dispersing in a high concentration in a solvent (for example, plastic or rubber material). it can. Furthermore, the magnetic field modulation sheet 140 can be configured by alternately arranging the magnetic material sheet portions 141 and the nonmagnetic material sheet portions 142 along the longitudinal direction of the magnetic field modulation sheet 140. According to this configuration, it is possible to perform modulation with a constant period by moving the magnetic field modulation sheet 140 in one direction at a constant speed.

ガイドローラ151及びガイドローラ152は、モータ161及びモータ162によりそれぞれ回転駆動される。このモータ161及びモータ162は、制御部120によりその動作が制御される。制御部120は、入力部125の操作に応じて、モータ161又はモータ162に対して回転動作をするように制御信号を出力する。このような制御によって磁場変調シート140はその長手方向に移動することができる。すなわち、磁場変調シート140とコイル11の磁極面11aとの相対位置関係を変更することができる。よって、磁極面11aに対向する位置に、磁場変調シート140のうち操作者が所望する部分が配置される。   The guide roller 151 and the guide roller 152 are rotationally driven by a motor 161 and a motor 162, respectively. The operations of the motor 161 and the motor 162 are controlled by the control unit 120. The control unit 120 outputs a control signal so as to rotate with respect to the motor 161 or the motor 162 in accordance with the operation of the input unit 125. By such control, the magnetic field modulation sheet 140 can move in the longitudinal direction. That is, the relative positional relationship between the magnetic field modulation sheet 140 and the magnetic pole surface 11a of the coil 11 can be changed. Therefore, a portion desired by the operator in the magnetic field modulation sheet 140 is disposed at a position facing the magnetic pole surface 11a.

以上の構成の磁場変調シート140をその長手方向に移動させることにより、磁界発生部10が発生した磁界を減少又は変調することができる。すなわち、磁性体シート部141を磁極面11aに対向して配置した状態では、磁性体シート部141が磁気シールドの働きをするため、磁界発生部10が発生する磁界(コイル11に対して磁場変調シート140より外側に配置される被誘導部材に作用させる磁界)は減少する。これに対して、磁場変調シート140を移動させることにより、磁極面11aに対向する位置に非磁性体シート部142を配置すると、磁界発生部10が発生する磁界は減少することなく磁場変調シート140の外側に至る。   By moving the magnetic field modulation sheet 140 having the above configuration in the longitudinal direction, the magnetic field generated by the magnetic field generation unit 10 can be reduced or modulated. In other words, in the state where the magnetic sheet portion 141 is arranged to face the magnetic pole surface 11a, the magnetic sheet portion 141 functions as a magnetic shield, so that the magnetic field generated by the magnetic field generator 10 (magnetic field modulation with respect to the coil 11). The magnetic field acting on the guided member arranged outside the sheet 140 is reduced. On the other hand, when the non-magnetic sheet portion 142 is disposed at a position facing the magnetic pole surface 11a by moving the magnetic field modulation sheet 140, the magnetic field generated by the magnetic field generation unit 10 does not decrease and the magnetic field modulation sheet 140 is reduced. To the outside.

このように、磁場変調シート140を移動させることにより、磁界発生部10が発生する磁界を所望量だけ減少させることができるとともに、磁性体シート部141を磁極面11aに対向させる動作と、非磁性体シート部142を磁極面11aに対向させる動作を、一定周期で行うことにより、磁界発生部10で発生させる磁気誘導用主磁界に、変調を加えることができる。   In this manner, by moving the magnetic field modulation sheet 140, the magnetic field generated by the magnetic field generation unit 10 can be reduced by a desired amount, and the operation of causing the magnetic sheet unit 141 to face the magnetic pole surface 11a and nonmagnetic By performing the operation of causing the body sheet portion 142 to face the magnetic pole surface 11a at a constant period, the main magnetic field for magnetic induction generated by the magnetic field generating unit 10 can be modulated.

第2実施形態の変形例として、磁場変調シート140に代えて、磁性体部分と非磁性部分に分けられた円板状部材を用い、これを回転させることによって磁場を変調することもできる。   As a modification of the second embodiment, instead of the magnetic field modulation sheet 140, a disk-shaped member divided into a magnetic part and a non-magnetic part can be used, and the magnetic field can be modulated by rotating this.

第2実施形態の別の変形例として、磁場変調シート140に代えて、厚みのある積層珪素鋼板を使用することにより、これを磁極面11aに対向させる動作と、取り除く動作を繰り返すことによって、より遮蔽効果を大きくした磁場の変調を行うこともできる。
<第3実施形態>(図5、図6)
第3実施形態は、本発明に係る磁気誘導システムを構成する磁場変調装置を、温度により磁気特性が変化するコイルを用いて実現したものである。図5に示すように、第3実施形態に係る磁気誘導システムは、磁界発生部210と、磁場変調装置230と、を備える。
As another modified example of the second embodiment, by using a thick laminated silicon steel sheet instead of the magnetic field modulation sheet 140, by repeating the operation of making this opposed to the magnetic pole surface 11a and the operation of removing it, more It is also possible to modulate the magnetic field with a greater shielding effect.
<Third Embodiment> (FIGS. 5 and 6)
In the third embodiment, the magnetic field modulation device constituting the magnetic induction system according to the present invention is realized by using a coil whose magnetic characteristics change with temperature. As shown in FIG. 5, the magnetic guidance system according to the third embodiment includes a magnetic field generation unit 210 and a magnetic field modulation device 230.

磁界発生部210は、一定温度以下となると電気抵抗がゼロとなる超電導コイル(超電導体)(例えば、NbTi、Nb3Sn)211と、この超電導コイル211に電流を供給する電源212(図6)と、を備える。電源212は制御部220によりその動作が制御される。制御部220には入力部225が接続され、この入力部225を操作することにより、操作者が所望する磁界の大きさに対応する量の電流を超電導コイル211に供給することができ、この電流量に応じた磁界が形成される。なお、磁界発生部210は、超電導コイル211及び電源212に代えて、超電導バルク永久磁石(例えば、ビスマス・ストロンチウム・カルシウム・銅の化合物からなる超電導バルク永久磁石)でもよい。 The magnetic field generator 210 includes a superconducting coil (superconductor) (for example, NbTi, Nb 3 Sn) 211 whose electric resistance becomes zero when the temperature is lower than a certain temperature, and a power supply 212 that supplies current to the superconducting coil 211 (FIG. 6). And comprising. The operation of the power supply 212 is controlled by the control unit 220. An input unit 225 is connected to the control unit 220, and by operating the input unit 225, an amount of current corresponding to the magnitude of the magnetic field desired by the operator can be supplied to the superconducting coil 211. A magnetic field corresponding to the amount is formed. The magnetic field generator 210 may be a superconducting bulk permanent magnet (for example, a superconducting bulk permanent magnet made of a compound of bismuth, strontium, calcium, and copper) instead of the superconducting coil 211 and the power source 212.

磁場変調装置230は、真空容器231、ヒータ(温度調整部材)240、シールド容器(磁気シールド部材)232、及び、冷凍機250を備える。真空容器231は、内部を真空断熱状態に保持することのできる材料(例えば、非磁性ステンレス、アルミニウム、チタン、FRP(繊維強化プラスチック))からなる中空容器であって、内部に磁界発生部210が収容される。磁界発生部210は、熱輻射による外部からの熱進入を防ぐためにシールド容器232内に収容された状態で、真空容器231内に収容される。シールド容器232は、超電導コイル211と比較して高い温度から超電導特性を示す材料(例えば、イットリウム・バリウム・銅・酸素の化合物)からなる中空容器であって、上面外側にヒータ240が固定されている。このヒータ240には、導線241を介して、電源242が接続されており、この電源242から供給される電流量により、ヒータ240の温度を制御することができる。電源242は制御部220に接続されており、入力部を操作することによって、ヒータ240に供給する電流量を制御することができる。なお、ヒータ240に供給する電力が冷凍機250の冷凍能力よりも小さな電力であり、かつ、シールド容器232の全体の熱容量が十分に大きければ、超電導コイル211は永続的に超電導状態を保つことができる。   The magnetic field modulation device 230 includes a vacuum container 231, a heater (temperature adjustment member) 240, a shield container (magnetic shield member) 232, and a refrigerator 250. The vacuum vessel 231 is a hollow vessel made of a material (for example, non-magnetic stainless steel, aluminum, titanium, FRP (fiber reinforced plastic)) that can keep the inside in a vacuum insulation state, and the magnetic field generator 210 is inside. Be contained. The magnetic field generator 210 is housed in the vacuum container 231 in a state of being housed in the shield container 232 in order to prevent heat from entering from the outside due to heat radiation. The shield container 232 is a hollow container made of a material (for example, a compound of yttrium, barium, copper, and oxygen) that exhibits superconducting characteristics at a temperature higher than that of the superconducting coil 211. The heater 240 is fixed to the outer surface of the upper surface. Yes. A power source 242 is connected to the heater 240 via a conductive wire 241, and the temperature of the heater 240 can be controlled by the amount of current supplied from the power source 242. The power source 242 is connected to the control unit 220, and the amount of current supplied to the heater 240 can be controlled by operating the input unit. If the power supplied to the heater 240 is smaller than the refrigerating capacity of the refrigerator 250 and the total heat capacity of the shield container 232 is sufficiently large, the superconducting coil 211 can be kept in a superconducting state permanently. it can.

冷凍機250は、モータ部251と、モータ部251から延びるシリンダ252と、シリンダ252の先端に固定された第1ステージ253と、第1ステージ253からさらに延びるシリンダ254と、シリンダ254の先端に固定され、その上面に超電導コイル211が固定される第2ステージ255と、を備える。第2ステージ255は、シールド容器232内に収容され、超電導コイル211を冷却して超電導状態を実現することができる。導線241は、高温超電導体(例えば、イットリウム・バリウム・銅・酸素の化合物)からなる電流導入端子であって、これの一部をシリンダ252の外周に密着するように配置すると、導線241から超電導コイル211への熱の侵入量を低減するとともに、導線241による発熱を避けることができるため好ましい。   The refrigerator 250 includes a motor unit 251, a cylinder 252 extending from the motor unit 251, a first stage 253 fixed to the tip of the cylinder 252, a cylinder 254 further extending from the first stage 253, and fixed to the tip of the cylinder 254. And a second stage 255 to which the superconducting coil 211 is fixed. The second stage 255 is accommodated in the shield container 232 and can cool the superconducting coil 211 to realize a superconducting state. The conducting wire 241 is a current introducing terminal made of a high-temperature superconductor (for example, a compound of yttrium, barium, copper, and oxygen). This is preferable because the amount of heat entering the coil 211 can be reduced and heat generation by the conductive wire 241 can be avoided.

第3実施形態に係る磁気誘導システムにおいては、ヒータ240に電流を供給しない状態では、シールド容器232は超電導状態を保持している。このとき、磁界発生部210が発生する磁界(真空容器231を構成する面のうちヒータ240に近い面231aの外側に配置される被誘導部材に作用させる磁界)は、シールド容器232により低減される。これに対して、ヒータ240に、シールド容器232の一部が瞬間的に超電導状態を喪失する程度のパルス電流を加えると、磁界発生部210から外部に作用する磁界は、瞬間的に増加する。   In the magnetic induction system according to the third embodiment, the shield container 232 maintains the superconducting state in a state where no current is supplied to the heater 240. At this time, the magnetic field generated by the magnetic field generation unit 210 (the magnetic field that acts on the guided member disposed outside the surface 231 a close to the heater 240 among the surfaces constituting the vacuum container 231) is reduced by the shield container 232. . On the other hand, when a pulse current is applied to the heater 240 to such an extent that a part of the shield container 232 momentarily loses the superconducting state, the magnetic field acting on the outside from the magnetic field generator 210 increases instantaneously.

このようにヒータ240へ供給する電流量を調整することにより、磁界発生部210が発生する磁界を所望量だけ減少させることができるとともに、ヒータ240への電流の供給及び停止を、一定周期で行うことにより、磁界発生部210で発生させる磁気誘導用主磁界に、変調を加えることができる。   By adjusting the amount of current supplied to the heater 240 in this way, the magnetic field generated by the magnetic field generator 210 can be reduced by a desired amount, and the supply and stop of the current to the heater 240 are performed at a constant period. As a result, the main magnetic field for magnetic induction generated by the magnetic field generator 210 can be modulated.

シールド容器232は、磁気シールドとラジエーションシールドに分離して構成することもできる。   The shield container 232 can be configured to be separated into a magnetic shield and a radiation shield.

本発明について上記実施形態を参照しつつ説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的または本発明の思想の範囲内において改良または変更が可能である。
Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment, and can be improved or changed within the scope of the purpose of the improvement or the idea of the present invention.

本発明の第1実施形態に係る磁気誘導システムの構成を示す図である。It is a figure which shows the structure of the magnetic guidance system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る磁気誘導システムの制御系統の構成を示すブロック図である。It is a block diagram which shows the structure of the control system of the magnetic induction system which concerns on 1st Embodiment of this invention. (a)は本発明の第2実施形態に係る磁気誘導システムの構成を示す底面図であり、(b)は(a)の側面図である。(A) is a bottom view which shows the structure of the magnetic guidance system which concerns on 2nd Embodiment of this invention, (b) is a side view of (a). 本発明の第2実施形態に係る磁気誘導システムの制御系統の構成を示すブロック図である。It is a block diagram which shows the structure of the control system of the magnetic induction system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る磁気誘導システムの構成を示す図である。It is a figure which shows the structure of the magnetic guidance system which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る磁気誘導システムの制御系統の構成を示すブロック図である。It is a block diagram which shows the structure of the control system of the magnetic induction system which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

10 磁界発生部
11 コイル
12 電源
30 磁場変調装置
31 磁性流体充填容器(充填容器)
80 磁性流体
130 磁場変調装置
140 磁場変調シート(磁場変調部材)
141 磁性体シート部(磁性部分)
142 非磁性体シート部(非磁性部分)
210 磁界発生部
230 磁場変調装置
232 シールド容器(磁気シールド部材)
240 ヒータ(温度調整部材)


DESCRIPTION OF SYMBOLS 10 Magnetic field generation part 11 Coil 12 Power supply 30 Magnetic field modulation apparatus 31 Magnetic fluid filling container (filling container)
80 Magnetic fluid 130 Magnetic field modulation device 140 Magnetic field modulation sheet (magnetic field modulation member)
141 Magnetic sheet part (magnetic part)
142 Non-magnetic sheet part (non-magnetic part)
210 Magnetic field generator 230 Magnetic field modulator 232 Shield container (magnetic shield member)
240 Heater (temperature adjustment member)


Claims (7)

被誘導部材を誘導するための一定の磁界を発生する磁界発生部と、
前記磁界発生部の周囲に配置され、前記磁界発生部が発生した磁界を遮蔽する状態、一部遮蔽する状態、及び、遮蔽しない状態を選択的に実現する磁場変調装置と、を備え、
前記磁場変調装置の動作により、前記磁界発生部が発生した磁界により形成される磁場を変調することを特徴とする磁気誘導システム。
A magnetic field generator for generating a constant magnetic field for guiding the guided member;
A magnetic field modulation device that is arranged around the magnetic field generation unit and selectively realizes a state in which the magnetic field generated by the magnetic field generation unit is shielded, a state in which the magnetic field generation unit is shielded, and a state in which the magnetic field generation unit is not shielded.
A magnetic induction system that modulates a magnetic field formed by the magnetic field generated by the magnetic field generator by the operation of the magnetic field modulator.
前記磁場変調装置は、磁性流体が充填される充填容器と、前記充填容器内に充填される前記磁性流体の量を調整する調整機構と、を有し、前記調整機構の動作により、前記充填容器に充填される前記磁性流体の量を調整して、前記磁界発生部が発生した磁界を遮蔽する状態、一部遮蔽する状態、及び、遮蔽しない状態を選択的に実現する請求項1記載の磁気誘導システム。 The magnetic field modulation device includes a filling container filled with a magnetic fluid, and an adjustment mechanism for adjusting the amount of the magnetic fluid filled in the filling container, and the filling container is operated by the operation of the adjustment mechanism. 2. The magnetism according to claim 1, wherein the amount of the magnetic fluid filled in the magnetic field is adjusted to selectively realize a state in which the magnetic field generated by the magnetic field generator is shielded, a partly shielded state, and a state in which the magnetic field is not shielded. Guidance system. 前記磁場変調装置は、磁性部分と非磁性部分を備えた磁場変調部材、及び前記磁場変調部材の磁性部分及び非磁性部分と前記磁界発生部との相対的な位置関係を変更する相対位置変更部材、を有し、前記相対位置変更部材の動作により、前記磁界発生部が発生した磁界を遮蔽する状態、一部遮蔽する状態、及び、遮蔽しない状態を選択的に実現する請求項1記載の磁気誘導システム。 The magnetic field modulation device includes a magnetic field modulation member having a magnetic part and a nonmagnetic part, and a relative position changing member that changes a relative positional relationship between the magnetic part and the nonmagnetic part of the magnetic field modulation member and the magnetic field generation part. 2. The magnetism according to claim 1, wherein a state in which the magnetic field generated by the magnetic field generator is shielded, a partly shielded state, and a state in which it is not shielded are selectively realized by the operation of the relative position changing member. Guidance system. 前記磁場変調装置は、温度によって磁気特性が変化する磁性体を有する磁気シールド部材と、前記磁気シールド部材の温度を調整する温度調整部材と、を備え、前記温度調整部材の動作により、前記磁性体の磁気特性を制御して、前記磁界発生部が発生した磁界を遮蔽する状態、一部遮蔽する状態、及び、遮蔽しない状態を選択的に実現する請求項1記載の磁気誘導システム。 The magnetic field modulation device includes a magnetic shield member having a magnetic body whose magnetic characteristics change according to temperature, and a temperature adjustment member that adjusts the temperature of the magnetic shield member, and the magnetic body is operated by the operation of the temperature adjustment member. The magnetic induction system according to claim 1, wherein the magnetic characteristics of the magnetic field control unit are controlled to selectively realize a state in which the magnetic field generated by the magnetic field generator is shielded, a partly shielded state, and a state in which it is not shielded. 前記磁気シールド部材の磁性体は超電導体であり、前記温度調整部材の動作により前記磁気シールド部材の温度を変更することにより、前記磁性体の超電導状態及び非超電導状態を選択的に実現し、これにより前記磁界発生部が発生した磁界を遮蔽する状態、一部遮蔽する状態、及び、遮蔽しない状態を選択的に実現する請求項4記載の磁気誘導システム。 The magnetic body of the magnetic shield member is a superconductor, and the superconducting state and non-superconducting state of the magnetic body are selectively realized by changing the temperature of the magnetic shield member by the operation of the temperature adjusting member. 5. The magnetic induction system according to claim 4, wherein a magnetic field generated by the magnetic field generation unit is selectively realized in a state of shielding, partially shielding, and not shielding. 前記磁界発生部は、コイルと、前記コイルに対して、被誘導部材を誘導するための一定の磁界を発生するための電流を供給する電源と、を備える請求項1〜5のいずれか1項記載の磁気誘導システム。 The said magnetic field generation | occurrence | production part is provided with a coil and the power supply which supplies the electric current for generating a fixed magnetic field for inducing a to-be-induced member with respect to the said coil. The described magnetic induction system. 被誘導部材を誘導するための一定の磁界を発生する磁界発生部の周囲に配置され、
前記磁界発生部が発生した磁界を遮蔽する状態、一部遮蔽する状態、及び、遮蔽しない状態を選択的に実現することにより、前記磁界発生部が発生した磁界により形成される磁場を変調することを特徴とする磁場変調装置。

It is arranged around the magnetic field generator that generates a constant magnetic field for guiding the guided member,
Modulating the magnetic field formed by the magnetic field generated by the magnetic field generation unit by selectively realizing a state where the magnetic field generated by the magnetic field generation unit is shielded, partially shielded, and not shielded. A magnetic field modulation device.

JP2005367430A 2005-12-21 2005-12-21 Magnetic induction system and magnetic field modulator Expired - Fee Related JP4803720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367430A JP4803720B2 (en) 2005-12-21 2005-12-21 Magnetic induction system and magnetic field modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367430A JP4803720B2 (en) 2005-12-21 2005-12-21 Magnetic induction system and magnetic field modulator

Publications (2)

Publication Number Publication Date
JP2007167265A true JP2007167265A (en) 2007-07-05
JP4803720B2 JP4803720B2 (en) 2011-10-26

Family

ID=38294604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367430A Expired - Fee Related JP4803720B2 (en) 2005-12-21 2005-12-21 Magnetic induction system and magnetic field modulator

Country Status (1)

Country Link
JP (1) JP4803720B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168710A1 (en) * 2012-05-07 2013-11-14 オリンパスメディカルシステムズ株式会社 Guide device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048343A (en) * 1990-04-25 1992-01-13 Olympus Optical Co Ltd Inserting device into testee body
JP2002239695A (en) * 2001-02-15 2002-08-27 Nkk Corp Continuous casting method and continuous casting equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048343A (en) * 1990-04-25 1992-01-13 Olympus Optical Co Ltd Inserting device into testee body
JP2002239695A (en) * 2001-02-15 2002-08-27 Nkk Corp Continuous casting method and continuous casting equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168710A1 (en) * 2012-05-07 2013-11-14 オリンパスメディカルシステムズ株式会社 Guide device
JP5458225B1 (en) * 2012-05-07 2014-04-02 オリンパスメディカルシステムズ株式会社 Guidance device
CN104302224A (en) * 2012-05-07 2015-01-21 奥林巴斯医疗株式会社 Guide device

Also Published As

Publication number Publication date
JP4803720B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
CA2221363C (en) Magnetic circuit excited by a solenoid and having a gap and its use
CN111599570B (en) Superconducting current pump
JP5562556B2 (en) Superconducting system
US8736407B2 (en) Superconducting systems
JP4803720B2 (en) Magnetic induction system and magnetic field modulator
CN103219141B (en) The varindor that a kind of inductance value is controlled
JP4559176B2 (en) Method and apparatus for magnetizing a permanent magnet
CN106030987B (en) Magnetic force rotating device and the motor with magnetic force auxiliary for using it
Yan et al. Thermally actuated magnetization flux pump in single-grain YBCO bulk
JP3631399B2 (en) Superconducting magnetizer
JP3017850B2 (en) Bidirectional actuator
JP3150507B2 (en) Superconducting magnet device
JP3660007B2 (en) Magnetizing method and apparatus for high temperature superconductor
US20180158600A1 (en) Permanent magnet induction generator (pmig)
JP2001068338A (en) Superconducting magnet device and method of magnetizing superconductors
Lee et al. Feasibility Study on a Segmented Ferrofluid Flow Linear Generator for Increasing the Time-Varying Magnetic Flux
EP0337709B1 (en) Magnetic flux transmission system
RU2050677C1 (en) Linear electric drive
JP2006278596A (en) Magnetic device and its using method
EP0300713B1 (en) Magnetic circuit
EP0887816A2 (en) Quarter wave resonant amplifier and method of pumping
KR200336886Y1 (en) Power-saving apparatus
Suvorov et al. To the choice of a konfiguration of electromagnet magnetic circuit elements
WO2000017522A1 (en) A magnetically driven pump for magnetizable fluid
JPH099600A (en) Actuator for magnetic disk device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070803

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080502

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080729

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100712

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110805

R150 Certificate of patent or registration of utility model

Ref document number: 4803720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees