JP2007163308A - High frequency measurement system - Google Patents

High frequency measurement system Download PDF

Info

Publication number
JP2007163308A
JP2007163308A JP2005360401A JP2005360401A JP2007163308A JP 2007163308 A JP2007163308 A JP 2007163308A JP 2005360401 A JP2005360401 A JP 2005360401A JP 2005360401 A JP2005360401 A JP 2005360401A JP 2007163308 A JP2007163308 A JP 2007163308A
Authority
JP
Japan
Prior art keywords
frequency
calibration data
signal
value
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005360401A
Other languages
Japanese (ja)
Other versions
JP2007163308A5 (en
JP4648179B2 (en
Inventor
Hiroshi Matoba
弘 的場
Ryohei Tanaka
良平 田中
Shuji Omae
修二 大前
Shigeki Amadate
茂樹 天立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2005360401A priority Critical patent/JP4648179B2/en
Priority to US11/636,389 priority patent/US7489145B2/en
Publication of JP2007163308A publication Critical patent/JP2007163308A/en
Publication of JP2007163308A5 publication Critical patent/JP2007163308A5/ja
Application granted granted Critical
Publication of JP4648179B2 publication Critical patent/JP4648179B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high frequency measurement system that can be calibrated in a prescribed frequency range by calibration data generated from calibration data to a holding partial frequency even in a plasma treatment system using a high frequency power source device changing a frequency. <P>SOLUTION: The high frequency measurement system comprises: a signal detection means for detecting a high frequency signal; a calibration data storage means for storing the calibration data Cmin, Cmax for calibrating a detection value Amin in a lower limit frequency fmin and a detection value Amax in an upper limit frequency fmax to respective true measuring values ASmin, ASmax; a frequency detection means for detecting the frequency fm of the high frequency signal; a calibration data calculation means for calculating the calibration data Cm to the frequency fm; and a measured value calibration means for calibrating a detection value Am detected by the signal detection means to a true measuring value ASm by using the calibration data Cm calculated with the calibration data calculation means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、高周波信号の電圧、電流、位相を計測する高周波測定装置に関する。   The present invention relates to a high-frequency measuring device that measures the voltage, current, and phase of a high-frequency signal.

高周波電源装置から高周波電力をプラズマ処理装置に供給し、エッチング等の方法を用いて半導体ウェハや液晶基板等の被加工物を加工するプラズマ処理システムにおいては、プラズマ処理中にプラズマ処理装置のインピーダンスが大きく変動するため、一般に、図7に示すように、高周波電源装置10とプラズマ処理装置30との間にインピーダンス整合器20を介在させ、このインピーダンス整合器20によって高周波電源装置10とプラズマ処理装置30とのインピーダンス整合を行う構成が採用されている。   In a plasma processing system in which high frequency power is supplied from a high frequency power supply device to a plasma processing apparatus and a workpiece such as a semiconductor wafer or a liquid crystal substrate is processed using a method such as etching, the impedance of the plasma processing apparatus is reduced during the plasma processing. Because of the large fluctuation, generally, as shown in FIG. 7, an impedance matching device 20 is interposed between the high frequency power supply device 10 and the plasma processing device 30, and the impedance matching device 20 causes the high frequency power supply device 10 and the plasma processing device 30 to be interposed. Is used for impedance matching.

また、プラズマ処理中におけるプラズマ処理装置30のインピーダンス変動を監視するため、インピーダンス整合器20とプラズマ処理装置30との間に高周波電圧又は高周波電流若しくは両方を検出するための高周波検出器が設けられる場合もある。   In addition, in order to monitor the impedance fluctuation of the plasma processing apparatus 30 during the plasma processing, a high-frequency detector for detecting a high-frequency voltage and / or a high-frequency current is provided between the impedance matching device 20 and the plasma processing apparatus 30. There is also.

例えば、特開平10−185960号公報には、プラズマ処理システムに適用される高周波信号検出用のプローブとして、ケース内に高周波電圧と高周波電流を検出するセンサを内蔵し、このケースに高周波信号を入出力させるための入出力端子とセンサの検出信号を出力させるための出力端子を同軸コネクタで構成した高周波信号検出プローブが記載されている。   For example, in Japanese Patent Laid-Open No. 10-185960, a sensor for detecting a high frequency voltage and a high frequency current is incorporated in a case as a probe for detecting a high frequency signal applied to a plasma processing system, and a high frequency signal is input into this case. A high-frequency signal detection probe is described in which an input / output terminal for outputting and an output terminal for outputting a detection signal of a sensor are configured by a coaxial connector.

上記の高周波信号検出プローブは、同軸コネクタによりインピーダンス整合器20とプラズマ処理装置30との間に接続される構成であるため、同軸線路によってプラズマ処理システムが構成される場合は適用可能であるが、インピーダンス整合器20とプラズマ処理装置30とが導波管によって結合される場合には適用できない。   Since the high-frequency signal detection probe is configured to be connected between the impedance matching device 20 and the plasma processing apparatus 30 by a coaxial connector, it can be applied when a plasma processing system is configured by a coaxial line. It cannot be applied when the impedance matching unit 20 and the plasma processing apparatus 30 are coupled by a waveguide.

プラズマ処理システムによっては、伝送ロスを可及的に抑制するためにインピーダンス整合器とプラズマ処理装置とを導波管で直結するものもあり、このようなインピーダンス整合器では、その出力端近傍に高周波電圧(実効値)V、高周波電流(実効値)I及び高周波電圧Vと高周波電流I間の位相θを検出するための高周波測定装置が設けられている場合もある。   Some plasma processing systems connect the impedance matching device and the plasma processing device directly with a waveguide in order to suppress transmission loss as much as possible. In such an impedance matching device, there is a high frequency near the output end. There may be a high-frequency measuring device for detecting the voltage (effective value) V, the high-frequency current (effective value) I, and the phase θ between the high-frequency voltage V and the high-frequency current I.

この高周波測定装置によって検出される高周波電圧V、高周波電流I及び位相θは、R=(V/I)・cos(θ)及びX=(V/I)・sin(θ)の演算式によりインピーダンスZ=R+jX(測定点がプラズマ処理装置の入力端近傍となることから、プラズマ処理装置のインピーダンスに相当する)に変換され、このインピーダンスZによってプラズマ処理装置30のインピーダンス変動の監視に利用される。   The high-frequency voltage V, the high-frequency current I, and the phase θ detected by this high-frequency measuring device are impedance values according to arithmetic expressions of R = (V / I) · cos (θ) and X = (V / I) · sin (θ). Z = R + jX (corresponding to the impedance of the plasma processing apparatus because the measurement point is in the vicinity of the input end of the plasma processing apparatus), and this impedance Z is used for monitoring the impedance fluctuation of the plasma processing apparatus 30.

また、近年は、プラズマ処理中の動的なインピーダンス整合動作をインピーダンス整合器20では行わず、高周波電源装置10の出力周波数を微小変動させて行うプラズマ処理システムも実用化されている。   In recent years, a plasma processing system has been put into practical use in which the impedance matching unit 20 does not perform dynamic impedance matching operation during plasma processing, and the output frequency of the high-frequency power supply device 10 is slightly changed.

特開平10−185960号公報Japanese Patent Laid-Open No. 10-185960

一般に、計測装置や測定装置は、センサの感度がばらつき、当該センサで検出される検出値が正しい測定値と異なるため、検出値を正しい測定値に換算して出力する構成となっている。上述のプラズマ処理システムに適用される高周波測定装置においても、予め実測などによって検出値を正しい測定値に換算するための校正データを取得しておき、実際の測定では、検出値を校正データで正しい測定値に校正して出力する構成となっている。   Generally, a measurement device or a measurement device has a configuration in which the sensitivity of a sensor varies and the detection value detected by the sensor is different from the correct measurement value, so that the detection value is converted into a correct measurement value and output. Also in the high-frequency measuring device applied to the above-described plasma processing system, calibration data for converting the detected value to the correct measured value is obtained in advance by actual measurement or the like, and in the actual measurement, the detected value is correct with the calibration data. The measurement value is calibrated and output.

例えば、高周波電圧の実効値Vを測定する場合は、予め同一の出力と周波数の高周波電圧を基準負荷(一般にプラズマ処理システムの特性インピーダンスで、例えば50Ω)に供給して基準負荷に発生する高周波電圧を高周波測定装置で測定し、その測定値Va’と正しい電圧値Vaとから校正データCa(=Va/Va’)が取得されており、実際の測定では、測定値に校正データを乗じて正しい測定値が出力されるようになっている。   For example, when the effective value V of the high frequency voltage is measured, a high frequency voltage having the same output and frequency is supplied in advance to a reference load (generally a characteristic impedance of the plasma processing system, for example, 50Ω), and generated at the reference load. The calibration data Ca (= Va / Va ′) is obtained from the measured value Va ′ and the correct voltage value Va, and in the actual measurement, the measured value is multiplied by the calibration data. The measured value is output.

ところで、従来のプラズマ処理システムに適用される高周波測定装置では、プラズマ処理に使用される周波数が、例えば2MHzや13.56MHzなどの固定周波数であるので、これらの周波数に対する校正データしか用意されていなかった。   By the way, in the high frequency measuring apparatus applied to the conventional plasma processing system, since the frequency used for the plasma processing is a fixed frequency such as 2 MHz or 13.56 MHz, only calibration data for these frequencies is prepared. It was.

しかし、上述のように、高周波電源装置から出力される高周波信号の周波数を微小変化させてインピーダンス整合を行うプラズマ処理システムでは、プラズマ処理中の周波数が上記の固定周波数を中心として所定の周波数範囲で変動するため、従来の高周波測定装置をそのまま利用すると、中心周波数では正しい測定値が得られるが、中心周波数を外れた周波数では校正データが不適切となるので、測定誤差が生じるという不具合が生じる。   However, as described above, in a plasma processing system that performs impedance matching by minutely changing the frequency of a high-frequency signal output from a high-frequency power supply device, the frequency during plasma processing is within a predetermined frequency range centered on the fixed frequency. If the conventional high-frequency measuring device is used as it is, the correct measurement value can be obtained at the center frequency, but the calibration data becomes inappropriate at the frequency outside the center frequency, resulting in a problem that a measurement error occurs.

このため、このようなプラズマ処理システムに適用される高周波測定装置では、高周波電源装置から出力される高周波信号の周波数変動範囲に対して予め校正データを測定し、装置内に保持しておく必要があるが、この方法を採用すると、周波数の変動範囲や校正データを取るべき周波数のサンプル数にもよるが多数の校正データが必要になり、高周波測定装置内の校正データを記憶するメモリの容量が増大するという問題が生じる。また、その校正データを予め取得するための作業負担も増加するという問題もある。   For this reason, in a high-frequency measuring device applied to such a plasma processing system, it is necessary to measure calibration data in advance for the frequency fluctuation range of the high-frequency signal output from the high-frequency power supply device and hold it in the device. However, if this method is used, a large amount of calibration data is required, depending on the frequency fluctuation range and the number of frequency samples to be calibrated, and the capacity of the memory for storing calibration data in the high-frequency measurement device is large. The problem of increasing arises. There is also a problem that the work load for acquiring the calibration data in advance increases.

本願発明は上記した事情のもとで考え出されたものであって、所定の周波数範囲内の一部周波数に対してだけ校正データを保持しておき、他の周波数に対する校正データを保持している校正データから生成することにより、少ない校正データで所定の周波数範囲の高周波測定を正確に行うことのできる高周波測定装置を提供することをその目的としている。   The present invention has been conceived under the circumstances described above, and calibration data is held only for some frequencies within a predetermined frequency range, and calibration data for other frequencies is held. It is an object of the present invention to provide a high-frequency measuring device that can accurately perform high-frequency measurement in a predetermined frequency range with a small amount of calibration data by generating from existing calibration data.

上記課題を解決するため、本願発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

本願発明によって提供される高周波測定装置は、予め設定された所定の周波数範囲の高周波信号の測定が可能な高周波測定装置であって、前記高周波信号を検出する信号検出手段と、前記信号検出手段で検出される、前記周波数範囲の下限周波数fminにおける検出値Aminと上限周波数fmaxにおける検出値Amaxをそれぞれ真の測定値ASminと測定値ASmaxに校正するための校正データCmin,Cmaxが記憶された校正データ記憶手段と、前記信号検出手段で検出された前記高周波信号の周波数fmを検出する周波数検出手段と、 前記周波数範囲の下限周波数fmin及び上限周波数fmaxと、前記周波数検出手段で検出された周波数fmと、前記校正データ記憶手段に記憶された校正データCmin,Cmaxを用いて、前記周波数fmに対する校正データCmを演算する校正データ演算手段と、前記校正データ演算手段で演算された校正データCmを用いて前記信号検出手段で検出された検出値Amを真の測定値ASmに校正する測定値校正手段と、を備えたことを特徴とする(請求項1)。   A high-frequency measurement device provided by the present invention is a high-frequency measurement device capable of measuring a high-frequency signal in a predetermined frequency range set in advance, and includes a signal detection unit that detects the high-frequency signal, and the signal detection unit. Calibration data storing calibration data Cmin and Cmax for calibrating the detected value Amin at the lower limit frequency fmin and the detected value Amax at the upper limit frequency fmax of the frequency range to the true measured value ASmin and measured value ASmax, respectively. Storage means; frequency detection means for detecting a frequency fm of the high-frequency signal detected by the signal detection means; a lower limit frequency fmin and an upper limit frequency fmax of the frequency range; and a frequency fm detected by the frequency detection means Using the calibration data Cmin and Cmax stored in the calibration data storage means, the calibration data Cm for the frequency fm Calibration data calculation means for calculating, and measurement value calibration means for calibrating the detection value Am detected by the signal detection means to a true measurement value ASm using the calibration data Cm calculated by the calibration data calculation means. (Claim 1).

好ましい実施形態によれば、前記校正データ演算手段は、Cm=Cmin+(fm−fmin)・(Cmax−Cmin)/(fmax−fmin)の演算式により校正データCmを演算する(請求項2)。また、前記信号検出手段で検出される信号は高周波電圧信号若しくは高周波電流信号である(請求項3,4)。   According to a preferred embodiment, the calibration data calculation means calculates the calibration data Cm by an arithmetic expression of Cm = Cmin + (fm−fmin) · (Cmax−Cmin) / (fmax−fmin). The signal detected by the signal detection means is a high-frequency voltage signal or a high-frequency current signal.

他の好ましい実施形態によれば、請求項1又は2に記載の高周波測定装置において、前記信号検出手段は、前記高周波電圧信号を検出する電圧検出手段と、前記高周波電流信号を検出する電流検出手段とからなり、前記校正データ記憶手段には、前記電圧検出手段で検出される、前記周波数範囲の下限周波数fminにおける高周波電圧信号の検出値Vminと前記上限周波数fmaxにおける高周波電圧信号の検出値Vmaxをそれぞれ真の測定値VSminと測定値VSmaxに校正するための電圧校正データCvmin,Cvmaxと、前記電流検出手段で検出される、前記下限周波数fminにおける高周波電流信号の検出値Iminと前記上限周波数fmaxにおける高周波電流信号の検出値Imaxをそれぞれ真の測定値ISminと測定値ISmaxに校正するための電流校正データCimin,Cimaxとが記憶され、前記校正データ演算手段は、前記周波数範囲の下限周波数fmin及び上限周波数fmaxと、前記周波数検出手段で検出された周波数fmと、前記校正データ記憶手段に記憶された電圧校正データCvmin,Cvmaxを用いて、前記周波数fmに対する電圧校正データCvmを演算するとともに、前記下限周波数fmin、前記上限周波数fmax及び前記周波数fmと、前記校正データ記憶手段に記憶された電流校正データCimin,Cimaxを用いて、前記周波数fmに対する電流校正データCimを演算し、前記測定値校正手段は、前記校正データ演算手段で演算された電圧校正データCvmを用いて前記電圧検出手段で検出された高周波電圧信号の検出値Vmを真の電圧測定値VSmに校正するとともに、前記校正データ演算手段で演算された電流校正データCimを用いて前記電流検出手段で検出された高周波電流信号の検出値Imを真の電流測定値ISmに校正する(請求項5)。   According to another preferred embodiment, in the high-frequency measurement device according to claim 1 or 2, the signal detection means includes a voltage detection means for detecting the high-frequency voltage signal, and a current detection means for detecting the high-frequency current signal. In the calibration data storage means, the detected value Vmin of the high-frequency voltage signal at the lower limit frequency fmin of the frequency range and the detected value Vmax of the high-frequency voltage signal at the upper limit frequency fmax detected by the voltage detecting means. The true measured value VSmin and voltage calibration data Cvmin, Cvmax for calibrating to the measured value VSmax, the detected value Imin of the high-frequency current signal at the lower limit frequency fmin and the upper limit frequency fmax detected by the current detecting means, respectively. Current calibration data Cim for calibrating the detected value Imax of the high-frequency current signal to the true measured value ISmin and the measured value ISmax, respectively. in, Cimax are stored, and the calibration data calculation means is configured to output the lower limit frequency fmin and the upper limit frequency fmax of the frequency range, the frequency fm detected by the frequency detection means, and the voltage stored in the calibration data storage means. The calibration data Cvmin and Cvmax are used to calculate the voltage calibration data Cvm for the frequency fm, the lower limit frequency fmin, the upper limit frequency fmax and the frequency fm, and the current calibration data Cimin stored in the calibration data storage means. , Cimax is used to calculate current calibration data Cim for the frequency fm, and the measured value calibration means uses the voltage calibration data Cvm calculated by the calibration data calculation means to detect the high frequency detected by the voltage detection means. Calibrating the detected value Vm of the voltage signal to the true measured voltage value VSm, and the calibration data calculating means The detected value Im of the high-frequency current signal detected by the current detecting means is calibrated to the true measured current value ISm using the current calibration data Cim calculated in (5).

更に他の好ましい実施形態によれば、請求項5に記載の高周波測定装置において前記電圧検出手段で検出された高周波電圧信号と前記電流検出手段で検出された高周波電流信号を用いて前記高周波信号の位相を検出する位相検出手段を更に備えるとともに、前記校正データ記憶手段に、前記位相検出手段で検出される、前記下限周波数fminにおける位相θminと前記上限周波数fmaxにおける位相θmaxをそれぞれ真の位相θSminと真の位相θSmaxに校正するための位相校正データCdmin,Cdmaxとが更に記憶され、前記校正データ演算手段は、更に前記周波数範囲の下限周波数fmin及び上限周波数fmaxと、前記周波数検出手段で検出された周波数fmと、前記校正データ記憶手段に記憶された位相校正データCdmin,Cdmaxを用いて、前記周波数fmに対する位相校正データCdmを演算し、前記測定値校正手段は、更に前記校正データ演算手段で演算された位相校正データCdmを用いて前記位相検出手段で検出された位相θmを真の位相θSmに校正する(請求項6)。   According to still another preferred embodiment, in the high-frequency measurement device according to claim 5, the high-frequency signal is detected using the high-frequency voltage signal detected by the voltage detection means and the high-frequency current signal detected by the current detection means. Phase detection means for detecting a phase is further provided, and the calibration data storage means has the phase θmin at the lower limit frequency fmin and the phase θmax at the upper limit frequency fmax detected by the phase detection means as a true phase θSmin, respectively. Phase calibration data Cdmin and Cdmax for calibrating to the true phase θSmax are further stored, and the calibration data calculation means is further detected by the frequency detection means with a lower limit frequency fmin and an upper limit frequency fmax of the frequency range. Using the frequency fm and the phase calibration data Cdmin, Cdmax stored in the calibration data storage means, the frequency f The phase calibration data Cdm is calculated, and the measurement value calibration unit further calibrates the phase θm detected by the phase detection unit to the true phase θSm using the phase calibration data Cdm calculated by the calibration data calculation unit. (Claim 6).

なお、請求項6に記載の高周波測定装置において、前記電圧校正データCvmin,Cvmaxは、予め設定された所定の範囲で高周波信号の出力を変化させて得られる複数の電圧校正データの平均値であり、前記電流校正データCimin,Cimaxは、前記所定の範囲で前記高周波信号の出力を変化させて得られる複数の電流校正データの平均値であり、前記位相校正データCdmin,Cdmaxは、前記所定の範囲で高周波信号の出力を変化させて得られる複数の位相校正データの平均値とするとよい(請求項7)。   In the high-frequency measuring device according to claim 6, the voltage calibration data Cvmin and Cvmax are average values of a plurality of voltage calibration data obtained by changing the output of the high-frequency signal within a predetermined range set in advance. The current calibration data Cimin and Cimax are average values of a plurality of current calibration data obtained by changing the output of the high-frequency signal within the predetermined range, and the phase calibration data Cdmin and Cdmax are the predetermined range. The average value of a plurality of phase calibration data obtained by changing the output of the high-frequency signal in (5).

また、請求項1〜7のいずれかに記載の高周波測定装置において、相互に周波数範囲が重複しない2以上の離散的な周波数範囲の高周波信号に対して測定を可能にするとよい(請求項8)。   Further, in the high-frequency measurement device according to any one of claims 1 to 7, it is preferable to enable measurement with respect to high-frequency signals in two or more discrete frequency ranges in which frequency ranges do not overlap each other (claim 8). .

本願発明に係る高周波測定装置によれば、高周波信号の周波数fmが所定の範囲で変動した場合にも、校正データ記憶手段に記憶された下限周波数fminに対応する校正データCminと上限周波数fmaxに対応する校正データCmaxとを用いて、例えば、直線補間の方法により測定周波数fmに対応する校正データCmを演算し、例えば、測定された高周波電圧信号や高周波電流信号などの検出値Amがこの校正データCmを用いて真の測定値ASmに校正されるので、少ない校正データで所定の周波数範囲の高周波測定を正確に行うことができる。   According to the high frequency measurement device of the present invention, even when the frequency fm of the high frequency signal fluctuates within a predetermined range, it corresponds to the calibration data Cmin and the upper limit frequency fmax corresponding to the lower limit frequency fmin stored in the calibration data storage means. The calibration data Cm corresponding to the measurement frequency fm is calculated by using, for example, a linear interpolation method, and the detected value Am of the measured high-frequency voltage signal or high-frequency current signal is used as the calibration data. Since Cm is used to calibrate to the true measurement value ASm, high-frequency measurement in a predetermined frequency range can be accurately performed with a small amount of calibration data.

本願発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。   Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.

以下、本願発明の好ましい実施の形態を、図面を参照して具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.

図1は、本願発明に係る高周波測定装置が適用されるプラズマ処理システムの一例を示す図である。このプラズマ処理システムは、半導体ウェハや液晶基板などの非加工物に対して高周波電力を供給して、例えばプラズマエッチングといった加工処理を行うものである。このプラズマ処理システムは、周波数可変の高周波電源装置1、伝送線路2、インピーダンス整合器3、負荷としてのプラズマ処理装置4で構成されている。   FIG. 1 is a diagram showing an example of a plasma processing system to which a high-frequency measuring device according to the present invention is applied. This plasma processing system supplies a high-frequency power to a non-processed object such as a semiconductor wafer or a liquid crystal substrate, and performs a processing process such as plasma etching. This plasma processing system includes a high-frequency power source device 1 having a variable frequency, a transmission line 2, an impedance matching device 3, and a plasma processing device 4 as a load.

高周波電源装置1には、例えば同軸ケーブルからなる伝送線路2を介してインピーダンス整合器3が接続され、インピーダンス整合器3には、プラズマ処理装置4が接続されている。   An impedance matching device 3 is connected to the high frequency power supply device 1 via a transmission line 2 made of a coaxial cable, for example, and a plasma processing device 4 is connected to the impedance matching device 3.

高周波電源装置1は、高周波電力をプラズマ処理装置4に供給するものであって、例えば数百kHz以上の出力周波数を有する高周波電力を出力することができる電源装置である。一般に、プラズマ処理装置4のプラズマ処理で使用される周波数は2MHz若しくは13.56MHzであるので、高周波電源装置1は、プラズマ処理装置4に対しては、2MHz若しくは13.56MHzの高周波電力を供給するようになっている。また、本プラズマ処理システムでは、プラズマ処理中におけるプラズマ処理装置4のインピーダンス変動に対して高周波電源装置1の出力周波数fを上記の周波数foを中心として所定の周波数範囲±δf(例えば、fo=2MHzの場合、δf=0.2MHz,fo=13.56MHzの場合、δf=0.68MHz)で変化させてインピーダンス整合を行うようになっている。   The high frequency power supply device 1 supplies high frequency power to the plasma processing apparatus 4 and is a power supply device that can output high frequency power having an output frequency of several hundred kHz or more, for example. Generally, since the frequency used in the plasma processing of the plasma processing apparatus 4 is 2 MHz or 13.56 MHz, the high frequency power supply apparatus 1 supplies the plasma processing apparatus 4 with a high frequency power of 2 MHz or 13.56 MHz. It is like that. Further, in the present plasma processing system, the output frequency f of the high-frequency power supply device 1 is set to a predetermined frequency range ± δf (for example, fo = 2 MHz) around the frequency fo with respect to impedance fluctuation of the plasma processing apparatus 4 during the plasma processing. In this case, when δf = 0.2 MHz and fo = 13.56 MHz, δf = 0.68 MHz), impedance matching is performed.

より具体的には、例えば、プラズマ処理システムが50Ω系で構成されているとすると、すなわち、高周波電源装置1の出力端1aから高周波電源装置1側を見たインピーダンス(出力インピーダンス)が、例えば50Ωに設計され、高周波電源装置1の出力端1aが特性インピーダンス50Ωの伝送線路2でインピーダンス整合器3の入力端3aに接続されているとすると、高周波電源装置1は、出力周波数を変化させて当該高周波電源装置1の出力端1aからプラズマ処理装置4側を見たインピーダンスを50Ωに整合させる。   More specifically, for example, if the plasma processing system is configured with a 50Ω system, that is, the impedance (output impedance) of the high frequency power supply device 1 viewed from the output end 1a of the high frequency power supply device 1 is, for example, 50Ω. If the output end 1a of the high-frequency power supply device 1 is connected to the input end 3a of the impedance matching device 3 by the transmission line 2 having a characteristic impedance of 50Ω, the high-frequency power supply device 1 changes the output frequency to The impedance when the plasma processing apparatus 4 side is viewed from the output end 1a of the high frequency power supply apparatus 1 is matched with 50Ω.

インピーダンス整合器3は、高周波電源装置1とプラズマ処理装置4とのインピーダンスを整合させるものであり、インピーダンス素子であるキャパシタC1,C2とインダクタL等を備えている。キャパシタC1,C2及びインダクタLの各値は固定値であり、プラズマ処理装置4のインピーダンス変動に追従して高周波電源装置1とプラズマ処理装置4とのインピーダンス整合を行う機能は有していない。プラズマ処理中の動的なインピーダンス整合動作は、上述したように、高周波電源装置1の出力周波数を中心周波数fo±δfで変化させて行われる。   The impedance matching unit 3 matches impedances of the high-frequency power supply device 1 and the plasma processing device 4, and includes capacitors C1 and C2, which are impedance elements, an inductor L, and the like. Each value of the capacitors C1 and C2 and the inductor L is a fixed value, and does not have a function of performing impedance matching between the high frequency power supply device 1 and the plasma processing device 4 following the impedance variation of the plasma processing device 4. As described above, the dynamic impedance matching operation during the plasma processing is performed by changing the output frequency of the high-frequency power supply device 1 at the center frequency fo ± δf.

インピーダンス整合器3は、上記の例でいうと、プラズマ処理中のインピーダンス整合器3の入力端からプラズマ処理装置4側を見たインピーダンスが略50Ωになるように伝送線路2の先端に接続される負荷のインピーダンスを変換する。なお、プラズマ処理装置4でプラズマ処理が開始されると、プラズマ処理の進行に応じて被加工物やプラズマの状態が変化し、これによりプラズマ処理装置4のインピーダンスが変化することになるが、正常にプラズマ処理が行われた場合のプラズマ処理装置4のインピーダンスの変化範囲は予め知ることができるので、このインピーダンスの変化範囲内の代表値をプラズマ処理装置4のインピーダンスとし、インピーダンス整合器3内のキャパシタC1,C2及びインダクタLの各値はこのインピーダンスの代表値に対してインピーダンス整合を行うように構成されている。   In the above example, the impedance matching unit 3 is connected to the tip of the transmission line 2 so that the impedance viewed from the input end of the impedance matching unit 3 during plasma processing when viewed from the plasma processing apparatus 4 side is approximately 50Ω. Convert load impedance. Note that when plasma processing is started in the plasma processing apparatus 4, the state of the workpiece and the plasma changes with the progress of the plasma processing, and thereby the impedance of the plasma processing apparatus 4 changes. Since the impedance change range of the plasma processing apparatus 4 when the plasma processing is performed in advance can be known in advance, the representative value within the impedance change range is set as the impedance of the plasma processing apparatus 4, and the impedance matching unit 3 The values of the capacitors C1 and C2 and the inductor L are configured to perform impedance matching with respect to the representative value of this impedance.

また、インピーダンス整合器3の出力端3bの近傍には本願発明に係る高周波測定装置5が設けられている。この高周波測定装置5は、インピーダンス整合器3の出力端3bにおける高周波信号の電圧(実効値)Vm、電流(実効値)Im及び電圧と電流間の位相θmを測定し、これらの測定値Vm,Im,θmを外部に出力するようになっている。なお、図1では、インピーダンス整合器3の出力端3bとプラズマ処理装置4の入力端4aは、伝送線路で接続されているように描いているが、実際の構成ではインピーダンス整合器3の出力端3bはプラズマ処理装置4の入力端4aに直結されており、高周波測定装置5はプラズマ処理装置4の入力端4aの電圧Vm、電流Im及び位相θm、すなわち、負荷端の電圧Vm、電流Im及び位相θmを測定するようになっている。   Further, a high-frequency measuring device 5 according to the present invention is provided in the vicinity of the output end 3b of the impedance matching device 3. The high-frequency measuring device 5 measures the voltage (effective value) Vm, current (effective value) Im, and phase θm between the voltage and current of the high-frequency signal at the output end 3b of the impedance matching unit 3, and the measured values Vm, Im and θm are output to the outside. In FIG. 1, the output end 3 b of the impedance matching unit 3 and the input end 4 a of the plasma processing apparatus 4 are depicted as being connected by a transmission line, but in an actual configuration, the output end of the impedance matching unit 3 is illustrated. 3b is directly connected to the input terminal 4a of the plasma processing apparatus 4, and the high-frequency measuring apparatus 5 is configured such that the voltage Vm, current Im, and phase θm of the input terminal 4a of the plasma processing apparatus 4, that is, the load terminal voltage Vm, current Im, and The phase θm is measured.

この高周波測定装置5は、高周波電源装置1の周波数変更によるインピーダンス整合動作に合わせて、2.0±0.2MHzの周波数範囲と13.56±0.68MHzの周波数範囲について、測定点(図1のインピーダンス整合器3の出力端3b参照)の電圧Vm、電流Im及び位相θmを測定できるようになっている。   This high-frequency measuring device 5 is adapted to measure points (FIG. 1) in the frequency range of 2.0 ± 0.2 MHz and the frequency range of 13.56 ± 0.68 MHz in accordance with the impedance matching operation by changing the frequency of the high-frequency power supply device 1. The voltage Vm, current Im, and phase θm of the output terminal 3b of the impedance matching unit 3) can be measured.

通常、測定器は、検出素子で実際に検出される検出値を正しい測定値に変換して出力するために、検出値と測定値として出力される値との関係を基準の測定物を用いて校正するようになっている。すなわち、検出値を測定値に校正するための校正係数を基準測定物を用いて実測しておき、実際の測定では検出素子の検出値に校正係数を乗じて測定値に変換するようにしている。この場合、周波数特性が関係するものでは、測定対象となる周波数範囲について、測定周波数毎に校正係数を実測して予め用意しておくべきであるが、本実施形態に係る高周波測定装置5では、周波数範囲の下限周波数fminと上限周波数fmax(2.0±0.2MHzの周波数範囲においては、fmin=1.8MHz、fmax=2.2MHz、13.56±0.68MHzの周波数範囲においては、fmin=12.88MHz、fmax=14.24MHz)の2点についてのみ校正係数Cmin,Cmaxを実測しておき、周波数範囲内の任意の周波数fmに対する校正係数Cmは、校正係数Cmin,Cmaxを直線補間して算出することにより、少ない校正係数で周波数範囲内の任意の周波数fmに対して正確に測定ができるようにしている。   Usually, a measuring instrument uses a reference measurement object to determine the relationship between the detected value and the value that is output as the measured value in order to convert the detected value that is actually detected by the detecting element into a correct measured value and output it. It comes to calibrate. That is, a calibration coefficient for calibrating the detected value to the measured value is actually measured using the reference measurement object, and in the actual measurement, the detected value of the detection element is multiplied by the calibration coefficient and converted to the measured value. . In this case, with respect to the frequency characteristic, for the frequency range to be measured, the calibration coefficient should be measured and prepared in advance for each measurement frequency. However, in the high frequency measurement device 5 according to the present embodiment, The lower limit frequency fmin and the upper limit frequency fmax of the frequency range (in the frequency range of 2.0 ± 0.2 MHz, fmin = 1.8 MHz, fmax = 2.2 MHz, fmin in the frequency range of 13.56 ± 0.68 MHz) = 12.88 MHz and fmax = 14.24 MHz), the calibration coefficients Cmin and Cmax are actually measured, and the calibration coefficient Cm for an arbitrary frequency fm within the frequency range is linearly interpolated with the calibration coefficients Cmin and Cmax. Thus, accurate measurement can be performed with respect to an arbitrary frequency fm within the frequency range with a small calibration coefficient.

具体的には、高周波測定装置5には、周波数範囲の下限周波数fminに対する校正係数Cminと上限周波数fmaxに対する校正係数Cmaxとが記憶されているが、周波数範囲Δf=(fmax−fmin)=2δfは非常に狭く、この周波数範囲Δfにおける校正係数Cの特性は直線的に変化していると近似することができるので、図2に示すように、周波数範囲Δf内の任意の周波数fmに対する校正係数Cmを、

Figure 2007163308
の演算式により算出できる。 Specifically, the high-frequency measuring device 5 stores a calibration coefficient Cmin for the lower limit frequency fmin and a calibration coefficient Cmax for the upper limit frequency fmax, but the frequency range Δf = (fmax−fmin) = 2δf is Since the characteristic of the calibration coefficient C in this frequency range Δf is very narrow and can be approximated as changing linearly, as shown in FIG. 2, the calibration coefficient Cm for an arbitrary frequency fm in the frequency range Δf is obtained. The
Figure 2007163308
It can be calculated by the following equation.

なお、上記(1)式は、線形補間により校正係数Cを求める一般式であるから、例えば、電圧校正係数Cvmを求めるときは、ΔC、CminとしてΔCv=Cvmax−CvminとCvminが用いられ、電流校正係数Cimを求めるときは、ΔC、CminとしてΔCi=Cimax−CiminとCiminが用いられる。同様に、位相校正係数Cdmを求めるときは、ΔC、CminとしてΔCd=Cdmax−CdminとCdminが用いられる。   Since the above equation (1) is a general equation for obtaining the calibration coefficient C by linear interpolation, for example, when obtaining the voltage calibration coefficient Cvm, ΔCv = Cvmax−Cvmin and Cvmin are used as ΔC and Cmin, and the current When obtaining the calibration coefficient Cim, ΔCi = Cimax−Cimin and Cimin are used as ΔC and Cmin. Similarly, when obtaining the phase calibration coefficient Cdm, ΔCd = Cdmax−Cdmin and Cdmin are used as ΔC and Cmin.

高周波測定装置5は上述のように、電圧校正係数Cvmin,Cvmax、電流校正係数Cimin,Cimax及び位相校正係数Cdmin,Cdmaxを記憶している。なお、本実施形態では、2.0±0.2MHzの周波数範囲W1(以下、「第1周波数範囲W1」という。)と13.56±0.68MHzの周波数範囲W2(以下、「第2周波数範囲W2」という。)について、高周波信号の測定を可能にしているので、第1周波数範囲W1と第2周波数範囲W2に対して、それぞれ電圧校正係数Cvmin,Cvmax、電流校正係数Cimin,Cimax及び位相校正係数Cdmin,Cdmaxが予め測定され、記憶されている。   As described above, the high-frequency measuring device 5 stores the voltage calibration coefficients Cvmin and Cvmax, the current calibration coefficients Cimin and Cimax, and the phase calibration coefficients Cdmin and Cdmax. In the present embodiment, a frequency range W1 of 2.0 ± 0.2 MHz (hereinafter referred to as “first frequency range W1”) and a frequency range W2 of 13.56 ± 0.68 MHz (hereinafter referred to as “second frequency”). For the first frequency range W1 and the second frequency range W2, voltage calibration coefficients Cvmin, Cvmax, current calibration coefficients Cimin, Cimax, and phase are respectively measured. Calibration coefficients Cdmin and Cdmax are measured and stored in advance.

なお、以下の説明では、校正係数Cv,Ci,Cdの周波数帯を識別するために、第1周波数帯W1に対するものは、C1v,C1i,C1dのように、Cの後に「1」を付し、第2周波数帯W2に対するものは、C2v,C2i,C2dのように、Cの後に「2」を付するものとする。   In the following description, in order to identify the frequency bands of the calibration coefficients Cv, Ci, and Cd, those for the first frequency band W1 are appended with “1” after C as in C1v, C1i, and C1d. For the second frequency band W2, “2” is added after C as in C2v, C2i, and C2d.

ここで、高周波測定装置5に記憶される校正係数Cv,Ci,Cdの取得方法について説明する。   Here, a method for obtaining the calibration coefficients Cv, Ci, Cd stored in the high-frequency measuring device 5 will be described.

図3は、校正係数Cv,Ci,Cdを取得するための測定系の一例を示す図である。   FIG. 3 is a diagram illustrating an example of a measurement system for acquiring the calibration coefficients Cv, Ci, and Cd.

同図に示す測定系は、ダミーロード6の入力端6aに高周波測定装置5を接続し、更に高周波測定装置5の入力端5aに電力計7を接続し、電力計7の入力端7aと高周波電源装置1の出力端1aを伝送線路2で接続した構成を有し、この測定系の動作を制御する、パーソナルコンピュータなどからなる校正係数測定装置8に高周波電源装置1、高周波測定装置5、ダミーロード6及び電力計7が接続されている。   In the measurement system shown in the figure, a high frequency measuring device 5 is connected to the input end 6a of the dummy load 6, and a wattmeter 7 is connected to the input end 5a of the high frequency measuring device 5, and the input end 7a of the wattmeter 7 and the high frequency are connected. The power supply device 1 has a configuration in which the output end 1a is connected by the transmission line 2, and the calibration coefficient measuring device 8 composed of a personal computer or the like for controlling the operation of the measurement system is added to the high frequency power supply device 1, the high frequency measuring device 5, and the dummy. A load 6 and a power meter 7 are connected.

校正係数Cv,Ci,Cdを取得する段階では、高周波測定装置5には、校正係数Cv,Ciの初期値として「1」、Cdの初期値として「0」が設定されている。従って、検出された電圧実効値Vm’、電流実効値Im’、位相θm’がそのまま校正係数測定装置8に出力される。   At the stage of acquiring the calibration coefficients Cv, Ci, Cd, “1” is set as the initial value of the calibration coefficients Cv, Ci and “0” is set as the initial value of Cd in the high-frequency measuring device 5. Accordingly, the detected voltage effective value Vm ′, current effective value Im ′, and phase θm ′ are output to the calibration coefficient measuring apparatus 8 as they are.

ダミーロード6は、擬似的にプラズマ処理システムの特性インピーダンスRo(本実施形態では50Ω)を生成するもので、実質的に高周波測定装置の出力端5bを特性インピーダンスRo(=50Ω)で終端するものである。ダミーロード6は、インダクタL2と可変リアクタンス素子である可変キャパシタVC3,VC4をT型接続したもので、可変キャパシタVC4は50Ωの抵抗R1で終端されている。なお、終端抵抗R1を50Ωにしているのは、測定系の特性インピーダンスが50Ωであるからである。   The dummy load 6 generates a characteristic impedance Ro (50Ω in the present embodiment) of the plasma processing system in a pseudo manner, and substantially terminates the output terminal 5b of the high-frequency measuring device with the characteristic impedance Ro (= 50Ω). It is. The dummy load 6 is a T-type connection between the inductor L2 and the variable capacitors VC3 and VC4 which are variable reactance elements, and the variable capacitor VC4 is terminated with a resistor R1 of 50Ω. The reason why the termination resistance R1 is 50Ω is that the characteristic impedance of the measurement system is 50Ω.

可変キャパシタVC3,VC4のキャパシタンスC3,C4はステップ状に変化可能になっている。キャパシタンスC3,C4を変化させることで、第1周波数範囲W1及び第2周波数範囲W2を含む広い周波数範囲において、ダミーロード6のインピーダンスを50Ωに設定できるようになっている。   Capacitances C3 and C4 of the variable capacitors VC3 and VC4 can be changed stepwise. By changing the capacitances C3 and C4, the impedance of the dummy load 6 can be set to 50Ω in a wide frequency range including the first frequency range W1 and the second frequency range W2.

測定対象となる各周波数に対してダミーロード6を50Ωに設定するための可変キャパシタVC3,VC4の調整位置(すなわち、キャパシタンスC3,C4の値)は予め取得され、その周波数と可変キャパシタVC3,VC4の調整位置との関係を示すテーブルは校正係数測定装置8に設定されている。校正係数測定装置8は高周波電源装置1の出力周波数を測定周波数に制御する一方、ダミーロード6に測定周波数に対応する可変キャパシタVC3,VC4の調整位置のデータを出力し、ダミーロード6を50Ωに調整する。   The adjustment positions of the variable capacitors VC3 and VC4 (that is, the values of the capacitances C3 and C4) for setting the dummy load 6 to 50Ω for each frequency to be measured are acquired in advance, and the frequency and the variable capacitors VC3 and VC4 are acquired. The table showing the relationship with the adjustment position is set in the calibration coefficient measuring device 8. The calibration coefficient measurement device 8 controls the output frequency of the high-frequency power supply device 1 to the measurement frequency, and outputs data of the adjustment positions of the variable capacitors VC3 and VC4 corresponding to the measurement frequency to the dummy load 6, and sets the dummy load 6 to 50Ω. adjust.

電力計7は、進行波と反射波を分離する方向性結合器とこの方向性結合器から出力される進行波と反射波の電力をそれぞれ検出する検波器を備え、高周波電源1からの進行波電力Pfとダミーロード6からの反射波電力Prを計測する。この計測値Pf,Prは、校正係数測定装置8に入力される。   The wattmeter 7 includes a directional coupler that separates the traveling wave and the reflected wave, and a detector that detects the power of the traveling wave and the reflected wave output from the directional coupler, and the traveling wave from the high frequency power source 1. The power Pf and the reflected wave power Pr from the dummy load 6 are measured. The measured values Pf and Pr are input to the calibration coefficient measuring device 8.

高周波電源装置1には校正係数測定装置8から出力周波数を制御するための信号(周波数制御信号)と出力電力を制御するための信号(出力制御信号)が入力される。高周波電源装置1ではこの周波数制御信号によって指定された周波数で、かつ、この出力制御信号で指定された出力電力の高周波信号を出力する。   A signal (frequency control signal) for controlling the output frequency and a signal (output control signal) for controlling the output power are input to the high frequency power supply device 1 from the calibration coefficient measuring device 8. The high frequency power supply device 1 outputs a high frequency signal having the frequency specified by the frequency control signal and the output power specified by the output control signal.

校正係数測定装置8は、第1周波数範囲W1の下限周波数f1minにおける電圧校正係数C1vmin、電流校正係数C1imin及び位相校正係数C1dminと、上限周波数f1maxにおける電圧校正係数C1vmax、電流校正係数C1imax及び位相校正係数C1dmaxと、第2周波数範囲W2の下限周波数f2minにおける電圧校正係数C2vmin、電流校正係数C2imin及び位相校正係数C2dminと、上限周波数f2maxにおける電圧校正係数C2vmax、電流校正係数C2imax及び位相校正係数C2dmaxを自動測定する。   The calibration coefficient measuring device 8 includes a voltage calibration coefficient C1vmin, a current calibration coefficient C1imin and a phase calibration coefficient C1dmin at the lower limit frequency f1min of the first frequency range W1, and a voltage calibration coefficient C1vmax, a current calibration coefficient C1imax and a phase calibration coefficient at the upper limit frequency f1max. Automatic measurement of C1dmax, voltage calibration coefficient C2vmin, current calibration coefficient C2imin and phase calibration coefficient C2dmin at the lower limit frequency f2min of the second frequency range W2, and voltage calibration coefficient C2vmax, current calibration coefficient C2imax and phase calibration coefficient C2dmax at the upper limit frequency f2max To do.

具体的には、校正係数測定装置8は、各周波数f1min,f1max,f2min,f1maxにおいて、ダミーロード6を50Ωに調整した後、例えば、300W〜2000Wの範囲で100Wピッチで変化させながら高周波電源装置1から高周波信号を出力させ、各出力における電圧校正係数Cv(1),Cv(2),Cv(3)…Cv(18)、電流校正係数Ci(1),Ci(2),Ci(3)…Ci(18)及び位相校正係数Cd(1),Cd(2),Cd(3)…Cd(18)を算出する。そして、電圧、電流及び位相毎に、18個の校正係数の平均値を演算し、その平均値を各周波数f1min,f1max,f2min,f1maxの校正係数とする。   Specifically, the calibration coefficient measuring device 8 adjusts the dummy load 6 to 50Ω at each frequency f1min, f1max, f2min, and f1max, and then, for example, changes the frequency of 300W to 2000W at a 100W pitch while changing the frequency at a high frequency power supply device. 1 outputs a high frequency signal, and voltage calibration coefficients Cv (1), Cv (2), Cv (3)... Cv (18), current calibration coefficients Ci (1), Ci (2), Ci (3) at each output. )... Ci (18) and phase calibration coefficients Cd (1), Cd (2), Cd (3)... Cd (18) are calculated. Then, an average value of 18 calibration coefficients is calculated for each voltage, current, and phase, and the average value is set as a calibration coefficient for each frequency f1min, f1max, f2min, and f1max.

例えば、周波数f1minにおける電圧校正係数C1vminの場合、校正係数測定装置8は、周波数f1minで50Ωとなるようにダミーロード6を調整した後、高周波信号の出力をPmin=300WからPmax=2000Wまで変化させて高周波測定装置3から出力される電圧実効値Vm’を検出する。また、校正係数測定装置8は、電力計7から出力される進行波電力Pfと反射波電力Prから下記演算式(2)により電圧実効値Vmを演算する。

Figure 2007163308
For example, in the case of the voltage calibration coefficient C1vmin at the frequency f1min, the calibration coefficient measuring device 8 adjusts the dummy load 6 so as to be 50Ω at the frequency f1min, and then changes the output of the high frequency signal from Pmin = 300W to Pmax = 2000W. Thus, the effective voltage value Vm ′ output from the high frequency measuring device 3 is detected. The calibration coefficient measuring device 8 calculates the effective voltage value Vm from the traveling wave power Pf and the reflected wave power Pr output from the wattmeter 7 according to the following calculation formula (2).
Figure 2007163308

なお、(2)式において、(Pf−Pr)はダミーロード6に入力された電力であり、Roはダミーロード6の抵抗値(50Ω)である。   In the equation (2), (Pf−Pr) is the power input to the dummy load 6 and Ro is the resistance value (50Ω) of the dummy load 6.

電力計7は、高周波測定装置5の近傍位置に設けているので、その測定点と高周波測定装置5の測定点との誤差は少なく、電力計7の測定値は高周波測定装置5の測定点5aにおける測定値として扱うことができるものとすると、高周波測定装置5の測定点5aにおいて、高周波測定装置5による電圧実効値Vm’と、電力計7による進行波電力Pf及び反射波電力Prから理論的に算出される電圧実効値Vmとが得られることになる。   Since the wattmeter 7 is provided in the vicinity of the high frequency measurement device 5, there is little error between the measurement point and the measurement point of the high frequency measurement device 5, and the measured value of the wattmeter 7 is the measurement point 5 a of the high frequency measurement device 5. Is measured theoretically from the effective voltage value Vm ′ by the high-frequency measurement device 5, the traveling wave power Pf and the reflected wave power Pr by the wattmeter 7, at the measurement point 5 a of the high-frequency measurement device 5. Thus, the effective voltage value Vm calculated in (1) is obtained.

従って、電圧実効値Vmと電圧実効値Vm’の出力特性を描くと、図4に示すようになる。図4において、(A)は進行波電力Pf及び反射波電力Prから演算された電圧実効値Vmの出力特性であり、(B)は電圧検出部によって直接検出された電圧実効値Vm’の出力特性である。例えば、図4の出力Pmにおける進行波電力Pf及び反射波電力Prから演算された電圧実効値Vmは、測定点5aにおける真の電圧実効値と推定されるものである一方、電圧実効値Vm’は直接検出された値であるから、この電圧実効値の検出値Vm’と真の電圧実効値の推定値Vmとのずれが検出バラツキと考えることができる。   Accordingly, the output characteristics of the voltage effective value Vm and the voltage effective value Vm ′ are shown in FIG. 4A shows the output characteristics of the voltage effective value Vm calculated from the traveling wave power Pf and the reflected wave power Pr, and FIG. 4B shows the output of the voltage effective value Vm ′ directly detected by the voltage detector. It is a characteristic. For example, the voltage effective value Vm calculated from the traveling wave power Pf and the reflected wave power Pr at the output Pm in FIG. 4 is estimated as the true voltage effective value at the measurement point 5a, while the voltage effective value Vm ′. Since this is a directly detected value, a deviation between the detected value Vm ′ of the voltage effective value and the estimated value Vm of the true voltage effective value can be considered as a detection variation.

従って、出力Pmにおける高周波測定装置5の電圧実効値の検出値Vm’を正しい電圧実効値Vmに校正するための電圧校正係数C1vminは、Vm/Vm’の演算により取得される。他の出力Pmにおける電圧校正係数C1vminも、同様の方法によって取得され、上述の例では、出力300W,400W,…2000Wの18個の出力について、電圧校正係数C1vminが取得されるから、これらを平均して周波数f1minに対する電圧校正係数C1vmin(=(C1v(1)+C1v(2)+C1v(3)…+C1v(18))/18)が設定される。   Therefore, the voltage calibration coefficient C1vmin for calibrating the detection value Vm ′ of the effective voltage value of the high-frequency measuring device 5 at the output Pm to the correct effective voltage value Vm is obtained by the calculation of Vm / Vm ′. The voltage calibration coefficient C1vmin at other outputs Pm is also obtained by the same method. In the above example, the voltage calibration coefficient C1vmin is obtained for 18 outputs of outputs 300W, 400W,. Then, a voltage calibration coefficient C1vmin (= (C1v (1) + C1v (2) + C1v (3)... + C1v (18)) / 18) with respect to the frequency f1min is set.

同様の方法によって、他の周波数f1max,f2min,f2maxに対する電圧校正係数C1vmax,C2vmin,C2vmaxも設定される。   In the same manner, voltage calibration coefficients C1vmax, C2vmin, and C2vmax for other frequencies f1max, f2min, and f2max are also set.

なお、高周波信号の出力Pが固定されるのであれば、その固定出力Pにおける電圧校正係数C1vmin,C1vmax,C2vmin,C2vmaxを取得すれば良いが、本実施形態のように、出力が可変の場合は、各出力毎に電圧校正係数C1vmin等を取得することが望ましい。しかしながら、出力間で電圧校正係数C1vmin等の誤差が比較的小さい場合にも電圧校正係数C1vmin等を出力毎に取得するのは、徒に電圧校正係数C1vmin等のデータを増加させるだけであるので、本実施形態では、各出力の電圧校正係数C1vminの平均値を演算し、その演算値を周波数f1minの電圧校正係数C1vminとしている。   If the output P of the high-frequency signal is fixed, the voltage calibration coefficients C1vmin, C1vmax, C2vmin, and C2vmax at the fixed output P may be acquired. However, when the output is variable as in this embodiment, It is desirable to obtain the voltage calibration coefficient C1vmin and the like for each output. However, even when the error such as the voltage calibration coefficient C1vmin is relatively small between the outputs, the voltage calibration coefficient C1vmin is acquired for each output only by increasing the data such as the voltage calibration coefficient C1vmin. In this embodiment, the average value of the voltage calibration coefficient C1vmin of each output is calculated, and the calculated value is set as the voltage calibration coefficient C1vmin of the frequency f1min.

周波数f1minにおける電流校正係数C1iminの場合は、校正係数測定装置8は、電力計7から出力される進行波電力Pfと反射波電力Prから下記演算式(3)により電流実効値Imを演算する。

Figure 2007163308
In the case of the current calibration coefficient C1imin at the frequency f1min, the calibration coefficient measuring device 8 calculates the current effective value Im from the traveling wave power Pf and the reflected wave power Pr output from the wattmeter 7 by the following calculation formula (3).
Figure 2007163308

従って、電流実効値Imと電流実効値Im’の出力特性を描くと、図5に示すようになる。図5において、(A)は進行波電力Pf及び反射波電力Prから演算された電流実効値Imの出力特性であり、(B)は電流検出部によって直接検出された電流実効値Im’の出力特性である。   Therefore, the output characteristics of the current effective value Im and the current effective value Im ′ are depicted as shown in FIG. 5A shows the output characteristics of the effective current value Im calculated from the traveling wave power Pf and the reflected wave power Pr, and FIG. 5B shows the output of the effective current value Im ′ directly detected by the current detection unit. It is a characteristic.

出力Pmにおける高周波測定装置5の電流実効値の検出値Im’を正しい電流実効値Imに校正するための電流校正係数C1iminは、Im/Im’の演算により取得される。他の出力Pmにおける電流校正係数C1iminも、同様の方法によって取得され、上述の例では、出力300W,400W,…2000Wの18個の出力について、電圧校正係数C1iminが取得されるから、これらを平均して周波数f1minに対する電流校正係数C1imin(=(C1i(1)+C1i(2)+C1i(3)…+C1i(18))/18)が設定される。   The current calibration coefficient C1imin for calibrating the detection value Im 'of the current effective value of the high-frequency measuring device 5 at the output Pm to the correct current effective value Im is obtained by the calculation of Im / Im'. The current calibration coefficient C1imin at other outputs Pm is also obtained by the same method. In the above example, the voltage calibration coefficient C1imin is obtained for 18 outputs of outputs 300W, 400W,. Then, a current calibration coefficient C1imin (= (C1i (1) + C1i (2) + C1i (3)... + C1i (18)) / 18) with respect to the frequency f1min is set.

同様の方法によって、他の周波数f1max,f2min,f2maxに対する電流校正係数C1imax,C2imin,C2imaxも設定される。また、同様の方法によって、各周波数f1min,f1max,f2min,f2maxに対する位相校正係数C1dmin,C1dmax,C2dmin,C2dmaxも設定される。電流校正係数C1imin等と位相校正係数C1dmin等を出力の異なる18個の校正係数の平均値とするのは、電圧校正係数の場合と同様の理由による。   In the same manner, current calibration coefficients C1imax, C2imin, and C2imax for other frequencies f1max, f2min, and f2max are also set. Further, the phase calibration coefficients C1dmin, C1dmax, C2dmin, and C2dmax for the frequencies f1min, f1max, f2min, and f2max are also set by the same method. The reason why the current calibration coefficient C1imin and the like and the phase calibration coefficient C1dmin and the like are average values of 18 calibration coefficients having different outputs is the same as in the case of the voltage calibration coefficient.

次に、校正係数を取得する処理手順について、図6に示すフローチャートを参照して説明する。   Next, a processing procedure for acquiring a calibration coefficient will be described with reference to a flowchart shown in FIG.

なお、以下の説明では、第1周波数範囲W1の下限周波数f1minと上限周波数f1maxに対する校正係数を取得する場合について説明する。また、高周波電源装置1から出力される電力Pの可変範囲の最小値をPlow(上記の例では300W)、最大値をPhigh(上記の例では2000W)とし、出力電圧Pの増加量をΔP(上記の例では100W)とする。   In the following description, a case where calibration coefficients for the lower limit frequency f1min and the upper limit frequency f1max of the first frequency range W1 are acquired will be described. Further, the minimum value of the variable range of the power P output from the high frequency power supply device 1 is Plow (300 W in the above example), the maximum value is Phigh (2000 W in the above example), and the increase amount of the output voltage P is ΔP ( In the above example, 100 W).

まず、出力周波数fが第1周波数範囲W1の下限周波数f1minに設定される(S1)。続いて、ダミーロード6が周波数f1minで50Ωとなるように調整され(S2)、出力Pが最小電力Plowに設定される(S3)。   First, the output frequency f is set to the lower limit frequency f1min of the first frequency range W1 (S1). Subsequently, the dummy load 6 is adjusted to 50Ω at the frequency f1min (S2), and the output P is set to the minimum power Plow (S3).

続いて、高周波電源装置1から周波数f1min、出力Plowの高周波電力が出力され(S4)、高周波測定装置5により電圧実効値Vm’、電流実効値Im’及び位相θm’が計測され、電力計7により進行波電力Pfと反射波電力Prとが計測される(S5)。   Subsequently, high-frequency power having a frequency f1min and an output Plow is output from the high-frequency power supply device 1 (S4), and the effective voltage value Vm ′, the effective current value Im ′, and the phase θm ′ are measured by the high-frequency measuring device 5, and the wattmeter 7 Thus, the traveling wave power Pf and the reflected wave power Pr are measured (S5).

続いて、周波数f1min、出力Plowの高周波電力に対する電圧校正係数Cv、電流校正係数Ci及び位相校正係数Cdが算出され(S6)、その算出結果が校正係数測定装置8内のメモリに保存される(S7)。   Subsequently, a voltage calibration coefficient Cv, a current calibration coefficient Ci, and a phase calibration coefficient Cd with respect to the high-frequency power of the frequency f1min and the output Plow are calculated (S6), and the calculation results are stored in the memory in the calibration coefficient measuring device 8 ( S7).

なお、電圧校正係数Cvは、

Figure 2007163308
により算出され、電流校正係数Ciは、
Figure 2007163308
により演算される。また、位相校正係数Cdは、
Figure 2007163308
により演算される。 The voltage calibration coefficient Cv is
Figure 2007163308
And the current calibration coefficient Ci is
Figure 2007163308
Is calculated by The phase calibration coefficient Cd is
Figure 2007163308
Is calculated by

続いて、出力PがΔPだけ増加され(S8)、増加後の出力Pが最大出力Phighを超えたか否かが判別され(S9)、P≦Phighであれば(S9:NO)、ステップS4に戻り、周波数f1min、出力(Plow+ΔP)の高周波電力に対する電圧校正係数Cv、電流校正係数Ci及び位相校正係数Cdの算出処理が行われる(S4〜S7)。   Subsequently, the output P is increased by ΔP (S8), and it is determined whether or not the increased output P exceeds the maximum output Phigh (S9). If P ≦ Phigh (S9: NO), the process goes to step S4. Returning, the calculation process of the voltage calibration coefficient Cv, the current calibration coefficient Ci, and the phase calibration coefficient Cd for the high frequency power of the frequency f1min and the output (Plow + ΔP) is performed (S4 to S7).

以下、出力PをΔPずつ増加させながら電圧校正係数Cv、電流校正係数Ci及び位相校正係数Cdの算出処理が繰り返され(S4〜S9のループ)、P>Phighになると(S9:YES)、メモリに保存された出力Plow,Plow+ΔP,Plow+2ΔP,…Phighに対する電圧校正係数Cvの平均値が演算され(S10)、この平均値が下限周波数f1minに対する電圧校正係数C1vminとしてメモリに保存される(S11)。同様に、出力Plow,Plow+ΔP,Plow+2ΔP,…Phighに対する電流校正係数Ciの平均値と位相校正係数Cdの平均値が演算され(S10)、これらの平均値が下限周波数f1minに対する電流校正係数C1iminと位相校正係数C1dminとしてメモリに保存される(S11)。   Thereafter, the calculation process of the voltage calibration coefficient Cv, the current calibration coefficient Ci, and the phase calibration coefficient Cd is repeated while increasing the output P by ΔP (S4 to S9 loop), and when P> Phigh (S9: YES), the memory The average value of the voltage calibration coefficient Cv with respect to the outputs Plow, Plow + ΔP, Plow + 2ΔP,... Phigh stored in is calculated (S10), and this average value is stored in the memory as the voltage calibration coefficient C1vmin with respect to the lower limit frequency f1min (S11). Similarly, the average value of the current calibration coefficient Ci and the average value of the phase calibration coefficient Cd for the outputs Plow, Plow + ΔP, Plow + 2ΔP,... Phigh are calculated (S10), and these average values are the current calibration coefficient C1imin and the phase for the lower limit frequency f1min. The calibration coefficient C1dmin is stored in the memory (S11).

続いて、出力周波数fが第1周波数範囲W1の上限周波数f1maxに設定されているか否かが判別され(S12)、f=f1maxでなければ(S12:NO)、出力周波数fが上限周波数f1maxに設定されて(S13)、ステップS2に戻り、上述と同様の処理を繰り返して上限周波数f1maxに対する電圧校正係数C1vmax、電流校正係数C1imax及び位相校正係数C1dmaxが算出され、メモリに保存される(S2〜S11)。   Subsequently, it is determined whether or not the output frequency f is set to the upper limit frequency f1max of the first frequency range W1 (S12). If f = f1max is not satisfied (S12: NO), the output frequency f becomes the upper limit frequency f1max. Once set (S13), the process returns to step S2, and the same processing as described above is repeated to calculate the voltage calibration coefficient C1vmax, current calibration coefficient C1imax, and phase calibration coefficient C1dmax with respect to the upper limit frequency f1max and store them in the memory (S2 to S2). S11).

そして、以上の処理によって、第1周波数範囲W1の下限周波数f1minと上限周波数f1maxに対する電圧校正係数C1vmin,C1vmax、電流校正係数C1imin,C1imax及び位相校正係数C1dmin,C1dmaxが取得されると、高周波測定装置5に記憶された校正係数(Cv=Ci=1、Cd=0)を取得された校正係数に置換することにより、高周波測定装置5は正しい測定が可能な測定装置に完成される。   When the voltage calibration coefficients C1vmin and C1vmax, the current calibration coefficients C1imin and C1imax, and the phase calibration coefficients C1dmin and C1dmax with respect to the lower limit frequency f1min and the upper limit frequency f1max of the first frequency range W1 are obtained by the above processing, the high frequency measurement device The high-frequency measurement device 5 is completed as a measurement device capable of correct measurement by replacing the calibration coefficient (Cv = Ci = 1, Cd = 0) stored in 5 with the acquired calibration coefficient.

図1に戻り、プラズマ処理システムにおける高周波測定装置5の測定動作について説明する。   Returning to FIG. 1, the measurement operation of the high-frequency measuring device 5 in the plasma processing system will be described.

高周波電源装置1から高周波電力が伝送線路2、インピーダンス整合器3を介してプラズマ処理装置4に供給されてプラズマ処理が行われているときには、インピーダンス整合器3内の高周波測定装置5に負荷端3bにおける高周波信号が入力されることになる。   When high-frequency power is supplied from the high-frequency power supply device 1 to the plasma processing device 4 via the transmission line 2 and the impedance matching device 3, and the plasma processing is performed, the load end 3b is connected to the high-frequency measuring device 5 in the impedance matching device 3. The high frequency signal at is input.

高周波信号が入力されると、高周波電圧の実効値Vm’、高周波電流の実効値Im’、高周波電圧と高周波電流の位相θm’、高周波信号の周波数fmが検出される。この周波数fmに対する電圧校正係数Cvm、電流校正係数Cim及び位相校正係数Cdmが上述した(1)式により算出される。   When a high frequency signal is input, the effective value Vm ′ of the high frequency voltage, the effective value Im ′ of the high frequency current, the phase θm ′ of the high frequency voltage and the high frequency current, and the frequency fm of the high frequency signal are detected. The voltage calibration coefficient Cvm, current calibration coefficient Cim, and phase calibration coefficient Cdm with respect to the frequency fm are calculated by the above-described equation (1).

入力された高周波電圧の実効値Vm’と設定された電圧校正係数Cvmとの積が演算され、その演算結果Vm=Cvm・Vm’が電圧測定値として出力される。また、入力された高周波電流の実効値Im’と設定された電流校正係数Cimとの積が演算され、その演算結果Im=Cim・Im’が電流測定値として出力される。また、入力された高周波電流の実効値θm’と設定された位相校正係数Cdmとの積が演算され、その演算結果θm=Cdm・θm’が位相測定値として出力される。   The product of the effective value Vm ′ of the input high-frequency voltage and the set voltage calibration coefficient Cvm is calculated, and the calculation result Vm = Cvm · Vm ′ is output as the voltage measurement value. Further, the product of the effective value Im ′ of the input high-frequency current and the set current calibration coefficient Cim is calculated, and the calculation result Im = Cim · Im ′ is output as the current measurement value. Further, the product of the effective value θm ′ of the input high-frequency current and the set phase calibration coefficient Cdm is calculated, and the calculation result θm = Cdm · θm ′ is output as the phase measurement value.

上記のように、本実施形態に係る高周波測定装置5によれば、高周波信号の測定周波数範囲の下限周波数fminと上限周波数fmaxに対してだけ予め実測した校正係数Cmin、Cmaxを記憶しておき、測定周波数範囲内の任意の周波数fmにおいては、下限周波数fminの校正係数Cminと上限周波数fmaxの校正係数Cmaxを線形補間することにより周波数fmに対する校正係数Cmを設定するようにしているので、少ない校正係数で所定の周波数範囲内の任意の周波数における高周波測定を正確に行うことができる。また、予め校正係数を実測する作業の負担を増加させることなく、比較的迅速に校正係数を取得することができる。   As described above, according to the high-frequency measuring device 5 according to the present embodiment, the calibration coefficients Cmin and Cmax measured in advance only for the lower limit frequency fmin and the upper limit frequency fmax of the measurement frequency range of the high-frequency signal are stored. At any frequency fm within the measurement frequency range, the calibration coefficient Cm for the frequency fm is set by linearly interpolating the calibration coefficient Cmin for the lower limit frequency fmin and the calibration coefficient Cmax for the upper limit frequency fmax. It is possible to accurately perform high-frequency measurement at an arbitrary frequency within a predetermined frequency range with a coefficient. In addition, the calibration coefficient can be acquired relatively quickly without increasing the burden of the work of actually measuring the calibration coefficient in advance.

なお、本実施形態に係る高周波測定装置5では、測定周波数範囲内の任意の周波数fmについては、実測した校正係数Cmを有していないので、校正精度の問題が残るが、この問題に対しては、校正係数を実測する際に、実測した校正係数を高周波測定装置5に記憶させた後、例えば第1周波数範囲W1の中心周波数foで既知の負荷インピーダンスZm=Rm+jXmを測定し、高周波測定装置5から出力される電圧実効値Vm、電流実効値Im及び位相θmからインピーダンスZmを演算し、この演算結果と既知のインピーダンス値との誤差を確認することにより、簡単に校正精度を確認することができる。   In the high-frequency measuring device 5 according to the present embodiment, the calibration accuracy Cm does not exist for the arbitrary frequency fm within the measurement frequency range, so that the problem of calibration accuracy remains. When the calibration coefficient is actually measured, the measured calibration coefficient is stored in the high-frequency measuring device 5, and then, for example, the known load impedance Zm = Rm + jXm is measured at the center frequency fo in the first frequency range W1, and the high-frequency measuring device is measured. By calculating the impedance Zm from the effective voltage value Vm, the effective current value Im, and the phase θm output from 5, and checking the error between this calculation result and the known impedance value, the calibration accuracy can be easily confirmed. it can.

すなわち、図3の測定系において、ダミーロード6を第1周波数範囲W1の中心周波数foにおける負荷インピーダンスZm=Rm+jXmに設定した後、高周波電源装置1から周波数foの高周波電力を出力して高周波測定装置5で電圧実効値Vm、電流実効値Im及び位相θmを測定する。これらの測定値から負荷インピーダンスの抵抗分Rm’とリアクタンス分Xm’は、

Figure 2007163308
により算出することができるので、その算出値から得られる負荷インピーダンスZm’=Rm’+jXm’と既知の負荷インピーダンスZm=Rm+jXmとの誤差を確認することにより、校正精度を確認することができる。 That is, in the measurement system of FIG. 3, after setting the dummy load 6 to the load impedance Zm = Rm + jXm at the center frequency fo in the first frequency range W1, the high frequency power of the frequency fo is output from the high frequency power supply device 1 5, the effective voltage value Vm, the effective current value Im, and the phase θm are measured. From these measured values, the resistance component Rm ′ and the reactance component Xm ′ of the load impedance are
Figure 2007163308
Therefore, the calibration accuracy can be confirmed by checking the error between the load impedance Zm ′ = Rm ′ + jXm ′ obtained from the calculated value and the known load impedance Zm = Rm + jXm.

従って、所望の校正精度が得られる場合についてのみ、周波数範囲の上下周波数に対してだけ実測の校正係数を保持し、他の周波数については線形補間により算出する構成とすればよい。   Therefore, only when the desired calibration accuracy is obtained, the measured calibration coefficients are held only for the upper and lower frequencies in the frequency range, and the other frequencies may be calculated by linear interpolation.

なお、上記実施例では、第2周波数範囲W2は中心周波数fo=13.56MHzに対して0.68MHz(0.05%)の変動幅を有し、この変動幅の中心周波数foに対する割合は極めて小さいので、第2周波数範囲W2においては校正係数の線形性は十分に確保されるものと考えられる。従って、上記の校正方法が十分に適用可能である。   In the above embodiment, the second frequency range W2 has a fluctuation range of 0.68 MHz (0.05%) with respect to the center frequency fo = 13.56 MHz, and the ratio of the fluctuation range to the center frequency fo is extremely high. Since it is small, it is considered that the linearity of the calibration coefficient is sufficiently ensured in the second frequency range W2. Therefore, the above calibration method can be applied sufficiently.

一方、第1周波数範囲W1は中心周波数fo=2.0MHzに対して0.2MHz(10%)の変動幅を有し、この変動幅の中心周波数foに対する割合は比較的大きいので、第1周波数範囲W1や2.0MHzよりも低い中心周波数に対する周波数範囲においては、校正係数の線形性が十分に確保できず、上記の校正精度の確認を行うと、校正精度の問題が生じる場合も有り得る。この場合は、例えば、周波数範囲の中心周波数foについても実測の校正係数を用意し、中心周波数foと下限周波数fminの周波数範囲の周波数fpについては中心周波数foに対する校正係数Coと下限周波数fminに対する校正係数Cminの線形補間により校正係数Cpを算出し、中心周波数foと上限周波数fmaxの周波数範囲の周波数fqについては中心周波数foに対する校正係数Coと下限周波数fmaxに対する校正係数Cmaxの線形補間により校正係数Cqを算出するようにすればよい。すなわち、周波数範囲を複数の領域に分割し、各領域毎に線形補間により校正係数を算出するようにすると良い。   On the other hand, the first frequency range W1 has a fluctuation range of 0.2 MHz (10%) with respect to the center frequency fo = 2.0 MHz, and the ratio of the fluctuation range to the center frequency fo is relatively large. In the frequency range with respect to the center frequency lower than the range W1 or 2.0 MHz, the linearity of the calibration coefficient cannot be ensured sufficiently, and if the above calibration accuracy is checked, there may be a problem of calibration accuracy. In this case, for example, an actual calibration coefficient is also prepared for the center frequency fo in the frequency range, and for the frequency fp in the frequency range between the center frequency fo and the lower limit frequency fmin, the calibration coefficient Co for the center frequency fo and the calibration for the lower limit frequency fmin are performed. The calibration coefficient Cp is calculated by linear interpolation of the coefficient Cmin, and the calibration coefficient Cq is calculated by linear interpolation of the calibration coefficient Co for the center frequency fo and the calibration coefficient Cmax for the lower limit frequency fmax for the frequency fq in the frequency range of the center frequency fo and the upper limit frequency fmax. May be calculated. That is, it is preferable to divide the frequency range into a plurality of regions and calculate the calibration coefficient for each region by linear interpolation.

なお、上記実施形態では、高周波測定装置5がインピーダンス整合器3の出力端3b側に内蔵した場合について説明したが、高周波測定装置5はインピーダンス整合器3の入力端3aに内蔵してもよく、測定装置単体として使用してもよいことは言うまでもない。   In the above embodiment, the case where the high frequency measurement device 5 is built in the output end 3b side of the impedance matching device 3 has been described. However, the high frequency measurement device 5 may be built in the input end 3a of the impedance matching device 3, Needless to say, the measuring device may be used alone.

また、上記実施形態では、高周波電圧、高周波電流及び位相の全てが測定可能な高周波測定装置について説明したが、高周波電圧のみ、若しくは高周波電流のみを測定する高周波測定装置に対しても本願発明に係る測定値の校正方法を適用できることは言うまでもない。   In the above embodiment, the high-frequency measuring device capable of measuring all of the high-frequency voltage, high-frequency current, and phase has been described. However, the present invention also relates to a high-frequency measuring device that measures only a high-frequency voltage or only a high-frequency current. It goes without saying that a calibration method for measured values can be applied.

また、上記実施形態では、真の測定値を求めるにあたり検出値に校正係数を乗算する場合について説明したが、校正データで加算や他の演算を行う場合に対しても本願発明に係る測定値の校正方法を適用できることは言うまでもない。   Further, in the above embodiment, the case where the detection value is multiplied by the calibration coefficient when obtaining the true measurement value has been described, but the measurement value according to the present invention is also applied to the case where addition or other calculation is performed on the calibration data. It goes without saying that the calibration method can be applied.

本願発明に係る高周波測定装置が適用されるプラズマ処理システムの一例を示す図である。It is a figure which shows an example of the plasma processing system with which the high frequency measuring apparatus which concerns on this invention is applied. 直線補間により校正係数を算出する方法を説明するための図である。It is a figure for demonstrating the method of calculating a calibration coefficient by linear interpolation. 校正係数Cv,Ci,Cdを取得するための測定系の一例を示す図である。It is a figure which shows an example of the measurement system for acquiring calibration coefficient Cv, Ci, Cd. 電圧検出部で直接検出される電圧(実効値)と入射波電力及び反射波電力から演算される電圧(実効値)の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the voltage (effective value) computed from the voltage (effective value) directly detected by a voltage detection part, and incident wave electric power and reflected wave electric power. 電流検出部で直接検出される電流(実効値)と入射波電力及び反射波電力から演算される電流(実効値)の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the electric current (effective value) calculated from the electric current (effective value) detected directly by an electric current detection part, and incident wave electric power and reflected wave electric power. 図3の測定系における校正係数Cv,Ci,Cdを取得するための処理手順を示すフローチャートである。It is a flowchart which shows the process sequence for acquiring the calibration coefficients Cv, Ci, and Cd in the measurement system of FIG. 一般的なプラズマ処理システムの構成を示す図である。It is a figure which shows the structure of a general plasma processing system.

符号の説明Explanation of symbols

1 高周波電源装置
2 伝送線路
3 インピーダンス整合器
4 プラズマ処理装置
5 高周波測定装置
6 ダミーロード
7 電力計
8 校正係数測定装置
DESCRIPTION OF SYMBOLS 1 High frequency power supply device 2 Transmission line 3 Impedance matching device 4 Plasma processing apparatus 5 High frequency measuring device 6 Dummy load 7 Wattmeter 8 Calibration coefficient measuring device

Claims (8)

予め設定された所定の周波数範囲の高周波信号の測定が可能な高周波測定装置であって、
前記高周波信号を検出する信号検出手段と、
前記信号検出手段で検出される、前記周波数範囲の下限周波数fminにおける検出値Aminと上限周波数fmaxにおける検出値Amaxをそれぞれ真の測定値ASminと測定値ASmaxに校正するための校正データCmin,Cmaxが記憶された校正データ記憶手段と、
前記信号検出手段で検出された前記高周波信号の周波数fmを検出する周波数検出手段と、
前記周波数範囲の下限周波数fmin及び上限周波数fmaxと、前記周波数検出手段で検出された周波数fmと、前記校正データ記憶手段に記憶された校正データCmin,Cmaxを用いて、前記周波数fmに対する校正データCmを演算する校正データ演算手段と、
前記校正データ演算手段で演算された校正データCmを用いて前記信号検出手段で検出された検出値Amを真の測定値ASmに校正する測定値校正手段と、
を備えたことを特徴とする高周波測定装置。
A high-frequency measuring device capable of measuring a high-frequency signal in a predetermined frequency range set in advance,
Signal detection means for detecting the high-frequency signal;
Calibration data Cmin, Cmax for calibrating the detected value Amin at the lower limit frequency fmin and the detected value Amax at the upper limit frequency fmax of the frequency range to the true measured value ASmin and measured value ASmax, respectively, detected by the signal detection means. Stored calibration data storage means;
Frequency detecting means for detecting a frequency fm of the high frequency signal detected by the signal detecting means;
Using the lower limit frequency fmin and upper limit frequency fmax of the frequency range, the frequency fm detected by the frequency detection means, and the calibration data Cmin and Cmax stored in the calibration data storage means, the calibration data Cm for the frequency fm Calibration data calculation means for calculating
A measurement value calibration means for calibrating the detection value Am detected by the signal detection means to a true measurement value ASm using the calibration data Cm calculated by the calibration data calculation means;
A high-frequency measuring device comprising:
前記校正データ演算手段は、下記演算式により校正データCmを演算することを特徴とする請求項1に記載の高周波測定装置。
Figure 2007163308
The high-frequency measuring device according to claim 1, wherein the calibration data calculation means calculates the calibration data Cm by the following calculation formula.
Figure 2007163308
前記信号検出手段で検出される信号は高周波電圧信号である、請求項1又は2に記載の高周波測定装置。   The high-frequency measuring device according to claim 1 or 2, wherein the signal detected by the signal detecting means is a high-frequency voltage signal. 前記信号検出手段で検出される信号は高周波電流信号である、請求項1又は2に記載の高周波測定装置。   The high-frequency measuring device according to claim 1 or 2, wherein the signal detected by the signal detecting means is a high-frequency current signal. 前記信号検出手段は、前記高周波電圧信号を検出する電圧検出手段と、前記高周波電流信号を検出する電流検出手段とからなり、
前記校正データ記憶手段には、前記電圧検出手段で検出される、前記周波数範囲の下限周波数fminにおける高周波電圧信号の検出値Vminと前記上限周波数fmaxにおける高周波電圧信号の検出値Vmaxをそれぞれ真の測定値VSminと測定値VSmaxに校正するための電圧校正データCvmin,Cvmaxと、前記電流検出手段で検出される、前記下限周波数fminにおける高周波電流信号の検出値Iminと前記上限周波数fmaxにおける高周波電流信号の検出値Imaxをそれぞれ真の測定値ISminと測定値ISmaxに校正するための電流校正データCimin,Cimaxとが記憶され、
前記校正データ演算手段は、前記周波数範囲の下限周波数fmin及び上限周波数fmaxと、前記周波数検出手段で検出された周波数fmと、前記校正データ記憶手段に記憶された電圧校正データCvmin,Cvmaxを用いて、前記周波数fmに対する電圧校正データCvmを演算するとともに、前記下限周波数fmin、前記上限周波数fmax及び前記周波数fmと、前記校正データ記憶手段に記憶された電流校正データCimin,Cimaxを用いて、前記周波数fmに対する電流校正データCimを演算し、
前記測定値校正手段は、前記校正データ演算手段で演算された電圧校正データCvmを用いて前記電圧検出手段で検出された高周波電圧信号の検出値Vmを真の電圧測定値VSmに校正するとともに、前記校正データ演算手段で演算された電流校正データCimを用いて前記電流検出手段で検出された高周波電流信号の検出値Imを真の電流測定値ISmに校正することを特徴とする請求項1又は2に記載の高周波測定装置。
The signal detection means comprises a voltage detection means for detecting the high frequency voltage signal and a current detection means for detecting the high frequency current signal,
In the calibration data storage means, the detected value Vmin of the high-frequency voltage signal at the lower limit frequency fmin of the frequency range and the detected value Vmax of the high-frequency voltage signal at the upper limit frequency fmax detected by the voltage detecting means are respectively true measurements. Voltage calibration data Cvmin, Cvmax for calibrating to the value VSmin and the measured value VSmax, the detected value Imin of the high frequency current signal at the lower limit frequency fmin and the high frequency current signal at the upper limit frequency fmax detected by the current detection means Current calibration data Cimin and Cimax for calibrating the detected value Imax to the true measured value ISmin and the measured value ISmax are stored.
The calibration data calculation means uses the lower limit frequency fmin and the upper limit frequency fmax of the frequency range, the frequency fm detected by the frequency detection means, and the voltage calibration data Cvmin and Cvmax stored in the calibration data storage means. The voltage calibration data Cvm for the frequency fm is calculated, and the lower limit frequency fmin, the upper limit frequency fmax and the frequency fm, and the current calibration data Cimin and Cimax stored in the calibration data storage means are used to calculate the frequency calibration data Cvm. Calculate current calibration data Cim for fm,
The measurement value calibration means calibrates the detection value Vm of the high-frequency voltage signal detected by the voltage detection means to the true voltage measurement value VSm using the voltage calibration data Cvm calculated by the calibration data calculation means, 2. The detection value Im of the high-frequency current signal detected by the current detection unit is calibrated to a true current measurement value ISm using the current calibration data Cim calculated by the calibration data calculation unit. 2. The high frequency measuring apparatus according to 2.
前記電圧検出手段で検出された高周波電圧信号と前記電流検出手段で検出された高周波電流信号を用いて前記高周波信号の位相を検出する位相検出手段を更に備えるとともに、
前記校正データ記憶手段に、前記位相検出手段で検出される、前記下限周波数fminにおける位相θminと前記上限周波数fmaxにおける位相θmaxをそれぞれ真の位相θSminと真の位相θSmaxに校正するための位相校正データCdmin,Cdmaxとが更に記憶され、
前記校正データ演算手段は、更に前記周波数範囲の下限周波数fmin及び上限周波数fmaxと、前記周波数検出手段で検出された周波数fmと、前記校正データ記憶手段に記憶された位相校正データCdmin,Cdmaxを用いて、前記周波数fmに対する位相校正データCdmを演算し、
前記測定値校正手段は、更に前記校正データ演算手段で演算された位相校正データCdmを用いて前記位相検出手段で検出された位相θmを真の位相θSmに校正することを特徴とする請求項5に記載の高周波測定装置。
And further comprising phase detection means for detecting the phase of the high-frequency signal using the high-frequency voltage signal detected by the voltage detection means and the high-frequency current signal detected by the current detection means,
Phase calibration data for calibrating the phase θmin at the lower limit frequency fmin and the phase θmax at the upper limit frequency fmax detected by the phase detection unit to the true phase θSmin and the true phase θSmax, respectively, in the calibration data storage means. Cdmin and Cdmax are further stored,
The calibration data calculation means further uses the lower limit frequency fmin and the upper limit frequency fmax of the frequency range, the frequency fm detected by the frequency detection means, and the phase calibration data Cdmin and Cdmax stored in the calibration data storage means. Calculating the phase calibration data Cdm for the frequency fm,
6. The measurement value calibration unit further calibrates the phase θm detected by the phase detection unit to a true phase θSm using the phase calibration data Cdm calculated by the calibration data calculation unit. The high frequency measuring device described in 1.
前記電圧校正データCvmin,Cvmaxは、予め設定された所定の範囲で高周波信号の出力を変化させて得られる複数の電圧校正データの平均値であり、前記電流校正データCimin,Cimaxは、前記所定の範囲で前記高周波信号の出力を変化させて得られる複数の電流校正データの平均値であり、前記位相校正データCdmin,Cdmaxは、前記所定の範囲で高周波信号の出力を変化させて得られる複数の位相校正データの平均値であることを特徴とする請求項6に記載の高周波測定装置。   The voltage calibration data Cvmin and Cvmax are average values of a plurality of voltage calibration data obtained by changing the output of the high-frequency signal within a predetermined range set in advance. The current calibration data Cimin and Cimax are the predetermined values. An average value of a plurality of current calibration data obtained by changing the output of the high-frequency signal in a range, and the phase calibration data Cdmin and Cdmax are a plurality of values obtained by changing the output of the high-frequency signal in the predetermined range. The high-frequency measuring device according to claim 6, wherein the high-frequency measuring device is an average value of phase calibration data. 相互に周波数範囲が重複しない2以上の離散的な周波数範囲の高周波信号に対して測定が可能であることを特徴とする請求項1〜7のいずれかに記載の高周波測定装置。   The high-frequency measuring device according to any one of claims 1 to 7, wherein measurement is possible with respect to high-frequency signals in two or more discrete frequency ranges whose frequency ranges do not overlap each other.
JP2005360401A 2005-12-14 2005-12-14 High frequency measuring device Expired - Fee Related JP4648179B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005360401A JP4648179B2 (en) 2005-12-14 2005-12-14 High frequency measuring device
US11/636,389 US7489145B2 (en) 2005-12-14 2006-12-08 Plasma processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360401A JP4648179B2 (en) 2005-12-14 2005-12-14 High frequency measuring device

Publications (3)

Publication Number Publication Date
JP2007163308A true JP2007163308A (en) 2007-06-28
JP2007163308A5 JP2007163308A5 (en) 2008-12-25
JP4648179B2 JP4648179B2 (en) 2011-03-09

Family

ID=38246369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360401A Expired - Fee Related JP4648179B2 (en) 2005-12-14 2005-12-14 High frequency measuring device

Country Status (1)

Country Link
JP (1) JP4648179B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206346A (en) * 2008-02-28 2009-09-10 Hitachi High-Technologies Corp Plasma processing device
WO2011103775A1 (en) * 2010-02-23 2011-09-01 清华大学 Generation device and method for nominal voltage
JP2011196901A (en) * 2010-03-23 2011-10-06 Daihen Corp Method of evaluating reliability of power measurement device
JP2011196932A (en) * 2010-03-23 2011-10-06 Daihen Corp High-frequency measurement device and method of calibrating the same
JP2012078138A (en) * 2010-09-30 2012-04-19 Daihen Corp High-frequency measurement device and calibration method of high-frequency measurement device
CN103308876A (en) * 2013-05-08 2013-09-18 清华大学 Inspection method for performance of partial discharge ultrahigh frequency detection system of gas insulated substation
CN103543427A (en) * 2013-10-28 2014-01-29 中国电子科技集团公司第四十一研究所 Method and device for calibrating passive intermodulation testing system based on intelligent search algorithm
US8686711B2 (en) 2010-03-24 2014-04-01 Daihen Corporation High-frequency measuring device and high-frequency measuring device calibration method
JP2014072808A (en) * 2012-09-28 2014-04-21 Daihen Corp Impedance adjustment device
JP2014072807A (en) * 2012-09-28 2014-04-21 Daihen Corp Impedance adjustment device
CN104833937A (en) * 2015-05-21 2015-08-12 湖南大学 Harmonic measurement channel calibration method based on MIR-RSD high-precision cosine window interpolation FFT algorithm
CN105277907A (en) * 2015-09-30 2016-01-27 国家电网公司 On-site assessment system for partial discharge sensor
US9425024B2 (en) 2011-03-30 2016-08-23 Daihen Corporation Load simulator
JP2017073771A (en) * 2012-09-07 2017-04-13 株式会社ダイヘン High frequency matching system
JP2017073770A (en) * 2016-09-30 2017-04-13 株式会社ダイヘン High frequency matching system
JP2017073772A (en) * 2016-09-30 2017-04-13 株式会社ダイヘン High frequency matching system
WO2018074236A1 (en) * 2016-10-18 2018-04-26 東京エレクトロン株式会社 Microwave output device and plasma processing device
WO2018074239A1 (en) * 2016-10-18 2018-04-26 東京エレクトロン株式会社 Microwave output device and plasma processing device
WO2019003345A1 (en) * 2017-06-28 2019-01-03 株式会社日立国際電気 High-frequency power source device and plasma processing device using same
CN114002478A (en) * 2021-11-01 2022-02-01 深圳市泛海三江电子股份有限公司 Multi-mode switching method and system for detecting alternating voltage/current signal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103513209B (en) * 2013-08-08 2016-02-24 国家电网公司 A kind of method that UHF sensor detection frequency band is selected
CN103760510B (en) * 2014-01-24 2016-08-17 国家电网公司 The method for detecting accuracy of frequency departure detecting instrument

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283728A (en) * 1990-03-30 1991-12-13 Anritsu Corp Radio equipment tester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283728A (en) * 1990-03-30 1991-12-13 Anritsu Corp Radio equipment tester

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206346A (en) * 2008-02-28 2009-09-10 Hitachi High-Technologies Corp Plasma processing device
WO2011103775A1 (en) * 2010-02-23 2011-09-01 清华大学 Generation device and method for nominal voltage
JP2011196901A (en) * 2010-03-23 2011-10-06 Daihen Corp Method of evaluating reliability of power measurement device
JP2011196932A (en) * 2010-03-23 2011-10-06 Daihen Corp High-frequency measurement device and method of calibrating the same
US9372248B2 (en) 2010-03-23 2016-06-21 Daihen Corporation Method for evaluating reliability of electrical power measuring device
US8510071B2 (en) 2010-03-23 2013-08-13 Daihen Corporation High-frequency measuring device and high-frequency measuring device calibration method
US8686711B2 (en) 2010-03-24 2014-04-01 Daihen Corporation High-frequency measuring device and high-frequency measuring device calibration method
JP2012078138A (en) * 2010-09-30 2012-04-19 Daihen Corp High-frequency measurement device and calibration method of high-frequency measurement device
US8738314B2 (en) 2010-09-30 2014-05-27 Daihen Corporation High frequency measurement apparatus and calibration method for high frequency measurement apparatus
US9425024B2 (en) 2011-03-30 2016-08-23 Daihen Corporation Load simulator
JP2017073771A (en) * 2012-09-07 2017-04-13 株式会社ダイヘン High frequency matching system
JP2014072808A (en) * 2012-09-28 2014-04-21 Daihen Corp Impedance adjustment device
JP2014072807A (en) * 2012-09-28 2014-04-21 Daihen Corp Impedance adjustment device
CN103308876B (en) * 2013-05-08 2015-04-15 清华大学 Inspection method for performance of partial discharge ultrahigh frequency detection system of gas insulated substation
CN103308876A (en) * 2013-05-08 2013-09-18 清华大学 Inspection method for performance of partial discharge ultrahigh frequency detection system of gas insulated substation
CN103543427A (en) * 2013-10-28 2014-01-29 中国电子科技集团公司第四十一研究所 Method and device for calibrating passive intermodulation testing system based on intelligent search algorithm
CN104833937A (en) * 2015-05-21 2015-08-12 湖南大学 Harmonic measurement channel calibration method based on MIR-RSD high-precision cosine window interpolation FFT algorithm
CN105277907A (en) * 2015-09-30 2016-01-27 国家电网公司 On-site assessment system for partial discharge sensor
JP2017073770A (en) * 2016-09-30 2017-04-13 株式会社ダイヘン High frequency matching system
JP2017073772A (en) * 2016-09-30 2017-04-13 株式会社ダイヘン High frequency matching system
WO2018074236A1 (en) * 2016-10-18 2018-04-26 東京エレクトロン株式会社 Microwave output device and plasma processing device
WO2018074239A1 (en) * 2016-10-18 2018-04-26 東京エレクトロン株式会社 Microwave output device and plasma processing device
JP2018067417A (en) * 2016-10-18 2018-04-26 東京エレクトロン株式会社 Microwave output device and plasma processing unit
CN109845411A (en) * 2016-10-18 2019-06-04 东京毅力科创株式会社 Microwave output device and plasma processing apparatus
CN109845411B (en) * 2016-10-18 2021-10-26 东京毅力科创株式会社 Microwave output device and plasma processing device
WO2019003345A1 (en) * 2017-06-28 2019-01-03 株式会社日立国際電気 High-frequency power source device and plasma processing device using same
JPWO2019003345A1 (en) * 2017-06-28 2020-05-21 株式会社日立国際電気 High frequency power supply device and plasma processing apparatus using the same
US10896810B2 (en) 2017-06-28 2021-01-19 Hitachi Kokusai Electric Inc. RF generating apparatus and plasma treatment apparatus
CN114002478A (en) * 2021-11-01 2022-02-01 深圳市泛海三江电子股份有限公司 Multi-mode switching method and system for detecting alternating voltage/current signal

Also Published As

Publication number Publication date
JP4648179B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4648179B2 (en) High frequency measuring device
US8738314B2 (en) High frequency measurement apparatus and calibration method for high frequency measurement apparatus
JP5498217B2 (en) High frequency measuring device and calibration method of high frequency measuring device
KR102139893B1 (en) Impedance adjusting apparatus
US7489145B2 (en) Plasma processing system
JP5357091B2 (en) High frequency measuring device and calibration method of high frequency measuring device
US9704692B2 (en) System for instantaneous radiofrequency power measurement and associated methods
WO2012078569A1 (en) Plasma processing system control based on rf voltage
JP2007336148A (en) Electrical property adjusting device
US9372248B2 (en) Method for evaluating reliability of electrical power measuring device
JP2003302431A (en) Output terminal characteristic analytical method of impedance matching device, impedance matching device and output terminal characteristic analytical system for impedance matching device
JP6084418B2 (en) Impedance adjustment device
JP6084419B2 (en) Impedance adjustment device
JP6441604B2 (en) High frequency measuring device and calibration method of high frequency measuring device
JP6450072B2 (en) Impedance matching device
JP6485924B2 (en) Method for adjusting impedance of high-frequency matching system
JPH04368799A (en) Device for measuring plasma impedance
JP6430561B2 (en) Method for adjusting impedance of high-frequency matching system
JP6607446B2 (en) Error measuring device
TWI447401B (en) Method for circuit stability compensation
KR20230001508A (en) Detection signal processing apparatus of eddy current sensor and detection signal processing method
CN116298430A (en) Current sensor, current measuring device and measuring method
RU2364877C1 (en) Device for measurement of amplitude-frequency characteristics of shf quadripole
JP2016125959A (en) Distortion characteristic measurement device and distortion characteristic measurement method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4648179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees