JP2007161009A - Pneumatic tire, sectional type mold for tire, and pneumatic tire manufacturing method - Google Patents

Pneumatic tire, sectional type mold for tire, and pneumatic tire manufacturing method Download PDF

Info

Publication number
JP2007161009A
JP2007161009A JP2005357466A JP2005357466A JP2007161009A JP 2007161009 A JP2007161009 A JP 2007161009A JP 2005357466 A JP2005357466 A JP 2005357466A JP 2005357466 A JP2005357466 A JP 2005357466A JP 2007161009 A JP2007161009 A JP 2007161009A
Authority
JP
Japan
Prior art keywords
groove
sector
circumferential groove
tire
pneumatic tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005357466A
Other languages
Japanese (ja)
Inventor
Toshiro Oyama
俊郎 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2005357466A priority Critical patent/JP2007161009A/en
Publication of JP2007161009A publication Critical patent/JP2007161009A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire to be manufactured by using a sectional type mold and capable of suppressing the generation of cracks at a groove bottom located at a section connection part of a circumferential groove, a sectional type mold for the tire, and a pneumatic tire manufacturing method. <P>SOLUTION: The pneumatic tire has a circumferential groove 2 extending in the tire circumferential direction TC on a tread surface 1, and the tread surface 1 is molded by annularly articulating a plurality of divided sectors 11 of the sectional type mold with each other. In a groove wall 2Y located on at least on the shoulder side out of both groove walls 2X, 2Y of the circumferential groove 2, the angle θ2 of the groove wall surface 2Ya located on a connection part 11a of the sector 11 is larger than the angle θ1 of the groove wall surface 2Yb located in a vicinity of the connection part 11a of the sector 11 on the groove bottom side of at least the circumferential groove 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空気入りタイヤ、該空気入りタイヤを製造するのに使用するタイヤ用セクショナル型モールド、及び該モールドを用いて製造される空気入りタイヤの製造方法に関し、更に詳しくは、タイヤ周方向溝の溝底で発生するクラックを抑制するようにした空気入りタイヤ、タイヤ用セクショナル型モールド及び空気入りタイヤの製造方法に関する。   The present invention relates to a pneumatic tire, a sectional mold for tires used for manufacturing the pneumatic tire, and a method for manufacturing a pneumatic tire manufactured using the mold, and more specifically, a tire circumferential groove. The present invention relates to a pneumatic tire, a sectional mold for tires, and a method for manufacturing a pneumatic tire in which cracks generated at the bottom of the groove are suppressed.

一般に、空気入りタイヤは、リム組み時のエアー充填性を維持するため、リム組前のタイヤの左右のビード部間隔(以下、ビードベース幅と言う)が、組み付けられるホイールのリム幅を超える幅で設計されており、この傾向は特にチューブレスタイヤにおいて顕著である。   In general, pneumatic tires maintain the air filling ability when assembling rims, so that the distance between the left and right bead portions of the tire before rim assembly (hereinafter referred to as the bead base width) exceeds the rim width of the wheel to be assembled. This tendency is particularly noticeable in tubeless tires.

このようなタイヤがリム組みされると、図10に示すように、ビードベース間隔Bsがリム幅Rwと一致するように狭まり、それに伴いタイヤ内面21の曲率半径Rが小さくなろうとするため、センター側とショルダー側で径差の大きいトレッド面22には左右に引っ張られる力F1,F2が発生する。更に、空洞部23内に内圧が付与されると、トレッド面22のセンター部22aの外径成長により、左右に引っ張られる力F1,F2が大きくなる。特に、ベルト層の内圧分担率が高い偏平タイヤではこの傾向がより大きい。   When such a tire is assembled to the rim, as shown in FIG. 10, the bead base interval Bs is narrowed to coincide with the rim width Rw, and accordingly, the radius of curvature R of the tire inner surface 21 tends to be reduced. On the tread surface 22 having a large diameter difference between the side and the shoulder, forces F1 and F2 that are pulled to the left and right are generated. Furthermore, when an internal pressure is applied in the cavity 23, the forces F1 and F2 pulled to the left and right are increased by the growth of the outer diameter of the center portion 22a of the tread surface 22. In particular, this tendency is greater in a flat tire having a high internal pressure share of the belt layer.

その結果、トレッド面22に形成された周方向溝24が左右に拡がり、特に周方向溝24のショルダー側に位置する溝壁面24aと溝底面24bとの接点部aに応力が集中することとなる。   As a result, the circumferential groove 24 formed in the tread surface 22 expands left and right, and stress is concentrated particularly on the contact portion a between the groove wall surface 24a and the groove bottom surface 24b located on the shoulder side of the circumferential groove 24. .

他方、分割した複数のセクターを環状に連接してトレッド面を成型するセクショナル型モールドを用いて製造した空気入りタイヤは、連接するセクター間の微妙なズレや繰り返し使用によって生じるセクター間の隙間により、セクターの連接位置に段差やオーバーフローが発生し易い。このような段差やオーバーフローが周方向溝24の溝底に発生すると、その部分に応力集中が発生し易くなる。   On the other hand, pneumatic tires manufactured using a sectional mold that forms a tread surface by connecting a plurality of divided sectors in a ring shape are caused by subtle deviations between connected sectors and gaps between sectors caused by repeated use. Steps and overflows are likely to occur at the connecting positions of sectors. When such a step or overflow occurs at the groove bottom of the circumferential groove 24, stress concentration tends to occur at that portion.

上記のような空気入りタイヤ、特に高い荷重が負荷される重荷重用空気入りタイヤが、比較的低い空気圧で使用されると、周方向溝の溝底への応力が増大する一方、発熱増加によりゴム物性の低下が促進される。その結果、周方向溝24のセクター連接部位に位置する接点部aにクラックが発生し、これが起点となりクラックが周方向へ更には径方向へ成長し、タイヤの耐久性を低下させるという問題があった。   When a pneumatic tire as described above, particularly a heavy-duty pneumatic tire loaded with a high load, is used at a relatively low air pressure, the stress on the groove bottom of the circumferential groove increases, while the heat generation increases rubber. Decrease in physical properties is promoted. As a result, a crack is generated in the contact portion a located at the sector connection portion of the circumferential groove 24, which becomes a starting point, and the crack grows in the circumferential direction and further in the radial direction, thereby reducing the durability of the tire. It was.

従来、前者の接点部aに応力が集中する問題に対しては、応力に対してゴム物性の抗力を高めたゴムを使用することで対処するようにしている。また、後者の周方向溝の溝底に段差やオーバーフローに起因するクラックが発生する問題に対しては、セクターの分割面を工夫することによりクラックの発生を抑制するようにした技術が提案されている(例えば、特許文献1参照)。
特開2005−001550号公報
Conventionally, the problem of stress concentration on the former contact portion a has been dealt with by using rubber having enhanced resistance to rubber physical properties against stress. In addition, for the problem of cracks caused by steps or overflow at the bottom of the latter circumferential groove, a technique has been proposed that suppresses the generation of cracks by devising the sector dividing surface. (For example, refer to Patent Document 1).
JP 2005-001550 A

本発明の目的は、セクショナル型モールドを用いて製造される空気入りタイヤにおいて、周方向溝のセクター連接部位に位置する溝底でのクラックの発生を抑制することが可能な空気入りタイヤ、タイヤ用セクショナル型モールド及び空気入りタイヤの製造方法を提供することにある。   An object of the present invention is a pneumatic tire manufactured using a sectional mold, and for a pneumatic tire and a tire capable of suppressing the occurrence of cracks at a groove bottom located at a sector connecting portion of a circumferential groove. It is providing the manufacturing method of a sectional type mold and a pneumatic tire.

上記目的を達成する本発明の空気入りタイヤは、トレッド面にタイヤ周方向に延在する周方向溝を有し、セクショナル型モールドの分割した複数のセクターを環状に連接して前記トレッド面を成型してなる空気入りタイヤであって、前記周方向溝の両溝壁の内、少なくともショルダー側に位置する溝壁において、前記セクターの連接部に位置する溝壁面の角度θ2を少なくとも前記周方向溝の溝底側で前記セクターの連接部周辺に位置する溝壁面の角度θ1より大きくしたことを特徴とする。   The pneumatic tire of the present invention that achieves the above object has a circumferential groove extending in the tire circumferential direction on the tread surface, and the tread surface is formed by annularly connecting a plurality of divided sectors. The groove wall located at least on the shoulder side of both groove walls of the circumferential groove is at least the angle θ2 of the groove wall surface located at the connecting portion of the sector. It is characterized in that it is made larger than the angle θ1 of the groove wall surface located around the connecting portion of the sector on the groove bottom side.

本発明のタイヤ用セクショナル型モールドは、分割された複数のセクターを有し、タイヤ周方向に延在する周方向溝を有するトレッド面を、トレッド成型面に周方向溝成形突条を突設した前記複数のセクターを環状に連接して成型するタイヤ用セクショナル型モールドであって、前記周方向溝成形突条の両側壁の内、少なくともタイヤショルダー側に位置する側壁において、前記セクターの連接部に位置する側壁面の角度α2を少なくとも前記周方向溝成形突条の突端側で前記セクターの連接部周辺に位置する側壁面の角度α1より大きくしたことを特徴とする。   The tire sectional mold of the present invention has a plurality of divided sectors, a tread surface having a circumferential groove extending in the circumferential direction of the tire, and a circumferential groove forming protrusion protruding from the tread molding surface. A sectional type mold for a tire, which is formed by connecting the plurality of sectors in an annular shape, and at least a side wall located on a tire shoulder side among both side walls of the circumferential groove forming ridge, to a connecting portion of the sectors The angle α2 of the positioned side wall surface is set to be larger than the angle α1 of the side wall surface positioned around the connecting portion of the sector at least on the projecting end side of the circumferential groove forming ridge.

本発明の空気入りタイヤの製造方法は、グリーンタイヤをタイヤ用セクショナル型モールド内で加硫して空気入りタイヤを製造する際に、上記タイヤ用セクショナル型モールドを用いることを特徴とする。   The method for producing a pneumatic tire according to the present invention is characterized in that the above-mentioned tire sectional mold is used when a pneumatic tire is produced by vulcanizing a green tire in a tire sectional mold.

上述した本発明によれば、クラックが発生し易い、セクターの連接部に位置する少なくともショルダー側の溝壁面の角度θ2を、少なくとも溝底側でセクターの連接部周辺に位置する溝壁面の角度θ1より大きくしたので、ショルダー側の溝壁の剛性をセクターの連接部に位置する溝壁面部分でその周辺より高めることができる。そのため、セクターの連接箇所に位置するショルダー側の溝壁面と溝底面との接点部分に集中する応力を周辺に分散させ、該接点部分に作用する引張り応力を低減することが可能になる。   According to the present invention described above, the angle θ2 of the groove wall surface at least on the shoulder side located at the connecting portion of the sector where cracks are likely to occur, and the angle θ1 of the groove wall surface positioned at the periphery of the connecting portion of the sector at least on the groove bottom side. Since it is made larger, the rigidity of the groove wall on the shoulder side can be increased from the periphery of the groove wall surface portion located at the connecting portion of the sector. Therefore, it is possible to disperse stress concentrated on the contact portion between the groove wall surface on the shoulder side and the groove bottom surface located at the connecting portion of the sector to reduce the tensile stress acting on the contact portion.

従って、周方向溝のセクター連接箇所に位置する接点部分にクラックが発生するのを抑制することができ、それにより周方向溝の溝底に発生するクラックに起因するタイヤの耐久性低下の改善が可能になる。   Therefore, it is possible to suppress the occurrence of cracks in the contact portion located at the sector connection location of the circumferential groove, thereby improving the deterioration of the tire durability caused by the crack occurring at the groove bottom of the circumferential groove. It becomes possible.

以下、本発明の実施の形態について添付の図面を参照しながら詳細に説明する。
図1は、本発明の空気入りタイヤの一実施形態を示し、トレッド面1には、タイヤ周方向TCに延在する複数の周方向溝2が設けられている。タイヤセンター側に位置する2本の周方向溝2A間には、タイヤ幅方向に延在する横溝3がタイヤ周方向TCに所定の間隔で配置され、周方向溝2Aと横溝3によりブロック(陸部)4が区画形成されている。2本の周方向溝2Aのタイヤ外側には、それぞれリブ(陸部)5が区分形成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an embodiment of a pneumatic tire according to the present invention, and a tread surface 1 is provided with a plurality of circumferential grooves 2 extending in the tire circumferential direction TC. Between the two circumferential grooves 2A located on the tire center side, lateral grooves 3 extending in the tire width direction are arranged at predetermined intervals in the tire circumferential direction TC, and are blocked by the circumferential grooves 2A and the lateral grooves 3 (land Part) 4 is defined. Ribs (land portions) 5 are separately formed on the tire outer sides of the two circumferential grooves 2A.

この空気入りタイヤは、図2に示すセクショナル型モールドの分割した複数のセクター11を環状に連接してトレッド面1を成型してなるタイヤであって、Pがセクター11の分割面11pの連接位置に対応する位置である。   This pneumatic tire is a tire formed by treading the tread surface 1 by connecting a plurality of divided sectors 11 of the sectional mold shown in FIG. 2 in a ring shape, where P is the connecting position of the divided surfaces 11p of the sectors 11 Is a position corresponding to.

上記周方向溝2の両溝壁2X,2Yの内、図3,4に示すように、少なくともショルダー側に位置する溝壁2Yにおいて、セクター11の連接部11aに位置する溝壁面2Yaが、少なくとも周方向溝2の溝底面2gに接続される溝底側で、セクター11の連接部11a周辺の連接周辺部11bに位置する溝壁面2Ybより溝幅方向外側に窪む窪み面6に形成され、溝壁面2Ya(窪み面6)の角度θ2を溝壁面2Ybの角度θ1より大きくしている。なお、ここで言う角度θ1,θ2は、図4に示すように、タイヤ子午線断面において、周方向溝2の中心線Oと直交する線qと溝壁面2Ya,2Ybとの間の陸部側での角度である。好ましくは、両溝壁2X,2Yにおいて上記構成とするのがよい。   Of the both groove walls 2X and 2Y of the circumferential groove 2, as shown in FIGS. 3 and 4, the groove wall surface 2Ya positioned at the connecting portion 11a of the sector 11 is at least the groove wall 2Y positioned on the shoulder side. On the groove bottom side connected to the groove bottom surface 2g of the circumferential groove 2, it is formed on the recessed surface 6 that is recessed outward in the groove width direction from the groove wall surface 2Yb located in the connection peripheral portion 11b around the connection portion 11a of the sector 11, The angle θ2 of the groove wall surface 2Ya (the recessed surface 6) is larger than the angle θ1 of the groove wall surface 2Yb. As shown in FIG. 4, the angles θ1 and θ2 referred to here are on the land side between the line q orthogonal to the center line O of the circumferential groove 2 and the groove wall surfaces 2Ya and 2Yb in the tire meridian cross section. Is the angle. Preferably, the groove wall 2X, 2Y has the above configuration.

窪み面6は、図3では全体が窪む平面に形成されているが、それに限定されず、例えば、図5に示すように、三角形状に窪むような窪む面6であってもよい。   The hollow surface 6 is formed as a flat surface that is entirely recessed in FIG. 3, but is not limited thereto, and may be a recessed surface 6 that is recessed in a triangular shape as shown in FIG. 5, for example.

このようなトレッド面1を有する空気入りタイヤを成型するタイヤ用セクショナル型モールドは、両サイドウォール面を成型する上型と下型(不図示)、及びこの上型と下型との間に配置され、トレッド面1を成型する複数に分割された図2に示すセクター11を備えている。   A tire sectional mold for molding a pneumatic tire having such a tread surface 1 is arranged between an upper mold and a lower mold (not shown) for molding both sidewall surfaces, and between the upper mold and the lower mold. The sector 11 shown in FIG. 2 divided into a plurality of parts for molding the tread surface 1 is provided.

各セクター11は、トレッド成型面11X上に周方向溝2を成形するための周方向溝成形突条12と横溝3を成形するための横溝成形突条13を突設した構成になっている。   Each sector 11 has a configuration in which a circumferential groove forming protrusion 12 for forming the circumferential groove 2 and a horizontal groove forming protrusion 13 for forming the lateral groove 3 are provided on the tread forming surface 11X.

各周方向溝成形突条12の両側壁12X,12Yの内、少なくとも成型されるタイヤのショルダー側に位置する側壁12Yにおいて、図6,7に示すように、セクター11の連接部11aに位置する側壁面12Yaが、少なくとも周方向溝成形突条12の突端12a側で、セクター11の連接部11a周辺の連接周辺部11bに位置する側壁面12Ybより突条幅方向外側に突出する突出面14に形成され、側壁面12Ya(突出面14)の角度α2が突端12a側で側壁面11Ybの角度α1より大きくなっている。なお、ここで言う角度α1,α2は、図6に示すように、タイヤ子午線断面に対応する径方向断面(環状に配置されるセクターの径方向断面)において、周方向溝成形突条12の中心線O’と直交する線q’と側壁面11Ya,11Ybとの間の突条側での角度である。   Of the side walls 12X and 12Y of each circumferential groove forming protrusion 12, at least on the side wall 12Y located on the shoulder side of the tire to be molded, it is located at the connecting portion 11a of the sector 11 as shown in FIGS. The side wall surface 12Ya is formed on the protruding surface 14 that protrudes outward in the ridge width direction from the side wall surface 12Yb located at the connecting peripheral portion 11b around the connecting portion 11a of the sector 11 at least on the protruding end 12a side of the circumferential groove forming ridge 12. The angle α2 of the side wall surface 12Ya (projecting surface 14) is larger than the angle α1 of the side wall surface 11Yb on the protruding end 12a side. As shown in FIG. 6, the angles α1 and α2 referred to here are the centers of the circumferential groove forming ridges 12 in the radial section corresponding to the tire meridian section (the radial section of the sector arranged in an annular shape). This is the angle on the ridge side between the line q ′ orthogonal to the line O ′ and the side wall surfaces 11Ya, 11Yb.

このように構成されるタイヤ用セクショナル型モールド内にグリーンタイヤを搬入した後、セクター11を分割面11pが接触するようにして環状に連接してグリーンタイヤをタイヤ用セクショナル型モールド内にセットし、次いで加硫することにより上述した空気入りタイヤを製造される。   After carrying the green tire into the tire sectional mold thus configured, the sector 11 is connected in an annular shape with the dividing surface 11p in contact, and the green tire is set in the tire sectional mold. Subsequently, the pneumatic tire mentioned above is manufactured by vulcanizing.

タイヤに発生するクラックは、引張り応力と破断抗力の大小関係が、引張り応力>破断抗力となった場合に生じるが、上述した本発明では、クラックが発生し易い、セクター11の連接部11aに位置するショルダー側の溝壁面2Yaの角度θ2を少なくとも溝底側でセクター11の連接部11a周辺に位置する溝壁面2Ybの角度θ1より大きくすることにより、溝壁2Yの剛性を溝壁面2Yaの溝底側で周辺より高めることができるので、セクター11の連接箇所に位置するショルダー側の溝壁面2Yaと溝底面2gとの接点部分bに集中した応力を周辺に分散させ、該接点部分bに作用する引張り応力を低減することができる。   Cracks occurring in the tire occur when the relationship between the tensile stress and the breaking resistance is such that the tensile stress> the breaking resistance, but in the present invention described above, the crack is likely to occur and is located at the connecting portion 11a of the sector 11. By making the angle θ2 of the groove wall surface 2Ya on the shoulder side to be larger than the angle θ1 of the groove wall surface 2Yb located around the connecting portion 11a of the sector 11 at least on the groove bottom side, the rigidity of the groove wall 2Y is increased. Since the stress can be increased from the periphery on the side, the stress concentrated on the contact portion b between the groove wall surface 2Ya on the shoulder side and the groove bottom surface 2g located at the connecting portion of the sector 11 is dispersed to the periphery and acts on the contact portion b. Tensile stress can be reduced.

そのため、周方向溝2の接点部bにクラックが発生するのを抑制することができ、従って、周方向溝2の溝底に発生するクラックに起因するタイヤ耐久性の低下を改善することができる。   Therefore, it is possible to suppress the occurrence of cracks in the contact portion b of the circumferential groove 2, and therefore it is possible to improve the decrease in tire durability caused by the cracks generated at the groove bottom of the circumferential groove 2. .

本発明の空気入りタイヤにおいて、溝壁面2Yaの角度θ2としては、クラックの発生をより効果的に抑制するため、溝壁面2Ybの角度θ1より4°〜20°大きくするのが好ましい。溝壁面2Ybの角度θ1は、通常の空気入りタイヤの周方向溝で採用されている範囲であり、60°〜90°の範囲にすることができる。   In the pneumatic tire of the present invention, the angle θ2 of the groove wall surface 2Ya is preferably 4 ° to 20 ° larger than the angle θ1 of the groove wall surface 2Yb in order to more effectively suppress the occurrence of cracks. The angle θ1 of the groove wall surface 2Yb is a range employed in a circumferential groove of a normal pneumatic tire, and can be in a range of 60 ° to 90 °.

窪み面6の窪み幅L(mm)と窪み量W(mm)との比L/Wとしては、2.0〜5.0の範囲にするのが、クラックの発生をより効果的に抑制する上で好ましい。比L/Wが2.0より小さくなると、応力低減効果が減少するようになり、逆に比L/Wが5.0より大きくなると、窪み面6と溝壁面2Ybとの連接部分に作用する応力が大きくなるので、クラックの抑制効果が低減する。窪み幅Lと窪み量Wの実寸法としては、窪み幅Lを2〜25mm、窪み量Wを1〜5mmの範囲とすることができ、その範囲内でタイヤの種類やサイズに応じて適宜選択することができる。   The ratio L / W between the recess width L (mm) of the recess surface 6 and the recess amount W (mm) is in the range of 2.0 to 5.0, and the generation of cracks is more effectively suppressed. Preferred above. When the ratio L / W is smaller than 2.0, the stress reduction effect decreases, and conversely, when the ratio L / W is larger than 5.0, it acts on the connecting portion between the recessed surface 6 and the groove wall surface 2Yb. Since the stress increases, the effect of suppressing cracks is reduced. As the actual dimensions of the dent width L and the dent amount W, the dent width L can be set to 2 to 25 mm and the dent amount W can be set to a range of 1 to 5 mm, and appropriately selected according to the type and size of the tire within the ranges. can do.

なお、ここで言う窪み幅Lとは、図3に示すように、周方向溝2に沿ってタイヤ周方向に測定した長さである。窪み量Wは、セクター11の分割面11pの連接位置に対応する位置Pにおける溝底位置での窪み量である。   In addition, the hollow width L said here is the length measured in the tire circumferential direction along the circumferential groove | channel 2 as shown in FIG. The depression amount W is the depression amount at the groove bottom position at the position P corresponding to the connection position of the dividing surface 11p of the sector 11.

周方向溝2の溝底から高さh(mm)の位置まで形成された窪み面6の高さhと周方向溝2の溝深さD(mm)との比h/Dは、0.3以上にするのがクラックの発生をより効果的に抑制する上で好ましい。比h/Dが0.3より小さくなると、窪み面6の部分が小さくて切欠き状となるため、応力低減効果が減少する。窪み面6は、クラック抑制効果の点からは溝壁面2Yの上端2Yxまで延在(h/D=1)するようにしてもよいが、トレッド面1の偏摩耗の点から0.6以下にするのがよい。   The ratio h / D between the height h of the recessed surface 6 formed from the groove bottom of the circumferential groove 2 to the height h (mm) and the groove depth D (mm) of the circumferential groove 2 is 0. It is preferable that the number is 3 or more in order to more effectively suppress the generation of cracks. When the ratio h / D is smaller than 0.3, the recessed surface 6 is small and notched, so that the stress reduction effect is reduced. The recessed surface 6 may extend to the upper end 2Yx of the groove wall surface 2Y (h / D = 1) from the viewpoint of the crack suppression effect, but is 0.6 or less from the point of uneven wear of the tread surface 1. It is good to do.

図8に示すように、セクター11の連接部11a周辺に位置する溝壁面2Ybと周方向溝2の溝底面2gとを、曲率半径R1を有する断面円弧状の曲面7で接続する一方、セクター11の連接部11aに位置する溝壁面2Yaと周方向溝2の溝底面2gとは、曲率半径R2を有する断面円弧状の曲面8で接続し、その関係をR1<R2にするのが、クラックの発生をより効果的に抑制する上で好ましい。   As shown in FIG. 8, the groove wall surface 2Yb located in the periphery of the connecting portion 11a of the sector 11 and the groove bottom surface 2g of the circumferential groove 2 are connected by a curved surface 7 having an arcuate section having a radius of curvature R1. The groove wall surface 2Ya located at the connecting portion 11a and the groove bottom surface 2g of the circumferential groove 2 are connected by a curved surface 8 having an arcuate cross section having a radius of curvature R2, and the relationship is R1 <R2. It is preferable for more effectively suppressing the occurrence.

上記空気入りタイヤを製造するのに使用する本発明のタイヤ用セクショナル型モールドにおいて、側壁面12Yaの角度α2としては、側壁面12Ybの角度α1より4°〜20°大きくするのが、上述した角度θ2と同様の理由からよい。側壁面12Ybの角度α1は、60°〜90°の範囲にすることができる。   In the sectional mold for tires of the present invention used for manufacturing the pneumatic tire, the angle α2 of the side wall surface 12Ya is 4 ° to 20 ° larger than the angle α1 of the side wall surface 12Yb. This is good for the same reason as θ2. The angle α1 of the side wall surface 12Yb can be in the range of 60 ° to 90 °.

突出面14の突出幅M(mm)と突出量N(mm)との比M/Nとしては、2.0〜5.0の範囲にするのが上述した比L/Wと同様の理由からよい。突出幅Mの範囲は窪み幅Lと、突出量Nの範囲は窪み量Wと同様である。   The ratio M / N between the protrusion width M (mm) of the protrusion surface 14 and the protrusion amount N (mm) is in the range of 2.0 to 5.0 for the same reason as the ratio L / W described above. Good. The range of the protrusion width M is the same as the recess width L, and the range of the protrusion amount N is the same as the recess amount W.

周方向溝成形突条12の突端12aからトレッド成型面11X側に長さk(mm)の位置まで形成した突出面14の長さkと周方向溝成形突条12の高さH(mm)との比k/Hとしては、0.3〜0.6の範囲にするのが、上述した比h/Dと同様の理由からよい。突出面14は、クラック抑制効果の点からはトレッド成型面11Xまで延在(k/H=1)するようにしてもよいが、偏摩耗の点から0.6以下にするのがよい。   The length k of the protruding surface 14 formed from the protruding end 12a of the circumferential groove forming ridge 12 to the position of the length k (mm) on the tread molding surface 11X side and the height H (mm) of the circumferential groove forming ridge 12 The ratio k / H is preferably in the range of 0.3 to 0.6 for the same reason as the ratio h / D described above. The protruding surface 14 may extend to the tread molding surface 11X (k / H = 1) from the viewpoint of crack suppression effect, but it is preferable that the protruding surface 14 be 0.6 or less from the viewpoint of uneven wear.

図9に示すように、セクター11の連接部11a周辺に位置する側壁面12Ybと周方向溝成形突条12の突端面12bとの接続部分を、曲率半径R1’を有する断面円弧状の曲面15で面取りする一方、セクター11の連接部11aに位置する側壁面12Yaと周方向溝成形突条12の突端面12bとの接続部分は、曲率半径R2’を有する断面円弧状の曲面16で面取りし、その関係をR1’<R2’にするのが、クラックの発生をより効果的に抑制する上で好ましい。   As shown in FIG. 9, the connecting portion between the side wall surface 12Yb located in the periphery of the connecting portion 11a of the sector 11 and the protruding end surface 12b of the circumferential groove forming ridge 12 is a curved surface 15 having an arcuate cross section having a curvature radius R1 ′. On the other hand, the connecting portion between the side wall surface 12Ya located at the connecting portion 11a of the sector 11 and the projecting end surface 12b of the circumferential groove forming ridge 12 is chamfered by a curved surface 16 having an arcuate cross section having a curvature radius R2 ′. In order to more effectively suppress the occurrence of cracks, it is preferable that the relationship is R1 ′ <R2 ′.

本発明は、特にトラックやバスなどの重荷重車両に用いられる重荷重用空気入りタイヤで、更に偏平率が70%以下のものに好ましく用いることができるが、当然のことながらそれに限定さず、乗用車用など他の用途の空気入りタイヤにも好適に用いることができる。   The present invention is particularly suitable for heavy-duty pneumatic tires used in heavy-duty vehicles such as trucks and buses, and has a flatness ratio of 70% or less. It can also be suitably used for pneumatic tires for other purposes such as for use.

タイヤサイズを275/70R22.5、トレッドパターンを図1で共通にし、9分割したセクターを有するセクショナル型モールドを用いて、表1に示す各仕様(従来例と実施例1〜15)を15個所(1タイヤに3仕様)に形成した試験タイヤを作製した。   The tire size is 275 / 70R22.5, the tread pattern is the same as in FIG. 1, and a section type mold having 9 divided sectors is used. 15 specifications shown in Table 1 (conventional example and examples 1 to 15) Test tires formed to (3 specifications per tire) were produced.

これら各試験タイヤをリムに装着し、JATMAに規定される最大負荷能力に対応する空気圧の80%の内圧を付与してトラックのドライブ軸に装着し、舗装されたテストコースを5万km走行した後、周方向溝のセクター連接部に位置する溝底でのクラックの発生率を調べたところ、表1に示す結果を得た。   Each of these test tires was mounted on a rim, applied with an internal pressure of 80% of the air pressure corresponding to the maximum load capacity specified by JATMA, mounted on the drive shaft of the truck, and laid on a paved test course for 50,000 km. Later, when the incidence of cracks at the groove bottom located at the sector connection portion of the circumferential groove was examined, the results shown in Table 1 were obtained.

Figure 2007161009
Figure 2007161009

表1から、本発明タイヤは、周方向溝のセクター連接部位に位置する溝底でのクラックの発生を抑制できることがわかる。   From Table 1, it can be seen that the tire of the present invention can suppress the occurrence of cracks at the groove bottom located at the sector connection portion of the circumferential groove.

また、角度θ2を角度θ1より4°〜20°大きくすることにより、また比L/Wを2.0〜5.0の範囲にすることで、また比h/Dを0.3〜0.6の範囲にすることにより、クラックの発生を一層効果的に抑制できることがわかる。   Further, by making the angle θ2 larger by 4 ° to 20 ° than the angle θ1, and by setting the ratio L / W in the range of 2.0 to 5.0, the ratio h / D is set to 0.3 to 0.00. It can be seen that the occurrence of cracks can be more effectively suppressed by setting the ratio to 6.

本発明の空気入りタイヤの一実施形態を示すトレッド面の要部展開図である。It is a principal part expanded view of the tread surface which shows one Embodiment of the pneumatic tire of this invention. 図1の空気入りタイヤを製造するのに使用されるタイヤ用セクショナル型モールドの連接したセクター部分を内側から見た図である。It is the figure which looked at the sector part which connected the sectional type mold for tires used in manufacturing the pneumatic tire of Drawing 1 from the inside. 周方向溝のショルダー側に位置する溝壁の一例を示す拡大部分斜視図である。It is an expansion partial perspective view which shows an example of the groove wall located in the shoulder side of the circumferential groove | channel. 図3において、位置Pに沿って切断した断面図である。FIG. 4 is a cross-sectional view taken along position P in FIG. 周方向溝のショルダー側に位置する溝壁の他の例を示す拡大部分斜視図である。It is an expansion partial perspective view which shows the other example of the groove wall located in the shoulder side of the circumferential groove | channel. 分割面側から見たセクターの一例を示す要部拡大図である。It is a principal part enlarged view which shows an example of the sector seen from the division surface side. 図6を上から見た図である。It is the figure which looked at FIG. 6 from the top. 位置Pに沿って切断した時の周方向溝のショルダー側溝壁の他の例を示す要部断面図である。It is principal part sectional drawing which shows the other example of the shoulder side groove wall of the circumferential groove when it cut | disconnects along the position P. FIG. 分割面側から見たセクターの他の例を示す要部拡大図である。It is a principal part enlarged view which shows the other example of the sector seen from the division surface side. リムに装着した空気入りタイヤの断面図である。It is sectional drawing of the pneumatic tire with which the rim | limb was mounted | worn.

符号の説明Explanation of symbols

1 トレッド面
2 周方向溝
2X,2Y 溝壁
2Ya,2Yb 溝壁面
2g 溝底面
6 窪み面
7,8 曲面
11 セクター
11X トレッド成型面
11a 連接部
11b 連接周辺部
11p 分割面
12 周方向溝成形突条
12X,12Y 側壁
12Ya,12Yb 側壁面
12a 突端
12b 突端面
14 突出面
15,16 曲面
TC タイヤ周方向
α1,α2 角度
θ1,θ2 角度
1 tread surface 2 circumferential groove 2X, 2Y groove wall 2Ya, 2Yb groove wall surface 2g groove bottom surface 6 hollow surface 7, 8 curved surface 11 sector 11X tread molding surface 11a connecting portion 11b connecting peripheral portion 11p dividing surface 12 circumferential groove forming ridge 12X, 12Y side wall 12Ya, 12Yb side wall surface 12a protruding end 12b protruding end surface 14 protruding surface 15, 16 curved surface TC tire circumferential direction α1, α2 angle θ1, θ2 angle

Claims (11)

トレッド面にタイヤ周方向に延在する周方向溝を有し、セクショナル型モールドの分割した複数のセクターを環状に連接して前記トレッド面を成型してなる空気入りタイヤであって、
前記周方向溝の両溝壁の内、少なくともショルダー側に位置する溝壁において、前記セクターの連接部に位置する溝壁面の角度θ2を少なくとも前記周方向溝の溝底側で前記セクターの連接部周辺に位置する溝壁面の角度θ1より大きくした空気入りタイヤ。
A pneumatic tire having a circumferential groove extending in the tire circumferential direction on the tread surface, and forming the tread surface by annularly connecting a plurality of sectors divided by the sectional mold,
The groove wall located at least on the shoulder side of both groove walls of the circumferential groove has an angle θ2 of the groove wall surface located on the connecting part of the sector at least on the groove bottom side of the circumferential groove. A pneumatic tire that is larger than the angle θ1 of the groove wall surface located in the periphery.
前記角度θ2を前記角度θ1より4°〜20°大きくした請求項1に記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein the angle θ <b> 2 is 4 ° to 20 ° larger than the angle θ <b> 1. 前記セクターの連接部に位置する溝壁面を少なくとも前記周方向溝の溝底側で前記セクターの連接部周辺に位置する溝壁面より窪む窪み面に形成し、該窪み面の窪み幅L(mm)と窪み量W(mm)との比L/Wを2.0〜5.0の範囲にした請求項1または2に記載の空気入りタイヤ。   The groove wall surface located at the connecting portion of the sector is formed in a recessed surface that is recessed at least on the groove bottom side of the circumferential groove from the groove wall surface positioned around the connecting portion of the sector, and the recess width L (mm ) And the indentation amount W (mm), the pneumatic tire according to claim 1 or 2, wherein the ratio L / W is in the range of 2.0 to 5.0. 前記窪み面を前記周方向溝の溝底から高さh(mm)の位置まで形成し、該高さhと前記周方向溝の溝深さD(mm)との比h/Dを0.3〜0.6にした請求項3に記載の空気入りタイヤ。   The indented surface is formed from the groove bottom of the circumferential groove to a height h (mm), and a ratio h / D between the height h and the groove depth D (mm) of the circumferential groove is set to 0. The pneumatic tire according to claim 3, wherein the pneumatic tire is 3 to 0.6. 前記セクターの連接部周辺に位置する溝壁面と前記周方向溝の溝底面とを曲率半径R1を有する断面円弧状の曲面で接続する一方、前記セクターの連接部に位置する溝壁面と前記周方向溝の溝底面とを曲率半径R2を有する断面円弧状の曲面で接続し、かつR1<R2にした請求項1乃至4のいずれか1項に記載の空気入りタイヤ。   The groove wall surface located at the periphery of the connecting portion of the sector and the groove bottom surface of the circumferential groove are connected by a curved surface having an arcuate cross section having a radius of curvature R1, while the groove wall surface positioned at the connecting portion of the sector and the circumferential direction The pneumatic tire according to any one of claims 1 to 4, wherein the groove bottom surface is connected by a curved surface having an arcuate cross section having a radius of curvature R2 and R1 <R2. 分割された複数のセクターを有し、タイヤ周方向に延在する周方向溝を有するトレッド面を、トレッド成型面に周方向溝成形突条を突設した前記複数のセクターを環状に連接して成型するタイヤ用セクショナル型モールドであって、
前記周方向溝成形突条の両側壁の内、少なくともタイヤショルダー側に位置する側壁において、前記セクターの連接部に位置する側壁面の角度α2を少なくとも前記周方向溝成形突条の突端側で前記セクターの連接部周辺に位置する側壁面の角度α1より大きくしたタイヤ用セクショナル型モールド。
A tread surface having a plurality of divided sectors and having a circumferential groove extending in the tire circumferential direction is connected to the plurality of sectors in which the circumferential groove forming protrusions project on the tread molding surface in an annular shape. It is a sectional mold for tires to be molded,
Of the side walls located at least on the tire shoulder side, the angle α2 of the side wall surface located at the connecting portion of the sector is at least at the projecting end side of the circumferential groove forming ridge. Sectional mold for tires, which is larger than the angle α1 of the side wall surface located around the connecting part of the sector.
前記角度α2を前記角度α1より4°〜20°大きくした請求項6に記載のタイヤ用セクショナル型モールド。   The tire sectional mold according to claim 6, wherein the angle α2 is larger than the angle α1 by 4 ° to 20 °. 前記セクターの連接部に位置する側壁面を少なくとも前記周方向溝成形突条の突端側で前記セクターの連接部周辺に位置する側壁面より突出する突出面に形成し、該突出面の突出幅M(mm)と突出量N(mm)との比M/Nを2.0〜5.0の範囲にした請求項6または7に記載のタイヤ用セクショナル型モールド。   The side wall surface located at the connecting portion of the sector is formed as a protruding surface that protrudes from the side wall surface located around the connecting portion of the sector at least on the protruding end side of the circumferential groove forming protrusion, and the protruding width M of the protruding surface The sectional mold for tire according to claim 6 or 7, wherein a ratio M / N between (mm) and a protrusion amount N (mm) is in a range of 2.0 to 5.0. 前記突出面を前記周方向溝成形突条の突端から前記トレッド成型面側に長さk(mm)の位置まで形成し、該長さkと前記周方向溝成形突条の高さH(mm)との比k/Hを0.3〜0.6にした請求項8に記載のタイヤ用セクショナル型モールド。   The protruding surface is formed from the protruding end of the circumferential groove forming ridge to a position of a length k (mm) on the tread molding surface side, and the length k and the height H (mm of the circumferential groove forming ridge) The sectional mold for tires according to claim 8, wherein the ratio k / H to 0.3 to 0.6. 前記セクターの連接部周辺に位置する側壁面と前記周方向溝成形突条の突端面との接続部分を曲率半径R1’を有する断面円弧状の曲面で面取りする一方、前記セクターの連接部に位置する側壁面と前記周方向溝成形突条の突端面との接続部分を曲率半径R2’を有する断面円弧状の曲面で面取りし、かつR1’<R2’にした請求項6乃至9のいずれか1項に記載のタイヤ用セクショナル型モールド。   The connecting portion between the side wall surface located around the connecting portion of the sector and the projecting end surface of the circumferential groove forming ridge is chamfered with a curved surface having an arcuate cross section having a radius of curvature R1 ′, while being positioned at the connecting portion of the sector. The connecting portion between the side wall surface to be formed and the projecting end surface of the circumferential groove forming ridge is chamfered by a curved surface having an arcuate cross section having a radius of curvature R2 ′, and R1 ′ <R2 ′. The sectional mold for tires according to 1. グリーンタイヤをタイヤ用セクショナル型モールド内で加硫して空気入りタイヤを製造する際に、請求項6乃至10のいずれか1項に記載のタイヤ用セクショナル型モールドを用いる空気入りタイヤの製造方法。   The manufacturing method of the pneumatic tire which uses the sectional type mold for tires of any one of Claim 6 thru | or 10 when manufacturing a pneumatic tire by vulcanizing a green tire in the sectional type mold for tires.
JP2005357466A 2005-12-12 2005-12-12 Pneumatic tire, sectional type mold for tire, and pneumatic tire manufacturing method Pending JP2007161009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005357466A JP2007161009A (en) 2005-12-12 2005-12-12 Pneumatic tire, sectional type mold for tire, and pneumatic tire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005357466A JP2007161009A (en) 2005-12-12 2005-12-12 Pneumatic tire, sectional type mold for tire, and pneumatic tire manufacturing method

Publications (1)

Publication Number Publication Date
JP2007161009A true JP2007161009A (en) 2007-06-28

Family

ID=38244411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005357466A Pending JP2007161009A (en) 2005-12-12 2005-12-12 Pneumatic tire, sectional type mold for tire, and pneumatic tire manufacturing method

Country Status (1)

Country Link
JP (1) JP2007161009A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048607A (en) * 1990-04-26 1992-01-13 Bridgestone Corp Pneumatic tire for high speed running
JPH0994831A (en) * 1995-10-02 1997-04-08 Bridgestone Corp Vulcanization molding mold and radial tire
JP2000016026A (en) * 1998-06-26 2000-01-18 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2000280714A (en) * 1999-04-01 2000-10-10 Ohtsu Tire & Rubber Co Ltd :The Tire tread
JP2004130605A (en) * 2002-10-09 2004-04-30 Yokohama Rubber Co Ltd:The Mold for molding tire and pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048607A (en) * 1990-04-26 1992-01-13 Bridgestone Corp Pneumatic tire for high speed running
JPH0994831A (en) * 1995-10-02 1997-04-08 Bridgestone Corp Vulcanization molding mold and radial tire
JP2000016026A (en) * 1998-06-26 2000-01-18 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2000280714A (en) * 1999-04-01 2000-10-10 Ohtsu Tire & Rubber Co Ltd :The Tire tread
JP2004130605A (en) * 2002-10-09 2004-04-30 Yokohama Rubber Co Ltd:The Mold for molding tire and pneumatic tire

Similar Documents

Publication Publication Date Title
EP3159186B1 (en) Pneumatic tire
CN104903121B (en) Pneumatic tire
EP3124289B1 (en) Pneumatic tire
JP4769080B2 (en) Sipe tire tread with lateral stiffness
EP3196050B1 (en) Pneumatic tire
JP4981849B2 (en) Pneumatic tire and manufacturing method thereof
JP5462762B2 (en) Pneumatic tire
JPH1034766A (en) Pneumatic tire and its tire molding die
JP2010105445A (en) Tire for heavy loading
JP2008273084A (en) Tire vulcanization mold and pneumatic tire vulcanized by the same
JP2007022218A (en) Pneumatic tire and its vulcanizing die
JP2007314029A (en) Pneumatic tire
JP2019026143A (en) Pneumatic tire
JP2019500268A (en) Tire with radial or biased carcass
JP6793021B2 (en) Pneumatic tires
JP2001277816A (en) Pneumatic tire
JP4839848B2 (en) Pneumatic tire, tire sectional mold and method for manufacturing pneumatic tire
JP2018008601A (en) tire
JP4212960B2 (en) Pneumatic tire
JP2007161009A (en) Pneumatic tire, sectional type mold for tire, and pneumatic tire manufacturing method
JP7164425B2 (en) pneumatic tire
JP2011068349A (en) Heavy-duty tire
JP2006117080A (en) Pneumatic tire, design method for pneumatic tire, and its manufacturing method
JP2006347512A (en) Pneumatic tire
JP4316268B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703