JPH0994831A - Vulcanization molding mold and radial tire - Google Patents
Vulcanization molding mold and radial tireInfo
- Publication number
- JPH0994831A JPH0994831A JP25486795A JP25486795A JPH0994831A JP H0994831 A JPH0994831 A JP H0994831A JP 25486795 A JP25486795 A JP 25486795A JP 25486795 A JP25486795 A JP 25486795A JP H0994831 A JPH0994831 A JP H0994831A
- Authority
- JP
- Japan
- Prior art keywords
- rib
- segment
- tire
- vulcanization molding
- notch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、未加硫タイヤに
加硫成形を施す稼働位置と、加硫成形完了後のタイヤを
取り出す際の非稼働位置との間を放射方向に往復移動自
在な多数個の分割セグメントを有し、各セグメントの内
側面はタイヤのトレッドゴムに周方向溝を形成するリブ
を備える加硫成形金型及びこの金型により加硫成形し
た、一対のビード部及び一対のサイドウォール部と、両
サイドウォール部相互間にわたりトロイド状に連なるト
レッド部とからなり、トレッド部のトレッドゴムに周方
向溝を備えるラジアルタイヤに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is capable of reciprocating radial movement between an operating position where vulcanization molding is performed on an unvulcanized tire and a non-operating position where a tire after vulcanization molding is taken out is taken out. A vulcanization mold having a large number of divided segments, the inner surface of each segment having ribs forming circumferential grooves in the tread rubber of the tire, and a pair of bead parts and a pair vulcanized and molded by this mold. And a tread portion continuous in a toroidal shape between the both sidewall portions, and the tread rubber of the tread portion is provided with a circumferential groove.
【0002】[0002]
【従来の技術】舗装路面を比較的高速で走行する機会が
多い乗用車やトラック及びバスなどの車両に使用する空
気入りラジアルタイヤ(以下ラジアルタイヤ又は単にタ
イヤという)は、高度なレベルのユニフォーミティ特性
を備えていることが要求され、この要求を満たすため加
硫成形工程で用いる金型には、いわゆる割りモールドの
適用が不可欠であり、よって上記車両の使途に供するラ
ジアルタイヤの加硫成形金型に割りモールドを用いるの
が一般化している。2. Description of the Related Art Pneumatic radial tires (hereinafter referred to as radial tires or simply tires) used in vehicles such as passenger cars, trucks and buses, which often travel at relatively high speed on paved road surfaces, have a high level of uniformity characteristics. In order to meet this requirement, it is indispensable to apply a so-called split mold to the mold used in the vulcanization molding process. Therefore, the vulcanization molding mold for the radial tire to be used for the above vehicle is required. It has become common to use split molds.
【0003】割りモールドは多数の部分から構成され、
そのうち未加硫タイヤの主としてトレッドゴム部分を直
接加硫成形する役を果たす多数個の分割セグメントのみ
を取り出し、これを簡略図解した平面図を図8に示す。
図8において実線で示すセグメント1は未加硫タイヤ
(図示省略)に加硫成形を施すときの稼働位置にあり、
そして二点鎖線で示すセグメント1は加硫成形が完了し
た後のタイヤ(図示省略)を取り出すときの非稼働位置
にあることを示す。The split mold is composed of a number of parts,
Of these, only a large number of divided segments, which mainly serve to directly vulcanize and mold the tread rubber portion of the unvulcanized tire, are taken out, and a simplified schematic plan view is shown in FIG.
Segment 1 shown by a solid line in FIG. 8 is in an operating position when vulcanization molding is performed on an unvulcanized tire (not shown),
The segment 1 indicated by a chain double-dashed line indicates that the tire (not shown) after vulcanization molding is in a non-operating position when taken out.
【0004】そして通常7〜9個(図示例は8個)に分
割したセグメント1は、非稼働位置から稼働位置まで、
図示を省略した手段と係合、連係して両端矢印A、Bで
示す放射方向に移動自在に構成し、稼働位置で多数個の
分割セグメント1は合体し、合体したとき各セグメント
1の両端の合せ面Pは、トレッドゴムに溝を形成するた
めのリブ2の端面を含め、隣接するセグメント1相互間
で殆ど隙間が生じないよう調整されている。なお両端矢
印A、Bは稼働位置におけるセグメント1の中心軸線C
(図では点で示す)に向かう。稼働位置における合体セ
グメント1のリブ部分を除く内周面は中心軸線Cを軸と
する回転面を形成する。The segment 1, which is usually divided into 7 to 9 (8 in the illustrated example), extends from the non-operating position to the operating position.
It is configured to be movable in the radial direction shown by the double-ended arrows A and B by engaging with and interlocking with means (not shown), and a large number of divided segments 1 are merged at the operating position. The mating surface P is adjusted so that there is almost no gap between adjacent segments 1 including the end surface of the rib 2 for forming a groove in the tread rubber. The double-headed arrows A and B indicate the central axis C of the segment 1 in the operating position.
Head to (indicated by dots in the figure). The inner peripheral surface of the united segment 1 in the operating position excluding the rib portion forms a surface of rotation about the central axis C.
【0005】図8において、各セグメント1の内側面に
備えるリブ2は未加硫タイヤを加硫成形する際トレッド
ゴムに周方向溝を形成するための突条である。ここに周
方向溝とは、タイヤ踏面の円周に沿って延びるか又は円
周を斜めに横切って延びる直状溝と、この直状溝をジグ
ザグ状に折り曲げて上記同様に延びる折れ曲がり溝と、
そして上記直状溝を一部乃至全体を湾曲させた湾曲溝と
を含めて指し、以下同様である。In FIG. 8, ribs 2 provided on the inner surface of each segment 1 are ridges for forming circumferential grooves in the tread rubber when vulcanizing and molding an unvulcanized tire. The circumferential groove here, a straight groove extending along the circumference of the tire tread or extending diagonally across the circumference, and a bent groove extending in the same manner as above by bending the straight groove in a zigzag shape,
The straight groove includes a curved groove formed by bending a part or the whole, and the same applies hereinafter.
【0006】上記周方向溝を形成するリブ2を備えたセ
グメント1が矢印Bの方向に非稼働位置から稼働位置ま
で移動するとき、セグメント1内部に装てんした未加硫
タイヤのトレッドゴムに対し、図から明らかなように各
リブ2の端面2EPは斜めに食込む。言い換えれば互いに
隣合うセグメント1のそれぞれの端面2EPは、実線で示
す同じ合せ面Pに対する直交移動成分をもって合せ面P
に向かい移動して合致する。When the segment 1 provided with the rib 2 forming the circumferential groove moves in the direction of the arrow B from the non-operating position to the operating position, the tread rubber of the unvulcanized tire loaded inside the segment 1 is As is clear from the figure, the end face 2 EP of each rib 2 bites diagonally. In other words, the end faces 2 EP of the segments 1 adjacent to each other have the orthogonal movement component with respect to the same mating face P shown by the solid line, and the mating face P
Move toward and match.
【0007】[0007]
【発明が解決しようとする課題】大幅に割高なコストの
割りモールドを使用する主たる目的は、未加硫タイヤ状
態から製品タイヤに至る間の部材形状、部材位置などの
変化を最小に抑えること、これにより高度なユニフォー
ミティ特性を実現することが可能な点にあり、よって未
加硫タイヤの外径は稼働位置セグメント1の内周面直径
に成るべく近い値に設定する。このことはリブ2が先ず
トレッドゴムに食込み、上述の隣接したリブ2の端面2
EPは合せ面Pに対する直交成分の移動により、端面2EP
相互間でトレッドゴムをあたかも削り取るように外側に
向け押出す。The main purpose of using a split mold at a significantly higher cost is to minimize changes in member shape, member position, etc. between the unvulcanized tire state and the product tire, This is because it is possible to realize a high degree of uniformity, and therefore the outer diameter of the unvulcanized tire is set to a value as close as possible to the inner peripheral surface diameter of the operating position segment 1. This means that the rib 2 first digs into the tread rubber, and the end face 2 of the adjacent rib 2 described above
EP by movement of the quadrature component with respect to the mating surface P, the end face 2 EP
Extrude the tread rubber toward each other as if scraping it off.
【0008】押出されるゴムの一部分は未だ空間部を形
成している合せ面Pに流動して止まり、結局加硫成形後
に合せ面Pに位置する周方向溝に比較的大きな体積をも
つ「はみ出しゴム」、いわばゴムばりを形成する。この
ゴムばりは、タイヤの外観を著しく損ない商品性を劣化
させるばかりでなく、このタイヤを使用に供した際、ゴ
ムばりに由来する騒音レベルの上昇、ウエット路面での
排水性の劣化、さらに走行途中にゴムばり近傍にクラッ
ク核の発生をもたらす。この核はタイヤ走行距離が延び
るにつれクラック故障に至り、結局タイヤ寿命の著しい
低下を招く。A part of the extruded rubber flows and stops on the mating surface P which still forms a space, and after all, after the vulcanization and molding, the circumferential groove located on the mating surface P has a relatively large volume "extrusion". "Rubber", so to speak, forms a rubber burr. This rubber flash not only impairs the appearance of the tire and deteriorates the commercial property, but also increases the noise level due to the rubber flash when the tire is used, deteriorates drainage on wet road surface, and further travels. On the way, crack nuclei occur near the rubber flash. This core causes a crack failure as the tire travel distance increases, and eventually leads to a marked decrease in tire life.
【0009】このゴムばりによる性能低下やクラック故
障回避手段として、実願昭62−73674号に係わる
明細書は、トレッドゴムの溝成形用として、セグメント
(セクタ)に設けるリブ(突条)をセグメントが互いに
接触する端部位置で内側部分を低く切り欠いたタイヤ成
形金型を提案し、また実願昭62−73675号に係わ
る明細書及び特開平1−208206号公報では、JI
S D4230が定める規定に従いトレッドゴムの溝底
に設ける高さ1.6mmのウエアインジケータ(溝底か
らの隆起部分)を、前者明細書が提案する切り欠き部位
置に合せたゴムばりのないタイヤにつき開示している。As a means for avoiding performance deterioration and crack failure due to this rubber flash, the specification relating to Japanese Patent Application No. 62-73674 discloses a rib (protrusion) provided in a segment for forming a groove of a tread rubber. Have proposed a tire molding die in which the inner portion is cut out at the end positions where they contact each other, and in the specification relating to Japanese Patent Application No. 62-73675 and Japanese Patent Application Laid-Open No. 1-208206, JI.
For tires without rubber burrs in which the wear indicator with a height of 1.6 mm provided on the groove bottom of the tread rubber (protrusion from the groove bottom) was fitted to the notch position proposed by the former specification according to the provisions of SD4230. Disclosure.
【0010】しかしウエアインジケータの高さはタイヤ
種類を問わず一定の1.6mmと規定されているため、
多種にわたるラジアルタイヤの多様な溝深さ、溝幅に対
し、上記明細書及び公報が開示しているリブ切り欠き部
によるウエアインジケータの形成で全てに対処すること
に無理が生じるのは止むを得ない。それというのも、先
に述べたようにセグメント10が稼働位置に移動する際
のリブ12端面12EP相互間で挟み込むゴム量には実際
上大きな開きが存在するからに外ならないからである。
よってウエアインジケータ部分にゴム量不足からくるベ
ア故障が生じたり、又は切り欠き部容積不足により依然
としてゴムばりが発生することがしばしばであった。However, since the height of the wear indicator is regulated to a constant 1.6 mm regardless of the tire type,
For various groove depths and groove widths of various radial tires, it is inevitable that it will be impossible to deal with all by forming the wear indicator by the rib notch portion disclosed in the above specification and publication. Absent. This is because the amount of rubber sandwiched between the ribs 12 and the end faces 12 EP when the segment 10 is moved to the operating position, as described above, is not large because there is a large difference in actual fact.
Therefore, it often happens that a bare failure occurs in the wear indicator portion due to insufficient rubber amount, or rubber flash still occurs due to insufficient cutout portion volume.
【0011】従ってこの発明の目的は、多品種に及ぶラ
ジアルタイヤ全般にわたる多様な溝深さ、溝幅をもつ周
方向溝に対しても、他の不具合を伴うことなくゴムばり
の発生を確実に抑制し得るセグメントを有する加硫金型
並びにゴムばりの発生が全くない優れた外観品質を備
え、かつゴムばりに由来する性能低下や溝底クラック発
生などのうれいがない高度な溝底耐久性レベルを有する
ラジアルタイヤを提供することにある。Therefore, an object of the present invention is to ensure that rubber burrs are generated without causing other problems even in circumferential grooves having various groove depths and groove widths across a wide variety of radial tires. It has a vulcanization mold with controllable segments and excellent appearance quality with absolutely no rubber burrs, and high groove bottom durability with no deterioration due to rubber burrs or groove bottom cracking. To provide a radial tire having a level.
【0012】[0012]
【課題を解決するための手段】上記目的を達成するため
に、この発明による加硫成形金型は、冒頭に記載した金
型において、稼働位置にて隣接するセグメント相互の合
せ面(P)はリブ端面を含めて合致し、該リブ端面がセ
グメント移動の放射方向に対して形成する進入角度
(θ)と、稼働位置におけるリブ端面内側端縁の合体セ
グメント中心軸線に対する半径を、上記端縁が最初に接
触する位置での未加硫タイヤ外径の1/2から差し引い
た距離と、リブ端面の、上記距離に相当する内側端縁か
らの高さ内に含まれる面積を定める輪郭諸元とに基づ
き、各セグメントが上記距離だけ内側に向け移動して合
体する間に、互いに隣り合う両合せ面(P)のリブ端面
が相互に作り出す容積をそれぞれ別個に算出し、算出し
た容積をトレッドゴム余剰体積とし、あらためて該余剰
体積に相当する容積分の切り欠き部を、その深さ(d)
と切り欠き底の長さ(L)との比(d/L)の値が0.
2〜1.0の範囲内で、各セグメント両側の合せ面
(P)から延びるリブの内側先端部分に形成して成るこ
とを特徴とする。In order to achieve the above object, the vulcanization molding die according to the present invention is such that, in the die described at the beginning, the mating surfaces (P) of the segments adjacent to each other in the operating position are The approach angle (θ) formed by the rib end face including the rib end face and forming the rib end face with respect to the radial direction of the segment movement and the radius of the inner end edge of the rib end face at the operating position with respect to the central axis of the united segment are defined as follows. A distance that is subtracted from 1/2 of the outer diameter of the unvulcanized tire at the first contact position, and contour specifications that determine the area included in the height of the rib end surface from the inner edge corresponding to the above distance. Based on the above, while the segments are moved inward by the above distance and united, the volumes produced by the rib end faces of the adjoining mating surfaces (P) are mutually calculated, and the calculated volumes are calculated. Surplus To a volume, again notches of volume fraction corresponding to the excess volume, the depth (d)
The value (d / L) of the cutout bottom length (L) is 0.
It is characterized in that it is formed at the inner tip portion of the rib extending from the mating surfaces (P) on both sides of each segment within the range of 2 to 1.0.
【0013】上記金型を実際に製作するにあたり、好適
には上記リブ端面における切り欠き部底縁に沿って面取
りを施す。In actually manufacturing the die, chamfering is preferably performed along the bottom edge of the cutout portion in the rib end surface.
【0014】さらにこの発明によるラジアルタイヤは、
やはり冒頭にて述べたタイヤにおいて、上に記載した加
硫成形金型により、該金型セグメント個数と同一個数
の、リブ切り欠き部と同じ形状をもつ突起部を周方向溝
底に形成して成ることを特徴とする。Further, the radial tire according to the present invention is
In the tire described at the beginning as well, by the vulcanization molding die described above, the same number as the number of the die segments is formed on the circumferential groove bottom with the same protrusions as the rib cutouts. It is characterized by being formed.
【0015】[0015]
【発明の実施の形態】この発明による実施例を図1〜図
6に基づき以下詳細に説明する。図1は、図8に示す非
稼働位置にて隣接する2個のセグメント1を取り出して
示す平面図である。図1において、稼働位置にあった合
体セグメント1の円弧中心(実際は中心軸線)Cは、各
セグメント1が放射方向(矢印Aの方向)に距離Dmだ
け移動して分離したセグメント1それぞれにつき円弧中
心Cmに移る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described in detail below with reference to FIGS. FIG. 1 is a plan view showing two adjacent segments 1 taken out in the non-operating position shown in FIG. In FIG. 1, the arc center (actually, the central axis) C of the united segment 1 in the operating position is the arc center of each segment 1 which is separated by moving each segment 1 in the radial direction (direction of arrow A) by a distance Dm. Move to Cm.
【0016】この中心Cmは全体を構成する全てのセグ
メント1に関し円E上に存在する。中心Cと中心Cmと
を結ぶ線分又はその放射方向外側への延長線leと、2
個のセグメント1の相対する合せ面Pの中間位置及び中
心Cを通る直線lmとのなす角度θは、稼働位置でのセ
グメント1についても変わらない。なぜならこの位置で
も直線leに変化はなく、直線lmはセグメント1の合
せ面Pを通るからである。This center Cm lies on the circle E for all the segments 1 that make up the whole. A line segment connecting the center C and the center Cm, or an extension line le extending outward in the radial direction, and 2
The angle θ between the intermediate position of the mating surfaces P facing each other and the straight line lm passing through the center C does not change for the segment 1 in the operating position. This is because the straight line le does not change even at this position, and the straight line lm passes through the mating surface P of the segment 1.
【0017】ここでセグメント1が非稼働位置から稼働
位置まで移動する間、セグメント1の相互合せ面P上に
あるリブ2の端面(図では直線)2EPの移動には、直線
lmに対する中心Cmからの垂線長さ成分(横移動成
分)を含むことになる。すなわちこの横移動成分は、図
1に側面の一部分を示す未加硫タイヤ3のトレッドゴム
3tに端面2EPが接触してから以降もマイナス勾配(−
tanθ)をもつ直線Cm−Cと直線lmとの関係の下
で減少し、中心Cmが中心Cに一致するときゼロとな
る。このありさまを図1の部分拡大図として示す図2に
基づき以下説明する。While moving the segment 1 from the non-operating position to the operating position, the end face (straight line in the figure) 2 EP of the rib 2 on the mutual mating surface P of the segment 1 is moved by the center Cm with respect to the straight line lm. A vertical line length component (horizontal movement component) from is included. That is, this lateral movement component has a negative slope (−) even after the end face 2 EP comes into contact with the tread rubber 3 t of the unvulcanized tire 3 of which a part of the side surface is shown in FIG. 1.
It decreases under the relationship between the straight line Cm-C having tan θ) and the straight line lm, and becomes zero when the center Cm coincides with the center C. This state will be described below with reference to FIG. 2 which is a partially enlarged view of FIG.
【0018】図2は、矢印Bの方向にセグメント1が移
動して、リブ2の最内側面2sがトレッドゴム3tの外
周面3tsに接触したときのありさまを実線で示し、稼
働状態の合体セグメント1で曲率半径Rrをもつリブ2
の最内側面2sを二点鎖線で示す図1の部分平面図であ
る。より正確には、未加硫タイヤ外径の1/2、すなわ
ちトレッドゴム3tの外周面3tsの最大曲率半径は最
内側面2sの曲率半径Rrより大きく設定するので、端
面2EPがトレッドゴム3tの外周面3tsに最初に接触
したときの状態を示すものである。FIG. 2 shows in a solid line how the segment 1 moves in the direction of arrow B and the innermost side surface 2s of the rib 2 comes into contact with the outer peripheral surface 3ts of the tread rubber 3t. Rib 2 with radius of curvature Rr in segment 1
FIG. 2 is a partial plan view of FIG. 1 showing the innermost side surface 2s of FIG. More precisely, half of the unvulcanized tire outer diameter, i.e. the maximum radius of curvature of the outer peripheral surface 3ts of the tread rubber 3t is set larger than the radius of curvature Rr of the innermost surface 2s, the end face 2 EP tread rubber 3t 3 shows a state when the outer peripheral surface 3ts is first contacted.
【0019】リブ2の端面2EPの内側端縁を符号2eで
示し、矢印B(図1参照)の方向に両セグメント1が移
動して合体したとき、直線lm両側の内側端縁2eは点
X(実際は線X)で合致する。図示位置での両側の内側
端縁2eと点Xとの間の線分は、端面2EPの内側端縁2
eがトレッドゴム3内部を進むべき直線であり、この直
線と直線lmとがなす角度θはいわば進入角度θであ
る。よって内側端縁2eは進入角度θを保持しつつ、す
なわち直線lmに対する距離を減少させながら点Xにて
停止する。停止したとき直線lmは合せ面P上にある。The inner edge of the end surface 2 EP of the rib 2 is indicated by reference numeral 2e, and when both segments 1 move in the direction of arrow B (see FIG. 1) and merge, the inner edge 2e on both sides of the straight line lm is a point. Match at X (actually line X). The line segment between the inner edges 2e on both sides at the position shown and the point X is the inner edge 2 of the end face 2 EP.
e is a straight line that should travel inside the tread rubber 3, and the angle θ formed by this straight line and the straight line lm is, so to speak, the approach angle θ. Therefore, the inner edge 2e stops at the point X while maintaining the approach angle θ, that is, reducing the distance to the straight line lm. When stopped, the straight line lm is on the mating surface P.
【0020】ここに両内側端縁2e相互間を結ぶ線分と
直線lmとの交点Yから点Xまでの距離hは、先に触れ
た横移動成分と直交する内側端2eの縦移動成分、すな
わち内側端縁2eのトレッドゴム食込み深さであり、実
際上は無視し得る誤差範囲内で、端面2EPがトレッドゴ
ム3tの外周面3tsに最初に接触した位置での未加硫
タイヤの外径Rtから、h=Rt−Rrで求めることが
できる。Here, the distance h from the intersection point Y to the point X of the straight line lm and the line segment connecting both inner end edges 2e is the vertical movement component of the inner end 2e which is orthogonal to the horizontal movement component mentioned above, that is, the tread rubber bite depth of the inner edge 2e, within errors negligible in practice, out of the unvulcanized tire at a position where the end face 2 EP is first contacted with the outer peripheral surface 3ts of the tread rubber 3t From the diameter Rt, it can be calculated by h = Rt-Rr.
【0021】図3に、図2における直線lmと中心軸線
Cとを含む平面によるトレッドゴム3t幅方向一部断面
を、セグメント1の合せ面Pの一部及びリブ2の端面2
EPと合せ示す。図3に示す実線で示すセグメント1部分
は図2で同様に示す部分と同じ位置にあり、二点鎖線で
示すセグメント1部分は稼働位置にある。FIG. 3 shows a partial cross section of the tread rubber 3t in the width direction by a plane including the straight line lm and the central axis C in FIG. 2, a part of the mating surface P of the segment 1 and the end surface 2 of the rib 2.
Shown together with EP . The segment 1 portion shown by the solid line in FIG. 3 is in the same position as the portion similarly shown in FIG. 2, and the segment 1 portion shown by the two-dot chain line is in the operating position.
【0022】ここに、食込み深さhにおけるリブ端面2
EPの面積を定める輪郭諸元としてのリブ端面2EPの内側
端縁幅w及び両側面の傾斜角度αを用い、これに先に述
べた進入角度θと食込み深さhとを加え、各セグメント
1が距離hだけ内側に向け移動して合体する間に、互い
隣り合う両合せ面Pのリブ端面2EPが相互に作り出す容
積のうち片側容積VEXは、Here, the rib end surface 2 at the biting depth h
The inner edge width w of the rib end surface 2 EP and the inclination angle α of both side surfaces are used as contour specifications for determining the area of EP , and the approach angle θ and the bite depth h described above are added to each segment While 1 moves toward the inside by a distance h and merges, one side volume V EX among the volumes created by the rib end surfaces 2 EP of the mating surfaces P adjacent to each other is:
【数1】 VEX={(w/2)+(h/3)tanα}h2 ・tanθ・・・(1) として求めることができる。なお内側端縁幅w両端に小
円弧を付す場合も実用上支障がない適正度合いで近似的
にこの片側容積VEXの値を用いることができる。なお上
記傾斜角度が両側面で異なるときも、記載を省略したが
同様にして容積V EXを求める。[Formula 1] VEX= {(W / 2) + (h / 3) tan α} h2・ Tan θ can be calculated as (1). The inner edge width w is small on both ends.
Approximately with an appropriate degree that there is no practical problem even when attaching an arc
This one side volume VEXThe value of can be used. Still above
Although the description is omitted when the inclination angle is different on both sides,
Similarly, volume V EXAsk for.
【0023】上式により算出した容積VEXをトレッドゴ
ム余剰体積とし、これまでは少なくとも合せ面P近傍で
一様なリブ2高さとして記述してきたリブ2に、あらた
めてトレッドゴム余剰体積VEXに相当する容積分の切り
欠き部を、各セグメント1の両側の合せ面Pから延びる
リブ2の内側先端部分に設ける。この切り欠き部につき
詳細を図4(a)、(b)に示す。The volume V EX calculated by the above equation is taken as the tread rubber surplus volume, and the rib 2 which has been described as a uniform rib 2 height at least in the vicinity of the mating surface P is added to the tread rubber surplus volume V EX . A notch corresponding to the corresponding volume is provided at the inner tip portion of the rib 2 extending from the mating surfaces P on both sides of each segment 1. Details of this notch are shown in FIGS. 4 (a) and 4 (b).
【0024】図4(a)は、図2と同様に平面図として
示すセグメント1−1のリブ2−2に設けた切り欠き部
4を示し、図4(b)は図3に正面図として示すセグメ
ント1−1のリブ2−2に設けた切り欠き部4を示す。
図4(a)、(b)において切り欠き部4の底4bの長
さLに対する切り欠き深さdの比d/Lの値は0.2〜
1.0の範囲内にあることが必要である。また切り欠き
部4の終端には30〜60°の範囲内の角度φで面取り
を施すのが良い。FIG. 4 (a) shows the notch portion 4 provided in the rib 2-2 of the segment 1-1 shown in a plan view like FIG. 2, and FIG. 4 (b) is a front view in FIG. The notch 4 provided in the rib 2-2 of the segment 1-1 shown is shown.
In FIGS. 4A and 4B, the ratio d / L of the notch depth d to the length L of the bottom 4b of the notch portion 4 is 0.2 to.
It must be in the range of 1.0. Further, it is preferable to chamfer the end of the notch portion 4 at an angle φ within the range of 30 to 60 °.
【0025】面取り角度φを付したときの切り欠き部4
の切り欠き前の容積VR は、Notch 4 with chamfer angle φ
The volume V R before the notch is
【数2】 VR =(w+d・tanα)dL+ {(w/2)+(d/3)tanα}d2 ・cotφ・・・(2) となる。ここでVEX=VR として、比d/Lの値が0.
2〜1.0の範囲内で、切り欠き部4の底4bの長さ
L、深さd及び面取り角度φを設定する。例えば底4b
の長さLについて整理を施して、V R = (w + d · tan α) dL + {(w / 2) + (d / 3) tan α} d 2 · cotφ ... (2) Here, assuming V EX = V R , the value of the ratio d / L is 0.
Within the range of 2 to 1.0, the length L of the bottom 4b of the cutout portion 4, the depth d, and the chamfer angle φ are set. For example, bottom 4b
Arrange the length L of
【数3】 L={(w/2)(h2・tan θ-d2 ・cot φ)+tan α(h3 ・tan θ-d3 ・cot φ)/3 } /{d(w+d ・tan α) }・・・・・・・・・・・・・・・・・・(3) を満たすように底4bの長さL、深さd及び面取り角度
φを設定する。[Equation 3] L = {(w / 2) (h 2 · tan θ-d 2 · cot φ) + tan α (h 3 · tan θ-d 3 · cot φ) / 3} / {d (w + d · tan α)} ······ Set the length L of the bottom 4b, the depth d and the chamfer angle φ so as to satisfy (3).
【0026】以上述べた切り欠き部4を設けることによ
り、各セグメント1−1が稼働位置に移動して合体する
間に、まず先にリブ2−2の切り欠き部4終端部が未加
硫タイヤ3のトレッドゴム3tの外周面3tSに接触し
てさらに進入し、次いで互いに隣り合う両合せ面Pのリ
ブ端面2EP−1の内側端縁2e−1が同様に接触してゴ
ム3t内に進入することになる。その際切り欠き部4終
端部からゴム3tが切り欠き部4に向かって流動し、切
り欠き部4の空間部分を満たす。By providing the notch 4 described above, the end of the notch 4 of the rib 2-2 is first unvulcanized while the segments 1-1 are moved to the operating position and merged. Furthermore enters in contact with the outer peripheral surface 3tS of the tread rubber 3t tire 3, then the rubber 3t to contact similarly have inner edge 2e-1 rib end surface 2 EP -1 of both mating surfaces P adjacent to each other I will enter. At this time, the rubber 3t flows from the end portion of the cutout portion 4 toward the cutout portion 4 and fills the space portion of the cutout portion 4.
【0027】ここに、仮にVEX≦VR とすれば、VEX<
VR の場合、合体セグメント1−1のリブ2−2の切り
欠き部4と、トレッドゴム3tの外周面3tsとの間に
(V R −VEX)の容積分の空隙部分が形成されるので、
この空隙部分にエア入り(加硫成形後の気泡状エア溜ま
り状態)、又はベア(エア溜まりにより金型と接触しな
い粗面ゴム部分の加硫成形不良状態)などの不具合が生
じる。従ってこの種の不良発生を回避するためには上記
空隙部分を皆無にする必要があり、そのためV EX=VR
でなければならない。勿論VEX>VR ではゴムばりが生
じるため不可である。Here, if VEX≤VRIf so, VEX<
VRIn the case of, cutting of rib 2-2 of united segment 1-1
Between the notch 4 and the outer peripheral surface 3ts of the tread rubber 3t
(V R-VEX), A void portion corresponding to the volume of
Air enters this void (the air bubble-shaped air reservoir after vulcanization molding).
State) or bare (do not contact the mold due to air accumulation
There is a problem such as vulcanization of the rough rubber part
I will. Therefore, in order to avoid this kind of defect occurrence,
It is necessary to eliminate all voids, so V EX= VR
Must. Of course VEX> VRThen rubber burrs are raw
It is impossible because it is twisted.
【0028】また図5(a)に切り欠き部4近傍の断面
をトレッドゴム3t断面と共に示すように、リブ端面2
EP−1における切り欠き部4底縁に沿って面取りを施す
のが一層有効である。この面取り効果を、トレッドゴム
3tが切り欠き部4に向かい流動しているありさまを示
す図5(b)と、セグメント1−1が完全に合体した状
態下の切り欠き部4内部におけるトレッドゴム3tのあ
りさまを示す図5(c)に示す。一連の図5(a)〜
(c)から明らかなように流動するゴム3tは両リブ端
面2EP−1相互間に流入する前に面取り部分に溜まり、
合致した両リブ端面2EP−1相互間にゴム3tを噛み込
む挙動を完全に回避することができる。Further, as shown in FIG. 5 (a), which shows the cross section near the notch 4 together with the tread rubber 3t cross section, the rib end surface 2
It is more effective to chamfer along the bottom edge of the notch 4 in EP- 1. This chamfering effect is shown in FIG. 5 (b) showing how the tread rubber 3t is flowing toward the cutout portion 4, and the tread rubber inside the cutout portion 4 under the state where the segment 1-1 is completely united. It is shown in FIG.5 (c) which shows the state of 3t. A series of FIG.
As is clear from (c), the flowing rubber 3t accumulates in the chamfered portion before flowing between the rib end faces 2 EP −1,
It is possible to completely avoid the behavior of biting the rubber 3t between the matched rib end surfaces 2 EP −1.
【0029】図6(a)に面取りを施さない切り欠き部
4の図5(a)同様断面を示す。また図6(b)、
(c)には図5(b)、(c)にそれぞれ対応するトレ
ッドゴム3t流動を示す。図6(c)は、先に記載した
VEX=VR の条件下でも、ゴムの流動条件やゴムの特性
などによっては時にはゴム3t噛み込み挙動が生じる場
合があることを示し、この挙動は上記の面取りを適正に
施すことで完全に阻止することができる。FIG. 6A shows a cross section of the notch 4 which is not chamfered as in FIG. 5A. In addition, FIG.
FIG. 5 (c) shows flows of tread rubber 3t corresponding to FIGS. 5 (b) and 5 (c), respectively. FIG. 6C shows that even under the condition of V EX = V R described above, the rubber 3t biting behavior may sometimes occur depending on the rubber flow conditions and the characteristics of the rubber, and this behavior is By properly chamfering the above, it can be completely prevented.
【0030】以上述べた、VEX=VR を満たすセグメン
ト1−1を備える加硫成形金型又はこの金型につき切り
欠き部4底縁に沿って面取りを施した加硫成形金型を用
いて未加硫タイヤ3に加硫成形を施し、分割セグメント
個数と同一個数の、リブ2−2の切り欠き部4と同じ形
状をもつ突起部を周方向溝に備えたラジアルタイヤを得
る。[0030] described above, using a vulcanizing metal mold or vulcanization metal mold with chamfered along the notched portion 4 bottom edge per the mold comprises a segment 1-1 satisfying V EX = V R Then, the unvulcanized tire 3 is vulcanized and molded to obtain a radial tire having the same number of divided segments as the protrusions having the same shape as the notch 4 of the rib 2-2 in the circumferential groove.
【0031】[0031]
【実施例】一実施例として、9分割セグメント1−1の
リブ2−2の内側端縁幅wが8mmであり、リブ2−2
の両側面の傾斜角度αが7°である場合につき、食込み
深さh=Rt−Rrをパラメータとし、VEX=VR より
求めた切り欠き部4底4bの長さL(mm)及び切り欠
き深さd(mm)の関係を線図として図7に示す。なお
面取り角度φは45°とした。EXAMPLE As one example, the rib 2-2 of the nine-segment segment 1-1 has an inner edge width w of 8 mm, and the rib 2-2
In the case where the inclination angle α of both side surfaces is 7 °, the depth L of cutout 4 bottom 4b obtained from V EX = V R and the cutting depth h = Rt−Rr are used as parameters. The relationship of the notch depth d (mm) is shown in FIG. 7 as a diagram. The chamfer angle φ was 45 °.
【0032】図7に従う実施例のうち、この場合は未加
硫タイヤ3の外径(2×Rt)を、稼働位置における合
体セグメント1−1の、曲率半径Rrを形成するリブ高
さ8.5mmの59%位置に達するように設定した。す
なわち食込み深さhは5.0mmである。In the embodiment according to FIG. 7, in this case, the outer diameter (2 × Rt) of the unvulcanized tire 3 is set to the rib height 8 which forms the radius of curvature Rr of the united segment 1-1 in the operating position. It was set to reach the 59% position of 5 mm. That is, the biting depth h is 5.0 mm.
【0033】図7に示す線図から、h=5.0mmで採
り得る切り欠き部4底長さL(mm)及び切り欠き深さ
d(mm)それぞれの範囲内(太い実線であらわす)に
て、トレッドゴム3tのムーニー粘度値及びリブ2−2
のゴム3tへの食込み速度(約2mm/sec)を考慮
し、切り欠き部4底4bの長さL=2.4mm、切り欠
き深さd=1.5mmを選択した。このように図7に例
示する線図は他の条件を考慮して最適値を選択できる大
きな利点を有する。From the diagram shown in FIG. 7, within the range of each notch 4 bottom length L (mm) and notch depth d (mm) which can be taken at h = 5.0 mm (represented by a thick solid line). , The Mooney viscosity value of the tread rubber 3t and the rib 2-2
In consideration of the biting speed (about 2 mm / sec) into the rubber 3t, the length L of the bottom 4b of the notch 4 was set to 2.4 mm and the notch depth d was set to 1.5 mm. As described above, the diagram illustrated in FIG. 7 has a great advantage that the optimum value can be selected in consideration of other conditions.
【0034】上記の切り欠き部4をもつ9分割セグメン
ト1−1を有する加硫成形金型にて、ラジアルタイヤの
加硫成形生産を実施し、製品タイヤのサンプリング数1
00本を観察したところ、周方向溝の突起部にゴムばり
が発生している箇所は皆無であった。さらにこの製品タ
イヤを実際に走行させる実験を実施した結果、従来のウ
エアインジケータにゴムばりを有するタイヤと対比し
て、騒音レベルの低下(低騒音化)及びウエット性能の
改善を確かめることができ、また当然のことながらトレ
ッドゴムが使用限界まで摩耗しても周方向溝の突起部に
クラックなどの故障発生は見られなかった。Vulcanization molding production of radial tires was carried out using the vulcanization molding die having the nine divided segments 1-1 having the above-mentioned cutouts 4, and the number of samplings of product tires was 1
When 00 pieces were observed, there were no places where rubber burrs were generated on the protrusions of the circumferential groove. Furthermore, as a result of conducting an experiment to actually run this product tire, it is possible to confirm a reduction in noise level (noise reduction) and an improvement in wet performance in comparison with a tire having a rubber burr in a conventional wear indicator, Further, as a matter of course, even when the tread rubber was worn to the limit of its use, no failure such as cracks was found in the protrusions of the circumferential groove.
【0035】[0035]
【発明の効果】この発明によれば、割りモールドにおけ
る多数個の分割セグメントの合せ面を周方向溝に設ける
ウエアインジケータ位置に合せることで、合せ面に生じ
るゴムばりを吸収する従来の加硫成形金型では、多様な
溝深さを有する多品種にわたるラジアルタイヤに対応で
きずに依然としてゴムばりが発生し、これにより走行騒
音レベルの上昇やウエット性能の劣化、並びにゴムばり
部分のクラック故障発生によるタイヤ寿命の低下が余儀
なくされていた問題を有利に解決することが可能な加硫
成形金型及びラジアルタイヤを提供することができ
る。。According to the present invention, the conventional vulcanization molding that absorbs the rubber flash generated on the mating surface by aligning the mating surfaces of the plurality of divided segments in the split mold with the wear indicator position provided in the circumferential groove. The mold cannot handle a wide variety of radial tires with various groove depths, and rubber burrs still occur, which causes an increase in running noise level, deterioration of wet performance, and cracking of the rubber burrs. It is possible to provide a vulcanization molding die and a radial tire that can advantageously solve the problem that the tire life is inevitably reduced. .
【図1】分割セグメントの往復移動を説明する平面図で
ある。FIG. 1 is a plan view illustrating a reciprocating movement of a segment.
【図2】稼働位置に移動するセグメントとトレッドゴム
との関係を説明する一部平面図である。FIG. 2 is a partial plan view illustrating a relationship between a segment moving to an operating position and a tread rubber.
【図3】図2に示すセグメントの正面図とトレッドゴム
の断面図とを合せ示す図である。FIG. 3 is a view showing a front view of the segment shown in FIG. 2 and a cross-sectional view of the tread rubber together.
【図4】この発明によるセグメントの平面図及び正面図
である。FIG. 4 is a plan view and a front view of a segment according to the present invention.
【図5】この発明による一実施例の動作を説明する一部
断面図である。FIG. 5 is a partial cross-sectional view illustrating the operation of the embodiment according to the present invention.
【図6】他の実施例の動作を説明する一部断面図であ
る。FIG. 6 is a partial cross-sectional view explaining the operation of another embodiment.
【図7】この発明による切り欠き部の底長さと深さとの
関係をあらわす線図である。FIG. 7 is a diagram showing the relationship between the bottom length and the depth of the cutout portion according to the present invention.
【図8】多数個の分割セグメントの動作を説明する平面
図である。FIG. 8 is a plan view for explaining the operation of a large number of divided segments.
1、1−1 セグメント 2、2−1 リブ 2EP、2EP−1 リブ端面 2e リブ端面の内側端縁 2s リブ2の最内側面 3 未加硫タイヤ 3t トレッドゴム 3ts トレッドゴム外周面 4 切り欠き部 4b 切り欠き部底 L 切り欠き底長さ d 切り欠き深さ P 合せ面 h 食込み深さ w リブ端面の内側端縁幅 θ 進入角度 α リブ側面傾斜角度1, 1-1 segment 2, 2-1 rib 2 EP , 2 EP -1 rib end face 2e inner end edge of rib end face 2s innermost side face of rib 2 3 unvulcanized tire 3t tread rubber 3ts tread rubber outer peripheral face 4 cut Notch 4b Notch bottom L L Notch bottom length d Notch depth P Mating surface h Biting depth w Inner edge width of rib end face θ Entry angle α Rib side inclination angle
Claims (3)
と、加硫成形完了後のタイヤを取り出す非稼働位置との
間を放射方向に往復移動自在な多数個の分割セグメント
を有し、各セグメントはその内側にタイヤのトレッドゴ
ムに周方向溝を形成するリブを備える加硫成形金型にお
いて、 稼働位置にて隣接するセグメント相互の合せ面(P)は
リブ端面を含めて合致し、該リブ端面がセグメント移動
の放射方向に対して形成する進入角度(θ)と、 稼働位置におけるリブ端面内側端縁の合体セグメント中
心軸線に対する半径を、上記端縁が最初に接触する位置
での未加硫タイヤ外径の1/2から差し引いた距離と、 リブ端面の、上記距離に相当する内側端縁からの高さ内
に含まれる面積を定める輪郭諸元とに基づき、 各セグメントが上記距離だけ内側に向け移動して合体す
る間に、互いに隣り合う両合せ面(P)のリブ端面が相
互に作り出す容積をそれぞれ別個に算出し、 算出した容積をトレッドゴム余剰体積とし、あらためて
該余剰体積に相当する容積分の切り欠き部を、その深さ
(d)と切り欠き底の長さ(L)との比(d/L)の値
が0.2〜1.0の範囲内で、各セグメント両側の合せ
面(P)から延びるリブの内側先端部分に形成して成る
ことを特徴とする加硫成形金型。1. A plurality of divided segments that can be reciprocally moved in a radial direction between an operating position where vulcanization molding is performed on an unvulcanized tire and an inoperative position where a tire after vulcanization molding is completed are taken out. In a vulcanization molding die in which each segment has a rib that forms a circumferential groove in the tread rubber of the tire, the mating surfaces (P) of the adjacent segments in the operating position match each other, including the rib end surface. , The entrance angle (θ) formed by the rib end face with respect to the radial direction of the segment movement, and the radius of the inner end edge of the rib end face with respect to the central axis of the united segment in the operating position, at the position where the end edge first contacts. Based on the distance subtracted from 1/2 of the outer diameter of the unvulcanized tire and the contour specifications that define the area of the rib end surface included in the height from the inner edge corresponding to the above distance, each segment Distance The volumes produced by the rib end faces of the mating surfaces (P) adjacent to each other are calculated separately while moving toward the inner side of the scale and merged, and the calculated volume is defined as the tread rubber surplus volume, and the surplus volume is re-established. In a notch portion having a volume corresponding to, the value of the ratio (d / L) between the depth (d) and the length (L) of the notch bottom is within a range of 0.2 to 1.0, A vulcanization mold, which is formed at an inner tip portion of a rib extending from the mating surfaces (P) on both sides of each segment.
沿って面取りを施して成る請求項1に記載した加硫成形
金型。2. The vulcanization molding die according to claim 1, wherein chamfering is performed along a bottom edge of the cutout portion in the rib end surface.
ル部と、両サイドウォール部相互間にわたりトロイド状
に連なるトレッド部とからなり、トレッド部のトレッド
ゴムに周方向溝を備えるラジアルタイヤにおいて、 請求項1又は2に記載した加硫成形金型により、該金型
セグメント個数と同一個数の、リブ切り欠き部と同じ形
状をもつ突起部を周方向溝底に形成して成ることを特徴
とするラジアルタイヤ。3. A radial tire comprising a pair of beads, a pair of sidewalls, and a tread portion continuous in a troid shape between the sidewalls, wherein the tread rubber of the tread portion has a circumferential groove. The vulcanization molding die described in Item 1 or 2 is characterized in that the same number as the number of the die segments is formed on the circumferential groove bottom with projections having the same shape as the rib cutouts. Radial tires.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25486795A JPH0994831A (en) | 1995-10-02 | 1995-10-02 | Vulcanization molding mold and radial tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25486795A JPH0994831A (en) | 1995-10-02 | 1995-10-02 | Vulcanization molding mold and radial tire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0994831A true JPH0994831A (en) | 1997-04-08 |
Family
ID=17270949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25486795A Withdrawn JPH0994831A (en) | 1995-10-02 | 1995-10-02 | Vulcanization molding mold and radial tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0994831A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006289737A (en) * | 2005-04-08 | 2006-10-26 | Bridgestone Corp | Tire vulcanizing mold |
JP2007161009A (en) * | 2005-12-12 | 2007-06-28 | Yokohama Rubber Co Ltd:The | Pneumatic tire, sectional type mold for tire, and pneumatic tire manufacturing method |
JP2007320540A (en) * | 2006-06-05 | 2007-12-13 | Yokohama Rubber Co Ltd:The | Pneumatic tire |
KR100861926B1 (en) * | 2007-06-25 | 2008-10-09 | 금호타이어 주식회사 | Metallic pattern device for curing tire |
JP2012051510A (en) * | 2010-09-02 | 2012-03-15 | Bridgestone Corp | Pneumatic tire |
CN113045806A (en) * | 2021-04-07 | 2021-06-29 | 厦门正新橡胶工业有限公司 | Rubber formula capable of shortening length of tire rubber |
-
1995
- 1995-10-02 JP JP25486795A patent/JPH0994831A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006289737A (en) * | 2005-04-08 | 2006-10-26 | Bridgestone Corp | Tire vulcanizing mold |
JP2007161009A (en) * | 2005-12-12 | 2007-06-28 | Yokohama Rubber Co Ltd:The | Pneumatic tire, sectional type mold for tire, and pneumatic tire manufacturing method |
JP2007320540A (en) * | 2006-06-05 | 2007-12-13 | Yokohama Rubber Co Ltd:The | Pneumatic tire |
KR100861926B1 (en) * | 2007-06-25 | 2008-10-09 | 금호타이어 주식회사 | Metallic pattern device for curing tire |
JP2012051510A (en) * | 2010-09-02 | 2012-03-15 | Bridgestone Corp | Pneumatic tire |
CN113045806A (en) * | 2021-04-07 | 2021-06-29 | 厦门正新橡胶工业有限公司 | Rubber formula capable of shortening length of tire rubber |
CN113045806B (en) * | 2021-04-07 | 2022-10-28 | 厦门正新橡胶工业有限公司 | Rubber formula capable of shortening length of tire rubber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5011880B2 (en) | Pneumatic tire | |
JP5115299B2 (en) | Pneumatic tire and tire mold | |
JP3308245B2 (en) | Pneumatic tire | |
US20170217254A1 (en) | Pneumatic Tire | |
JPH05155202A (en) | Precure tread for tire and manufacture thereof and regenerated tire using the same | |
JP2021062547A (en) | Tire vulcanization mold and tire manufacturing method | |
JPH09272312A (en) | Pneumatic tire for heavy load | |
Radulescu et al. | Siping geometry to delay the onset of rib edge wear in truck tires | |
US11110756B2 (en) | Pneumatic tire and method of manufacturing same | |
JPH0596651A (en) | Unvulcanized tread stock for pneumatic tire and manufacture of pneumatic tire | |
JPH0994831A (en) | Vulcanization molding mold and radial tire | |
JP6947579B2 (en) | Pneumatic tires | |
US10399389B2 (en) | Pneumatic tire | |
JP7225490B2 (en) | pneumatic tire | |
JP3096923B2 (en) | Pneumatic tires for passenger cars | |
JP3733458B2 (en) | Pneumatic tire manufacturing method | |
CN108146153B (en) | Pneumatic tire | |
JPH0596649A (en) | Pneumatic tire | |
CN114571764A (en) | Tire vulcanizing mold, tire manufacturing method using the same, and tire | |
JP4571282B2 (en) | Pneumatic tire | |
US6098681A (en) | Pneumatic radial tire including chamfered blocks | |
JP2001225609A (en) | Pneumatic tire | |
JP3992217B2 (en) | Slick tire | |
RU2602619C1 (en) | Pneumatic tyre | |
JP4940710B2 (en) | Pneumatic tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20040415 |