JP2007159267A - Controller for storage system - Google Patents

Controller for storage system Download PDF

Info

Publication number
JP2007159267A
JP2007159267A JP2005350672A JP2005350672A JP2007159267A JP 2007159267 A JP2007159267 A JP 2007159267A JP 2005350672 A JP2005350672 A JP 2005350672A JP 2005350672 A JP2005350672 A JP 2005350672A JP 2007159267 A JP2007159267 A JP 2007159267A
Authority
JP
Japan
Prior art keywords
temperature
secondary battery
power storage
storage mechanism
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005350672A
Other languages
Japanese (ja)
Other versions
JP4525577B2 (en
Inventor
Manabu Tsushima
学 對馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005350672A priority Critical patent/JP4525577B2/en
Publication of JP2007159267A publication Critical patent/JP2007159267A/en
Application granted granted Critical
Publication of JP4525577B2 publication Critical patent/JP4525577B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve an energy recovery efficiency by promptly increasing the temperature of a storage system up to an efficiently usable temperature without generating condensation at a secondary battery. <P>SOLUTION: An ECU executes a program including the following steps of: (S100) detecting a cabin temperature TH(A); (S200) detecting a secondary battery temperature TH(B); (S400) detecting an absolute humidity D(1) of cabin air in the case of TH(A)>TH(B) (YES in S300); (S500) detecting an absolute humidity D(2) of secondary battery-side air; and (S700) increasing the temperature of the secondary battery by operating an electric fan in the case of D(2)>D(1) (YES in S600). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気自動車、ハイブリッド自動車、燃料電池車等の車両に搭載される二次電池等の蓄電機構の温度を調節するシステムに関し、特に、蓄電機構の温度を上昇させて、許容される入出力電力の制限を緩和させて、燃費を向上させる制御装置に関する。   The present invention relates to a system for adjusting the temperature of a power storage mechanism such as a secondary battery mounted on a vehicle such as an electric vehicle, a hybrid vehicle, or a fuel cell vehicle, and in particular, increases the temperature of the power storage mechanism to allow an allowable input. The present invention relates to a control device that relaxes restrictions on output power and improves fuel consumption.

電動機により車両の駆動力を得る、電気自動車、ハイブリッド自動車、燃料電池車は、走行用電源として二次電池を搭載している。電気自動車は、この二次電池に蓄えられた電力を用いて電動機を駆動して車両を駆動する。ハイブリッド自動車は、この二次電池に蓄えられた電力を用いて電動機を駆動して車両を駆動したり、電動機によりエンジンをアシストして車両を駆動したりする。燃料電池車は、燃料電池による電力を用いて電動機を駆動して車両を駆動したり、この燃料電池による電力に加えて二次電池に蓄えられた電力を用いて電動機を駆動して車両を駆動したりする。   An electric vehicle, a hybrid vehicle, and a fuel cell vehicle that obtain a driving force of a vehicle with an electric motor are equipped with a secondary battery as a power source for traveling. An electric vehicle drives a motor by driving an electric motor using electric power stored in the secondary battery. A hybrid vehicle drives an electric motor using the electric power stored in the secondary battery to drive the vehicle, or assists an engine with the electric motor to drive the vehicle. A fuel cell vehicle drives a vehicle by driving an electric motor using electric power from the fuel cell, or drives an electric motor using electric power stored in a secondary battery in addition to electric power from the fuel cell. To do.

これらの二次電池は、高電圧高出力を必要とするため、たとえば、1.2V程度のバッテリセルを6個程度直列に接続した電池モジュールを、30個程度直列に接続してバッテリパックを形成している。ハイブリッド自動車などにおいては、内燃機関のみを車両の駆動源としていた従来の車両に搭載されていなかったこのような二次電池を搭載しなければならない。車両においては、車室空間および荷室空間の有効的利用、衝突事故時の安全性確保の点などから、車両に搭載される電気機器の中では容積が大きい二次電池の搭載位置を検討する必要がある。この検討においては、この二次電池の大きさ(高さ、車両の幅方向の長さ、車両の前後方向の長さ)を考慮する必要があったり、二次電池の温度を考慮する必要があったりする。   Since these secondary batteries require high voltage and high output, for example, about 30 battery modules in which about 1.2V battery cells are connected in series are connected in series to form a battery pack. is doing. In a hybrid vehicle or the like, such a secondary battery that has not been mounted on a conventional vehicle that uses only an internal combustion engine as a drive source of the vehicle must be mounted. In vehicles, consider the mounting position of secondary batteries with a large volume among the electrical equipment mounted on the vehicle, from the viewpoint of effective use of the cabin space and cargo space, and ensuring safety in the event of a collision. There is a need. In this examination, it is necessary to consider the size of the secondary battery (height, length in the width direction of the vehicle, length in the front-rear direction of the vehicle) or the temperature of the secondary battery. There is.

このような二次電池は、その使用温度が常に所定の範囲内にあれば、所望の出力性能を発現するとともに、より長期間に亘り使用し続けることができる。そこで、従来から、極冷間時の二次電池使用時に二次電池の出力性能を確保するために二次電池を暖機したり、二次電池の寿命を確保するために電池を冷却したりすることが考えられている。   Such a secondary battery exhibits desired output performance as long as the use temperature is always within a predetermined range, and can continue to be used for a longer period of time. Therefore, conventionally, the secondary battery is warmed up to ensure the output performance of the secondary battery when the secondary battery is used in an extremely cold state, or the battery is cooled to ensure the life of the secondary battery. It is considered to be.

特開平10−252467号公報(特許文献1)は、電池の冷却または暖機の際の熱利用効率を高める電動車両搭載電池温度調整装置を開示する。この電動車両搭載電池温度調整装置は、キャビンから電池収納ケースの内部に至る導入用流路と、電池収納ケースから車外に至る排出用流路とを備え、キャビンの空調に使用され導入用流路を経て電池収納ケース内部に導入されたエアにて、電池収納ケース内部に収納されている車両推進用の電池を冷却または暖機し、この電池の冷却または暖機に使用されたエアを排出用流路を経て車外に排出するとともに、電池からガスが放出された場合にはそのガスを排出用流路を経て車外に排出する。   Japanese Patent Application Laid-Open No. 10-252467 (Patent Document 1) discloses an electric vehicle-mounted battery temperature adjustment device that increases the efficiency of heat utilization during battery cooling or warm-up. This electric vehicle-mounted battery temperature adjusting device includes an introduction flow path from the cabin to the inside of the battery storage case, and a discharge flow path from the battery storage case to the outside of the vehicle, and is used for air conditioning of the cabin. The air that has been passed through the battery storage case cools or warms up the vehicle propulsion battery stored in the battery storage case, and discharges the air used to cool or warm up the battery. The gas is discharged out of the vehicle through the flow path, and when the gas is released from the battery, the gas is discharged out of the vehicle through the discharge flow path.

この電動車両搭載電池温度調整装置によると、キャビンから電池収納ケースの内部に至る導入用流路と、電池収納ケースから車外に至る排出用流路とを設け、キャビンの空調に使用されたエアを導入用流路を経て電池収納ケース内部に導入し、電池収納ケース内部に収納されている車両推進用の電池の冷却または暖機に使用したエアを排出用流路を経て車外に排出するようにしたため、キャビン内の十分な空調と電池の十分な冷却/暖機を好適に両立させることができ、また、廃熱利用によりエネルギの無駄を減らすことができる。更に、ガスを放出することがある電池を用いている場合でも、放出されたガスは一旦電池収納ケース内にたまりその上で排出用流路を経て車外に排出されるから、キャビンにガスが漏れ居住性が損なわれることもない。
特開平10−252467号公報
According to this battery temperature adjustment device mounted on an electric vehicle, an introduction flow path from the cabin to the inside of the battery storage case and a discharge flow path from the battery storage case to the outside of the vehicle are provided, and air used for air conditioning of the cabin is provided. It is introduced into the battery storage case through the introduction flow path, and the air used for cooling or warming up the vehicle propulsion battery stored in the battery storage case is discharged outside the vehicle through the discharge flow path. Therefore, sufficient air conditioning in the cabin and sufficient cooling / warming up of the battery can be suitably achieved, and wasteful use of energy can reduce energy waste. Furthermore, even when a battery that may release gas is used, the released gas is once accumulated in the battery storage case and then discharged to the outside of the vehicle through the discharge passage, so that the gas leaks into the cabin. The habitability is not impaired.
JP-A-10-252467

しかしながら、特許文献1に開示された電動車両搭載電池温度調整装置は、キャビンの空調に使用された空気を用いて電池を冷却したり暖機したりするものにすぎない。すなわち、二次電池を暖めるために二次電池よりも温度の高い空気で暖機する場合には、二次電池の温度によっては結露することがある。   However, the battery temperature adjustment device mounted on an electric vehicle disclosed in Patent Document 1 is merely a device for cooling or warming up a battery using air used for air conditioning of a cabin. That is, when the secondary battery is warmed up with air having a temperature higher than that of the secondary battery, condensation may occur depending on the temperature of the secondary battery.

本発明は、上述の課題を解決するためになされたものであって、その目的は、走行用電源である二次電池を含む蓄電機構に結露を発生させることなく、蓄電機構が効率的に使用できる温度にまで速やかに温度を上昇させてエネルギ回収効率を高めることができる、蓄電機構の制御装置を提供することである。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to efficiently use the power storage mechanism without causing condensation in the power storage mechanism including a secondary battery that is a power source for traveling. An object of the present invention is to provide a control device for a power storage mechanism that can increase the energy recovery efficiency by quickly raising the temperature to a temperature that can be achieved.

第1の発明に係る蓄電機構の制御装置は、空気吸入口から蓄電機構に車室内の空気を供給するための供給手段と、車室内の空気の温度を検知するための手段と、蓄電機構の温度を検知するための手段と、車室内の空気の温度が蓄電機構の温度よりも高いときに、車室内の空気の温度に基づいて第1の絶対湿度を算出するともに、蓄電機構の温度に基づいて第2の絶対湿度を算出するための算出手段と、第2の絶対湿度が第1の絶対湿度よりも高いときに、車室内の空気を蓄電機構に供給するように、供給手段を制御するための制御手段とを含む。   A control device for a power storage mechanism according to a first aspect of the present invention includes a supply means for supplying air in the vehicle compartment from the air inlet to the power storage mechanism, means for detecting the temperature of the air in the vehicle interior, When the temperature of the means for detecting the temperature and the temperature of the air in the vehicle interior is higher than the temperature of the power storage mechanism, the first absolute humidity is calculated based on the temperature of the air in the vehicle interior, And a calculating unit for calculating the second absolute humidity based on the control unit and controlling the supplying unit to supply air in the vehicle compartment to the power storage mechanism when the second absolute humidity is higher than the first absolute humidity. And control means.

第1の発明によると、二次電池を始めとする蓄電機構においては、低温であると二次電池の内部抵抗が大きくなり入出力電力量が制限され、回生制動時の回収エネルギ量が少なくなる。このため、車室内の空気で二次電池を温めるのであるが、湿度を考慮することなく、低温の二次電池に高湿度の車室内空気を供給したのでは二次電池に結露が発生する。このため、車室内空気の絶対湿度と二次電池近傍の絶対湿度とを比較して、二次電池に結露が発生しないときにのみ、低温の二次電池に高湿度の車室内空気を供給して、二次電池の温度を早期に上昇させて、入出力電力量の制限が早く緩和させることができる。そのため、エネルギ回収量が増加して、燃費の向上を図ることができる。その結果、走行用電源である二次電池を含む蓄電機構に結露を発生させることなく、蓄電機構が効率的に使用できる温度にまで速やかに温度を上昇させてエネルギ回収効率を高めることができる、蓄電機構の制御装置を提供することができる。   According to the first invention, in a power storage mechanism such as a secondary battery, when the temperature is low, the internal resistance of the secondary battery increases, the input / output power amount is limited, and the recovered energy amount during regenerative braking decreases. . For this reason, the secondary battery is warmed by the air in the passenger compartment. However, if high-humidity passenger compartment air is supplied to the low-temperature secondary battery without considering humidity, condensation occurs in the secondary battery. For this reason, comparing the absolute humidity of the passenger compartment air with the absolute humidity in the vicinity of the secondary battery, high-humidity passenger compartment air is supplied to the low-temperature secondary battery only when condensation does not occur in the secondary battery. Thus, the temperature of the secondary battery can be raised at an early stage, and the restriction on the input / output power amount can be relaxed quickly. As a result, the amount of energy recovered increases, and fuel efficiency can be improved. As a result, it is possible to quickly increase the temperature to a temperature at which the power storage mechanism can be used efficiently without causing condensation in the power storage mechanism including the secondary battery that is the power source for traveling, and to increase the energy recovery efficiency. A control device for a power storage mechanism can be provided.

第2の発明に係る制御装置においては、第1の発明の構成に加えて、算出手段は、車室内の空気の温度および相対湿度に基づいて第1の絶対湿度を算出するともに、蓄電機構の温度および蓄電機構近傍の飽和水蒸気量に基づいて第2の絶対湿度を算出するための手段を含む。   In the control device according to the second invention, in addition to the configuration of the first invention, the calculating means calculates the first absolute humidity based on the temperature and relative humidity of the air in the passenger compartment, and Means for calculating the second absolute humidity based on the temperature and the amount of saturated water vapor near the power storage mechanism are included.

第2の発明によると、車室内の空気の絶対湿度については温度および相対湿度に基づき、蓄電機構側の絶対湿度については、温度および飽和水蒸気量に基づき、算出するため、精度高く結露の発生を判定できる。   According to the second invention, the absolute humidity of the air in the passenger compartment is calculated based on the temperature and the relative humidity, and the absolute humidity on the power storage mechanism side is calculated based on the temperature and the saturated water vapor amount. Can be judged.

第3の発明に係る制御装置においては、第1または2の発明の構成に加えて、蓄電機構は、温度が予め定められたしきい値よりも高いと入出力電力量の制限が緩和される二次電池である。   In the control device according to the third invention, in addition to the configuration of the first or second invention, when the temperature of the power storage mechanism is higher than a predetermined threshold, the restriction on the input / output power amount is relaxed. It is a secondary battery.

第3の発明によると、二次電池の内部抵抗は低温であると大きく、高温になると小さくなるので、車室内の暖かい空気を用いて早期に二次電池を暖気して、入出力電力量の制限を早期に緩和することができる。   According to the third aspect of the invention, the internal resistance of the secondary battery is large when the temperature is low, and is small when the temperature is high. Limits can be relaxed early.

以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返さない。なお、以下の説明では、蓄電機構の一例である二次電池の温度を制御する制御装置について説明するが(このため、以下においては電池制御装置と記載する)、本発明はこれに限定されない。蓄電機構は二次電池ではなくコンデンサであってもよい。また、以下の説明において、車両は、エンジンとモータとを駆動源とするハイブリッド車両を想定するが、電気自動車(EV)や蓄電機構を備えた燃料電池車であってもよい(EVの電源は限定されるものでない)。また、蓄電機構の搭載位置は、以下の説明に限定されない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated. In the following description, a control device that controls the temperature of a secondary battery that is an example of a power storage mechanism will be described (for this reason, it will be described as a battery control device in the following), but the present invention is not limited to this. The power storage mechanism may be a capacitor instead of a secondary battery. In the following description, the vehicle is assumed to be a hybrid vehicle using an engine and a motor as drive sources, but may be an electric vehicle (EV) or a fuel cell vehicle equipped with a power storage mechanism (the power source of the EV is Not limited). Further, the mounting position of the power storage mechanism is not limited to the following description.

図1に、本実施の形態に係る電池制御装置を搭載した車両の断面図を示す。図1に示すように、この電池制御装置は、車室内空間(搭乗空間)より車両後方側のトランクルーム(搭乗空間以外の空間)内に配設される二次電池の温度を制御する。この二次電池は、車両幅方向の両側のタイヤハウスを避けるように車両幅方向のほぼ中央部に設置されている。   FIG. 1 shows a cross-sectional view of a vehicle equipped with a battery control device according to the present embodiment. As shown in FIG. 1, this battery control device controls the temperature of a secondary battery disposed in a trunk room (a space other than the boarding space) on the vehicle rear side from the vehicle interior space (boarding space). The secondary battery is installed at a substantially central portion in the vehicle width direction so as to avoid tire houses on both sides in the vehicle width direction.

電池制御装置は、車両の駆動源である充放電可能な二次電池(ニッケル水素電池やリチウムイオン電池)100と、二次電池100に車室内の空気を供給するための電動ファン200とを含む。   The battery control device includes a chargeable / dischargeable secondary battery (nickel metal hydride battery or lithium ion battery) 100 that is a drive source of the vehicle, and an electric fan 200 for supplying air in the vehicle interior to the secondary battery 100. .

二次電池100は、たとえば、角型のバッテリセル(通常1.2V程度の出力電圧)が6個直列に接続されて1個のバッテリモジュールを形成し、多数(20〜30個)のバッテリモジュールを直列に接続してバッテリパックとして構成される。なお、この二次電池100の体格は、一例として、車両幅方向のリヤサイドメンバの内側に収まるような寸法である。   In the secondary battery 100, for example, six square battery cells (usually an output voltage of about 1.2V) are connected in series to form one battery module, and a large number (20 to 30) of battery modules. Are connected in series to form a battery pack. In addition, the physique of this secondary battery 100 is a dimension which fits inside the rear side member of a vehicle width direction as an example.

電池制御装置は、車室内空間の空気が、空気吸込口210からダクトを介して電動ファン200により吸引されることにより、二次電池100に供給されて、二次電池100を冷却する。   The battery control device cools the secondary battery 100 by supplying air in the vehicle interior space to the secondary battery 100 by being sucked by the electric fan 200 through the duct from the air suction port 210.

空気吸込口210は、リアガラスの下方部位に位置するリアパッケージトレイ(通常、オーディオのスピーカー等が設置される部材)に開口している。つまり、空気吸込口210につながるダクトは、図1に示すように上方から下方に延びるように配置されているため、車室内空気は、図1の矢印で示すように上方から下方に流れ、この車室内空気は、電動ファン200によって二次電池100に向けて吸い込まれ(バッテリモジュールの間を流れて)、その後、二次電池100を冷却した空気は、二次電池100の後方に接続されたダクト500を通って車外に排出される。   The air inlet 210 is open to a rear package tray (usually a member on which an audio speaker or the like is installed) located at a lower part of the rear glass. That is, since the duct connected to the air suction port 210 is arranged so as to extend downward from above as shown in FIG. 1, the vehicle interior air flows downward from above as shown by the arrows in FIG. The vehicle interior air is sucked toward the secondary battery 100 by the electric fan 200 (flows between the battery modules), and then the air that has cooled the secondary battery 100 is connected to the rear of the secondary battery 100. It is discharged out of the vehicle through the duct 500.

本実施の形態に係る電池制御装置を実現するECU1000には、車室内の温度を検知する温度センサ1010から車室内温度TH(A)、二次電池100に設けられた温度センサ1020から二次電池温度TH(B)が、それぞれ入力される。ECU1000は、各センサから入力された温度情報等に基づいて電動ファン200を制御する。なお、このとき、ECU1000から電動ファン200に運転指令信号が出力される。   The ECU 1000 that realizes the battery control device according to the present embodiment includes a temperature sensor 1010 that detects the temperature in the vehicle interior, a vehicle interior temperature TH (A), and a temperature sensor 1020 that is provided in the secondary battery 100 to a secondary battery. The temperature TH (B) is input respectively. ECU 1000 controls electric fan 200 based on temperature information and the like input from each sensor. At this time, an operation command signal is output from ECU 1000 to electric fan 200.

図2を参照して、本実施の形態に係る電池制御装置を実現するECU1000で実行されるプログラムの制御構造について説明する。なお、このフローチャートで表わされるプログラムは、予め定められたサイクルタイム(たとえば80msec)で繰り返し実行される。   With reference to FIG. 2, a control structure of a program executed by ECU 1000 that realizes the battery control device according to the present embodiment will be described. Note that the program represented by this flowchart is repeatedly executed at a predetermined cycle time (for example, 80 msec).

ステップ(以下、ステップをSと略す。)100にて、ECU1000は、車室内温度TH(A)を検知する。このとき、温度センサ1010からECU1000に入力された信号に基づいて車室内温度TH(A)が検知される。   In step (hereinafter, step is abbreviated as S) 100, ECU 1000 detects vehicle interior temperature TH (A). At this time, the vehicle interior temperature TH (A) is detected based on a signal input from the temperature sensor 1010 to the ECU 1000.

S200にて、ECU1000は、二次電池温度TH(B)を検知する。このとき、温度センサ1020からECU1000に入力された信号に基づいて二次電池温度TH(B)が検知される。   In S200, ECU 1000 detects secondary battery temperature TH (B). At this time, secondary battery temperature TH (B) is detected based on a signal input from temperature sensor 1020 to ECU 1000.

S300にて、ECU1000は、車室内温度TH(A)が二次電池温度TH(B)よりも高いか否かを判断する。車室内温度TH(A)が二次電池温度TH(B)よりも高いと(S300にてYES)、処理はS400へ移される。もしそうでないと(S300にてNO)、この処理は終了する。   In S300, ECU 1000 determines whether or not vehicle interior temperature TH (A) is higher than secondary battery temperature TH (B). If vehicle interior temperature TH (A) is higher than secondary battery temperature TH (B) (YES in S300), the process proceeds to S400. Otherwise (NO in S300), this process ends.

S400にて、ECU1000は、車室内温度TH(A)および相対湿度から、絶対湿度D(1)を算出する。S500にて、ECU1000は、二次電池温度TH(B)から、二次電池100近傍の飽和水蒸気量を求めて、絶対湿度D(2)を算出する。なお、絶対湿度とは、温度に無関係に空気中に蒸気として溶け込んでいる水分量であって、単位はg/lであって、つまり、空気(乾いた)1l当たりに含まれる水の重さを示す。また、相対湿度は、その温度における飽和蒸気(空気中に蒸気として溶け込んでいる量が多いと水滴になってしまうが、水滴にならずにいられる最高の濃度の水分)の密度あるいは蒸気圧を100%として、その相対比率で表わされるものである。   In S400, ECU 1000 calculates absolute humidity D (1) from vehicle interior temperature TH (A) and relative humidity. In S500, ECU 1000 obtains a saturated water vapor amount near secondary battery 100 from secondary battery temperature TH (B), and calculates absolute humidity D (2). The absolute humidity is the amount of water dissolved as vapor in the air regardless of the temperature, and the unit is g / l, that is, the weight of water contained in 1 l of air (dry). Indicates. Relative humidity is the density or vapor pressure of saturated vapor at that temperature (the highest concentration of water that can be converted into water droplets if the amount dissolved as vapor in the air is large, but not water droplets). It is expressed by the relative ratio as 100%.

S600にて、ECU1000は、絶対湿度D(2)が絶対湿度D(1)よりも高いか否かを判断する。絶対湿度D(2)が絶対湿度D(1)よりも高いと(S600にてYES)、処理はS700へ移される。もしそうでないと(S600にてNO)、この処理は終了する。   In S600, ECU 1000 determines whether absolute humidity D (2) is higher than absolute humidity D (1). If absolute humidity D (2) is higher than absolute humidity D (1) (YES in S600), the process proceeds to S700. Otherwise (NO in S600), this process ends.

S700にて、ECU1000は、電動ファン200を作動させるように運転指令信号を出力して、二次電池温度TH(B)を上昇させる。   In S700, ECU 1000 outputs an operation command signal so as to operate electric fan 200, and raises secondary battery temperature TH (B).

以上のような構造に基づく、本実施の形態に係る電池制御装置の動作について、説明する。   The operation of the battery control device according to the present embodiment based on the above structure will be described.

たとえば、冬期等であって、車室内温度TH(A)が二次電池温度TH(B)よりも高いと(S300にてYES)、電動ファン200を作動させて強制的に車室内の暖かい空気を二次電池100に送り込む。これにより、二次電池100の温度(二次電池温度TH(B))が上昇する。   For example, when the vehicle interior temperature TH (A) is higher than the secondary battery temperature TH (B) (YES in S300), for example, in winter, the electric fan 200 is operated to force warm air in the vehicle interior. Is fed into the secondary battery 100. As a result, the temperature of the secondary battery 100 (secondary battery temperature TH (B)) increases.

このとき、二次電池100近傍の絶対湿度D(2)が車室内の絶対湿度D(1)よりも高いときに(S600)、このように二次電池100に暖かい空気を送り込んでも、二次電池100に結露が発生することもない。二次電池100の温度が上昇すると、低温下では二次電池100の内部抵抗が大きく入出力電力量が制限される。このような場合には回生制動時の回収エネルギ量が少なくなる。   At this time, when the absolute humidity D (2) in the vicinity of the secondary battery 100 is higher than the absolute humidity D (1) in the vehicle interior (S600), even if warm air is sent to the secondary battery 100 in this way, Condensation does not occur in the battery 100. When the temperature of the secondary battery 100 rises, the internal resistance of the secondary battery 100 is large and the input / output power amount is limited at low temperatures. In such a case, the amount of energy recovered during regenerative braking is reduced.

ところが、本実施の形態においては二次電池100の温度が早期に上昇して入出力電力量の制限が早く緩和されることになる。そのため、エネルギ回収量が増加して、燃費の向上を図ることができる。   However, in the present embodiment, the temperature of the secondary battery 100 rises early and the restriction on the input / output power amount is eased quickly. As a result, the amount of energy recovered increases, and fuel efficiency can be improved.

なお、本実施の形態に係る蓄電機構の制御装置である電池制御装置は、外気温がある程度低い温度であるときに特に燃費向上の効果がある。したがって、S700の実行条件として、外気温が予め定められたしきい値よりも低いことを加えてもよい。   Note that the battery control device that is the control device for the power storage mechanism according to the present embodiment is particularly effective in improving fuel efficiency when the outside air temperature is a certain low temperature. Therefore, it may be added as an execution condition of S700 that the outside air temperature is lower than a predetermined threshold value.

さらに、本実施の形態に係る蓄電機構の制御装置である電池制御装置は、二次電池100の電池パック間において温度のばらつきがある場合には二次電池の性能にもばらつきが発生するので、電池パック間において温度のばらつきが少ない場合に有効である。したがって、S700の実行条件として、二次電池100の温度のばらつきが予め定められた範囲内よりも小さいことを加えてもよい。   Furthermore, since the battery control device that is the control device of the power storage mechanism according to the present embodiment has a variation in the performance of the secondary battery when there is a temperature variation between the battery packs of the secondary battery 100, This is effective when there is little variation in temperature between battery packs. Therefore, it may be added as an execution condition of S700 that the temperature variation of the secondary battery 100 is smaller than a predetermined range.

さらに、車両にナビゲーション装置が装備されている場合には、北半球においては予め定められた緯度よりも北側において、南半球においては予め定められた緯度よりも南側において、S700の処理を実行するようにしてもよい。   Further, when the vehicle is equipped with a navigation device, the process of S700 is executed on the north side of the predetermined latitude in the northern hemisphere and on the south side of the predetermined latitude in the southern hemisphere. Also good.

以上のようにして、本実施の形態に係る蓄電機構の制御装置である電池制御装置によると、二次電池の耐久性や性能に悪影響を及ぼす結露を生じさせることなく、車室内の暖かい空気を用いて二次電池の温度を早期に上昇せしめて、入出力電力量の制限を早期に緩和させることができる。その結果、回生電力量をより多く二次電池に充電することができるので、燃費を向上させることはできる。   As described above, according to the battery control device that is the control device of the power storage mechanism according to the present embodiment, warm air in the vehicle interior is generated without causing condensation that adversely affects the durability and performance of the secondary battery. By using it, the temperature of the secondary battery can be raised at an early stage, and the restriction on the amount of input / output power can be relaxed at an early stage. As a result, the rechargeable battery can be charged with a larger amount of regenerative electric power, so that fuel efficiency can be improved.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の実施の形態に係る電池制御装置の制御ブロック図である。It is a control block diagram of the battery control apparatus which concerns on embodiment of this invention. 図1のECUで実行されるプログラムの制御構造を示すフローチャートである。It is a flowchart which shows the control structure of the program performed with ECU of FIG.

符号の説明Explanation of symbols

100 二次電池、200 電動ファン、210 冷却風吸入口、500 排気ダクト、1000 ECU、1010,1020 温度センサ。   100 secondary battery, 200 electric fan, 210 cooling air inlet, 500 exhaust duct, 1000 ECU, 1010, 1020 temperature sensor.

Claims (3)

車両に搭載された蓄電機構の制御装置であって、車室内に空気吸入口が設けられ、
前記空気吸入口から前記蓄電機構に車室内の空気を供給するための供給手段と、
前記車室内の空気の温度を検知するための手段と、
前記蓄電機構の温度を検知するための手段と、
前記車室内の空気の温度が蓄電機構の温度よりも高いときに、前記車室内の空気の温度に基づいて第1の絶対湿度を算出するともに、前記蓄電機構の温度に基づいて第2の絶対湿度を算出するための算出手段と、
前記第2の絶対湿度が前記第1の絶対湿度よりも高いときに、前記車室内の空気を前記蓄電機構に供給するように、前記供給手段を制御するための制御手段とを含む、蓄電機構の制御装置。
A control device for a power storage mechanism mounted on a vehicle, wherein an air intake port is provided in the vehicle interior,
Supply means for supplying air in a vehicle compartment from the air inlet to the power storage mechanism;
Means for detecting the temperature of air in the passenger compartment;
Means for detecting the temperature of the power storage mechanism;
When the temperature of the air in the passenger compartment is higher than the temperature of the power storage mechanism, the first absolute humidity is calculated based on the temperature of the air in the passenger compartment, and the second absolute is calculated based on the temperature of the power storage mechanism. A calculating means for calculating humidity;
A power storage mechanism including control means for controlling the supply means so as to supply air in the vehicle compartment to the power storage mechanism when the second absolute humidity is higher than the first absolute humidity. Control device.
前記算出手段は、前記車室内の空気の温度および相対湿度に基づいて第1の絶対湿度を算出するともに、前記蓄電機構の温度および前記蓄電機構近傍の飽和水蒸気量に基づいて第2の絶対湿度を算出するための手段を含む、請求項1に記載の蓄電機構の制御装置。   The calculating means calculates the first absolute humidity based on the temperature and relative humidity of the air in the passenger compartment, and also calculates the second absolute humidity based on the temperature of the power storage mechanism and the saturated water vapor amount near the power storage mechanism. The power storage mechanism control device according to claim 1, further comprising means for calculating 前記蓄電機構は、温度が予め定められたしきい値よりも高いと入出力電力量の制限が緩和される二次電池である、請求項1または2に記載の蓄電機構の制御装置。   The storage device control device according to claim 1 or 2, wherein the power storage mechanism is a secondary battery in which a restriction on an input / output power amount is relaxed when a temperature is higher than a predetermined threshold value.
JP2005350672A 2005-12-05 2005-12-05 Storage device control device Expired - Fee Related JP4525577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350672A JP4525577B2 (en) 2005-12-05 2005-12-05 Storage device control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350672A JP4525577B2 (en) 2005-12-05 2005-12-05 Storage device control device

Publications (2)

Publication Number Publication Date
JP2007159267A true JP2007159267A (en) 2007-06-21
JP4525577B2 JP4525577B2 (en) 2010-08-18

Family

ID=38242905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350672A Expired - Fee Related JP4525577B2 (en) 2005-12-05 2005-12-05 Storage device control device

Country Status (1)

Country Link
JP (1) JP4525577B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193602A (en) * 2009-02-17 2010-09-02 Nissan Motor Co Ltd Battery temperature controller, battery temperature control method and vehicle
US20110016899A1 (en) * 2009-07-21 2011-01-27 Toyota Jidosha Kabushiki Kaisha Temperature control apparatus for in-vehicle electric storage device
JP2012248452A (en) * 2011-05-30 2012-12-13 Suzuki Motor Corp Battery temperature control system and battery charge system
CN108944532A (en) * 2018-07-25 2018-12-07 合肥市智信汽车科技有限公司 A kind of alarm control system based on electric car
CN113665429A (en) * 2021-09-14 2021-11-19 安徽安凯汽车股份有限公司 New energy automobile high-temperature high-humidity control system and control method
JP7498623B2 (en) 2020-08-20 2024-06-12 株式会社Subaru vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280978A (en) * 1985-10-02 1987-04-14 Japan Storage Battery Co Ltd Storing method for storage battery
JPH0554915A (en) * 1991-08-28 1993-03-05 Sansha Electric Mfg Co Ltd Detection of life for sealed storage battery
JPH0752834A (en) * 1993-08-13 1995-02-28 Nissan Motor Co Ltd Body structure for electric vehicle
JP2000199641A (en) * 1998-12-29 2000-07-18 Daikin Ind Ltd Relative humidity detector and air conditioning indoor unit having the same
JP2005023845A (en) * 2003-07-02 2005-01-27 Toyota Motor Corp Automobile
JP2005254974A (en) * 2004-03-11 2005-09-22 Toyota Motor Corp Vehicular temperature adjustment system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280978A (en) * 1985-10-02 1987-04-14 Japan Storage Battery Co Ltd Storing method for storage battery
JPH0554915A (en) * 1991-08-28 1993-03-05 Sansha Electric Mfg Co Ltd Detection of life for sealed storage battery
JPH0752834A (en) * 1993-08-13 1995-02-28 Nissan Motor Co Ltd Body structure for electric vehicle
JP2000199641A (en) * 1998-12-29 2000-07-18 Daikin Ind Ltd Relative humidity detector and air conditioning indoor unit having the same
JP2005023845A (en) * 2003-07-02 2005-01-27 Toyota Motor Corp Automobile
JP2005254974A (en) * 2004-03-11 2005-09-22 Toyota Motor Corp Vehicular temperature adjustment system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193602A (en) * 2009-02-17 2010-09-02 Nissan Motor Co Ltd Battery temperature controller, battery temperature control method and vehicle
US20110016899A1 (en) * 2009-07-21 2011-01-27 Toyota Jidosha Kabushiki Kaisha Temperature control apparatus for in-vehicle electric storage device
JP2012248452A (en) * 2011-05-30 2012-12-13 Suzuki Motor Corp Battery temperature control system and battery charge system
CN108944532A (en) * 2018-07-25 2018-12-07 合肥市智信汽车科技有限公司 A kind of alarm control system based on electric car
JP7498623B2 (en) 2020-08-20 2024-06-12 株式会社Subaru vehicle
CN113665429A (en) * 2021-09-14 2021-11-19 安徽安凯汽车股份有限公司 New energy automobile high-temperature high-humidity control system and control method

Also Published As

Publication number Publication date
JP4525577B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
EP1932707B1 (en) Cooling device for on-vehicle machinery
US7997966B2 (en) Cooling structure for electricity storage device
JP5023509B2 (en) Power supply
RU2465156C2 (en) Electric transport facility
JP3125198B2 (en) Battery temperature control device for electric vehicle
US20070089442A1 (en) Temperature control system for a vehicle battery
JP2004127747A (en) Fuel cell mounted vehicle
JP2004001683A (en) Cooling structure of automobile battery, automobile battery system, and automobile
JP2006188182A (en) Cooling device for electricity storage mechanism
US20110118919A1 (en) Apparatus and method for air conditioning vehicle interior using battery charge control of electric vehicle
JP4525577B2 (en) Storage device control device
JP5445617B2 (en) vehicle
JP4715803B2 (en) Secondary battery cooling device
JP4710320B2 (en) Vehicle battery pack mounting structure
JP5046294B2 (en) Power supply system and mobile device equipped with the power supply system
JP2002231321A (en) Battery-cooling device for vehicle
JP2005071759A (en) Battery cooling structure
JP4023450B2 (en) Cooling device for electrical equipment
JP3788507B2 (en) Car
JP2007153053A (en) Cooling device of electric equipment mounted on vehicle
JP4752617B2 (en) Cooling system
JP2010018156A (en) Vehicle
JP2005318675A (en) Electrical system
JP5857671B2 (en) vehicle
JP2003300419A (en) Battery mounting structure for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees