JP2007157456A - Ceramic heater, heating device, image forming device - Google Patents

Ceramic heater, heating device, image forming device Download PDF

Info

Publication number
JP2007157456A
JP2007157456A JP2005349947A JP2005349947A JP2007157456A JP 2007157456 A JP2007157456 A JP 2007157456A JP 2005349947 A JP2005349947 A JP 2005349947A JP 2005349947 A JP2005349947 A JP 2005349947A JP 2007157456 A JP2007157456 A JP 2007157456A
Authority
JP
Japan
Prior art keywords
wiring patterns
ceramic heater
heating
electrodes
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005349947A
Other languages
Japanese (ja)
Inventor
Kentaro Kimura
健太郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2005349947A priority Critical patent/JP2007157456A/en
Publication of JP2007157456A publication Critical patent/JP2007157456A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize quick heat generation of a heating element pattern in a length direction of an insulating substrate formed on a top face of the substrate, and to make a temperature distribution uniform. <P>SOLUTION: Wiring patterns 14, 15 are formed in parallel on a long-size and flat insulation substrate 11 formed of a ceramic, glass ceramic or a heat-resistant complex material such as alumina. Electrodes 12, 13 for supplying power to the wiring patterns 14, 15 are formed at the same end of each pattern formed. Wide heating element paste of a silver-group material beginning with Ag (silver), and Pd (palladium), a ruthenium system, a carbon system or the like is screen-printed between the wiring patterns 14, 15 in a length direction of the insulation substrate 11, baked at high temperature to form a strip resistive heating element 16 with a given resistance value and a thickness of around 10 μm. The resistive heating element 16 is formed shorter as it is away from the electrodes 12, 13. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、情報機器、家電製品や製造設備などの小型機器類に装着されて用いられる薄型のセラミックヒータおよびこのセラミックヒータを実装したプリンタ、複写機やファクシミリなどの加熱装置ならびにこの加熱装置を用いた画像形成装置に関する。   The present invention relates to a thin ceramic heater that is used by being mounted on small equipment such as information equipment, home appliances, and manufacturing equipment, a heating device such as a printer, a copying machine, and a facsimile machine mounted with the ceramic heater, and the heating device. The present invention relates to an image forming apparatus.

従来のセラミック等の絶縁基板を用いたヒータは、絶縁基板上の長手方向の両側に正の温度係数(PTC:Positive Temperature Coefficient)の発熱抵抗体を形成し、この発熱抵抗体の同じ側の一端に電力供給用の電極を備えている(例えば、特許文献1)。
特開平7−94260号公報(第4頁、図3)
In a conventional heater using an insulating substrate such as ceramic, a heating resistor having a positive temperature coefficient (PTC) is formed on both sides in the longitudinal direction on the insulating substrate, and one end of the heating resistor on the same side. Are provided with electrodes for power supply (for example, Patent Document 1).
Japanese Unexamined Patent Publication No. 7-94260 (page 4, FIG. 3)

上記した特許文献1の技術は、絶縁基板の短手方向に抵抗発熱体が形成され、PTCの発熱抵抗体の場合、抵抗温度係数(TCR:Temperature Coefficient of Resistance)が大きすぎることから正確な温度制御が困難となる。また、TCRが小さい発熱抵抗体を用いた場合でも、給電用電極側に電気が流れやすいため発熱量が大きく、温度分布が傾いてしまう等の問題がある。   In the technique of Patent Document 1 described above, a resistance heating element is formed in the short direction of the insulating substrate, and in the case of a PTC heating resistor, the temperature coefficient of resistance (TCR: Temperature Coefficient of Resistance) is too large. Control becomes difficult. Even when a heating resistor having a small TCR is used, there is a problem that the amount of heat generation is large and the temperature distribution is inclined because electricity easily flows to the power supply electrode side.

この発明の目的は、長手方向に均一な発熱を得て素早い温度立ち上がり特性を有するとともに、正確な温度制御を可能とするセラミックヒータ、このセラミックヒータを用いた加熱装置、この加熱装置を用いた画像処理装置を提供することにある。   An object of the present invention is to obtain a uniform heat generation in the longitudinal direction and to have a quick temperature rise characteristic, and to enable accurate temperature control, a heating device using the ceramic heater, and an image using the heating device. It is to provide a processing apparatus.

上記した課題を解決するために、この発明のセラミックヒータの請求項1では、耐熱・絶縁性材料で形成される長尺平板状の絶縁基板と、前記絶縁基板面上の長手方向両側に沿ってそれぞれ形成した第1および第2の配線パタンと、前記第1および第2の配線パタン同方向の一端にそれぞれ形成し、前記第1および第2の配線パタンに電力を供給させる第1および第2の電極と、前記第1および第2の配線パタン間の形成するとともに電気的に接続され、前記第1および第2の電極から離れるに従い長さを短く、前記絶縁基板の長手方向に幅広く形成した発熱抵抗体とを具備したことを特徴とする。   In order to solve the above-described problems, according to a first aspect of the ceramic heater of the present invention, a long flat insulating substrate formed of a heat-resistant and insulating material and along both longitudinal sides on the insulating substrate surface. First and second wiring patterns formed respectively, and first and second wirings formed at one end in the same direction as the first and second wiring patterns, respectively, to supply power to the first and second wiring patterns. The first and second wiring patterns are formed and electrically connected to each other, and the length is reduced as the distance from the first and second electrodes is increased, and the first and second wiring patterns are formed widely in the longitudinal direction of the insulating substrate. And a heating resistor.

また、この発明のセラミックヒータの請求項2では、請求項1において、前記発熱抵抗体が前記第1および第2の電極に最も近い側の長さをL1、最も遠い側の長さをL2、前記発熱抵抗体の幅をW(mm)、該発熱抵抗体のシート抵抗値をR(Ω/□)、定数Aを−4.0×10―5、定数Bを4.8×10―4≦B≦6.5×10―4としたときに、前記発熱抵抗体の長さL1〜L2までの絞り率Xは、
L2/L1=1−X
X=(A×R+B)×L1×W
=(A×L1×W)R+(L1×W)B
の関係式を満足することを特徴とする。
According to a second aspect of the ceramic heater of the present invention, in the first aspect, the length of the heating resistor closest to the first and second electrodes is L1, the length of the farthest side is L2, The width of the heating resistor is W (mm), the sheet resistance value of the heating resistor is R (Ω / □), the constant A is −4.0 × 10 −5 , and the constant B is 4.8 × 10 −4. When ≦ B ≦ 6.5 × 10 −4 , the aperture ratio X from the length L1 to L2 of the heating resistor is:
L2 / L1 = 1-X
X = (A × R + B) × L1 × W
= (A x L1 x W) R + (L1 x W) B
It satisfies the following relational expression.

この発明によれば、上記構成にすることで、素早い温度立ち上がりと絶縁基板の長手方向に均一な温度分布を得ることができる。   According to the present invention, with the above-described configuration, a rapid temperature rise and a uniform temperature distribution in the longitudinal direction of the insulating substrate can be obtained.

以下、この発明を実施するための最良の形態について、図面を参照しながら詳細に説明する。
図1、図2は、この発明のセラミックヒータの第1の実施形態について説明するためのもので、図1は構成図、図2は図1のx−x’断面図である。
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
1 and 2 are diagrams for explaining a first embodiment of a ceramic heater according to the present invention. FIG. 1 is a configuration diagram, and FIG. 2 is a sectional view taken along line xx ′ of FIG.

図1において、11は厚み0.5mm〜1.0mm程度の耐熱、電気絶縁性材料の例えばアルミナ(Al)、窒化アルミニウム(AlN)等の電気絶縁性を有する高剛性のセラミック等の基材で高い熱伝導性の平板で短冊状の絶縁基板である。12,13はそれぞれ銀系等を主体とする良導電体膜からなる給電用の電極である。14,15は、電極12,13にそれぞれ一端を接続して非接触状態で絶縁基板11の長手方向の両側に並行して銀(Ag)系等で形成された配線パタンである。電極12および配線パタン14と電極13および配線パタン15は、それぞれ導電ペーストを絶縁基板11上に塗り、これを焼成することにより一体形成して絶縁基板11に固着する。電極12と一体形成された反対側の配線パタン14と電極13と一体形成された配線パタン15反対側は、それぞれ解放状態となっている。すなわち、電極12,13は、配線パタン14,15のそれぞれ同方向の一端に一体的に形成されている。 In FIG. 1, reference numeral 11 denotes a heat-resistant, electrically insulating material having a thickness of about 0.5 mm to 1.0 mm, such as a highly rigid ceramic having an electrical insulating property such as alumina (Al 2 O 3 ), aluminum nitride (AlN) It is a strip-shaped insulating substrate made of a highly heat conductive flat plate. Reference numerals 12 and 13 denote power supply electrodes made of a good conductor film mainly composed of silver or the like. Reference numerals 14 and 15 denote wiring patterns formed of silver (Ag) or the like in parallel with both sides of the insulating substrate 11 in a non-contact state with one end connected to the electrodes 12 and 13, respectively. The electrode 12, the wiring pattern 14, the electrode 13, and the wiring pattern 15 are integrally formed by applying a conductive paste on the insulating substrate 11 and firing it, and are fixed to the insulating substrate 11. The opposite side wiring pattern 14 formed integrally with the electrode 12 and the opposite side of the wiring pattern 15 formed integrally with the electrode 13 are in an open state. That is, the electrodes 12 and 13 are integrally formed at one end of the wiring patterns 14 and 15 in the same direction.

16は、配線パタン14,15との間の絶縁基板11の長手方向に沿って平行に形成されたAg(銀)・Pd(パラジウム)をはじめとする銀系材料や、ルテニウム系、炭素系等などの発熱体ペーストをスクリーン印刷した後、高温で焼成して所定の抵抗値を有する膜厚が10μm程度の帯状の発熱抵抗体である。なお、発熱抵抗体16のTCRは±300ppm/℃程度で、シート抵抗値は1〜10Ω/□程度とする。   Reference numeral 16 denotes a silver-based material such as Ag (silver) / Pd (palladium) formed in parallel along the longitudinal direction of the insulating substrate 11 between the wiring patterns 14 and 15, ruthenium-based, carbon-based, and the like. A heat-generating paste such as the above is screen-printed and then fired at a high temperature to form a belt-like heating resistor having a predetermined resistance value and a film thickness of about 10 μm. The heating resistor 16 has a TCR of about ± 300 ppm / ° C. and a sheet resistance value of about 1 to 10 Ω / □.

配線パタン14および発熱抵抗体16と配線パタン15と発熱抵抗体16は、図2に示すように、長手方向にそれぞれ一部が重層形成されている。この場合の重層部分は、発熱抵抗体16を配線パタン14,15に対して上側に配置する関係にしてある。この関係は逆でも構わない。   As shown in FIG. 2, the wiring pattern 14, the heating resistor 16, the wiring pattern 15, and the heating resistor 16 are partially stacked in the longitudinal direction. In this case, the multilayer portion has a relationship in which the heating resistor 16 is disposed on the upper side with respect to the wiring patterns 14 and 15. This relationship may be reversed.

また、発熱抵抗体16は、電極14,15に近い側の配線パタン14,15の長さL1に比べて遠い側の配線パタン14,15との長さL2をL1>L2の関係にしてある。長さL1〜L2までは漸次狭くなるように形成されている。   Further, the heating resistor 16 has a relationship of L1> L2 with the length L2 of the wiring patterns 14 and 15 on the far side compared to the length L1 of the wiring patterns 14 and 15 on the side close to the electrodes 14 and 15. . The lengths L1 to L2 are formed so as to be gradually narrowed.

17は、図2にも示すように、配線パタン14,15および発熱抵抗体16を覆うように形成され、ガラス層厚が20μm〜100μm程度で熱伝導率が例えば2W/m・K以上のアルミナ等熱伝導性の優れた無機酸化物フィラーを25〜35wt%加えたガラス等のオーバーコート層である。オーバーコート層17は、配線パタン14,15および発熱抵抗体16を機械的、化学的、電気的に保護する。   2, alumina is formed so as to cover the wiring patterns 14 and 15 and the heating resistor 16, and has a glass layer thickness of about 20 μm to 100 μm and a thermal conductivity of, for example, 2 W / m · K or more. It is an overcoat layer such as glass to which 25 to 35 wt% of an inorganic oxide filler having excellent isothermal conductivity is added. The overcoat layer 17 mechanically, chemically and electrically protects the wiring patterns 14 and 15 and the heating resistor 16.

ここで、図3、図4を参照して長さL1〜L2まで漸次絞って狭くなる傾きの関係について説明する。   Here, with reference to FIG. 3, FIG. 4, the relationship of the inclination which narrows down gradually from length L1-L2 is demonstrated.

まず、図3は図1の要部を抜書きして示した構成図であり、配線パタン12,13間に形成される発熱抵抗体16の幅をWとし、電極12,13に対して近い側の発熱抵抗体16の長さL1と遠い側の長さL2まで絞る状態を示すものである。   First, FIG. 3 is a configuration diagram in which the main part of FIG. 1 is extracted. The width of the heating resistor 16 formed between the wiring patterns 12 and 13 is W and is close to the electrodes 12 and 13. This shows a state where the heat generating resistor 16 on the side is squeezed to the length L1 and the length L2 on the far side.

図4は、長さL1〜L2までの全領域において長さL1,L2を変化させた場合の発熱抵抗体16の抵抗値の変化について説明する説明図である。   FIG. 4 is an explanatory diagram for explaining a change in the resistance value of the heating resistor 16 when the lengths L1 and L2 are changed in the entire region from the length L1 to the length L2.

図3、図4において、温度分布の傾きは、発熱抵抗体16の幅W(mm)、長さL1(mm),L2(mm)、発熱抵抗体16のシート抵抗値R(mΩ/□)によって異なることになる。   3 and 4, the gradient of the temperature distribution is as follows: the width W (mm) of the heating resistor 16, the lengths L1 (mm) and L2 (mm), and the sheet resistance value R (mΩ / □) of the heating resistor 16. It will be different.

そこで、長さL1〜L2までに漸次短くなるように絞られる発熱抵抗体16の絞り率をX(%)、定数Aを−4.0×10―5とし、定数Bを4.8×10―4≦B≦6.5×10―4とした場合、
L2/L1=1―X
X=(A×R+B)×L1×W
=(A×L1×W)R+(L1×W)B
で表される。例えば、L1=2.16mm、W=220mmの場合は、図5に示す温度分布の範囲内で長さL1とL2の長さを変える。長さL2は、シート抵抗値Rと絞り率Xで決定することになる。
Therefore, the squeezing rate of the heating resistor 16 that is squeezed so as to gradually become shorter from the length L1 to L2 is X (%), the constant A is −4.0 × 10 −5 , and the constant B is 4.8 × 10 6. −4 ≦ B ≦ 6.5 × 10 −4
L2 / L1 = 1−X
X = (A × R + B) × L1 × W
= (A x L1 x W) R + (L1 x W) B
It is represented by For example, when L1 = 2.16 mm and W = 220 mm, the lengths L1 and L2 are changed within the range of the temperature distribution shown in FIG. The length L2 is determined by the sheet resistance value R and the aperture ratio X.

また、(L1×W)Bは、図4に示すように長さL1を変更した場合の幅を表し、(A×L1×W)は、長さL1〜長さL2まで絞り込まれる発熱抵抗体16の傾きを表している。   Further, (L1 × W) B represents the width when the length L1 is changed as shown in FIG. 4, and (A × L1 × W) is a heating resistor that is narrowed down from the length L1 to the length L2. 16 slopes are represented.

以上のように板状のセラミックヒータ100を構成している。なお、オーバーコート層17の厚みに関しては、選定する材料の伝熱特性や装置内での耐久性等を考慮して決めるものであり、特に定義されるものではない。   As described above, the plate-like ceramic heater 100 is configured. The thickness of the overcoat layer 17 is determined in consideration of the heat transfer characteristics of the material to be selected, durability in the apparatus, and the like, and is not particularly defined.

このように構成されたセラミックヒータ100は、絶縁基板11の長手方向の両側に形成された配線パタン14,15に電力が供給された場合に、短い長さの配線パタン14と15との間に形成される発熱抵抗体16全域に素早く電力が供給されることから素早い発熱の実現が可能となる。   The ceramic heater 100 configured as described above has a short length between the wiring patterns 14 and 15 when electric power is supplied to the wiring patterns 14 and 15 formed on both sides of the insulating substrate 11 in the longitudinal direction. Since power is quickly supplied to the entire area of the heating resistor 16 to be formed, it is possible to realize rapid heat generation.

また、発熱抵抗体16は、電極12,13から離れるに従い配線パタン14,15の長さが漸次狭くなる関係にすることで、絶縁基板11の長手方向の各ポイントの電流量を同じように設定することができる。これにより、図5に示すように電極12,13に近い位置と遠い位置に拘わらず均一な温度分布を実現することができる。   Further, the heating resistor 16 sets the current amount at each point in the longitudinal direction of the insulating substrate 11 in the same manner by making the length of the wiring patterns 14 and 15 gradually narrow as the distance from the electrodes 12 and 13 increases. can do. Thereby, as shown in FIG. 5, a uniform temperature distribution can be realized regardless of the position near and far from the electrodes 12 and 13.

そして、セラミックヒータ100は、電極12,13に通電すると発熱体パタン16に電流が流れ、発熱体パタン16は長手方向にほぼ均一の発熱温度分布を呈する。セラミックヒータ100は、抵抗ペーストに含有される銀・パラジウム、酸化ルテニウム、無機酸化物が電気的な抵抗要素となり、銀・パラジウム、酸化ルテニウムの比率によって発熱体パタン16の抵抗値が調整される。この実施形態では、例えば発熱体パタン16の抵抗値を25Ωとし、100Vの電圧印加により4Aの電流が流れ、400W程度の発熱量となる。   In the ceramic heater 100, when the electrodes 12 and 13 are energized, a current flows through the heating element pattern 16, and the heating element pattern 16 exhibits a substantially uniform heating temperature distribution in the longitudinal direction. In the ceramic heater 100, silver / palladium, ruthenium oxide and inorganic oxide contained in the resistance paste serve as electrical resistance elements, and the resistance value of the heating element pattern 16 is adjusted by the ratio of silver / palladium and ruthenium oxide. In this embodiment, for example, the resistance value of the heating element pattern 16 is 25Ω, and a current of 4 A flows when a voltage of 100 V is applied, resulting in a heat generation amount of about 400 W.

図6は、この発明のセラミックヒータに関する第2の実施形態について説明するための正面図であり、図1と同一の構成部分には同一の符号を付し、その説明は省略する。   FIG. 6 is a front view for explaining a second embodiment relating to the ceramic heater of the present invention. The same components as those in FIG.

この実施形態は、電極12,13から離れるに従い、配線パタン13,14の絶縁基板11の短手方向に幅広とし、電極12,13から離れるに従って配線パタン14,15間の図1の発熱抵抗体16と同様の材料と同様の方法で形成される発熱抵抗体161を絶縁基板11の短手方向に狭くしたものである。図6では、電極12,13から離れるに従い発熱抵抗体161も絶縁基板11の短手方向に狭くしてある。   In this embodiment, as the distance from the electrodes 12 and 13 increases, the width of the wiring patterns 13 and 14 increases in the lateral direction of the insulating substrate 11, and as the distance from the electrodes 12 and 13 increases, the heating resistor of FIG. The heating resistor 161 formed by the same method as that of the material 16 is narrowed in the short direction of the insulating substrate 11. In FIG. 6, as the distance from the electrodes 12 and 13 increases, the heating resistor 161 is also narrowed in the short direction of the insulating substrate 11.

この実施形態の場合でも、発熱抵抗体161全域に素早く電力が供給されることから素早い発熱を得ることができるとともに、電極12,13に近い位置と遠い位置に拘わらず均一な温度分布を実現することができる。   Even in the case of this embodiment, since power is quickly supplied to the entire heating resistor 161, quick heat generation can be obtained, and a uniform temperature distribution can be realized regardless of the position near and far from the electrodes 12 and 13. be able to.

図7は、この発明のセラミックヒータに関する第3の実施形態について説明するための正面図であり、図1と同一の構成部分には同一の符号を付して説明する。   FIG. 7 is a front view for explaining a third embodiment relating to the ceramic heater of the present invention. The same components as those in FIG.

この実施形態は、電極12,13から離れるに従い、図1の発熱抵抗体16と同様の材料と同様の方法で形成される発熱抵抗体162の配線パタン14,15との長さを短くしたものである。このとき配線パタン14,15の幅はそのままとし、発熱抵抗体161の絞りに伴って配線パタン14,15も近づく方向に移動させて形成したものである。   In this embodiment, as the distance from the electrodes 12 and 13 increases, the length of the wiring patterns 14 and 15 of the heating resistor 162 formed by the same method and the same material as the heating resistor 16 in FIG. It is. At this time, the widths of the wiring patterns 14 and 15 are left as they are, and the wiring patterns 14 and 15 are also moved in the direction approaching as the heating resistor 161 is stopped.

この実施形態では、第2の実施形態の効果に加え、配線パタン14,15の材料費の削減が可能となる。   In this embodiment, in addition to the effects of the second embodiment, the material cost of the wiring patterns 14 and 15 can be reduced.

図8は、この発明のセラミックヒータに関する第4の実施形態について説明するための正面図であり、図1と同一の構成部分には同一の符号を付して説明する。   FIG. 8 is a front view for explaining a fourth embodiment relating to the ceramic heater of the present invention. The same components as those in FIG.

この実施形態は、配線パタン14,15を絶縁基板11の長手方向に略並行に形成し、配線パタン14,15間に、配線パタン14,15に非接触状態の電極12,13から最も遠い側から近い側に漸次幅狭となる楔状の配線パタン18を形成し、配線パタン18と配線パタン14間に抵抗発熱体163を、配線パタン18と配線パタン15間に抵抗発熱体164をそれぞれ形成したものである。   In this embodiment, the wiring patterns 14 and 15 are formed substantially parallel to the longitudinal direction of the insulating substrate 11, and the side farthest from the electrodes 12 and 13 that are not in contact with the wiring patterns 14 and 15 between the wiring patterns 14 and 15. A wedge-shaped wiring pattern 18 having a gradually narrower width is formed on the side closer to the wiring pattern, a resistance heating element 163 is formed between the wiring pattern 18 and the wiring pattern 14, and a resistance heating element 164 is formed between the wiring pattern 18 and the wiring pattern 15. Is.

この実施形態での発熱抵抗体163,164は、電極12,13から離れるに従い漸次、図1の発熱抵抗体16と同様の材料と同様の方法で形成される発熱抵抗体163,164の配線パタン14,15との合成した長さを短くし、等価的に図1の発熱抵抗体16と同様に形成する。   The heating resistors 163 and 164 in this embodiment are gradually connected to the wiring patterns of the heating resistors 163 and 164 formed by the same method as the material of the heating resistor 16 in FIG. 14 and 15 are made shorter and equivalently formed in the same manner as the heating resistor 16 in FIG.

従って、この実施形態でも絶縁基板の長手方向の素早い発熱を実現させるとともに、温度分布の均一化を図ることが可能となる。   Therefore, in this embodiment, it is possible to realize quick heat generation in the longitudinal direction of the insulating substrate and uniform temperature distribution.

図9は、この発明のセラミックヒータに関する第5の実施形態について説明するための正面図であり、図1と同一の構成部分には同一の符号を付して説明する。   FIG. 9 is a front view for explaining a fifth embodiment relating to the ceramic heater of the present invention. The same components as those in FIG.

この実施形態は、配線パタン14,15を絶縁基板11の長手方向に略並行に形成し、配線パタン14,15間に、配線パタン14,15と非接触状態で、電極12,13から最も遠い側から近い側に長さの異なる配線パタン181,182,183を形成する。配線パタン14と181の間、配線パタン181と183の間、配線パタン14と183の間には、発熱抵抗体165を形成する。さらに、配線パタン183と182の間、配線パタン182と15の間、配線パタン183と15の間には、発熱抵抗体166を形成する。   In this embodiment, the wiring patterns 14 and 15 are formed substantially parallel to the longitudinal direction of the insulating substrate 11, and are farthest from the electrodes 12 and 13 between the wiring patterns 14 and 15 in a non-contact state with the wiring patterns 14 and 15. Wiring patterns 181, 182 and 183 having different lengths are formed on the side closer to the side. A heating resistor 165 is formed between the wiring patterns 14 and 181, between the wiring patterns 181 and 183, and between the wiring patterns 14 and 183. Further, a heating resistor 166 is formed between the wiring patterns 183 and 182, between the wiring patterns 182 and 15, and between the wiring patterns 183 and 15.

この実施形態では、電極12,13に最も近い端の配線パタン183から電極12,13に最も近い配線パタン182の端までの発熱抵抗体165,166と、電極12,13に最も近い配線パタン182の端から電極12,13に最も近い配線パタン181の端までの発熱抵抗体165,166と、電極12,13に最も近い配線パタン181の端から電極12,13に最も遠い配線パタン182の端までの発熱抵抗体165,166とにより、配線パタン14,15間の合成の抵抗値が異なるように形成した。   In this embodiment, the heating resistors 165 and 166 from the wiring pattern 183 at the end closest to the electrodes 12 and 13 to the end of the wiring pattern 182 closest to the electrodes 12 and 13 and the wiring pattern 182 closest to the electrodes 12 and 13 are used. Heating element 165, 166 from the end of the wiring pattern 181 to the end of the wiring pattern 181 closest to the electrodes 12, 13 and the end of the wiring pattern 182 farthest from the end of the wiring pattern 181 closest to the electrodes 12, 13 to the electrodes 12, 13 The combined resistance values between the wiring patterns 14 and 15 are different from each other by the heating resistors 165 and 166.

この実施形態の場合、配線パタン182がある位置までと、配線パタン182と183がある位置までと、配線パタン182と183と181がある位置まで電極12,13から離れるに従い、配線パタン14,15間の合成抵抗値が漸次低くなる発熱抵抗体165,166となっている。従って、絶縁基板11の長手方向の素早い発熱を実現させるとともに、温度分布の均一化を図ることが可能となる。   In the case of this embodiment, the wiring patterns 14 and 15 are moved away from the electrodes 12 and 13 to the position where the wiring patterns 182 are located, the positions where the wiring patterns 182 and 183 are located, and the positions where the wiring patterns 182, 183 and 181 are located. The heating resistances 165 and 166 are gradually reduced in the combined resistance value therebetween. Therefore, it is possible to realize rapid heat generation in the longitudinal direction of the insulating substrate 11 and to make the temperature distribution uniform.

この場合、合成の発熱抵抗体165,166長さが絶縁基板11の長手方向に同一の区間があり、この区間では若干温度分布の均一化が劣る。これを解消するには、配線パタン14,15間の長さの異なる配線パタンの数を多くすればよい。   In this case, there is a section in which the lengths of the synthetic heating resistors 165 and 166 are the same in the longitudinal direction of the insulating substrate 11, and the temperature distribution is slightly inhomogeneous in this section. In order to solve this problem, the number of wiring patterns having different lengths between the wiring patterns 14 and 15 may be increased.

次に、図10を参照し、上記したセラミックヒータを定着装置200に実装した場合の、この発明の加熱装置に関する一実施例について説明する。図中セラミックヒータ100部分は、図1〜図3と同じであり、同一の構成部分には同一の符号を付し、その説明は省略する。   Next, with reference to FIG. 10, an embodiment relating to the heating device of the present invention when the above-described ceramic heater is mounted on the fixing device 200 will be described. In the figure, the ceramic heater 100 is the same as that shown in FIGS.

図10において、201は回転軸202で回転自在に回転される加圧ローラで、その表面に耐熱性弾性材料たとえばシリコーンゴム層203が嵌合してある。加圧ローラ201の回転軸202と対向してセラミックヒータ100が並置して図示しない基台内に取り付けられている。   In FIG. 10, reference numeral 201 denotes a pressure roller which is rotated by a rotating shaft 202, and a heat resistant elastic material such as a silicone rubber layer 203 is fitted on the surface thereof. The ceramic heater 100 is juxtaposed with the rotating shaft 202 of the pressure roller 201 and attached to a base (not shown).

セラミックヒータ100を含む基台の周囲にはポリイミド樹脂等からなる耐熱性のシートからなるエンドレスのロール状の定着フィルム204が循環自在に巻装されており、抵抗発熱体161〜166を介した絶縁基板11真上のオーバーコート層17の表面は、この定着フィルム204を介して加圧ローラ201のシリコーンゴム層203と弾接している。   An endless roll-shaped fixing film 204 made of a heat-resistant sheet made of polyimide resin or the like is wound around the base including the ceramic heater 100 so as to be circulated and insulated through resistance heating elements 161-166. The surface of the overcoat layer 17 directly above the substrate 11 is in elastic contact with the silicone rubber layer 203 of the pressure roller 201 via the fixing film 204.

定着装置200において、セラミックヒータ100は電極12,13に接触したりん青銅板等のからなる弾性が付与された図示しないコネクタを通じて通電され、発熱した抵抗発熱体161〜166のオーバーコート層17上に設けられた定着フィルム204面とシリコーンゴム層203との間で、トナー像T1がまず定着フィルム204を介してセラミックヒータ100により加熱溶融され、少なくともその表面部は融点を大きく上回り完全に軟化溶融する。この後、加圧ローラ201の用紙排出側では複写用の用紙Pがセラミックヒータ100から離れ、トナー像T2は自然放熱して再び冷却固化し、定着フィルム204も複写用紙Pから離反される。   In the fixing device 200, the ceramic heater 100 is energized through a connector (not shown) made of a phosphor bronze plate or the like that is in contact with the electrodes 12 and 13, and generates heat on the overcoat layer 17 of the resistance heating elements 161 to 166 that generate heat. The toner image T1 is first heated and melted by the ceramic heater 100 via the fixing film 204 between the surface of the fixing film 204 provided and the silicone rubber layer 203, and at least the surface portion greatly exceeds the melting point and is completely softened and melted. . Thereafter, on the paper discharge side of the pressure roller 201, the copy paper P is separated from the ceramic heater 100, the toner image T2 is naturally radiated and cooled and solidified again, and the fixing film 204 is also separated from the copy paper P.

このように、トナー像T1は一旦完全に軟化溶融された後、加圧ローラ201の用紙排出側で再び冷却するので、トナー像T2の凝縮力は非常に大きくなっている。   As described above, the toner image T1 is once completely softened and melted and then cooled again on the paper discharge side of the pressure roller 201. Therefore, the condensing force of the toner image T2 is very large.

この定着装置200では、例えば図1に示すアルミナ絶縁基板11の長手方向に沿う上面および側面にオーバーコート層17が施されたセラミックヒータ100を取り付けているので耐機械的な衝撃性も向上する。また、セラミックヒータ100を含む基台の周囲を巻装しているリング状の定着フィルム204が絶縁基板11の長手方向に沿う周縁表面部に摺接していっても定着フィルム204に傷を付けることを防止することができる。   In the fixing device 200, for example, the ceramic heater 100 having the overcoat layer 17 applied to the upper surface and the side surface along the longitudinal direction of the alumina insulating substrate 11 shown in FIG. Further, even if the ring-shaped fixing film 204 wound around the base including the ceramic heater 100 is in sliding contact with the peripheral surface portion along the longitudinal direction of the insulating substrate 11, the fixing film 204 is scratched. Can be prevented.

次に、図11を参照して、この発明に係るセラミックヒータ、このセラミックヒータを用いた加熱装置を搭載した複写機を例としたこの発明の画像形成装置に関する一実施例について説明する。図中、加熱装置200の部分は、上記した説明と同じであり、同一部分には同一の符号を付し、その説明は省略する。   Next, with reference to FIG. 11, a description will be given of an embodiment of the image forming apparatus of the present invention, taking as an example a copying machine equipped with a ceramic heater according to the present invention and a heating device using the ceramic heater. In the figure, the part of the heating device 200 is the same as described above, and the same reference numerals are given to the same parts, and the description thereof is omitted.

図11において、301は複写機300の筐体、302は筐体301の上面に設けられたガラス等の透明部材からなる原稿載置台で、矢印Y方向に往復動して原稿Poを走査する。   In FIG. 11, 301 is a casing of the copying machine 300, 302 is a document placing table made of a transparent member such as glass provided on the upper surface of the casing 301, and reciprocates in the direction of arrow Y to scan the document Po.

筐体301内の上方向には光照射用のランプと反射鏡とからなる照明装置302が設けられており、この照明装置302により照射された原稿Poからの反射光源が短焦点小径結像素子アレイ303によって感光ドラム304上スリット露光される。なお、この感光ドラム304は矢印方向に回転する。   An illuminating device 302 including a light irradiation lamp and a reflecting mirror is provided in the upper direction in the housing 301, and a reflected light source from the original Po irradiated by the illuminating device 302 is a short focus small diameter imaging element. A slit exposure is performed on the photosensitive drum 304 by the array 303. The photosensitive drum 304 rotates in the direction of the arrow.

また、305は帯電器で、例えば酸化亜鉛感光層あるいは有機半導体感光層が被覆された感光ドラム304上に一様に帯電を行う。この帯電器305により帯電された感光ドラム304には、結像素子アレイ303によって画像露光が行われた静電画像が形成される。この静電画像は、現像器306による加熱で軟化溶融する樹脂等からなるトナーを用いて顕像化される。   Reference numeral 305 denotes a charger that uniformly charges, for example, a photosensitive drum 304 coated with a zinc oxide photosensitive layer or an organic semiconductor photosensitive layer. An electrostatic image subjected to image exposure by the imaging element array 303 is formed on the photosensitive drum 304 charged by the charger 305. This electrostatic image is visualized using toner made of a resin that softens and melts when heated by the developing device 306.

カセット307内に収納されている複写用紙Pは、給送ローラ308と感光ドラム304上の画像と同期するタイミングをとって上下方向で圧接して回転される対の搬送ローラ309によって、感光ドラム304上に送り込まれる。そして、転写放電器310によって感光ドラム304上に形成されているトナー像は複写用紙P上に転写される。   The copy paper P stored in the cassette 307 is rotated by a pair of conveying rollers 309 that are rotated in pressure contact with each other in synchronization with the feeding roller 308 and the image on the photosensitive drum 304. Sent to the top. The toner image formed on the photosensitive drum 304 is transferred onto the copy paper P by the transfer discharger 310.

この後、感光ドラム304上から離れた用紙Pは、搬送ガイド311によって加熱装置200に導かれ、加熱定着処理された後にトレイ312内に排出される。なお、トナー像を転写後、感光ドラム304上の残留トナーはクリーナ313によって除去される。   Thereafter, the paper P that is separated from the photosensitive drum 304 is guided to the heating device 200 by the conveyance guide 311, and is discharged into the tray 312 after being subjected to heat fixing processing. Note that the residual toner on the photosensitive drum 304 is removed by the cleaner 313 after the toner image is transferred.

定着装置200は複写用紙Pの移動方向と直交する方向に、この複写機300が複写できる最大判用紙の幅(長さ)に合わせた有効長、すなわち最大判用紙の幅(長さ)より長い抵抗発熱体161〜166を延在させてセラミックヒータ100の加圧ローラ201が設けられている。   The fixing device 200 is longer in the direction orthogonal to the moving direction of the copy paper P than the effective length corresponding to the width (length) of the maximum format paper that can be copied by the copier 300, that is, longer than the width (length) of the maximum format paper. The pressure roller 201 of the ceramic heater 100 is provided by extending the resistance heating elements 161 to 166.

そして、セラミックヒータ100と加圧ローラ201との間を送られる用紙P上の未定着トナー像T1は、抵抗発熱体161〜166からの熱を受け溶融して複写用紙P面上に文字、英数字、記号、図面等の複写像を現出させる。   Then, the unfixed toner image T1 on the paper P sent between the ceramic heater 100 and the pressure roller 201 is melted by receiving heat from the resistance heating elements 161 to 166 and is written on the surface of the copy paper P. Make a copy of numbers, symbols, drawings, etc. appear.

このような、複写機300は加熱装置200に記載した内容と同様の作用効果、すなわち、複写機等においては定着フィルム等の部品の早期劣化や複写用紙の損傷等の防止を図ることが可能となる。   Such a copying machine 300 can achieve the same effect as the contents described in the heating device 200, that is, in the copying machine or the like, it is possible to prevent premature deterioration of parts such as a fixing film or damage of copying paper. Become.

なお、この発明は上記した実施例に限定されるものではない。例えば、オーバーコート材は相対するフィルムの材質やその他条件によって変える必要があるため特定はできないが、フィルムが樹脂の場合、オーバーコート層はガラス、フィルムが金属の場合オーバーコート層は樹脂を組み合わせるのが望ましい。この樹脂は一般的に摺動性に優れるとされる材料、ポリアミド(PA)、ポリアセタール(POM)、ポリテトラフルオロエチレン(PTFE)、およびポリフェニレンサルファイド、エラストマー系、ポリオレフィン系、フッ素等があり、基本的にはどれを使用しても良いが、耐熱性から弾性に富むPI(ポリイミド)、PAI(ポリアミドイミド)等のイミド系が好ましいが、硬度が低すぎると樹脂被膜の方が削れてしまうため、3H以上の硬度は必要である。   The present invention is not limited to the above-described embodiments. For example, the overcoat material must be changed depending on the material of the opposite film and other conditions, so it cannot be specified. However, if the film is a resin, the overcoat layer is a glass, and if the film is a metal, the overcoat layer is a combination of resins. Is desirable. This resin includes materials that are generally excellent in slidability, polyamide (PA), polyacetal (POM), polytetrafluoroethylene (PTFE), polyphenylene sulfide, elastomer, polyolefin, fluorine, etc. Any of these may be used, but imides such as PI (polyimide) and PAI (polyamideimide), which are heat-resistant and rich in elasticity, are preferred, but if the hardness is too low, the resin coating will be scraped off. Hardness of 3H or higher is necessary.

セラミックヒータの用途としては、複写機等の画像形成装置の定着用に用いたが、これに限らず、家庭用の電気製品、業務用や実験用の精密機器や化学反応用の機器等に装着して加熱や保温の熱源としても使用可能である。   Ceramic heaters are used for fixing image forming devices such as copiers, but are not limited to this, and are installed in household electrical products, precision instruments for business use and experiments, and chemical reaction equipment. Thus, it can also be used as a heat source for heating and heat insulation.

この発明のセラミックヒータの第1の実施形態について説明するための構成図。The block diagram for demonstrating 1st Embodiment of the ceramic heater of this invention. 図1のx−x’断面図。X-x 'sectional drawing of FIG. 図1要部を抜書きして示した構成図。The block diagram which extracted and showed the principal part of FIG. この発明のセラミックヒータの発熱抵抗体の長さを変化させた場合の発熱抵抗体の抵抗値の変化について説明する説明図。Explanatory drawing explaining the change of the resistance value of a heating resistor at the time of changing the length of the heating resistor of the ceramic heater of this invention. この発明の効果について説明するための説明図。Explanatory drawing for demonstrating the effect of this invention. この発明のセラミックヒータの第2の実施形態について説明するための構成図。The block diagram for demonstrating 2nd Embodiment of the ceramic heater of this invention. この発明のセラミックヒータの第3の実施形態について説明するための構成図。The block diagram for demonstrating 3rd Embodiment of the ceramic heater of this invention. この発明のセラミックヒータの第4の実施形態について説明するための構成図。The block diagram for demonstrating 4th Embodiment of the ceramic heater of this invention. この発明のセラミックヒータの第5の実施形態について説明するためのB構成図。The B block diagram for demonstrating 5th Embodiment of the ceramic heater of this invention. この発明の加熱装置に関する一実施形態について説明するための概略図。Schematic for demonstrating one Embodiment regarding the heating apparatus of this invention. この発明の画像形成装置に関する一実施形態について説明するための概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic for demonstrating one Embodiment regarding the image forming apparatus of this invention.

符号の説明Explanation of symbols

11 絶縁基板
12,13 電極
14,15,18,181〜183 配線パタン
16,161〜166 発熱抵抗体
17 オーバーコート層
100 セラミックヒータ
200 定着装置
300 複写機
11 Insulating substrate 12, 13 Electrodes 14, 15, 18, 181 to 183 Wiring pattern 16, 161 to 166 Heating resistor 17 Overcoat layer 100 Ceramic heater 200 Fixing device 300 Copying machine

Claims (4)

耐熱・絶縁性材料で形成される長尺平板状の絶縁基板と、
前記絶縁基板面上の長手方向両側に沿ってそれぞれ形成した第1および第2の配線パタンと、
前記第1および第2の配線パタン同方向の一端にそれぞれ形成し、前記第1および第2の配線パタンに電力を供給させる第1および第2の電極と、
前記第1および第2の配線パタン間の形成するとともに電気的に接続され、前記第1および第2の電極から離れるに従い長さを短く、前記絶縁基板の長手方向に幅広く形成した発熱抵抗体とを具備したことを特徴とするセラミックヒータ。
A long flat insulating substrate formed of a heat-resistant and insulating material;
First and second wiring patterns respectively formed along both longitudinal sides on the insulating substrate surface;
First and second electrodes formed at one end in the same direction as the first and second wiring patterns, respectively, and supplying power to the first and second wiring patterns;
A heating resistor formed between and electrically connected to the first and second wiring patterns, having a shorter length as the distance from the first and second electrodes increases, and widely formed in the longitudinal direction of the insulating substrate; A ceramic heater comprising:
前記発熱抵抗体が前記第1および第2の電極に最も近い側の長さをL1、最も遠い側の長さをL2、前記発熱抵抗体の幅をW(mm)、該発熱抵抗体のシート抵抗値をR(Ω/□)、定数Aを−4.0×10―5、定数Bを4.8×10―4≦B≦6.5×10―4としたときに、前記発熱抵抗体の長さL1〜L2までの絞り率Xは、
L2/L1=1−X
X=(A×R+B)×L1×W
=(A×L1×W)R+(L1×W)B
の関係式を満足することを特徴とする請求項1記載のセラミックヒータ。
The length of the heating resistor closest to the first and second electrodes is L1, the length of the farthest side is L2, the width of the heating resistor is W (mm), and the sheet of the heating resistor When the resistance value is R (Ω / □), the constant A is −4.0 × 10 −5 , and the constant B is 4.8 × 10 −4 ≦ B ≦ 6.5 × 10 −4 , the heating resistance The aperture ratio X from the body length L1 to L2 is
L2 / L1 = 1-X
X = (A × R + B) × L1 × W
= (A x L1 x W) R + (L1 x W) B
The ceramic heater according to claim 1, wherein the following relational expression is satisfied.
加熱ローラと、
前記加熱ローラに対向配置された抵抗発熱体が圧接された請求項1〜3いずれかに記載のセラミックヒータと、
前記セラミックヒータと前記加圧ローラとの間を移動可能に設けられた定着フィルムとを具備したことを特徴とする加熱装置。
A heating roller;
The ceramic heater according to any one of claims 1 to 3, wherein a resistance heating element disposed to face the heating roller is pressed.
A heating device comprising a fixing film movably provided between the ceramic heater and the pressure roller.
媒体に形成された静電潜像にトナーを付着させてこのトナーを用紙に転写して所定の画像を形成する手段と、
画像を形成した用紙を加圧ローラにより定着フィルムを介してセラミックヒータに圧接しながら通過させることによってトナーを定着するようにした請求項4記載の定着装置とを具備したことを特徴とする画像形成装置。
Means for attaching a toner to an electrostatic latent image formed on a medium and transferring the toner to a sheet to form a predetermined image;
5. An image forming apparatus comprising: a fixing device according to claim 4, wherein the toner is fixed by passing a sheet on which an image is formed through a pressure roller through a fixing film while being pressed against a ceramic heater. apparatus.
JP2005349947A 2005-12-02 2005-12-02 Ceramic heater, heating device, image forming device Abandoned JP2007157456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005349947A JP2007157456A (en) 2005-12-02 2005-12-02 Ceramic heater, heating device, image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005349947A JP2007157456A (en) 2005-12-02 2005-12-02 Ceramic heater, heating device, image forming device

Publications (1)

Publication Number Publication Date
JP2007157456A true JP2007157456A (en) 2007-06-21

Family

ID=38241568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005349947A Abandoned JP2007157456A (en) 2005-12-02 2005-12-02 Ceramic heater, heating device, image forming device

Country Status (1)

Country Link
JP (1) JP2007157456A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328158A (en) * 2006-06-08 2007-12-20 Canon Inc Image heating device and heating body used therefor
JP2019078820A (en) * 2017-10-20 2019-05-23 東芝テック株式会社 Fixing device and image forming apparatus
WO2023017951A1 (en) * 2021-08-10 2023-02-16 엑셀로 주식회사 Temperature measurement sensor module and temperature measurement system comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135463A (en) * 1999-11-04 2001-05-18 Sakaguchi Dennetsu Kk Planar heater
JP2005091681A (en) * 2003-09-17 2005-04-07 Optrex Corp Liquid crystal display device
JP2005234540A (en) * 2004-01-23 2005-09-02 Canon Inc Image heating apparatus and heater to be used therein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135463A (en) * 1999-11-04 2001-05-18 Sakaguchi Dennetsu Kk Planar heater
JP2005091681A (en) * 2003-09-17 2005-04-07 Optrex Corp Liquid crystal display device
JP2005234540A (en) * 2004-01-23 2005-09-02 Canon Inc Image heating apparatus and heater to be used therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328158A (en) * 2006-06-08 2007-12-20 Canon Inc Image heating device and heating body used therefor
JP2019078820A (en) * 2017-10-20 2019-05-23 東芝テック株式会社 Fixing device and image forming apparatus
WO2023017951A1 (en) * 2021-08-10 2023-02-16 엑셀로 주식회사 Temperature measurement sensor module and temperature measurement system comprising same

Similar Documents

Publication Publication Date Title
JP5124134B2 (en) Heater, heating device, image forming apparatus
JP2007232819A (en) Fixing heater, heating device and image forming apparatus
JP2007035505A (en) Heater, heating device, and image processing device
JP2006012444A (en) Ceramic heater, heating apparatus, and image forming apparatus
JP2006092831A (en) Ceramic heater, fixing device and image forming apparatus
JP5447933B2 (en) Ceramic heater, heating device, image forming device
JP5042525B2 (en) Heater, heating device, image forming apparatus
JP2008166096A (en) Flat plate heater, fixing device, and image processing device
JP2006252897A (en) Heater, heating device, and image-forming device
JP2007121955A (en) Fixing heater, heating device, and image forming apparatus
JP2005339840A (en) Heater, heating device and image forming device
JP2007157456A (en) Ceramic heater, heating device, image forming device
JP2011091006A (en) Ceramic heater, heating device, and image forming device
JP5447932B2 (en) Ceramic heater, heating device, image forming device
JP2008040097A (en) Heating heater, heating device, image forming device
JP2006331950A (en) Ceramic heater, heating apparatus, and image processing apparatus
JP5320549B2 (en) Ceramic heater, heating device, image forming device
JP5010365B2 (en) Plate heater, heating device, image forming device
JP2007265647A (en) Heater, heating device, and image forming device
JP2009059539A (en) Planar heater, heating device, and image-forming device
JP2006293133A (en) Fixing heater, fixing device and image forming apparatus
JP2005310494A (en) Heater, heating device, image forming device
JP2006012443A (en) Heater, heating device, and image forming device
JP2006091139A (en) Fixing heater, fixing device, and image forming apparatus
JP2005339841A (en) Heater, heating device and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20101209