JP2007155948A - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP2007155948A
JP2007155948A JP2005348697A JP2005348697A JP2007155948A JP 2007155948 A JP2007155948 A JP 2007155948A JP 2005348697 A JP2005348697 A JP 2005348697A JP 2005348697 A JP2005348697 A JP 2005348697A JP 2007155948 A JP2007155948 A JP 2007155948A
Authority
JP
Japan
Prior art keywords
lens group
lens
zoom
positive
zoom lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005348697A
Other languages
Japanese (ja)
Other versions
JP4974103B2 (en
Inventor
Jihei Nakagawa
治平 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIVE D KK
Original Assignee
FIVE D KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIVE D KK filed Critical FIVE D KK
Priority to JP2005348697A priority Critical patent/JP4974103B2/en
Publication of JP2007155948A publication Critical patent/JP2007155948A/en
Application granted granted Critical
Publication of JP4974103B2 publication Critical patent/JP4974103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a zoom lens system to make an apparatus compact by eliminating a negative meniscus lens placed on the object side of a reflecting face or a rectangular prism. <P>SOLUTION: The zoom lens system comprises a rectangular prism P for refracting a luminous flux at about 90°, a first lens group L1 comprising a negative reflecting lens and a positive lens and having a negative optical power as the whole, a second lens group L2 comprising positive, positive, and negative lenses and having a positive optical power as the whole, and a third lens group L3 having a positive optical power, which are arranged in order from the object side, and varies the magnification by changing air gaps between the rectangular prism P and the first lens group L1, between the first lens group L1 and the second lens group L2, and between the second lens group L2 and the third lens group L3 and satisfies 0.75<D/f2<1.25 and R2B>0 wherein; f2 is a focal length of the second lens group; D is an overall length of the second lens group; and R2B is a radius of curvature of the backmost surface of the second lens group, and has the first lens group placed in almost the same position at the widest angle end and the maximum telephoto end. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、デジタルカメラ、携帯電話などの画像撮影用の低倍率ズームレンズに関するものである。   The present invention relates to a low-magnification zoom lens for photographing an image such as a digital camera or a mobile phone.

光学像のデジタル化技術の進歩によって、デジタルカメラや撮影機能付きの携帯電話等が急速に普及した。競争の激化にともなって他機種との差別化を図るため、携帯性をより高めた小型化、薄型化と同時に、撮影レンズのズーム化による高機能化が求められている。撮影レンズのズーム化の要求は機器の小型化薄型化と矛盾する。そのため、機器の厚みが増えないように、ズームレンズ系を元結の途中で折り曲げる方式が提案されてきた。   With the advancement of optical image digitization technology, digital cameras, mobile phones with photographing functions, etc. have rapidly spread. In order to differentiate from other models as competition intensifies, there is a demand for higher functionality by zooming the photographic lens as well as making it more compact and thinner for greater portability. The demand for zooming in the taking lens contradicts the miniaturization and thinning of the equipment. Therefore, a method has been proposed in which the zoom lens system is bent in the middle of the original connection so that the thickness of the device does not increase.

たとえば、特許文献1(特開平11−196303号公報)には、負メニスカス形状の固定レンズ素子の像側に設けた反射面で光路を90゜折り曲げ、マイナスリードのズームレンズ系を配する構成が開示されている。   For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 11-196303) has a configuration in which a negative lead zoom lens system is arranged by bending the optical path by 90 ° on a reflection surface provided on the image side of a negative meniscus fixed lens element. It is disclosed.

また、特許文献2(特開平11−258678号公報)には、負メニスカス形状の固定レンズ素子、可動の正レンズ群の後ろに反射面を設けて光結を90°折り曲げ、続いて正レンズ群を配する構成が開示されている。   In Patent Document 2 (Japanese Patent Laid-Open No. 11-258678), a negative meniscus fixed lens element and a movable positive lens group are provided with a reflecting surface behind them, and the light beam is bent by 90 °, followed by a positive lens group. The structure which distributes is disclosed.

さらに、特許文献3(特開平8−248318号公報)、特許文献4(特開2000−131610号公報)、特許文献5(特開2003−202500号公報)には、正パワーの第1群が負レンズ、光路を90°曲げる直角プリズム、正レンズで構成された多群ズーム系が開示されている。
特開平11−196303号公報 特開平11−258678号公報 特開平8−248318号公報 特開2000−131610号公報 特開2003−202500号公報
Further, in Patent Document 3 (Japanese Patent Laid-Open No. 8-248318), Patent Document 4 (Japanese Patent Laid-Open No. 2000-131610), and Patent Document 5 (Japanese Patent Laid-Open No. 2003-202500), the first group of positive power is A multi-group zoom system composed of a negative lens, a right-angle prism that bends the optical path by 90 °, and a positive lens is disclosed.
JP 11-196303 A JP 11-258678 A JP-A-8-248318 JP 2000-131610 A JP 2003-202500 A

上述した従来の技術は、撮影レンズのワイド端の広角化と機器の薄型化とを両立させるため、メニスカス形状の負レンズの後ろに光結を90°折り曲げる反射面または直角プリズムを配する構成であった。しかし、この構成はズームンズ系自体の全長が長くなり大型化してしまう問題がある。本発明は、反射面または直角プリズムの物体側に置かれるメニスカス負レンズをなくし、機器がコンパクトになるように、ズームレンズ系を小型化することを目的とする。   The above-described conventional technology has a configuration in which a reflecting surface or a right-angle prism is disposed behind a meniscus-shaped negative lens to bend the optical connection by 90 ° in order to achieve both a wide angle at the wide end of the photographic lens and a thinner device. there were. However, this configuration has a problem that the overall length of the zoom lens system itself becomes long and the size thereof increases. An object of the present invention is to reduce the size of a zoom lens system so that a meniscus negative lens placed on the object side of a reflecting surface or a right-angle prism is eliminated and the apparatus becomes compact.

本発明は、負・正パワーの2群ズームに固定のフィールドレンズ第3群を加えたズームレンズにおいて、第2レンズ群の全長、およびレンズ形状を規定することによりズームシステムをコンパクト化するものである。   The present invention is a zoom lens in which a fixed field lens third group is added to a negative / positive power two-group zoom, and the zoom system is made compact by defining the overall length and lens shape of the second lens group. is there.

即ち、請求項1の発明は、物体側より順に、負レンズおよび正レンズで構成され全体として負の光学的パワーを有するル第1レンズ群、正、正、負のレンズで構成され全体として正の光学的パワーを有する第2レンズ群、正の光学的パワーを有する第3レンズ群より成り、プリズムと第1レンズ群、第1レレズ群と第2レンズ群、および第2レンズ群と第3レンズ群の空気間隔を変えることで変倍し、
0.75<D/f2<1.25
R2B>0
ただし、f2:第2レンズ群の焦点距離、D:第2レンズ群の全長、R2B:第2レンズ群の最後部面の曲率半径であり、ズーム比が3程度であることを特徴とする。
That is, the invention of claim 1 is composed of a negative lens and a positive lens in order from the object side and having a negative optical power as a whole, a positive first lens group, a positive lens, and a negative lens. A second lens group having a positive optical power, a third lens group having a positive optical power, a prism and a first lens group, a first lens group and a second lens group, and a second lens group and a third lens group. By changing the air spacing of the lens group,
0.75 <D / f2 <1.25
R2B> 0
Here, f2 is the focal length of the second lens group, D is the total length of the second lens group, R2B is the radius of curvature of the rearmost surface of the second lens group, and the zoom ratio is about 3.

請求項2の発明は、請求項1のズームレンズにおいて、前記第1群レンズは最広角端状態と最望遠端状態において、最も被写体側の略同じ位置に配置され、かつ、像側で移動して変倍されることを特徴とする。   According to a second aspect of the present invention, in the zoom lens of the first aspect, the first group lens is disposed at substantially the same position on the subject side in the widest-angle end state and the telephoto end state, and moves on the image side. It is characterized by being scaled.

請求項3の発明は、請求項1または2のズームレンズにおいて、前記第1レンズ群の物体側に光束を略90°折り曲げる直角プリズムを配置し、プリズムと第1レンズ群、第1レンズ群と第2レンズ群、および第2レンズ群と第3レンズ群の空気間隔を変えることで変倍したことを特徴とする。   According to a third aspect of the present invention, in the zoom lens of the first or second aspect, a right-angle prism that bends the light beam by approximately 90 ° is disposed on the object side of the first lens group, and the prism, the first lens group, and the first lens group The zoom lens is characterized by changing the magnification by changing the air distance between the second lens group and the second lens group and the third lens group.

請求項4の発明は、請求項1ないし3のいずれかのズームレンズにおいて、ズーム比が3程度であることを特徴とする。   According to a fourth aspect of the present invention, in the zoom lens according to any one of the first to third aspects, the zoom ratio is about 3.

本発明によれば、ズームレンズの全長を短いものとすることができ、機器の薄型化、コンパタト化が実現できる。   According to the present invention, the overall length of the zoom lens can be shortened, and the device can be made thinner and more compact.

デジタルカメラ、携帯電話の撮影装置等のレンズは、小型軽量でしかも情報量の多い広い画角が必要な条件である。そのため、ズームレンズは構成枚数が少なくズーミング方式がシンプルなこと、ワイド端が広角なこと、主光線が像側でテレセントリックに近いことが望ましい。負・正のパワーからなる2群ズームの骨格にフィールドレンズを加えたシステムは、これらの条件を満たす可能性を有している。   A lens for a digital camera, a mobile phone photographing device, etc. is a condition that requires a wide angle of view with a small size and light weight and a large amount of information. For this reason, it is desirable that the zoom lens has a small number of constituent elements and that the zooming method is simple, that the wide end has a wide angle, and that the principal ray is close to telecentric on the image side. A system in which a field lens is added to a two-group zoom skeleton having negative and positive powers has a possibility of satisfying these conditions.

本例に係るズームレンズZは、図1に示すように、物体側より順に、光来を略90゜折り曲げる直角プリズムP、負レンズおよび正レンズで構成され全体として負の光学的パワーを有する第1レンズ群L1、正、正、負のレンズで構成され全体として正の光学的パワーを有する第2レンズ群L2、正の光学的パワーを有する第3レンズ群L3よりなる。本例では、第1レンズ群L1、第2レンズ群L2、第3レンズ群L3をカム装置で移動し、直角プリズムPと第1レンズ群L1、第1レンズ群L1と第2レンズ群L2、および第2レンズ群L2と第3レンズ群L3の空気間隔を変えることで変倍している。   As shown in FIG. 1, the zoom lens Z according to the present example includes a right-angle prism P that bends light approximately 90 ° in order from the object side, a negative lens, and a positive lens, and has a negative optical power as a whole. One lens unit L1, a second lens unit L2 including positive, positive, and negative lenses and having a positive optical power as a whole, and a third lens unit L3 having a positive optical power. In this example, the first lens group L1, the second lens group L2, and the third lens group L3 are moved by a cam device, and the right-angle prism P and the first lens group L1, the first lens group L1 and the second lens group L2, Further, the magnification is changed by changing the air gap between the second lens unit L2 and the third lens unit L3.

図1(a)は広角、同(b)は標準、同(c)は望遠における各レンズの配置位置を示している。   1A shows a wide angle, FIG. 1B shows a standard position, and FIG. 1C shows a lens arrangement position on a telephoto position.

また本例では、ズームレンズZは、
0.75<D/f2<1.25
R2B>0
ただし、
f2:第2レンズ群の焦点距離
D:第2レンズ群の全長
R2B:第2レンズ群の最後部面の曲率半径
の条件を満たしている。これにより、ズームレンズのコンパクト化を実現できる。
In this example, the zoom lens Z is
0.75 <D / f2 <1.25
R2B> 0
However,
f2: Focal length of the second lens group D: Total length of the second lens group R2B: The condition of the radius of curvature of the rearmost surface of the second lens group is satisfied. Thereby, the zoom lens can be made compact.

本例に係るズームレンズZは、ズーム全域において樋上色収差、倍率色収差を小さくずるために、第1、第2レンズ群とも正・負パワーのエレメントを含む構成にして色消し能力を持たせている。一方、像側テレセントリック性を実現するのに必要な第3レンズ群は、像面に近い位置にあるので、色消しの構成にする必要はない。また、直角プリズムPは、材質の屈折率を高くするほど、小さい形状で多くの周辺光量が確保できる。   In the zoom lens Z according to this example, the first and second lens groups are configured to include elements of positive and negative power so as to have an achromatic ability in order to reduce the upward chromatic aberration and the lateral chromatic aberration in the entire zoom range. . On the other hand, the third lens group necessary for realizing the image side telecentricity is located close to the image plane, and therefore does not need to be achromatic. In addition, the right-angle prism P can secure a larger amount of peripheral light with a smaller shape as the refractive index of the material increases.

本例では、第1レンズ群は負・正パワーの構成とし、先頭の負レンズに非球面を導入することによってワイド端の歪曲収差を補正している。   In this example, the first lens group has a negative / positive power configuration, and a wide-angle distortion is corrected by introducing an aspherical surface to the leading negative lens.

第2レンズ群は、その焦点距離f2とレンズ全長Dの比が0.75<D/f2<1.25、およびR2B>0の構成とすることにより、コンパクト化と非点収差の良好な補正が実現できる。2つの条件によって第2レンズ群の前傾および後側の主点位置が物体側寄りに形成されるので、第2レンズ群の焦点距離を短くすることが可能となりシステムのコンパクト化が実現できる。ここで、D/f2が下限をこえると非点収差の補正が十分でなく、上限を超えると第2レンズ群の全長が大きくなってコンパクト化の障害になる。   The second lens group has a configuration in which the ratio of the focal length f2 to the total lens length D is 0.75 <D / f2 <1.25, and R2B> 0, so that compactness and good correction of astigmatism are achieved. Can be realized. Under the two conditions, the forward tilt and the rear principal point position of the second lens group are formed closer to the object side, so that the focal length of the second lens group can be shortened and the system can be made compact. Here, if D / f2 exceeds the lower limit, the correction of astigmatism is not sufficient, and if the upper limit is exceeded, the entire length of the second lens group becomes large, which is an obstacle to compactness.

また、R2B>0としているので、主点位置が物体側寄りに形成されるために第2レンズ群の焦点距離を小さくできるので、システムのコンパクト化に好ましい。F2B<0とすると、第2レンズ群の焦点距離を小さくできないので、システムのコンパクト化にとって好ましくない   In addition, since R2B> 0, the principal point position is formed closer to the object side, so that the focal length of the second lens group can be reduced, which is preferable for making the system compact. If F2B <0, the focal length of the second lens group cannot be reduced, which is not preferable for making the system compact.

上記2つの条件によって第2レンズ群のパワーが強くなることに起因する球面収差の発生は、第2レンズ群中の1面あるいは2面を非球面化することで補正することができる。   The occurrence of spherical aberration due to the increase in power of the second lens group due to the above two conditions can be corrected by making one or two surfaces in the second lens group aspherical.

さらに、本例では、前記第1レンズ群L1は、最広角端(図1(a))と最望遠端(図(c))との間で像側に移動され変倍されるが、の位置とが略同じ位置となるようにしている。これにより、最広角端と最望遠端において直角プリズムPと第1レンズ群L1との間の空気間距離をほぼ同じものとすることができ、直角プリズムPと第1レンズ群L1とを近接して配置することができ、ひいてはズームレンズZの全長の短小化を図ることができる。   Further, in this example, the first lens unit L1 is moved and scaled to the image side between the widest-angle end (FIG. 1A) and the telephoto end (FIG. The position is substantially the same. As a result, the air-to-air distance between the right-angle prism P and the first lens unit L1 can be made substantially the same at the widest-angle end and the telephoto end, and the right-angle prism P and the first lens unit L1 are brought close to each other. Therefore, the overall length of the zoom lens Z can be shortened.

図2に第1レンズ群、第2レンズ群、第3レンズ群を移動させるためのカム線図を示す。本例では、最広角端と最望遠端との間の領域は、レンズはパンフォーカス状態とし、各レンズ群の移動により、ズームレンズZの焦点距離を変更する。   FIG. 2 shows a cam diagram for moving the first lens group, the second lens group, and the third lens group. In this example, in the region between the widest end and the telephoto end, the lens is in a pan focus state, and the focal length of the zoom lens Z is changed by moving each lens group.

また、本例では最広角端の外側に切り替え領域を挟んで広角のマクロ領域を設けている。また最望遠端の外側に切り替え領域を挟んで望遠のマクロ領域を設けている。本例ではこれらの領域において、第3レンズ群L3を移動することによりオートフォーカスを実現している。そして、両マクロ領域において第1レンズ群L1は移動せず、直角プリズムPと第1レンズ群L1との間の空気間隔が狭くならない。このため直角プリズムPと第1レンズ群L1との空気間隔を広げる必要がない。   In this example, a wide-angle macro area is provided outside the widest-angle end with a switching area interposed therebetween. In addition, a telescopic macro area is provided outside the most telephoto end with a switching area interposed therebetween. In this example, autofocus is realized in these regions by moving the third lens unit L3. The first lens unit L1 does not move in both macro regions, and the air space between the right-angle prism P and the first lens unit L1 does not become narrower. For this reason, it is not necessary to widen the air space between the right-angle prism P and the first lens unit L1.

以下本発明に係るズームレンズの実施例について説明する。ただし以下fは焦点距離、FはFナンバー、rは曲率半径、dは面間隔、nは屈折率、vはアッベ数である。また、rに*を付した面は非球面であることを示し、非球面は次の式で表すものとする。ただしXは光軸方向のサグ量、Yは入射光線高である。
X=Y**2/(l十sqrt(l-A*(Y/r)**2))十A4Y**f*4+A6Y**6+A8Y**8+A10Y**10
Examples of the zoom lens according to the present invention will be described below. However, f is a focal length, F is an F number, r is a radius of curvature, d is a surface interval, n is a refractive index, and v is an Abbe number. Further, a surface marked with * in r indicates an aspheric surface, and the aspheric surface is expressed by the following equation. However, X is the sag amount in the optical axis direction, and Y is the incident light height.
X = Y ** 2 / (l tens sqrt (lA * (Y / r ) ** 2)) Ten A4Y ** f * 4 + A6Y ** 6 + A8Y ** 8 + A10Y ** 10

図3は実施例1に係るズームレンズのレンズ構成図であり、(a)は最広角状態、(b)は標準状態、(c)は最望遠状態を示すもの、図4は実施例1に係るズームレンズの最広角状態における球面収差、非点収差、及び歪みを示すグラフ、図5は実施例1に係るズームレンズの標準状態における球面収差、非点収差、及び歪みを示すグラフ、図6は実施例1に係るズームレンズの最望遠状態における球面収差、非点収差、及び歪みを示すグラフである。   3 is a lens configuration diagram of the zoom lens according to Example 1. FIG. 3A shows the widest angle state, FIG. 3B shows the standard state, FIG. 3C shows the maximum telephoto state, and FIG. FIG. 5 is a graph showing spherical aberration, astigmatism, and distortion in the standard state of the zoom lens according to Example 1, and FIG. 4 is a graph showing spherical aberration, astigmatism, and distortion in the maximum telephoto state of the zoom lens according to Example 1;

なお、図4ないし図6において、曲線に付した符号A〜Eは以下に示すように波長の違いを示している(図8ないし10、図12ないし14において同じ)。
A:0.43584μm
B:0.48613μm
C:0.54607μm
D:0.58756μm
E:0.65628μm
In FIGS. 4 to 6, reference signs A to E attached to the curves indicate differences in wavelength as shown below (the same applies to FIGS. 8 to 10 and FIGS. 12 to 14).
A: 0.43584 μm
B: 0.48613 μm
C: 0.54607 μm
D: 0.58756 μm
E: 0.65628 μm

本実施例に係るズームレンズは、以下の構成を備える。
r1= ∞ d1=5.900 n1= 1.78472 v1=25.7
r2= ∞ d2=0.320〜1.787〜0.304
r3= -185.750 d3=0.800 n2= 1.71300 v2=53.9
r4= 3.370 d4=0.020 n3= 1.51313 v3=53.9
r5*= 2.704 d5=0.760
r6= 4.510 d6=1.130 n4=1.80610 v4=33.3
r7= 12.900 d7= 6.521〜2.023〜0.407
r8*= 5.140 d8=0.020 n5=1.51313 v5=53.9
r9= 4.073 d9=1.430 n6=1.48749 v6=70.4
r10= -6.600 d10=0.100
r11= 5.760
d11=1.300
n7=1.58913
v7=61.2
r12= -12.720 dl2=0.100
r13= 15.500
d13=1.320
n8=1.80518
v8=25.5
r14= 2.496 d14=3.123〜6.154〜9.252
r15= 10.130
d15=1.180
n9=1.80518
v9=25.5
r16= -56.350 d16=0.66
r17= ∞
d17= 1.15
n10=1.51680
v10=64.2
r18= ∞

f=4.15〜7.99〜11.94
F=2.86〜4.08〜5.34
画角=65.0°〜34.4°〜23.4°

非球面データ
第5面(r5*)
A 0.2734
A4 -0.175308E-02
A6 0.109505E-02
A8 -0.225209E-03
A10 0.158585E-04

第8面(r8*)
A -5.8125
A4 0.152408E-02
A6 -0.425403E-03
A8 0.186806E-03
A10 -0.513259E-04

f2=5.536 D=4.27 D/f2=0.77
The zoom lens according to the present embodiment has the following configuration.
r1 = ∞ d1 = 5.900 n1 = 1.78472 v1 = 25.7
r2 = ∞ d2 = 0.320〜1.787〜0.304
r3 = -185.750 d3 = 0.800 n2 = 1.71300 v2 = 53.9
r4 = 3.370 d4 = 0.020 n3 = 1.51313 v3 = 53.9
r5 * = 2.704 d5 = 0.760
r6 = 4.510 d6 = 1.130 n4 = 1.80610 v4 = 33.3
r7 = 12.900 d7 = 6.521 ~ 2.023 ~ 0.407
r8 * = 5.140 d8 = 0.020 n5 = 1.51313 v5 = 53.9
r9 = 4.073 d9 = 1.430 n6 = 1.48749 v6 = 70.4
r10 = -6.600 d10 = 0.100
r11 = 5.760
d11 = 1.300
n7 = 1.58913
v7 = 61.2
r12 = -12.720 dl2 = 0.100
r13 = 15.500
d13 = 1.320
n8 = 1.80518
v8 = 25.5
r14 = 2.496 d14 = 3.123〜6.154〜9.252
r15 = 10.130
d15 = 1.180
n9 = 1.80518
v9 = 25.5
r16 = -56.350 d16 = 0.66
r17 = ∞
d17 = 1.15
n10 = 1.51680
v10 = 64.2
r18 = ∞

f = 4.15 ~ 7.99 ~ 11.94
F = 2.86〜4.08〜5.34
Angle of view = 65.0 ° to 34.4 ° to 23.4 °

Aspheric data 5th surface (r5 * )
A 0.2734
A4 -0.175308E-02
A6 0.109505E-02
A8 -0.225209E-03
A10 0.158585E-04

8th surface (r8 * )
A -5.8125
A4 0.152408E-02
A6 -0.425403E-03
A8 0.186806E-03
A10 -0.513259E-04

f2 = 5.536 D = 0.27 D / f2 = 0.77

即ち、本例に係るズームレンズは、図3に示すように最広角状態において(a)、標準状態において(b)、最望遠状態において(c)に示すような配列がなされ、各レンズは各状態の間を所定の図2に示したカム曲線と同様の所定のカム曲線にしたがって移動される。   That is, as shown in FIG. 3, the zoom lens according to this example is arranged as shown in (a) in the widest angle state, (b) in the standard state, and (c) in the maximum telephoto state. It is moved between states according to a predetermined cam curve similar to the predetermined cam curve shown in FIG.

そして、最広角状態において図4、標準状態において図5、最望遠状態において図6に示す球面収差、批点収差および歪みを有するものとなる。これらの球面収差、批点収差および歪みは、十分に実用に耐える優れた値となる、   4 has the spherical aberration, critical aberration, and distortion shown in FIG. 4 in the widest angle state, FIG. 5 in the standard state, and FIG. 6 in the maximum telephoto state. These spherical aberrations, critical aberrations and distortions are excellent enough to withstand practical use.

従って本例に係るズームレンズによれば、良好なレンズ特性を備えたものとして、ズームレンズを小型化することができる。   Therefore, according to the zoom lens according to this example, it is possible to reduce the size of the zoom lens as having good lens characteristics.

次に本発明に係る第2の実施例に係るズームレンズについて説明する。図7は実施例2に係るズームレンズのレンズ構成図であり、(a)は最広角状態、(b)は標準状態、(c)は最望遠状態を示すもの、図8は実施例2に係るズームレンズの最広角状態における球面収差、非点収差、及び歪みを示すグラフ、図9は実施例2に係るズームレンズの標準状態における球面収差、非点収差、及び歪みを示すグラフ、図11は実施例3に係るズームレンズのレンズ構成図であり、(a)は最広角状態、(b)は標準状態、(c)は最望遠状態を示すものである。   Next, a zoom lens according to Example 2 of the present invention will be described. FIG. 7 is a lens configuration diagram of a zoom lens according to Example 2. (a) shows the widest angle state, (b) shows the standard state, (c) shows the maximum telephoto state, and FIG. FIG. 9 is a graph showing spherical aberration, astigmatism, and distortion in the standard state of the zoom lens according to Example 2, and FIG. FIG. 4 is a lens configuration diagram of a zoom lens according to Example 3, wherein (a) shows the widest angle state, (b) shows the standard state, and (c) shows the maximum telephoto state.

本実施例に係るズームレンズは、以下の構成を備える。
r1= ∞ d1=5.900 n1= 1.78472 v1= 25.7
r2= ∞ d2= 0.548〜2.412〜0.466
r3= -91.380 d3=0.800 n2= 1.71300 v2=53.9
r4= 3.669 d4=0.020 n3=1.51313
v3=53.9
r5*= 2.561 d5=0.870
r6= 4.800 d6=1.82 n4=
1.80610 v4=33.3
r7= 21.487 d7=9.126〜3.729〜1.500
r8*= 9.734 d8=2.020 n5=l.58913
v5=61.2
r9= -5.047 d9=0.100
r10= 11.780 d10=2.090 n6=1.62041 v6=60.4
r11= -4.394 d11=0.100
r12= -6.052 d12=1.340 n7=1.69895 v7=30.0
r13= 3.119 d13=3.517〜7.050〜11.224
r14= 9.405 d14=3.000 n8=1.80518 v8=25.5
r15= -16.258 d15=0.100
r16= ∞ d16=0.800 n9=1.51680 v9=64.2
r17= ∞

f=4.15〜7.69〜11.87
F=2.91〜4.06〜5.41
画角=67.6°〜38.2°〜25.4°

非球面データ
第5面(r5*)
A 0.0238
A4 0.551468E-03
A6 0.181852E-03
A8 0.337067E-04
A10 0.152721E-05
第8面(r8*)
A 18.6978
A4
-0.190435E-02
A6 0.492125E-03
A8 0.623006E-04
A10 0.138029E-04

f2=6.97 D=5.65 D/f2=0.81
The zoom lens according to the present embodiment has the following configuration.
r1 = ∞ d1 = 5.900 n1 = 1.78472 v1 = 25.7
r2 = ∞ d2 = 0.548 ~ 2.412 ~ 0.466
r3 = -91.380 d3 = 0.800 n2 = 1.71300 v2 = 53.9
r4 = 3.669 d4 = 0.020 n3 = 1.51313
v3 = 53.9
r5 * = 2.561 d5 = 0.870
r6 = 4.800 d6 = 1.82 n4 =
1.80610 v4 = 33.3
r7 = 21.487 d7 = 9.126-3.729-1.500
r8 * = 9.734 d8 = 2.020 n5 = l.58913
v5 = 61.2
r9 = -5.047 d9 = 0.100
r10 = 11.780 d10 = 2.090 n6 = 1.62041 v6 = 60.4
r11 = -4.394 d11 = 0.100
r12 = -6.052 d12 = 1.340 n7 = 1.69895 v7 = 30.0
r13 = 3.119 d13 = 3.517〜7.050〜11.224
r14 = 9.405 d14 = 3.000 n8 = 1.80518 v8 = 25.5
r15 = -16.258 d15 = 0.100
r16 = ∞ d16 = 0.800 n9 = 1.51680 v9 = 64.2
r17 = ∞

f = 4.15-7.69-11.87
F = 2.91 ~ 4.06 ~ 5.41
Angle of view = 67.6 ° to 38.2 ° to 25.4 °

Aspheric data 5th surface (r5 * )
A 0.0238
A4 0.551468E-03
A6 0.181852E-03
A8 0.337067E-04
A10 0.152721E-05
8th surface (r8 * )
A 18.6978
A4
-0.190435E-02
A6 0.492125E-03
A8 0.623006E-04
A10 0.138029E-04

f2 = 6.97 D = 5.65 D / f2 = 0.81

即ち、本例に係るズームレンズは、図7に示すように最広角状態において(a)、標準状態において(b)、最望遠状態において(c)に示すような配列がなされ、各レンズは各状態の間を所定の図2に示したカム曲線と同様の所定のカム曲線にしたがって移動される。   That is, as shown in FIG. 7, the zoom lens according to this example is arranged as shown in (a) in the widest angle state, (b) in the standard state, and (c) in the maximum telephoto state. It is moved between states according to a predetermined cam curve similar to the predetermined cam curve shown in FIG.

そして、最広角状態において図8、標準状態において図9、最望遠状態において図10に示す球面収差、批点収差および歪みを有するものとなる。これらの球面収差、批点収差および歪みは、十分に実用に耐える優れた値となる、   Then, the spherical aberration, the critical aberration, and the distortion shown in FIG. 8 in the widest angle state, in FIG. 9 in the standard state, and in FIG. 10 in the maximum telephoto state are obtained. These spherical aberrations, critical aberrations and distortions are excellent enough to withstand practical use.

従って本例に係るズームレンズによれば、良好なレンズ特性を備えたものとして、ズームレンズを小型化することができる。   Therefore, according to the zoom lens according to this example, it is possible to reduce the size of the zoom lens as having good lens characteristics.

図11は実施例3に係るズームレンズのレンズ構成図であり、(a)は最広角状態、(b)は標準状態、(c)は最望遠状態を示すもの、図12は実施例3に係るズームレンズの最広角状態における球面収差、非点収差、及び歪みを示すグラフ、図13は実施例3に係るズームレンズの標準状態における球面収差、非点収差、及び歪みを示すグラフ、図14は実施例3に係るズームレンズの最望遠状態における球面収差、非点収差、及び歪みを示すグラフである。   11A and 11B are lens configuration diagrams of the zoom lens according to Example 3. FIG. 11A illustrates the widest angle state, FIG. 11B illustrates the standard state, FIG. 11C illustrates the maximum telephoto state, and FIG. FIG. 13 is a graph showing spherical aberration, astigmatism, and distortion in the standard state of the zoom lens according to Example 3, and FIG. 14 is a graph showing spherical aberration, astigmatism, and distortion in the standard state of the zoom lens according to Example 3. FIG. 6 is a graph showing spherical aberration, astigmatism, and distortion in the maximum telephoto state of the zoom lens according to Example 3;

本実施例に係るズームレンズは、以下の構成を備える。
r1= ∞
d1=5.900
n1= 1.78472
v 1=25.7
r2= ∞
d2=0.548〜2.346〜0.464
r3= -33.190 d3=0.820 n2= 1.67790 v2=54.9
r4*= 3.093 d4=0.970
r5= 5.435 d5=2.020 n4= 1.62004 v4=36.3
r6= -96.557 d6=8.833〜3.618〜1.50
r7*= 2.809 d7=2.470 n5=1.51633 v5=64.1
r8= -9.808 d8=0.120
r9*= 11.974 d9=2.700
r10= -3.477 d10=0.200 n7=1.80610 v7=40.4
r11= -2.573 d11=2.570
r12= 6.125 d12=0.879〜4.295〜8.296
r13= 9.073 d13=2.99 n8=1.76182 v8=26.6
r14= -16.227 dl4=0.11
r15= ∞
d15=1.00 n10=1.51680 v10=64.2
r16= ∞

f= 4.58〜8.55〜13.202.
F= 3〜4.32〜5.94
画角=68.0°〜38.0°〜25.4°

非球面デーク第4面(r4*)
A 0.5476
A4 0.157578E-02
A6 0.685253E-04
A8 0.454629E-06
A10 0.394742E-06
第7面(r7*
A -1.6387
A4 0.143317E-01
A6 -0.850613E-03
A8
0.232605E-03
A10 -0.146094E-04

第9面(r9*)
A -8.6118
A4 -0.623431E-02
A6 -0.475627E-03
A8 -0.153647E-04
A10 0.000000E+00

f2=6.653 D=8.06 D/f2=1.21
The zoom lens according to the present embodiment has the following configuration.
r1 = ∞
d1 = 5.900
n1 = 1.78472
v 1 = 25.7
r2 = ∞
d2 = 0.548〜2.346〜0.464
r3 = -33.190 d3 = 0.820 n2 = 1.67790 v2 = 54.9
r4 * = 3.093 d4 = 0.970
r5 = 5.435 d5 = 2.020 n4 = 1.62004 v4 = 36.3
r6 = -96.557 d6 = 8.833 ~ 3.618 ~ 1.50
r7 * = 2.809 d7 = 2.470 n5 = 1.51633 v5 = 64.1
r8 = -9.808 d8 = 0.120
r9 * = 11.974 d9 = 2.700
r10 = -3.477 d10 = 0.200 n7 = 1.80610 v7 = 40.4
r11 = -2.573 d11 = 2.570
r12 = 6.125 d12 = 0.879-4.295-8.296
r13 = 9.073 d13 = 2.99 n8 = 1.76182 v8 = 26.6
r14 = -16.227 dl4 = 0.11
r15 = ∞
d15 = 1.00 n10 = 1.51680 v10 = 64.2
r16 = ∞

f = 4.58 ~ 8.55 ~ 13.202.
F = 3 ~ 4.32 ~ 5.94
Angle of view = 68.0 ° to 38.0 ° to 25.4 °

Aspheric dake fourth surface (r4 * )
A 0.5476
A4 0.157578E-02
A6 0.685253E-04
A8 0.454629E-06
A10 0.394742E-06
7th surface (r7 * )
A -1.6387
A4 0.143317E-01
A6 -0.850613E-03
A8
0.232605E-03
A10 -0.146094E-04

9th surface (r9 * )
A -8.6118
A4 -0.623431E-02
A6 -0.475627E-03
A8 -0.153647E-04
A10 0.000000E + 00

f2 = 6.653 D = 0.06 D / f2 = 1.21

即ち、本例に係るズームレンズは、図11に示すように最広角状態において(a)、標準状態において(b)、最望遠状態において(c)に示すような配列がなされ、各レンズは各状態の間を所定の図2に示したカム曲線と同様の所定のカム曲線にしたがって移動される。   That is, as shown in FIG. 11, the zoom lens according to this example is arranged as shown in (a) in the widest angle state, (b) in the standard state, and (c) in the maximum telephoto state. It is moved between states according to a predetermined cam curve similar to the predetermined cam curve shown in FIG.

そして、最広角状態において図12、標準状態において図13、最望遠状態において図14に示す球面収差、批点収差および歪みを有するものとなる。これらの球面収差、批点収差および歪みは、十分に実用に耐える優れた値となる、   Then, the spherical aberration, critical aberration, and distortion shown in FIG. 12 in the widest angle state, FIG. 13 in the standard state, and FIG. 14 in the maximum telephoto state are obtained. These spherical aberrations, critical aberrations and distortions are excellent enough to withstand practical use.

従って本例に係るズームレンズによれば、良好なレンズ特性を備えたものとして、ズームレンズを小型化することができる。   Therefore, according to the zoom lens according to this example, it is possible to reduce the size of the zoom lens as having good lens characteristics.

本発明に係るズームレンズは、小型・軽量・薄型なデジタルカメラ、携帯電話などの撮影用低倍ズームレンズとして利用することができる。プリズムなして低倍ズームレンズとしても利用できるのは言うまでもない。   The zoom lens according to the present invention can be used as a low-power zoom lens for photographing such as a small, light, and thin digital camera and a mobile phone. Needless to say, it can be used as a low magnification zoom lens without a prism.

実施の形態に係るズームレンズのレンズ構成である。1 is a lens configuration of a zoom lens according to an embodiment. 実施の形態に係るズームレンズのカム線図である。It is a cam diagram of the zoom lens according to the embodiment. 実施例1に係るズームレンズのレンズ構成図であり、(a)は最広角状態、(b)は標準状態、(c)は最望遠状態を示すものである。FIG. 2 is a lens configuration diagram of a zoom lens according to Example 1, wherein (a) shows the widest angle state, (b) shows the standard state, and (c) shows the maximum telephoto state. 実施例1に係るズームレンズの最広角状態における球面収差、非点収差、及び歪みを示すグラフである。3 is a graph showing spherical aberration, astigmatism, and distortion in the widest angle state of the zoom lens according to Example 1; 実施例1に係るズームレンズの標準状態における球面収差、非点収差、及び歪みを示すグラフである。3 is a graph showing spherical aberration, astigmatism, and distortion in the standard state of the zoom lens according to Example 1; 実施例1に係るズームレンズの最望遠状態における球面収差、非点収差、及び歪みを示すグラフである。6 is a graph showing spherical aberration, astigmatism, and distortion in the maximum telephoto state of the zoom lens according to Example 1; 実施例2に係るズームレンズのレンズ構成図であり、(a)は最広角状態、(b)は標準状態、(c)は最望遠状態を示すものである。FIG. 6 is a lens configuration diagram of a zoom lens according to Example 2, wherein (a) shows the widest angle state, (b) shows the standard state, and (c) shows the maximum telephoto state. 実施例2に係るズームレンズの最広角状態における球面収差、非点収差、及び歪みを示すグラフである。7 is a graph showing spherical aberration, astigmatism, and distortion in the widest angle state of the zoom lens according to Example 2; 実施例2に係るズームレンズの標準状態における球面収差、非点収差、及び歪みを示すグラフである。6 is a graph showing spherical aberration, astigmatism, and distortion in a standard state of a zoom lens according to Example 2. 実施例2に係るズームレンズの最望遠状態における球面収差、非点収差、及び歪みを示すグラフである。10 is a graph showing spherical aberration, astigmatism, and distortion in the maximum telephoto state of the zoom lens according to Example 2; 実施例3に係るズームレンズのレンズ構成図であり、(a)は最広角状態、(b)は標準状態、(c)は最望遠状態を示すものである。FIG. 4 is a lens configuration diagram of a zoom lens according to Example 3, wherein (a) shows the widest angle state, (b) shows the standard state, and (c) shows the maximum telephoto state. 実施例3に係るズームレンズの最広角状態における球面収差、非点収差、及び歪みを示すグラフである。7 is a graph showing spherical aberration, astigmatism, and distortion in the widest angle state of the zoom lens according to Example 3; 実施例3に係るズームレンズの標準状態における球面収差、非点収差、及び歪みを示すグラフである。10 is a graph showing spherical aberration, astigmatism, and distortion in a standard state of the zoom lens according to Example 3; 実施例3に係るズームレンズの最望遠状態における球面収差、非点収差、及び歪みを示すグラフである。10 is a graph showing spherical aberration, astigmatism, and distortion in the maximum telephoto state of the zoom lens according to Example 3;

符号の説明Explanation of symbols

L1・・・第1レンズ群
L2・・・第2レンズ群
L3・・・第3レンズ群
P・・・直角プリズム
Z・・・ズームレンズ
L1 ... 1st lens group L2 ... 2nd lens group L3 ... 3rd lens group P ... Right angle prism Z ... Zoom lens

Claims (4)

物体側より順に、負レンズおよび正レンズで構成され全体として負の光学的パワーを有する第1レンズ群、
正、正、負のレンズで構成され全体として正の光学的パワーを有する第2レンズ群、
正の光学的パワーを有する第3レンズ群より成り、
第1レンズ群と第2レンズ群、および第2レンズ群と第3レンズ群の空気間隔を変えることで変倍し、
0.75<D/f2<1.25
R2B>0
ただし、
f2:第2レンズ群の焦点距離
D:第2レンズ群の全長
R2B:第2レンズ群の最後部面の曲率半径
であることを特徴とするズームレンズ。
A first lens group composed of a negative lens and a positive lens in order from the object side and having a negative optical power as a whole;
A second lens group composed of positive, positive and negative lenses and having positive optical power as a whole;
A third lens group having positive optical power,
By changing the air interval between the first lens group and the second lens group, and between the second lens group and the third lens group,
0.75 <D / f2 <1.25
R2B> 0
However,
f2: Focal length of the second lens group D: Full length of the second lens group R2B: A zoom lens having a radius of curvature of the rearmost surface of the second lens group.
前記第1群レンズは最広角端状態と最望遠端状態において、最も被写体側の略同じ位置に配置され、かつ、像側で移動して変倍されることを特徴とする請求項1のズームレンズ。 2. The zoom according to claim 1, wherein the first group lens is disposed at substantially the same position on the most object side in the maximum wide-angle end state and the maximum telephoto end state, and is moved and zoomed on the image side. lens. 前記第1レンズ群の物体側に光束を略90°折り曲げる直角プリズムを配置し、プリズムと第1レンズ群、第1レンズ群と第2レンズ群、および第2レンズ群と第3レンズ群の空気間隔を変えることで変倍したことを特徴とする請求項1または2のズームレンズ。 A right-angle prism that bends the light beam by approximately 90 ° is disposed on the object side of the first lens group, and the air of the prism and the first lens group, the first lens group and the second lens group, and the second lens group and the third lens group. 3. The zoom lens according to claim 1, wherein the zoom lens is zoomed by changing the interval. ズーム比が3程度であることを特徴とする請求項1ないし3のいずれかのズームレンズ。
4. The zoom lens according to claim 1, wherein the zoom ratio is about 3.
JP2005348697A 2005-12-02 2005-12-02 Zoom lens Expired - Fee Related JP4974103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005348697A JP4974103B2 (en) 2005-12-02 2005-12-02 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005348697A JP4974103B2 (en) 2005-12-02 2005-12-02 Zoom lens

Publications (2)

Publication Number Publication Date
JP2007155948A true JP2007155948A (en) 2007-06-21
JP4974103B2 JP4974103B2 (en) 2012-07-11

Family

ID=38240419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005348697A Expired - Fee Related JP4974103B2 (en) 2005-12-02 2005-12-02 Zoom lens

Country Status (1)

Country Link
JP (1) JP4974103B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370645A (en) * 2011-01-31 2013-10-23 富士胶片株式会社 Projection lens and projection-type display device
WO2014125533A1 (en) 2013-02-15 2014-08-21 Yabe Akira Imaging optics
JP2015079229A (en) * 2013-10-18 2015-04-23 コニカミノルタ株式会社 Zoom lens and imaging device
JP2015092285A (en) * 2015-02-03 2015-05-14 株式会社ファイブ・ディー Vibration-proof device for folded zoom camera module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005148429A (en) * 2003-11-17 2005-06-09 Olympus Corp Variable power optical system and electronic apparatus using same
JP2005181774A (en) * 2003-12-22 2005-07-07 Fujinon Corp Zoom lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005148429A (en) * 2003-11-17 2005-06-09 Olympus Corp Variable power optical system and electronic apparatus using same
JP2005181774A (en) * 2003-12-22 2005-07-07 Fujinon Corp Zoom lens

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370645A (en) * 2011-01-31 2013-10-23 富士胶片株式会社 Projection lens and projection-type display device
JPWO2012105181A1 (en) * 2011-01-31 2014-07-03 富士フイルム株式会社 Projection lens and projection display device
WO2014125533A1 (en) 2013-02-15 2014-08-21 Yabe Akira Imaging optics
KR20150117656A (en) 2013-02-15 2015-10-20 아키라 야베 Imaging optics
JP2015079229A (en) * 2013-10-18 2015-04-23 コニカミノルタ株式会社 Zoom lens and imaging device
JP2015092285A (en) * 2015-02-03 2015-05-14 株式会社ファイブ・ディー Vibration-proof device for folded zoom camera module

Also Published As

Publication number Publication date
JP4974103B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP6237106B2 (en) Zoom lens and imaging device
US7616384B2 (en) Zoom lens and imaging apparatus
KR101617794B1 (en) Compact Lens Optical System and Digital Camera Module Comprising the Same
US7289275B2 (en) Zoom lens system and image pickup apparatus having the system
US7626767B2 (en) Zoom lens
KR101139860B1 (en) Zoom lens and imaging device
JP2014059466A (en) Imaging lens, image capturing device, and information device
JP2006084829A (en) Zoom lens and imaging apparatus having the same
JP4666977B2 (en) Zoom lens and imaging apparatus having the same
JP2009008845A (en) Zoom lens and imaging apparatus
JP2010243637A (en) Zoom lens and image pickup apparatus having the same
WO2012077338A1 (en) Zoom lens and imaging device
KR20110040245A (en) Zoom lens system and image pickup apparatus
US6970298B1 (en) Zoom lens system and image capture apparatus having the same
KR20110103214A (en) Lens system and apparatus for picturing image having the same
JP2006058363A (en) Zoom lens and camera module using it
JP3821087B2 (en) Imaging lens device
JP6270177B2 (en) Imaging lens, imaging device, and information device
JP2004037967A (en) Image pickup lens device
EP1505423A1 (en) Zoom lens
JP2004070235A (en) Image pickup lens device
JP4974103B2 (en) Zoom lens
JP2005134746A (en) Zoom lens and imaging unit having the same
JP2006195064A (en) Photographing optical system and imaging apparatus
JP4653456B2 (en) Zoom lens and information device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

R150 Certificate of patent or registration of utility model

Ref document number: 4974103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees