JP2007155625A - Sunlight spectrum tracking apparatus - Google Patents

Sunlight spectrum tracking apparatus Download PDF

Info

Publication number
JP2007155625A
JP2007155625A JP2005354140A JP2005354140A JP2007155625A JP 2007155625 A JP2007155625 A JP 2007155625A JP 2005354140 A JP2005354140 A JP 2005354140A JP 2005354140 A JP2005354140 A JP 2005354140A JP 2007155625 A JP2007155625 A JP 2007155625A
Authority
JP
Japan
Prior art keywords
telescope
sunlight
longitude
latitude
sunlight spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005354140A
Other languages
Japanese (ja)
Other versions
JP4961546B2 (en
Inventor
Akira Arai
彰 荒井
Satomi Yanagida
里見 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2005354140A priority Critical patent/JP4961546B2/en
Publication of JP2007155625A publication Critical patent/JP2007155625A/en
Application granted granted Critical
Publication of JP4961546B2 publication Critical patent/JP4961546B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sunlight spectrum tracking apparatus used for a sunlight spectrum apparatus for measuring sunlight spectrums in a predetermined area and researching an air pollution in the area, reducing a noise due to a scattered light, and enabling a continuous measurement for a fixed time. <P>SOLUTION: The sunlight spectrum tracking apparatus is provided with a cylindrical telescope installed in the rotational center, three or more slits having minute holes on the central axis in the longitudinal direction of the telescope, and a photodiode disposed in a bottommost section. The telescope is disposed on a latitude controller whose angle is adjusted in the latitude direction on a circular quarter seat. The circular quarter seat is disposed on a longitude controller whose angle is adjusted in the longitude direction over 360°. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、太陽光スペクトル追尾装置に関する。   The present invention relates to a solar spectrum tracking device.

太陽を基準として、地球の大気の状態を観測することが可能であり、地上から太陽光のスペクトルを観測すれば、大気の汚染の状態が分かる。それは、東京などの大都市圏と地方の山間地域との空気の汚れ具合の差として、また、オゾン層の破壊の変化を、スペクトル強度の差として観測できる可能性がある。それには、太陽光を観測する分光系の開発が重要となる。しかし、その前に、まず、正確に太陽スペクトルを計測できる望遠装置と、格安でかつ簡素で高精度の太陽光追尾装置を製作することが課題となる。本発明は、太陽光スペクトル追尾装置に関するものである。   It is possible to observe the state of the earth's atmosphere with the sun as a reference, and if the spectrum of sunlight is observed from the ground, the state of air pollution can be known. It may be possible to observe changes in the degree of air pollution between metropolitan areas such as Tokyo and rural mountainous areas, and changes in the destruction of the ozone layer as differences in spectral intensity. To that end, it is important to develop a spectroscopic system that observes sunlight. However, before that, first of all, it becomes a problem to manufacture a telephoto device that can accurately measure the solar spectrum and a cheap, simple and highly accurate solar tracking device. The present invention relates to a solar spectrum tracking device.

先行特許文献としては、「太陽自動追尾装置」(特許文献1)があるが、この公報の装置では、受光素子洗面にフィルターを配置した4個以上のセンサの出力をA/D変換するので、装置が煩雑で、高価になる欠点がある。   As a prior patent document, there is a “solar automatic tracking device” (Patent Document 1). However, in the device of this publication, A / D conversion is performed on the output of four or more sensors in which filters are arranged on the light receiving element washing surface. The apparatus is complicated and expensive.

特開平8−63232号公報JP-A-8-63232

本発明は、所定の地域の太陽光のスペクトルを計測することで、その地域での大気の汚染状態を、調査する太陽光スペクトル観測装置用で、散乱光のノイズがなく、一定時間、連続して計測が可能な、太陽光スペクトル追尾装置を提供することを目的とする。   The present invention is for a solar spectrum observation apparatus for investigating atmospheric pollution in a given area by measuring the spectrum of sunlight in a given area. An object of the present invention is to provide a solar spectrum tracking device that can be measured.

本発明は、回転中心に設置した円筒状の望遠筒と、該望遠筒の長さ方向の中心軸上に微小孔を有する3枚以上のスリットと、最底部にフォトダイオードが配置していることを特徴とする太陽スペクトル追尾装置で、かつ、前記望遠筒は、ほぼ円形の1/4の台座上で緯度方向に角度調整される緯度制御装置上に配置し、更に、前記ほぼ円形の1/4の台座は、ほぼ円形の経度方向に角度調節される経度制御装置上に配置した構造を特徴とする太陽スペクトル追尾装置である。   In the present invention, a cylindrical telescope installed at the center of rotation, three or more slits having micro holes on the central axis in the length direction of the telescope, and a photodiode at the bottom And the telescope tube is disposed on a latitude control device whose angle is adjusted in the latitude direction on a substantially circular ¼ pedestal, and further, the substantially circular 1 / The pedestal 4 is a solar spectrum tracking device characterized by a structure arranged on a longitude control device whose angle is adjusted in a substantially circular longitude direction.

図1に装置の全体図を示す。上部の丸い部分は装置の平面図である。円の中心部を元に、円の1/4の大きさで、経度方向に回転する台座が置かれている。その台座の上に、モーター1とウォームギアを介して、円の中心に太陽光を入射する望遠筒が設置されている。図2に望円筒概略図を示す。望遠筒には、太陽光の散乱光がスペクトル計測に影響を与えないように、散乱光のフォトダイオードへの入射を防止するために、3段のスリットがセットされていて、3段目のスリットを中心に、望遠筒が太陽の緯度と経度方向に回転するようになっている。下部の側面図は装置を横方向から見た図である。この図で、望遠筒は中央上部の位置になり、真上を向いている。ここで、たとえば太陽の高さに望遠筒を合わせようとすると、モーター2を回転して上の台座を動かし、太陽の経度方向に合わせる。次に、モーター1を回転して望遠筒を動かし、太陽の緯度に高さを合わせる。この2軸を合わせるだけで太陽を追尾することができる。   FIG. 1 shows an overall view of the apparatus. The upper round part is a plan view of the device. Based on the center of the circle, there is a base that is 1/4 the size of the circle and rotates in the longitude direction. On the pedestal is installed a telescope that allows sunlight to enter the center of the circle via the motor 1 and the worm gear. Figure 2 shows a schematic view of the desired cylinder. In order to prevent the scattered light from entering the photodiode so that the scattered light from the sunlight does not affect the spectrum measurement, the telescopic tube is set with a three-stage slit. The telescope tube rotates in the latitude and longitude directions of the sun. The lower side view is a view of the device from the side. In this figure, the telephoto tube is located at the center upper part and faces directly upward. Here, for example, if the telescope is to be adjusted to the height of the sun, the motor 2 is rotated to move the upper pedestal so that it is aligned with the longitude direction of the sun. Next, rotate the motor 1 and move the telescope to adjust the height to the latitude of the sun. The sun can be tracked just by aligning these two axes.

次に、太陽光を受光する望円筒部について詳しく述べる。望円筒概略図を図2に示した。全長は161mmであり、内径がφ26mmとφ14mmで各々の長さが約60mmからなる筒で構成されている。そして、その間に、φ1mmの穴のスリットが3枚組み込まれている。太陽光は、スリット1から入射し、スリット2を通りスリット3を通過する。そして、その光がフォトダイオード(浜松ホトニクス:S2386-18L型)に入射する。フォトダイオードを収納する筒は、内径がφ14mmで長さが37.5mmである。フォトダイオードの出力端子には100Ωの抵抗が接続されており、その抵抗にフォトダイオードの出力電流が流れる。そして、抵抗の両端に出力電圧が生じる。その出力電圧をデジタル・マルチメータ(アドバンテスト社:R6552)で測定する。今までで測定された最高の出力電圧は6Vであった。出力電力は360mWであり、未だフォトダイオードの飽和電力には達していない。また、望円筒に太陽光が入射しない場合、散乱光の影響がないので、フォトダイオードの出力電圧は0mV付近の値になる。   Next, the desired cylindrical portion that receives sunlight will be described in detail. A schematic view of the desired cylinder is shown in FIG. The total length is 161 mm, and the inner diameter is φ26 mm and φ14 mm, and each length is about 60 mm. Between them, three slits with a hole of φ1 mm are incorporated. Sunlight enters through slit 1, passes through slit 2, and passes through slit 3. The light then enters a photodiode (Hamamatsu Photonics: S2386-18L type). The cylinder that houses the photodiode has an inner diameter of 14 mm and a length of 37.5 mm. A 100Ω resistor is connected to the output terminal of the photodiode, and the output current of the photodiode flows through the resistor. An output voltage is generated across the resistor. The output voltage is measured with a digital multimeter (Advantest: R6552). The highest output voltage measured so far was 6V. The output power is 360 mW, and has not yet reached the saturation power of the photodiode. In addition, when sunlight does not enter the observation cylinder, there is no influence of scattered light, so the output voltage of the photodiode becomes a value near 0 mV.

そして、この望遠筒と台座を動かすモーターは、5相のステッピングモーター(オリエンタルモーター社:RK564BA)を使用している。そして、モーターの回転をウォームギアで変換し、望遠筒と台座を動かす各々の軸の回転数に変えている。使用したウォームはW1S R1+B-8で、ホイルはG1C 60+R1である。ここで、望遠筒を180°回転させるのにステッピングモーターに入れるパルス数は7500パルスである。1°当たり41.66パルスである。実際に制御に用いたパルス数は1ステップ当たり2パルスである。つまり1ステップ当たり2.88分進むことになる。   The motor that moves the telescope and pedestal uses a 5-phase stepping motor (Oriental Motor Company: RK564BA). The rotation of the motor is converted by a worm gear, and the rotation speed of each shaft that moves the telescope and the pedestal is changed. The worm used is W1S R1 + B-8, and the foil is G1C 60 + R1. Here, the number of pulses put into the stepping motor to rotate the telescope 180 ° is 7500 pulses. There are 41.66 pulses per degree. The number of pulses actually used for control is 2 pulses per step. In other words, it takes 2.88 minutes per step.

次に、実際に太陽を追いかる、その結果、太陽光のスペクトル計測が可能な一定時間太陽光を追尾するプログラムについて述べる。図3に、そのフローチャートを示す。プログラムを開始して、始めにフォトダイオードの電圧を読込む。ここで、電圧値を5サンプル取り込み、その5つの平均値を割り出して電圧値とする。そして、この電圧値と新たに取り込んだ新しい電圧値とを比べて、電圧値が増加したか減少したかを判断する。また、グラフに電圧値をプロットする。ここで、あらかじめ電圧値を3V〜5V程度になるように望円筒を太陽に合わせておく。そして、追尾を開始する。用いた開発プログラムソフトは、LabVIEW7.1である。プログラムでは、4つの条件ケースからなる。1つ目は、電圧値:Xが5.5V以下で1V以上のときで、電圧が下降している場合である。この時は、太陽光が、どんどん遠ざかってゆくので、ステップ間隔時間を速く動くようにして太陽に追いつくようにする。また、2つ目は、Xが5.5V以下で1V以上のとき、電圧が上昇している場合である。この場合は、望遠筒の角度が、太陽の動きより先になったので、望円筒の動きをゆっくり動かして、太陽が追いかけてくるのを待つ体制をとる。この時は、ステップ間隔時間を遅くする。3つ目として、Xが5.5V以上でピーク値に達した時である。このときは、望円筒の動きを停止する。そうすると、太陽が動く(正確には地球が動く)のでXは下降する。そして、Xが5.5V以下になると望遠筒が動き出す。   Next, a program for tracking the sun for a certain period of time, in which the spectrum of the sunlight can be measured as a result of actually tracking the sun, will be described. FIG. 3 shows a flowchart thereof. Start the program and read the photodiode voltage first. Here, five samples of voltage values are taken, and the average of the five values is calculated as a voltage value. Then, it is determined whether the voltage value has increased or decreased by comparing this voltage value with the newly acquired new voltage value. Also, voltage values are plotted on a graph. Here, the desired cylinder is set to the sun so that the voltage value is about 3V to 5V in advance. Then, tracking is started. The development program software used is LabVIEW 7.1. The program consists of four condition cases. The first is when the voltage value is decreasing when the voltage value: X is 5.5V or less and 1V or more. At this time, the sunlight moves away more and more, so the step interval time moves fast to catch up with the sun. The second case is when the voltage is rising when X is 5.5V or less and 1V or more. In this case, since the angle of the telescope is ahead of the movement of the sun, the movement of the telescope is slowly moved to wait for the sun to follow. At this time, the step interval time is delayed. The third is when X reaches 5.5V or higher and reaches its peak value. At this time, the movement of the desired cylinder is stopped. Then, the sun moves (exactly the earth moves), so X descends. And when X becomes 5.5V or less, the telephoto tube starts to move.

以上、フローチャートとともに太陽光追尾の原理を述べたが、図4に、実際に追尾している状況の電圧値グラフを示す。このグラフは、左側から右側にかけて時間が経過している。始まりは左側でしだいに右側へと移動する。縦軸は、電圧値である。グラフにおいて、追尾は、始めはピーク値(6V)に達した。ここで、追尾は停止する。5.5V以下になると、再び追尾を開始する。始めは望円筒(緯度方向)の回転を行いピークに達したので、次に台座(経度方向)を回転し、ピークになるまで追尾を行う。ここで、停止で電圧が右下に下降するのは、太陽が動くのでピーク位置からズレルため電圧が下降する。追尾中にギザギザになるのは、1ステップで望円筒を動かして電圧を測定し、次に3秒経って電圧を測定する際、望円筒は停止している。そして、その間に太陽が過ぎ去るので電圧が下降し、ギザギザ状態になる。この追尾モードは、Xが下降状態の追尾モードである。ここで、望円筒回転(緯度)パルス数は174、台座回転(経度)パルス数は642で、緯度方向の動きより経度方向の動きが約3.7倍ある。ここから、ピーク電圧の1割の振動幅で、約100秒の周期でピーク値を保ちながら追尾していることが分かる。   The principle of solar light tracking has been described above with reference to the flowchart. FIG. 4 shows a voltage value graph in a situation where tracking is actually performed. In this graph, time passes from the left side to the right side. The beginning gradually moves to the right side on the left side. The vertical axis is the voltage value. In the graph, tracking reached its peak value (6V) at first. Here, tracking stops. When the voltage drops below 5.5V, tracking starts again. At first, the observation cylinder (latitude direction) is rotated and the peak is reached. Next, the pedestal (longitude direction) is rotated and tracking is performed until the peak is reached. Here, the voltage drops to the lower right when stopped, because the sun moves, so the voltage drops because of the slur from the peak position. It becomes jagged during tracking when moving the cylinder in one step to measure the voltage and then measuring the voltage after 3 seconds, the cylinder is stopped. And since the sun passes in the meantime, the voltage drops and becomes jagged. This tracking mode is a tracking mode in which X is in a descending state. Here, the number of desired cylinder rotation (latitude) pulses is 174, the number of pedestal rotation (longitude) pulses is 642, and the movement in the longitude direction is about 3.7 times the movement in the latitude direction. From this, it can be seen that tracking is performed while maintaining the peak value with a period of about 100 seconds with a vibration width of 10% of the peak voltage.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   Although the embodiments of the present invention have been described with reference to the drawings, the specific configuration is not limited to these embodiments, and modifications and additions within the scope of the present invention are included in the present invention. It is.

装置概略図。FIG. 望円筒概略図。FIG. 太陽光追尾のフローチャート。The flowchart of sunlight tracking. 太陽光追尾状態の電圧値グラフ。Voltage value graph in the sunlight tracking state.

Claims (2)

回転中心に設置した円筒状の望遠筒と、該望遠筒の長さ方向の中心軸上に微小孔を有するスリットと、最底部にフォトダイオードが配置されていることを特徴とする太陽光スペクトル追尾装置。   Solar spectrum tracking, characterized in that a cylindrical telescope installed at the center of rotation, a slit having a minute hole on the central axis in the length direction of the telescope, and a photodiode at the bottom apparatus. 前記望遠筒は、ほぼ円形の1/4の台座上で緯度方向に角度調整される緯度制御装置上に配置され、更に、前記ほぼ円形の1/4の台座は、ほぼ円形の経度方向に角度調節される経度制御装置上に配置されていることを特徴とする請求項1に記載の太陽光スペクトル追尾装置。   The telescope tube is disposed on a latitude control device whose angle is adjusted in the latitude direction on a substantially circular ¼ pedestal, and the substantially circular ¼ pedestal is angled in a substantially circular longitude direction. The solar spectrum tracking device according to claim 1, wherein the solar spectrum tracking device is arranged on an adjusted longitude control device.
JP2005354140A 2005-12-07 2005-12-07 Solar spectrum tracker Active JP4961546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005354140A JP4961546B2 (en) 2005-12-07 2005-12-07 Solar spectrum tracker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005354140A JP4961546B2 (en) 2005-12-07 2005-12-07 Solar spectrum tracker

Publications (2)

Publication Number Publication Date
JP2007155625A true JP2007155625A (en) 2007-06-21
JP4961546B2 JP4961546B2 (en) 2012-06-27

Family

ID=38240187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354140A Active JP4961546B2 (en) 2005-12-07 2005-12-07 Solar spectrum tracker

Country Status (1)

Country Link
JP (1) JP4961546B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102262058A (en) * 2011-04-29 2011-11-30 中国科学院安徽光学精密机械研究所 Vehicle-mounted target spectral remote-sensing device and method for range resolution of pollutant gas

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101632405B1 (en) * 2015-02-05 2016-06-21 영남대학교 산학협력단 Control device for Illumination simulation of spectrum tunable lighting and method thereof
JP7296120B2 (en) 2019-12-10 2023-06-22 国立研究開発法人宇宙航空研究開発機構 FASTENING STRUCTURE, STRUCTURAL MEMBER, FASTENER, MOVING OBJECT, AND FASTENING METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102013A (en) * 1979-01-26 1980-08-04 Sharp Corp Sun tracking unit
JPH09243354A (en) * 1996-03-12 1997-09-19 N K K Plant Kensetsu Kk Sun position detecting sensor
JP2004333003A (en) * 2003-05-06 2004-11-25 Mitaka Koki Co Ltd Autonomous heliostat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102013A (en) * 1979-01-26 1980-08-04 Sharp Corp Sun tracking unit
JPH09243354A (en) * 1996-03-12 1997-09-19 N K K Plant Kensetsu Kk Sun position detecting sensor
JP2004333003A (en) * 2003-05-06 2004-11-25 Mitaka Koki Co Ltd Autonomous heliostat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102262058A (en) * 2011-04-29 2011-11-30 中国科学院安徽光学精密机械研究所 Vehicle-mounted target spectral remote-sensing device and method for range resolution of pollutant gas
CN102262058B (en) * 2011-04-29 2013-06-26 中国科学院安徽光学精密机械研究所 Vehicle-mounted target spectral remote-sensing device and method for range resolution of pollutant gas

Also Published As

Publication number Publication date
JP4961546B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4961546B2 (en) Solar spectrum tracker
US20160116416A1 (en) Substrate Enhanced Laser-Induced Breakdown Spectroscopy (LIBS) Apparatus
EP2093418A3 (en) Wind turbine with pitch controller
CN104655097A (en) Laser ranging sensor and ranging method thereof
JP2009139352A (en) Fourier transformation type infrared spectrophotometer
CN103688156A (en) Measurement of critical dimension
CN108063597A (en) Photovoltaic module outdoor test system and its test method
DE3615260C2 (en) Method and system for the detection of optically absorbing compounds in a medium by optical transmission measurement
EP2789976A1 (en) Electronic circuit for driving a device with MEMS resonator, and method for activating same
JP2010112714A (en) Ultraviolet ray measuring device and method of measuring ultraviolet ray
CN104406531B (en) Wind-induced displacement testing device for cooling tower aeroelastic model
CN109781320B (en) Friction moment tester and testing method for bearing without inner ring
CN111504288B (en) North seeking device
CN112945184A (en) Geographical theodolite for engineering surveying and mapping
CN107328715A (en) Single-ended reflective laser analyzer and its scaling method in situ
JP3783400B2 (en) Monochromator
CN104563169B (en) A kind of measurement mechanism for blower fan ground
CN104766809A (en) PN node transient capacitance energy spectrum measuring method and system
WO2020046915A1 (en) Self-powered voltage ramp for photovoltaic module testing
CN1254673C (en) Atomic absorption spectrophotometer with a background correcting function
RU2010143212A (en) METHOD FOR MEASURING KINEMATIC VISCOSITY AND ELECTRIC RESISTANCE OF METAL MELTS (OPTIONS)
FR2709348A1 (en) Method and device for checking elongated objects, the cross section of which may differ from the circular shape.
CN105486327B (en) Micromechanical gyro test angular speed generating means
CN103940512A (en) Polarization calibrating method and device for direct current Zeeman atomic absorption of two detectors
CN108318225A (en) The calibrating installation of automatic tester for vehicle headlamp and digital display methods

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080613

A621 Written request for application examination

Effective date: 20081119

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101117

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110221

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110624

A02 Decision of refusal

Effective date: 20111026

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20120224

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150