JP2007155571A - Device for measuring inside diameter of through hole and inner wall observation device - Google Patents

Device for measuring inside diameter of through hole and inner wall observation device Download PDF

Info

Publication number
JP2007155571A
JP2007155571A JP2005352893A JP2005352893A JP2007155571A JP 2007155571 A JP2007155571 A JP 2007155571A JP 2005352893 A JP2005352893 A JP 2005352893A JP 2005352893 A JP2005352893 A JP 2005352893A JP 2007155571 A JP2007155571 A JP 2007155571A
Authority
JP
Japan
Prior art keywords
hole
wall
light beam
inner diameter
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005352893A
Other languages
Japanese (ja)
Other versions
JP4768422B2 (en
Inventor
Akira Ono
明 小野
Yukio Okita
雪男 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Technohouse Corp
Original Assignee
Topcon Technohouse Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Technohouse Corp filed Critical Topcon Technohouse Corp
Priority to JP2005352893A priority Critical patent/JP4768422B2/en
Publication of JP2007155571A publication Critical patent/JP2007155571A/en
Application granted granted Critical
Publication of JP4768422B2 publication Critical patent/JP4768422B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring an inside diameter of a through hole that can obtain high measuring precision without receiving influence on a difference of the inside diameter of the through hole to be measured. <P>SOLUTION: The device for measuring the inside diameter of the through hole has a projection system A for projecting a measuring light flux on an object to be measured 7 having the through hole 7-1 through a chart plate 5 having an opening part in a region on a circumference centering an optical axis, and a light receiving system B having a photoelectric detector 9 for detecting a center position of a condensed image formed by a reflection light flux on an inner wall 7-2 of the through hole 7-1. The device is provided with a means 3 for regulating a condensed angle of a light flux projected on the object to be measured 7 in the device for measuring the inside diameter of the through hole 7-1 on the basis of a signal from the photoelectric detector 9. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、貫通孔の内径寸法を高精度に測定することができる貫通孔の内径測定装置及び内壁観察装置に関する。   The present invention relates to a through hole inner diameter measuring device and an inner wall observation device capable of measuring the inner diameter of a through hole with high accuracy.

従来、貫通孔の内壁面に対し、光軸を中心として所定パターンで配置したピンホールからの光束を入射させ、貫通孔の内壁面で反射された光を受光し、ピンホールの結像位置を観測することにより前記貫通孔の内径を測定する貫通孔内径測定装置が知られている。
特許公報第2672771号
Conventionally, a light beam from a pinhole arranged in a predetermined pattern centered on the optical axis is incident on the inner wall surface of the through-hole, and the light reflected by the inner wall surface of the through-hole is received, and the image formation position of the pinhole is determined. A through-hole inner diameter measuring device that measures the inner diameter of the through-hole by observing is known.
Japanese Patent Publication No.2672771

ところで、この種の装置においては、CCDカメラ上でのピンホール像の中心位置が正確に求められるほど、内径の測定精度は高まるものである。このためには、内壁上およびCCDカメラ上でのピンホール像のスポット径を小さくする必要がある。また、内壁で反射する以外の光がCCDカメラに入射すると、CCDカメラ上でのピンホール像のコントラストが低下することにより、画像処理の正確さが低下し、ひいては測定精度が劣化するものであり、内壁で反射する光以外の光がCCDカメラに混入しないように構成することも必要となる。   By the way, in this type of apparatus, the accuracy of measuring the inner diameter increases as the center position of the pinhole image on the CCD camera is obtained more accurately. For this purpose, it is necessary to reduce the spot diameter of the pinhole image on the inner wall and on the CCD camera. In addition, if light other than that reflected by the inner wall enters the CCD camera, the contrast of the pinhole image on the CCD camera decreases, thereby reducing the accuracy of the image processing and, consequently, the measurement accuracy. It is also necessary to configure so that light other than the light reflected by the inner wall does not enter the CCD camera.

他方、測定すべき貫通孔の径には大小があり、いずれの径であってもこれらの条件を満たした高い測定精度で測定を可能にする装置が要望されている。   On the other hand, the diameter of the through hole to be measured is large and small, and there is a demand for an apparatus that enables measurement with high measurement accuracy that satisfies these conditions regardless of the diameter.

また、この種の従来の装置においては、貫通孔の内径は測定できるものの、貫通孔の内壁表面の状況自体は観察することができず、内壁を観察できる装置が要望されていたものである。とくに、貫通孔の内径が小さくかつ貫通孔の長さが長いとその内壁は通常の顕微鏡でも観察することができないという問題点を有していたものである。   Further, in this type of conventional apparatus, although the inner diameter of the through hole can be measured, the state of the inner wall surface of the through hole cannot be observed, and an apparatus capable of observing the inner wall has been desired. In particular, if the inner diameter of the through hole is small and the length of the through hole is long, the inner wall cannot be observed with a normal microscope.

本発明は、この従来装置の有するこれらの問題点を解消するための要望にこたえ、測定すべき貫通孔の内径の違いに影響を受けずに高い測定精度を得ることのできる貫通孔の内径測定装置を提供することを目的とする。   In response to the request for solving these problems of the conventional apparatus, the present invention measures the inner diameter of a through hole that can obtain high measurement accuracy without being affected by the difference in the inner diameter of the through hole to be measured. An object is to provide an apparatus.

また、本発明は、内径が小さい貫通孔であっても、その貫通孔の内壁を容易に観察できる貫通孔内壁観察装置を提供することを目的とする。   It is another object of the present invention to provide a through-hole inner wall observation device that can easily observe the inner wall of a through-hole even if the inner diameter is a small through-hole.

本発明に係わる貫通孔内径測定装置は、光軸を中心とした円周上の領域に開口部を有するチャート板を介して貫通孔を有する被測定物に測定光束を投影するための投影系と、前記貫通孔の内壁での反射光束により形成される集光像の中心位置を検出するための光電検出器を有する受光系とを有し、前記光電検出器からの信号に基づき貫通孔の内径を測定するものにおいて、前記被測定物に投影する光束の集光角を調整する手段を設けたことを特徴とするものである。   A through-hole inner diameter measuring apparatus according to the present invention includes a projection system for projecting a measurement light beam onto a measurement object having a through-hole via a chart plate having an opening in a region on the circumference centered on the optical axis. A light receiving system having a photoelectric detector for detecting a center position of a condensed image formed by a reflected light beam on the inner wall of the through hole, and an inner diameter of the through hole based on a signal from the photoelectric detector Is provided with means for adjusting the condensing angle of the light beam projected onto the object to be measured.

また、本発明に係わる貫通孔内壁観察装置は、光軸を中心としたリング状の領域に開口部を有するチャート板を介して被測定物の貫通孔の内壁にリング状領域の測定光束を投影するための投影系と、前記リング状領域の測定光束により照明された内壁の像を受光するための光電検出器を有する受光系とを有し、前記リング状の照明光束の投影位置を貫通孔の軸方向に移動させながら前記内壁の像を前記光電検出器により順次取得することを特徴とするものである。   The through-hole inner wall observation apparatus according to the present invention projects the measurement light beam of the ring-shaped region onto the inner wall of the through-hole of the object to be measured via the chart plate having an opening in the ring-shaped region centered on the optical axis. And a light receiving system having a photoelectric detector for receiving an image of the inner wall illuminated by the measurement light beam in the ring-shaped region, and the projection position of the ring-shaped illumination light beam is defined as a through-hole. The image of the inner wall is sequentially acquired by the photoelectric detector while being moved in the axial direction.

本発明に係わる貫通孔内径測定装置によれば、測定すべき貫通孔の内径の違いに影響を受けずに高い測定精度を得ることができる。   According to the through hole inner diameter measuring apparatus according to the present invention, high measurement accuracy can be obtained without being affected by the difference in inner diameter of the through hole to be measured.

本発明に係わる貫通孔内壁観察装置によれば、内径が小さい貫通孔であっても、その貫通孔の内壁を容易に観察できる。   According to the through hole inner wall observation apparatus according to the present invention, the inner wall of the through hole can be easily observed even if the through hole has a small inner diameter.

以下に、本発明に係わる貫通孔の内径測定装置及び内壁観察装置の発明の実施の形態を図面を参照しつつ説明する。   DESCRIPTION OF EMBODIMENTS Embodiments of a through hole inner diameter measuring device and an inner wall observation device according to the present invention will be described below with reference to the drawings.

図1(a)は貫通穴の内径測定装置の光学配置を示すもので、貫通孔を有する被測定物に対して測定光束を投影するための投影系Aと、被測定物の内壁で反射された反射光を受光するための受光系Bとから構成されている。   FIG. 1A shows an optical arrangement of an inner diameter measuring device for a through hole, which is reflected by a projection system A for projecting a measurement light beam onto an object to be measured having a through hole and an inner wall of the object to be measured. And a light receiving system B for receiving the reflected light.

投影系Aは、光源からの光が導かれ射出端面1aから測定光束が射出されるファイバー束1、このファイバー束1の端面像を円形開口絞り3上に結像するための光源結像レンズ2、円形開口絞り3から射出される測定光束を導くためのコンデンサレンズ4、チャート板5、投影レンズ6から構成される。   The projection system A includes a fiber bundle 1 from which light from a light source is guided and a measurement light beam is emitted from an emission end face 1a, and a light source imaging lens 2 for forming an end face image of the fiber bundle 1 on a circular aperture stop 3. The condenser lens 4 for guiding the measurement light beam emitted from the circular aperture stop 3, the chart plate 5, and the projection lens 6.

コンデンサレンズ4の焦点距離をf1とすると、コンデンサレンズ4と円形開口絞り5との間は、焦点距離f1だけ離間して前側焦点位置に配置される。チャート板5は、図3に示すように、光軸Iを中心として円周上に配置された複数のピンホール(5−1,5−2,……,5−8)を有するもので、コンデンサレンズ4から焦点距離f1だけ離間された後側焦点位置に配置される。   Assuming that the focal length of the condenser lens 4 is f1, the condenser lens 4 and the circular aperture stop 5 are arranged at the front focal position separated by the focal length f1. As shown in FIG. 3, the chart plate 5 has a plurality of pinholes (5-1, 5-2,..., 5-8) arranged on the circumference around the optical axis I. It is arranged at a rear focal position that is separated from the condenser lens 4 by a focal length f1.

この配置により、円形開口絞り3からの光束の主光線MAは光軸Iに平行に導かれてチャート板5を照明するものであり、この照明系はケーラー照明系を構成する。このケーラー照明系により照明されたチャート板5の複数の各ピンホール(5−1,5−2,……,5−8)を透過した各測定光束は、投影レンズ6に導かれる。   With this arrangement, the principal ray MA of the light beam from the circular aperture stop 3 is guided parallel to the optical axis I to illuminate the chart plate 5, and this illumination system constitutes a Kohler illumination system. Each measurement light beam transmitted through the plurality of pinholes (5-1, 5-2,..., 5-8) of the chart plate 5 illuminated by the Koehler illumination system is guided to the projection lens 6.

この投影レンズ6は、被測定物7の貫通孔7−1の内壁7−2上に複数のスポット像P1,P2……,P8を形成する。このスポット像P1,P2……,P8を形成する光束で、内壁7−2上で反射された光束は、結像レンズ8によりCCDカメラ9上にスポット像P1’,P2’,……,P8’を形成する。この結像レンズ8及びCCDカメラ9が、受光系Bを構成する。この光学配置により、被測定物7の貫通孔7−1の内径の違いで、CCDカメラ9上に形成されるスポット像P1’,P2’,……P8’の光軸Iからの位置(中心からの位置)が変化するものであり、このCCDカメラ9からの信号に基づきスポット像P1’,P2’,……P8’の位置を検出することにより、貫通孔7−1の内径を算出するものである。   The projection lens 6 forms a plurality of spot images P1, P2,..., P8 on the inner wall 7-2 of the through hole 7-1 of the object 7 to be measured. The light beams that form the spot images P1, P2,..., P8 and reflected on the inner wall 7-2 are spot images P1 ′, P2 ′,. 'Form. The imaging lens 8 and the CCD camera 9 constitute a light receiving system B. With this optical arrangement, the positions (centers) of the spot images P1 ′, P2 ′,... P8 ′ formed on the CCD camera 9 from the optical axis I due to the difference in the inner diameter of the through hole 7-1 of the object 7 to be measured. The position of the through hole 7-1 is calculated by detecting the positions of the spot images P1 ′, P2 ′,..., P8 ′ based on the signal from the CCD camera 9. Is.

ここで、CCDカメラ9上でのスポット像P1’,P2’,……P8’の位置を高精度に検出するためには、被測定物7の内壁7−2上及びCCDカメラ9上でのスポット像P1’,P2’,……P8’のスポット径をできるだけ小さくする必要がある。以下、この条件に関して言及する。   Here, in order to detect the positions of the spot images P1 ′, P2 ′,... P8 ′ on the CCD camera 9 with high accuracy, the positions on the inner wall 7-2 of the object 7 to be measured and on the CCD camera 9 are measured. It is necessary to make the spot diameter of the spot images P1 ′, P2 ′,. Hereinafter, reference will be made to this condition.

ここで、図1(b)に拡大して示すように、被測定物7は内径2r、長さdの貫通孔7−1を有するとして、この貫通孔7−1の内壁7−2に最も小さなスポット像P1を形成し、CCDカメラ9上に最も小さなピンホールの像P1’を結像する条件を以下述べる。一般の光学回折理論から、波長λの光をレンズによって集光したときの最小スポット径は
1.2λ/NA (式1)
である。ここで、NAは開口数と呼ばれ、集光される光の集光角をθとしたとき、
NA=sin(θ/2) (式2)
と定義される。従って、θが大きい程、スポット径を小さくすることができる。
Here, as shown in FIG. 1B in an enlarged manner, the DUT 7 has a through hole 7-1 having an inner diameter of 2r and a length d, and is most likely on the inner wall 7-2 of the through hole 7-1. The conditions for forming a small spot image P1 and forming the smallest pinhole image P1 ′ on the CCD camera 9 will be described below. From general optical diffraction theory, the minimum spot diameter when light of wavelength λ is collected by a lens is
1.2λ / NA (Formula 1)
It is. Here, NA is called a numerical aperture, and when the light collection angle of the collected light is θ,
NA = sin (θ / 2) (Formula 2)
Is defined. Therefore, the larger the θ, the smaller the spot diameter.

一方、被測定物7の貫通孔7−1の入り口から内壁7−2上でのスポット像P1の形成位置までの距離をLとすると、θの最大値はスポット像P1の位置から貫通孔7−1の入り口7−1aの直径を見込む角度(今後、角度の単位はラジアンとする)、即ち
θ=arctan(2r/L) (式3)
となる。
On the other hand, if the distance from the entrance of the through hole 7-1 of the object to be measured 7 to the formation position of the spot image P1 on the inner wall 7-2 is L, the maximum value of θ is from the position of the spot image P1 to the through hole 7. -1 angle to estimate the diameter of the entrance 7-1a (in the future, the unit of the angle is radians), that is, θ = arctan (2r / L) (Formula 3)
It becomes.

つまり、貫通孔7−1の入り口7−1aでの入射光束の径が孔の径と一致する条件がθを最大にする。   That is, the condition that the diameter of the incident light beam at the entrance 7-1a of the through hole 7-1 coincides with the diameter of the hole maximizes θ.

また、受光系Bについては、内壁7−2で反射した光束の内、スポット像P1の位置から貫通孔7−1の出口7−2bを見込む角度θ’で進む光がCCDカメラ9に入射する。θ’は式3と同様に
θ’=arctan(2r/(d−L)) (式4)
となる。ここで、θ’が大きい程、CCDカメラ9上でのピンホール像P1’のスポット径が小さくなり、測定精度は高まる。すなわち、θ=θ´、又は、L=d/2のとき、θとθ’の両方をバランスよく大きくでき、最も好条件になる。
For the light receiving system B, light traveling at an angle θ ′ from which the exit 7-2b of the through hole 7-1 is seen from the position of the spot image P1 out of the light beam reflected by the inner wall 7-2 is incident on the CCD camera 9. . θ 'is the same as Equation 3 θ' = arctan (2r / (d-L)) (Equation 4)
It becomes. Here, the larger θ ′ is, the smaller the spot diameter of the pinhole image P1 ′ on the CCD camera 9 is, and the measurement accuracy is increased. That is, when θ = θ ′ or L = d / 2, both θ and θ ′ can be increased in a balanced manner, which is the most favorable condition.

また、各ピンホール(5−1,5−2,……,5−8)からの各光束が貫通孔7−1に入射するが、各光束の集光角θが最大になるようにするためには、それぞれの光束が貫通孔7−1の入り口付近で交差させることが良い。   Further, each light beam from each pinhole (5-1, 5-2,..., 5-8) is incident on the through-hole 7-1 so that the light collection angle θ of each light beam is maximized. For this purpose, it is preferable that the respective light beams intersect near the entrance of the through hole 7-1.

このような条件を満たすためには、図1に示すようにチャート板5に設けてあるピンホール5−1,5−2(図1では便宜上2個のみ記載)から出た光束の主光線MAは光軸Iと平行で、投影レンズ6に入射させるように構成し、投影レンズ6から、投影レンズ6の焦点距離f2だけ離れた位置付近に貫通孔7−1の入り口7−1aを配置する。このときチャート板5の位置は投影レンズ6から、f2+Zの距離にする。この時、f2,zおよびLの関係はレンズ結像公式から、
f22 = L × z (式5)
となる。このようにすることにより、投影レンズ6により集光される各光束の主光線は、投影レンズ6の焦点f2の位置で交差するので、この交差位置に貫通孔7−1の入り口7−1aを一致させれば良い。
In order to satisfy such a condition, as shown in FIG. 1, the principal ray MA of the light beam emitted from the pinholes 5-1 and 5-2 (only two are shown for convenience in FIG. 1) provided in the chart plate 5. Is configured to be incident on the projection lens 6 in parallel with the optical axis I, and the entrance 7-1a of the through-hole 7-1 is disposed in the vicinity of the position away from the projection lens 6 by the focal length f2 of the projection lens 6. . At this time, the position of the chart plate 5 is set to a distance of f2 + Z from the projection lens 6. At this time, the relationship between f2, z and L is from the lens imaging formula.
f2 2 = L × z (Formula 5)
It becomes. By doing so, the principal rays of the respective light beams collected by the projection lens 6 intersect at the position of the focal point f2 of the projection lens 6. Therefore, the entrance 7-1a of the through hole 7-1 is provided at this intersection position. Just match.

次に、図2に示すように、スポット像P1の位置が被測定物7の内壁7−2からずれ量eだけ僅かにずれたときには、内壁7−2で反射される光束L1と、内壁7−2で反射されずに直接貫通孔7−1の出口7−1bから射出される直接光の光束L2の2つの光束が生じる。このうち、内径を測定するための光束L1は内壁7−2で反射された光束であるのに対し、内壁7−2で反射されずに直接結像レンズ8に入射する直接光の光束L2はCCDカメラ9で検出されるピンホール像P1’の位置を誤検出させる等の悪影響を及ぼす有害反射になるものである。この有害反射光束(光束L2)は、ピンホール像P1の形成位置が内壁7−2に近い程、特に顕著になる。   Next, as shown in FIG. 2, when the position of the spot image P1 is slightly shifted from the inner wall 7-2 of the DUT 7 by a shift amount e, the light beam L1 reflected by the inner wall 7-2 and the inner wall 7 -2 light beams L2 of direct light emitted from the outlet 7-1b of the through-hole 7-1 without being reflected at -2. Among these, the light beam L1 for measuring the inner diameter is a light beam reflected by the inner wall 7-2, whereas the light beam L2 of the direct light that is directly reflected on the imaging lens 8 without being reflected by the inner wall 7-2. This results in harmful reflections such as erroneous detection of the position of the pinhole image P1 ′ detected by the CCD camera 9. This harmful reflected light beam (light beam L2) becomes more prominent as the position where the pinhole image P1 is formed is closer to the inner wall 7-2.

また、貫通孔7−1に入射する集光角θが大きいと図2に示すように貫通孔7−1の入り口7−1aで光がけられ、そのけられた光束L3が各レンズ等で反射して迷光となってCCDカメラ9に入射し、測定に悪影響を与える可能性もある。   If the condensing angle θ incident on the through hole 7-1 is large, light is emitted at the entrance 7-1a of the through hole 7-1 as shown in FIG. 2, and the obtained light beam L3 is reflected by each lens or the like. Then, it may become stray light and enter the CCD camera 9 to adversely affect the measurement.

従って、貫通孔7−1に入射する光束の集光角θは(式3)で示される値よりわずかに小さい方が良い。ここで貫通孔7−1から射出される直接光の発散角をΔθとすると、投影レンズ6から射出される光束の集光角θは(式3)で示される値よりΔθだけ小さければ有害となる直接光の発生を防止できる。図2より、Δθはスポット像P1の位置が内壁7−2に近い程、ずれ量eを小さくできることがわかる。被測定物7の貫通孔7−1の内径の精度と、測定時の被測定物7の位置決め精度とが高いほど、スポット像P1の位置を内壁7−2に近づけて設定できる。   Therefore, it is better that the condensing angle θ of the light beam incident on the through hole 7-1 is slightly smaller than the value represented by (Expression 3). Here, if the divergence angle of the direct light emitted from the through-hole 7-1 is Δθ, it is harmful if the condensing angle θ of the light beam emitted from the projection lens 6 is smaller by Δθ than the value shown in (Equation 3). The generation of direct light can be prevented. From FIG. 2, it can be seen that Δθ can be reduced as the position of the spot image P1 is closer to the inner wall 7-2. The higher the accuracy of the inner diameter of the through hole 7-1 of the measured object 7 and the positioning accuracy of the measured object 7 during measurement, the closer the position of the spot image P1 can be set to the inner wall 7-2.

以上をまとめると、(式3)と(式4)とから投影レンズ6から射出される光束の集光角θを、
θ=arctan(2r/L) ―Δθ
θ=arctan(2r/(d−L)) ―Δθ、ただし Δθ≒e/L + e/(d−L ) (式6)
のうちいずれか小さい方の値にしたとき、悪影響を与える有害光は排除され、かつ最小のスポット径を得ることができ、測定精度を最高にできる。
To summarize the above, the converging angle θ of the light beam emitted from the projection lens 6 from (Expression 3) and (Expression 4)
θ = arctan (2r / L) ―Δθ
θ = arctan (2r / (d−L)) − Δθ, where Δθ≈e / L + e / (d−L) (Formula 6)
When the smaller one of the values is selected, harmful light that has an adverse effect is eliminated, and the minimum spot diameter can be obtained, so that the measurement accuracy can be maximized.

このように、集光角を(式6)で示すθにするためには、投影レンズ6に入射する光の角度をφ(図1参照)にする必要がある。φとθの関係はレンズ公式より
φ≒(f2+ L) θ/(f2+z) (式7)
となる。ここでθは式6で示す値であり、投影レンズ6の焦点位置と被測定物7の貫通孔7−1の入り口7−1aを一致させたときを例にとってある。
Thus, in order to set the condensing angle to θ indicated by (Expression 6), it is necessary to set the angle of light incident on the projection lens 6 to φ (see FIG. 1). The relationship between φ and θ is from the lens formula: φ ≒ (f2 + L) θ / (f2 + z) (Formula 7)
It becomes. Here, θ is a value represented by Expression 6, and an example is given when the focal position of the projection lens 6 and the entrance 7-1a of the through hole 7-1 of the object 7 to be measured are matched.

ここで、図1に示すようにチャート板5のピンホール5−1,5−2から射出される各光束の主光線MAは光軸Iと平行であり、その間隔はピンホール5−1と5−2の間隔2Rに等しく、その光束で形成されるスポット像P1とスポット像P2の間隔は被測定物7の内径設計値2rになるように設定するので、rとRの関係はレンズの結像公式から
R=(f2+z)r/(f2+ L) (式8)
となる。
Here, as shown in FIG. 1, the principal ray MA of each light beam emitted from the pinholes 5-1 and 5-2 of the chart plate 5 is parallel to the optical axis I, and the interval thereof is the same as that of the pinhole 5-1. Since the interval between the spot image P1 and the spot image P2 formed by the luminous flux is set to be equal to the interval 2R of 5-2, the inner diameter design value 2r of the object to be measured 7 is set. From the imaging formula
R = (f2 + z) r / (f2 + L) (Formula 8)
It becomes.

ここで、r/Rは投影レンズ6の結像倍率となる。したがってピンホール5−1,5−2等の孔径cは式1から
c<(1.2λ/NA)×R/r (式9)
の条件が推奨される。
Here, r / R is the imaging magnification of the projection lens 6. Therefore, the hole diameter c of the pinholes 5-1 and 5-2 is calculated from the equation 1.
c <(1.2λ / NA) × R / r (Formula 9)
The following conditions are recommended.

ただし、光源の強度が十分でないとき、式9の条件では、CCDカメラ9上でのスポット像P1’の明るさは不十分になる可能性がある。そのときには、孔径cを(式9)で示される大きさ以上にすることも可能である。そのとき、スポット像P1のスポット径は、(式1)で示される大きさより大きくなるが、θが(式6)の条件を満たしておれば、スポット像P1の像の輪郭のコントラストは高いまま維持でき、画像処理の工夫によって精度を著しく低下させないようにすることができる。   However, when the intensity of the light source is not sufficient, the brightness of the spot image P1 'on the CCD camera 9 may be insufficient under the condition of Expression 9. In that case, it is possible to make the hole diameter c larger than the size indicated by (Equation 9). At that time, the spot diameter of the spot image P1 is larger than the size indicated by (Expression 1), but if θ satisfies the condition of (Expression 6), the contrast of the contour of the image of the spot image P1 remains high. It is possible to maintain the accuracy, and it is possible to prevent the accuracy from being remarkably reduced by a device for image processing.

(式8)より、チャート板5に入射する照明光を直径2R以上で、ピンホール5−1,5−2から出る光の角度をφにするためには、照明光の開口数NA’は光学公式から
NA’= sin(φ/2) (式10)
にする必要がある。このような条件を達成する照明系は、市販の顕微鏡で一般に使われているケーラー照明系が適している。
From (Equation 8), in order for the illumination light incident on the chart plate 5 to have a diameter of 2R or more and the angle of the light emitted from the pinholes 5-1 and 5-2 to be φ, the numerical aperture NA ′ of the illumination light is From optical formula
NA '= sin (φ / 2) (Formula 10)
It is necessary to. A Koehler illumination system generally used in commercially available microscopes is suitable as an illumination system for achieving such conditions.

先に述べたように本発明におけるケーラー照明系は、光源である直径bの大きさを持つファイバー束1と、光源結像レンズ2、円形絞り3、焦点距離がf1であるコンデンサレンズ4とからなり、円形絞り3とチャート板5は、コンデンサレンズ4の各焦点位置近傍に配置されている。
そこで、円形絞り3の開口直径aは
a=2×f1 sin(φ/2) (式11)
にすることが望ましく、本装置では、適正な角度φを得るように、開口直径aの大きさを調整できるように構成されている。この調整機構としては、カメラ等で使用される可変絞りにより構成しても良いし、各種の開口直径aを有する複数の円形開口絞りを用意して、適正な大きさの円形開口絞りを光路内に配置するように構成しても良い。
As described above, the Kohler illumination system according to the present invention includes a fiber bundle 1 having a diameter b as a light source, a light source imaging lens 2, a circular diaphragm 3, and a condenser lens 4 having a focal length f1. Thus, the circular diaphragm 3 and the chart plate 5 are arranged in the vicinity of the respective focal positions of the condenser lens 4.
Therefore, the aperture diameter a of the circular diaphragm 3 is
a = 2 × f1 sin (φ / 2) (Formula 11)
In this apparatus, the size of the opening diameter a can be adjusted so as to obtain an appropriate angle φ. This adjustment mechanism may be constituted by a variable aperture used in a camera or the like, or a plurality of circular aperture stops having various aperture diameters a are prepared, and an appropriately sized circular aperture stop is provided in the optical path. You may comprise so that it may arrange | position.

なお、光源として機能するファイバー束1の射出端面1aを円形絞り3の近傍に直接配置しても良いが、円形絞り3の絞り開口直径aの調整やランプ交換の交換操作性向上等のため、光源であるファイバー束1の射出端面1aを光源結像レンズ2により円形絞り3上に結像するようにしている。その結像倍率をMとする。ファイバー束1の射出端面像が円形絞り3上に結像されたときの像の直径が(式11)で示される開口直径aの値より大きくなるようにファイバー束1の直径bは大きくしなければならない。つまり、
b>a/M (式12)
にする必要がある。
The exit end face 1a of the fiber bundle 1 that functions as a light source may be disposed directly in the vicinity of the circular diaphragm 3, but for adjustment of the diaphragm aperture diameter a of the circular diaphragm 3, improvement in exchange operability of lamp replacement, etc. The exit end face 1a of the fiber bundle 1 as the light source is imaged on the circular diaphragm 3 by the light source imaging lens 2. Let M be the imaging magnification. The diameter b of the fiber bundle 1 must be increased so that the image diameter when the exit end face image of the fiber bundle 1 is formed on the circular stop 3 is larger than the value of the aperture diameter a shown in (Equation 11). I must. That means
b> a / M (Formula 12)
It is necessary to.

次に、被測定物7の貫通孔7−1の内径が大きい場合の例を図8により説明する。この条件では、図1から推定できるように投影レンズ6の口径を大きくしなければならないが、技術的に大きな口径の投影レンズ6が入手困難になる場合も生ずる。しかしながら、この場合、内径が大きいため、充分大きなθの値を得られるので、前述した条件をゆるめても、スポット像P1,P2のスポット径を充分小さくすることができる。   Next, an example in which the inner diameter of the through hole 7-1 of the DUT 7 is large will be described with reference to FIG. Under this condition, it is necessary to increase the diameter of the projection lens 6 as can be estimated from FIG. 1. However, it may be difficult to obtain the projection lens 6 having a large diameter technically. However, since the inner diameter is large in this case, a sufficiently large value of θ can be obtained, so that the spot diameters of the spot images P1 and P2 can be made sufficiently small even if the above-described conditions are relaxed.

すなわち、図8に示すように、ピンホール5−1,5−2からの光束の主光線MAの交差点と投影レンズ6に焦点、被測定物7の貫通孔7−1の入り口7−1aとを必ずしも一致させる必要はなく、交差点を投影レンズ6の焦点より投影レンズ6側にΔf2で示すずれ量だけずらしても良い。ずれ量Δf2は図8から推定できるように投影レンズ6の口径と被測定物7の貫通孔7−1の内径によって最適値が決まる。この場合、ピンホール5−1,5−2からの光束の主光線MAは平行ではなくなり、その角度はずれ量Δf2の値によって決まり、厳密なケーラー照明系の条件から僅かながらずれる。具体的には円形絞り3を光軸Iに沿ってずれ量Δf1だけコンデンサレンズ4から遠ざけるように調整機構が設けられている。なお、交差点と円形絞り3は、コンデンサレンズ4と投影レンズ6に関して共役の関係にある。以上のように構成すると、貫通孔の内径測定装置の測定精度を最大限向上させることができる。   That is, as shown in FIG. 8, the intersection of the principal rays MA of the light beams from the pinholes 5-1 and 5-2 and the projection lens 6, the entrance 7-1 a of the through-hole 7-1 of the object 7 to be measured, Are not necessarily matched, and the intersection may be shifted from the focal point of the projection lens 6 toward the projection lens 6 by a shift amount indicated by Δf2. As can be estimated from FIG. 8, the optimum amount of deviation Δf2 is determined by the diameter of the projection lens 6 and the inner diameter of the through hole 7-1 of the object to be measured 7. In this case, the principal ray MA of the light flux from the pinholes 5-1 and 5-2 is not parallel, and its angle is determined by the value of the shift amount Δf2, and slightly deviates from the exact conditions of the Koehler illumination system. Specifically, an adjustment mechanism is provided so that the circular diaphragm 3 is moved away from the condenser lens 4 along the optical axis I by a deviation amount Δf1. The intersection and the circular aperture 3 are in a conjugate relationship with respect to the condenser lens 4 and the projection lens 6. If comprised as mentioned above, the measurement precision of the internal-diameter measuring apparatus of a through-hole can be improved to the maximum.

なお、従来装置においては、チャート板5のピンホールは4個で述べられているが、本実施例では図3に示すように8個のピンホール5−1〜5−8が設けられている。このピンホールの数が多いと、その数に比例して測定点が増え、より正確な内径の形状測定を行うことができる。そのため、図4に示すように、ピンホールの数を増やすのと光学的に等価であるリング状スリット開口部5aを有するように構成しても良い。その時のスリット幅c’は(式9)の条件を満たすことが推奨される。   In the conventional apparatus, the number of pinholes of the chart plate 5 is four, but in this embodiment, eight pinholes 5-1 to 5-8 are provided as shown in FIG. . When the number of pinholes is large, the number of measurement points increases in proportion to the number of pinsholes, and a more accurate shape measurement of the inner diameter can be performed. Therefore, as shown in FIG. 4, a ring-shaped slit opening 5 a that is optically equivalent to increasing the number of pinholes may be provided. It is recommended that the slit width c ′ at that time satisfies the condition of (Equation 9).

また、実施例では、二次元センサとして機能するCCDカメラ9からの信号に基づき、ピンホール像P1とピンホール増P2のそれぞれの重心の間隔を画像処理で演算しているため、CCDカメラ9の画素数が多いほど測定精度は増すことになる。しかしながら、画素数が多いCCDカメラ9は高価となる。そこで、図5に示すように、CCDライン状のセンサアレイ9aを光軸Iを中心に回転しながら、画像を採取していくこともできる。ピンホール像P1とピンホール像P2は光軸Iを中心に対称の位置にあるので、ライン状のセンサアレイで両方を一時に捕らえることができ、ライン状のセンサアレイの長手方向についてピンホール像P1’とピンホール像P2´のそれぞれの重心を求め、その間隔を求めれば良い。なお、その場合、チャート板5としては、図3に示すピンホール5−1〜5−8、あるいは、図4に示すリング状の開口部5aのいずれの開口形状でも対応できる。これにより画像処理は単純な計算となり、カメラの価格も低く抑えられる。   In the embodiment, since the distance between the center of gravity of each of the pinhole image P1 and the pinhole increase P2 is calculated by image processing based on the signal from the CCD camera 9 functioning as a two-dimensional sensor, the CCD camera 9 As the number of pixels increases, the measurement accuracy increases. However, the CCD camera 9 having a large number of pixels is expensive. Therefore, as shown in FIG. 5, an image can be collected while rotating the CCD line-shaped sensor array 9a about the optical axis I. Since the pinhole image P1 and the pinhole image P2 are in symmetrical positions around the optical axis I, both can be captured at once by the line-shaped sensor array, and the pinhole image in the longitudinal direction of the line-shaped sensor array What is necessary is just to obtain | require each gravity center of P1 'and pinhole image P2', and to obtain | require the space | interval. In this case, the chart plate 5 can correspond to any one of the pinholes 5-1 to 5-8 shown in FIG. 3 or the ring-shaped opening 5a shown in FIG. As a result, image processing becomes simple calculation and the price of the camera can be kept low.

または、図5(b)に示すようにピンホールの数だけ、ライン状センサアレイ9bを放射状に配置しても良い。この場合、センサ回転機構は省略でき、さらに、画像データ取り込み時間を短くでき、測定時間を短くできる。   Alternatively, as shown in FIG. 5B, as many line sensor arrays 9b as the number of pinholes may be arranged radially. In this case, the sensor rotation mechanism can be omitted, and the image data capturing time can be shortened and the measurement time can be shortened.

次に、ピンホール像P1’〜P8’の中心位置を算出する方法について述べる。従来の装置では、ピンホール像P1’の中心は像の光強度分布の重心を算出することで行っていた。ところが、CCDカメラ9の信号にノイズが混入したり、被測定物7の内壁7−2からの反射光に対して有害な光、即ち迷光が混入すると、図6に示すように、その光強度分布が対称でない歪Dを持った分布になる。このような場合、算出される重心の位置が変位し、測定誤差を生む結果となる。しかしながら、例えば、最大強度h1の半分の強度を持つQ1, Q2の位置(半値点)は光強度分布の傾斜が大きく、ノイズや迷光が混入してもその位置自体は大きく変位しない。   Next, a method for calculating the center positions of the pinhole images P1 'to P8' will be described. In the conventional apparatus, the center of the pinhole image P1 'is calculated by calculating the center of gravity of the light intensity distribution of the image. However, if noise is mixed in the signal of the CCD camera 9 or light harmful to the reflected light from the inner wall 7-2 of the object 7 to be measured, that is, stray light is mixed, as shown in FIG. The distribution is a distribution having a distortion D that is not symmetrical. In such a case, the position of the calculated center of gravity is displaced, resulting in a measurement error. However, for example, the positions of Q1 and Q2 having half the maximum intensity h1 (half-value points) have a large inclination of the light intensity distribution, and even if noise or stray light is mixed, the positions themselves are not greatly displaced.

そのため、Q1, Q2の中央をピンホール像の中心位置HCとすることにより、高精度の内径測定値が得られる。スリット像5aを用いた場合でも同様な演算を行って同様な効果が得られる。   Therefore, by setting the center of Q1 and Q2 as the center position HC of the pinhole image, a highly accurate inner diameter measurement value can be obtained. Even when the slit image 5a is used, the same effect is obtained by performing the same calculation.

その他、演算は複雑になるがピンホール像P1’〜P8’、スリット像の中心を求める方法はノイズや迷光の混入の状況に従って最適な方法が多数提案されており、それらの方法を本発明に適用することも可能である。   In addition, although the calculation is complicated, many methods have been proposed for determining the centers of the pinhole images P1 ′ to P8 ′ and the slit image in accordance with the situation of noise and stray light mixing, and these methods are used in the present invention. It is also possible to apply.

次に、貫通孔の内壁を観察するための貫通孔内壁観察装置の例を図7を用いて説明する。この場合には、図4に示すリング状の開口部5aを有するチャート板5を使用する。この場合には、CCDカメラ9上には、図7(a)に示すようなリング状の内壁画像Im1が形成され、このリング状の像を画像処理によって棒状の直線状画像に展開すると、図7(b)のような棒状の内壁像Im2にすることができる。そして、被測定物7を光軸の方向に沿って、CCDカメラ9の焦点深度以下の分解能で少しずつ移動させながら、像を順次取得し、図7(b)の棒状の像を移動量にしたがってずらしながら重ねてゆく。この重ね合わせはCCDカメラ9からの信号に基づき画像処理部10により行われる。このとき得られる像Im3を図7(c)に示す。図7(c)に得られる像が、貫通孔7−1の内壁7−2の像となる。   Next, an example of the through-hole inner wall observation device for observing the inner wall of the through-hole will be described with reference to FIG. In this case, a chart plate 5 having a ring-shaped opening 5a shown in FIG. 4 is used. In this case, a ring-shaped inner wall image Im1 as shown in FIG. 7A is formed on the CCD camera 9, and when this ring-shaped image is developed into a rod-shaped linear image by image processing, FIG. It is possible to obtain a rod-shaped inner wall image Im2 as in FIG. Then, images are sequentially acquired while moving the object to be measured 7 along the direction of the optical axis little by little with a resolution equal to or less than the depth of focus of the CCD camera 9, and the rod-shaped image in FIG. Therefore, it is piled up while shifting. This superposition is performed by the image processing unit 10 based on a signal from the CCD camera 9. An image Im3 obtained at this time is shown in FIG. The image obtained in FIG. 7C is an image of the inner wall 7-2 of the through hole 7-1.

これにより、被測定物7として電子回路の回路基板のスルーホールの場合、スルーホールの内壁の導電性めっき膜の状態を検査できる。導電性めっき膜が一様でなく、亀裂があった場合、その部分の光の反射率は低いので鮮明な亀裂像が得られる。導電性めっき膜の亀裂は電子回路の特性に大きな影響を与えるものでこの装置によって有効な検査方法を提供することができる。   Thereby, in the case of the through hole of the circuit board of the electronic circuit as the DUT 7, the state of the conductive plating film on the inner wall of the through hole can be inspected. When the conductive plating film is not uniform and there is a crack, the light reflectance at that portion is low, so a clear crack image can be obtained. The crack of the conductive plating film has a great influence on the characteristics of the electronic circuit, and this apparatus can provide an effective inspection method.

本発明に係わる貫通孔内径測定装置の説明図であって、(a)はその光学図であり、(b)は(a)に示す貫通孔の拡大図である。It is explanatory drawing of the through-hole internal diameter measuring apparatus concerning this invention, Comprising: (a) is the optical figure, (b) is an enlarged view of the through-hole shown to (a). 図1に示す貫通孔に形成されるピンホール像のずれ量を説明するための図である。It is a figure for demonstrating the deviation | shift amount of the pinhole image formed in the through-hole shown in FIG. 図1に示すチャート板の平面図である。It is a top view of the chart board shown in FIG. 図1に示すチャート板の変形例を示す図である。It is a figure which shows the modification of the chart board shown in FIG. 図1に示す光電検出器の他の例を示す説明図であって、(a)は光電検出器としての一次元ライン状センサアレイを示し、(b)は光電検出器として放射状に配置されたライン状センサアレイを示す。It is explanatory drawing which shows the other example of the photoelectric detector shown in FIG. 1, Comprising: (a) shows the one-dimensional linear sensor array as a photoelectric detector, (b) is arrange | positioned radially as a photoelectric detector. A line-shaped sensor array is shown. 図1に示す貫通孔の内壁で反射された光束により形成されたピンホール像の光量分布を示す図である。It is a figure which shows the light quantity distribution of the pinhole image formed with the light beam reflected by the inner wall of the through-hole shown in FIG. 図1に示すCCDカメラに形成された内壁像を示す図であって、(a)はリング状の画像を示し、(b)は(a)に示すCCDカメラに形成された内壁像を棒状に展開した画像を示し、(c)は(b)に示す棒状に展開した画像を順次取得して、貫通孔の入り口から出口側までの内壁画像を形成した状態を示す図である。It is a figure which shows the inner wall image formed in the CCD camera shown in FIG. 1, Comprising: (a) shows a ring-shaped image, (b) shows the inner wall image formed in the CCD camera shown in (a) in a rod shape. The developed image is shown, and (c) is a diagram showing a state in which the images developed in the rod shape shown in (b) are sequentially obtained to form an inner wall image from the entrance to the exit side of the through hole. 図1に示す貫通孔内径測定装置の変形例を示す光学図である。It is an optical diagram which shows the modification of the through-hole internal diameter measuring apparatus shown in FIG.

符号の説明Explanation of symbols

3…円形絞り(手段)
7−1…貫通孔
7−2…内壁
9…CCDカメラ(光電検出器)
A…投影系
B…受光系
3 ... Circular aperture (means)
7-1 ... through hole 7-2 ... inner wall 9 ... CCD camera (photoelectric detector)
A ... Projection system B ... Light receiving system

Claims (13)

光軸を中心とした円周上の領域に開口部を有するチャート板を介して貫通孔を有する被測定物に測定光束を投影するための投影系と、前記貫通孔の内壁での反射光束により形成される集光像の中心位置を検出するための光電検出器を有する受光系とを有し、前記光電検出器からの信号に基づき貫通孔の内径を測定する貫通孔内径測定装置において、
前記被測定物に投影する光束の集光角を調整する手段を設けたことを特徴とする貫通孔内径測定装置。
A projection system for projecting a measurement light beam onto a measurement object having a through hole through a chart plate having an opening in a region on the circumference around the optical axis, and a reflected light beam on the inner wall of the through hole In a through hole inner diameter measuring device that has a light receiving system having a photoelectric detector for detecting the center position of the formed condensed image and measures the inner diameter of the through hole based on a signal from the photoelectric detector,
A through-hole inner diameter measuring apparatus comprising means for adjusting a condensing angle of a light beam projected onto the object to be measured.
前記被測定物に投影される光束の主光線は、前記被測定物の貫通孔の入り口近傍で光軸と交差するように構成するとともに、前記集光角の調整は、前記貫通孔の内壁により反射されない直接光が光電検出器に混入しない制約条件の中で最大の集光角を与えるために調整されることを特徴とする請求項1記載の貫通孔内径測定装置。   The principal ray of the light beam projected on the object to be measured is configured to intersect the optical axis in the vicinity of the entrance of the through hole of the object to be measured, and the adjustment of the condensing angle is performed by the inner wall of the through hole. 2. The through-hole inner diameter measuring device according to claim 1, wherein the through-hole inner diameter measuring device is adjusted to give a maximum condensing angle within a constraint that direct light that is not reflected does not enter the photoelectric detector. 前記チャート板は、光軸を中心として円周上に配置された複数のピンホールを有し、前記投影系は、前記複数のピンホールを透過した光束により、前記貫通孔の内壁に複数のピンホール像を形成するための投影レンズを有することを特徴とする請求項1に記載の貫通孔内径測定装置。   The chart plate has a plurality of pinholes arranged on a circumference around an optical axis, and the projection system has a plurality of pins on an inner wall of the through hole by a light beam transmitted through the plurality of pinholes. The through-hole inner diameter measuring apparatus according to claim 1, further comprising a projection lens for forming a hall image. 前記チャート板は、光軸を中心としたリング状の開口部を有し、前記投影系は、前記リング状の開口部を透過した光束により、前記貫通孔の内壁にリング状像を形成するための結像レンズを有することを特徴とする請求項1に記載の貫通孔内径測定装置。   The chart plate has a ring-shaped opening centered on the optical axis, and the projection system forms a ring-shaped image on the inner wall of the through hole by a light beam transmitted through the ring-shaped opening. The through-hole inner diameter measuring apparatus according to claim 1, comprising: an imaging lens. 前記投影系は、チャート板の開口部を透過した光束により被測定物の貫通孔の内壁に集光像を形成するための投影レンズを有し、前記受光系は内壁での反射光束により前記光電検出器上に集光像を形成するための結像レンズを有し、前記投影レンズの焦点位置近傍に被測定物の貫通孔の入り口を配置し、前記被測定物の貫通孔の出口を前記結像レンズの焦点位置近傍にそれぞれ配置し、該投影系は前記貫通孔の内壁で反射された光のみが前記光電検出器に入射するような最大の集光角を与えることを特徴とする請求項1に記載の貫通孔内径測定装置。   The projection system has a projection lens for forming a condensed image on the inner wall of the through hole of the object to be measured by the light beam transmitted through the opening of the chart plate, and the light receiving system receives the photoelectric sensor by the reflected light beam on the inner wall. An imaging lens for forming a condensed image on the detector; an entrance of a through-hole of the object to be measured is disposed near a focal position of the projection lens; and an exit of the through-hole of the object to be measured is The projection system is disposed in the vicinity of a focal position of the imaging lens, and the projection system provides a maximum condensing angle so that only light reflected by the inner wall of the through hole is incident on the photoelectric detector. Item 2. The through-hole inner diameter measuring device according to Item 1. 前記投影系は、チャート板を測定光束で照明するためのコンデンサレンズを有し、前記コンデンサレンズの前側焦点位置に円形開口部を有する円形絞りを配置し、前記コンデンサレンズの後側焦点位置に前記チャート板を配置したケーラー照明光学系を有し、前記円形絞りの開口直径を調節することにより集光角を調整することを特徴とする請求項1に記載の貫通孔内径測定装置。   The projection system includes a condenser lens for illuminating the chart plate with a measurement light beam, and a circular diaphragm having a circular opening is arranged at a front focal position of the condenser lens, and the rear focal position of the condenser lens The through-hole inner diameter measuring apparatus according to claim 1, further comprising a Koehler illumination optical system in which a chart plate is arranged, and adjusting a condensing angle by adjusting an aperture diameter of the circular diaphragm. 前記円形絞りの光軸方向の位置を調整する調整手段を有することを特徴とする請求項6に記載の貫通孔内径測定装置。   The through-hole inner diameter measuring device according to claim 6, further comprising an adjusting unit that adjusts a position of the circular diaphragm in an optical axis direction. 前記光電検出器は二次元センサーであることを特徴とする請求項1に記載の貫通孔内径測定装置。   The through-hole inner diameter measuring apparatus according to claim 1, wherein the photoelectric detector is a two-dimensional sensor. 前記光電検出器は、ライン状のセンサアレイであり、前記受光系の光軸を中心にして該ライン状のセンサアレイを回転可能に配置したことを特徴とする請求項1に記載の貫通孔内径測定装置。   2. The through-hole inner diameter according to claim 1, wherein the photoelectric detector is a line-shaped sensor array, and the line-shaped sensor array is rotatably arranged around the optical axis of the light receiving system. measuring device. 前記光電検出器は、前記受光系の光軸を中心として放射状に配置したライン状のセンサアレイであることを特徴とする請求項1に記載の貫通孔内径測定装置。   The through-hole inner diameter measuring device according to claim 1, wherein the photoelectric detector is a linear sensor array arranged radially around the optical axis of the light receiving system. 前記光電検出器による集光像の中心位置は、集光像の光量分布の重心位置、又は、集光像の最大強度の半値点の中央位置に基づき検出することを特徴とする請求項1に記載の貫通孔内径測定装置。   The center position of the condensed image obtained by the photoelectric detector is detected based on the center of gravity position of the light amount distribution of the condensed image or the center position of the half-value point of the maximum intensity of the condensed image. The through-hole inner diameter measuring apparatus as described. 光軸を中心としたリング状の開口部を有するチャート板を介して被測定物の貫通孔の内壁にリング状の測定光束を投影するための投影系と、前記リング状の測定光束により照明された内壁の像を受光するための光電検出器を有する受光系とを有し、前記リング状の照明光束の投影位置を貫通孔の軸方向に移動させながら前記内壁の像を前記光電検出器により順次取得することを特徴とする貫通孔内壁観察装置。   A projection system for projecting a ring-shaped measurement light beam onto the inner wall of the through hole of the object to be measured via a chart plate having a ring-shaped opening centered on the optical axis, and illumination with the ring-shaped measurement light beam A light receiving system having a photoelectric detector for receiving an image of the inner wall, and moving the projection position of the ring-shaped illumination light beam in the axial direction of the through-hole by the photoelectric detector. A through hole inner wall observation device characterized by sequentially acquiring. 前記光電検出器で順次検出されるリング状の内壁像をそれぞれ直線状の内壁像に展開し、この展開した内壁像を順次ずらしながら重ね合わせて合成内壁画像を形成するための画像処理部を有することを特徴とする請求項12に記載の貫通孔内壁観察装置。   An image processing unit is provided for developing ring-shaped inner wall images sequentially detected by the photoelectric detector into linear inner wall images, and superimposing the developed inner wall images while sequentially shifting them to form a composite inner wall image. The through-hole inner wall observation apparatus according to claim 12, wherein:
JP2005352893A 2005-12-07 2005-12-07 Inner diameter measuring device and inner wall observation device for through hole Expired - Fee Related JP4768422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005352893A JP4768422B2 (en) 2005-12-07 2005-12-07 Inner diameter measuring device and inner wall observation device for through hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005352893A JP4768422B2 (en) 2005-12-07 2005-12-07 Inner diameter measuring device and inner wall observation device for through hole

Publications (2)

Publication Number Publication Date
JP2007155571A true JP2007155571A (en) 2007-06-21
JP4768422B2 JP4768422B2 (en) 2011-09-07

Family

ID=38240137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005352893A Expired - Fee Related JP4768422B2 (en) 2005-12-07 2005-12-07 Inner diameter measuring device and inner wall observation device for through hole

Country Status (1)

Country Link
JP (1) JP4768422B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997857A (en) * 2012-11-07 2013-03-27 福群电子(深圳)有限公司 Aperture measurement device and aperture measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488206A (en) * 1987-09-30 1989-04-03 Hitachi Metals Ltd Apparatus for measuring diameter of circular object
JPH0735518A (en) * 1993-06-30 1995-02-07 Nagano Pref Gov Device for measuring bore of through-hole
JPH10227619A (en) * 1997-02-17 1998-08-25 Nippon Telegr & Teleph Corp <Ntt> Dimension measuring method and apparatus for cylindrical object
JPH10307010A (en) * 1997-05-02 1998-11-17 Kawaguchi Kogaku Sangyo:Kk Method and device for inspecting inside of pipe
JP2004509321A (en) * 2000-05-30 2004-03-25 オーヨー コーポレーション,ユーエスエー Apparatus and method for detecting pipeline defects
JP2005043383A (en) * 2004-11-15 2005-02-17 Matsushita Electric Ind Co Ltd Distance measuring method and distance sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488206A (en) * 1987-09-30 1989-04-03 Hitachi Metals Ltd Apparatus for measuring diameter of circular object
JPH0735518A (en) * 1993-06-30 1995-02-07 Nagano Pref Gov Device for measuring bore of through-hole
JPH10227619A (en) * 1997-02-17 1998-08-25 Nippon Telegr & Teleph Corp <Ntt> Dimension measuring method and apparatus for cylindrical object
JPH10307010A (en) * 1997-05-02 1998-11-17 Kawaguchi Kogaku Sangyo:Kk Method and device for inspecting inside of pipe
JP2004509321A (en) * 2000-05-30 2004-03-25 オーヨー コーポレーション,ユーエスエー Apparatus and method for detecting pipeline defects
JP2005043383A (en) * 2004-11-15 2005-02-17 Matsushita Electric Ind Co Ltd Distance measuring method and distance sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997857A (en) * 2012-11-07 2013-03-27 福群电子(深圳)有限公司 Aperture measurement device and aperture measurement method

Also Published As

Publication number Publication date
JP4768422B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
US7456978B2 (en) Shape measuring apparatus
US7436507B2 (en) Method and apparatus for inspecting a pattern
US20040109170A1 (en) Confocal distance sensor
US9410794B2 (en) Light microscope and microscopy method for examining a microscopic specimen
JPWO2008062651A1 (en) Image measuring instrument
JP2008039750A (en) Device for height measuring
JP2008058248A (en) Diffracted light detector and inspection system
JP4721685B2 (en) Shape measuring method and shape measuring apparatus
JP7411682B2 (en) Light sheet microscopy and methods for determining the refractive index of objects in the sample space
JP2010216864A (en) Photometric apparatus
JP4768422B2 (en) Inner diameter measuring device and inner wall observation device for through hole
US11175129B2 (en) Sample shape measuring method and sample shape measuring apparatus
CN109506570B (en) Displacement sensor
JP2009198205A (en) Interferometer
JP2009288075A (en) Aberration measuring device and aberration measuring method
JP5472780B2 (en) Hole shape measuring apparatus and optical system
JP2008026049A (en) Flange focal distance measuring instrument
JPS6153511A (en) Apparatus for inspecting flaw
US9091525B2 (en) Method for focusing an object plane and optical assembly
CN105765438A (en) Optical arrangement for imaging a sample
JPH11264800A (en) Inspecting device
JP2001166202A (en) Focus detection method and focus detector
CN106461382A (en) Five axis optical inspection system
US6226036B1 (en) Device for optical investigation of an object
JP2018189517A (en) Measurement device and method for manufacturing articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees