JP2007155491A - Micro reactor system and liquid feed method - Google Patents

Micro reactor system and liquid feed method Download PDF

Info

Publication number
JP2007155491A
JP2007155491A JP2005350900A JP2005350900A JP2007155491A JP 2007155491 A JP2007155491 A JP 2007155491A JP 2005350900 A JP2005350900 A JP 2005350900A JP 2005350900 A JP2005350900 A JP 2005350900A JP 2007155491 A JP2007155491 A JP 2007155491A
Authority
JP
Japan
Prior art keywords
solution
gas
supply
solutions
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005350900A
Other languages
Japanese (ja)
Other versions
JP4593451B2 (en
Inventor
Minao Yamamoto
三七男 山本
Yoko Shinohara
陽子 篠原
Masataka Araogi
正隆 新荻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005350900A priority Critical patent/JP4593451B2/en
Publication of JP2007155491A publication Critical patent/JP2007155491A/en
Application granted granted Critical
Publication of JP4593451B2 publication Critical patent/JP4593451B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro reactor system where sample solutions and buffer solution flow into a reaction tank section without diffusing or mixing inside a flow channel of a micro reactor, they are made to react with each other in completely the same state as in inflow, and coupling constant or dissociation constant can be measured. <P>SOLUTION: When various solutions are sequentially supplied to a micro reactor with a supplying means, the solutions are fed in a partitioned state by gas so that solutions are not diffused or mixed. The gas having partitioned them just in front of the reaction tank section is removed by a branch channel for degassing disposed near the inlet of the reaction tank section, and only the solutions flow into the reaction tank section. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、生化学物質を固定化し、それに特異的に吸着あるいは結合する酵素、抗体、たんぱく質、ホルモン、糖鎖、化合物などの化学物質を測定するためのディスポーサブル型マイクロチップを備えて化学物質の測定を行うマイクロリアクターシステム及び分析用溶液を反応槽に送液する送液方法に関する。   The present invention comprises a disposable microchip for immobilizing a biochemical substance and measuring a chemical substance such as an enzyme, an antibody, a protein, a hormone, a sugar chain, or a compound that specifically adsorbs or binds to the biochemical substance. The present invention relates to a microreactor system for performing measurement and a liquid feeding method for feeding an analysis solution to a reaction tank.

近年、Lab−on−a−chip、バイオマイクロチップ、あるいはマイクロリアクターなどと称される、バイオ検査用マイクロリアクター及びこれを備えたマイクロリアクターシステムの開発が盛んになってきている。これらのマイクロリアクターは、コンパクトで安価なため、例えば家庭内で人の健康状態を少量の検体で定期的に検査したりすることが可能である。また、ディスポーサブルが前提であるため、コンタミなどの心配もなく手軽に検査することが可能である。このマイクロリアクターに反応物質の質量を直接測定することのできるセンサとして、特許文献1に記載されているQCMバイオセンサを組み込んだもの、非特許文献1及び2に記載されている表面プラズモン共鳴(SPR:Surface Prasmon Resonance)現象を利用して検知するものなど、様々な方式が検討されている。   In recent years, development of a bioreactor microreactor called a Lab-on-a-chip, a biomicrochip, or a microreactor, and a microreactor system including the bioreactor have been actively developed. Since these microreactors are compact and inexpensive, for example, it is possible to regularly check the health condition of a person with a small amount of sample at home. In addition, since it is assumed that it is disposable, it can be easily inspected without worrying about contamination. As a sensor capable of directly measuring the mass of the reactant in this microreactor, a sensor incorporating the QCM biosensor described in Patent Document 1, surface plasmon resonance (SPR) described in Non-Patent Documents 1 and 2 : Surface Prasmon Resonance), and other methods are being studied.

QCMバイオセンサを用いる場合、水晶振動子の電極上での反応物質の吸着・結合による質量変化を水晶振動子の発振周波数シフトを利用して測定することができる。QCMバイオセンサの一例として、例えば特開2003−307481号公報(図6)に記載されているが、これを図6に示す。この図6に示すように、サンプル溶液103に含まれる分析対象のみを捕獲する感応膜を固定化した検出用チャネル101と、その近傍に配置した感応膜が無い補正用チャネル102とが複数形成されたQCMバイオセンサ100を設けることにより、両チャネル101、102の電気的特性の変化を利用して、サンプル溶液103の粘度及び密度に影響されずに反応の過程を逐次モニタできるといった方式が提案されている。   When a QCM biosensor is used, a change in mass due to adsorption / bonding of a reactive substance on an electrode of the crystal resonator can be measured using an oscillation frequency shift of the crystal resonator. An example of the QCM biosensor is described in, for example, Japanese Patent Application Laid-Open No. 2003-307481 (FIG. 6), which is shown in FIG. As shown in FIG. 6, a plurality of detection channels 101 on which a sensitive film that captures only an analysis target contained in the sample solution 103 is fixed, and a plurality of correction channels 102 without a sensitive film disposed in the vicinity thereof are formed. By providing the QCM biosensor 100, a method is proposed in which the reaction process can be monitored sequentially without being affected by the viscosity and density of the sample solution 103 by utilizing the change in the electrical characteristics of both channels 101 and 102. ing.

さらに、上述したQCMバイオセンサをマイクロリアクターに組み込み、ポンプなどの送液手段を用いて、サンプル溶液をフローさせることによって、サンプル溶液をフローさせない従来の方式(ウェル型セル構造)よりも反応速度を速くすることができるため、反応全体のリアルタイム測定が短時間で可能となる。従って、マイクロリアクターシステムとしては、緩衝溶液やサンプル溶液といった反応させるために必要な溶液を測定時に順次マイクロリアクターに供給する仕組みを備えている。
特開2003−307481号公報 森本香織、「プラズモン共鳴分析タイプの分析装置」、臨床検査、株式会社医学書院、2003年10月、vol.47,no.11,2003年増刊号,p.1319〜1327 永田和宏、半田宏、「生体物質相互作用のリアルタイム解析実験法」、シュプリンガー・フェアラーク東京株式会社、1998年11月
Furthermore, by incorporating the above-mentioned QCM biosensor into a microreactor and using a liquid delivery means such as a pump to flow the sample solution, the reaction rate is higher than that of the conventional method (well type cell structure) that does not flow the sample solution. Since it can be made faster, real-time measurement of the entire reaction is possible in a short time. Therefore, the microreactor system is provided with a mechanism for sequentially supplying solutions necessary for the reaction such as a buffer solution and a sample solution to the microreactor at the time of measurement.
Japanese Patent Laid-Open No. 2003-307481 Kaori Morimoto, “Plasmon Resonance Analysis Type Analyzer”, Clinical Examination, Medical School, October 2003, vol. 47, no. 11, 2003 Special Issue, p. 1319-1327 Kazuhiro Nagata, Hiroshi Handa, "Real-time analysis experiment method of biological material interaction", Springer Fairlark Tokyo Co., Ltd., November 1998

上述したようなQCMバイオセンサをマイクロリアクターに組み込む方式は、サンプル溶液の短時間での反応測定が可能であるが、反応させるために数種類のサンプル溶液や緩衝液を送液するとき、それぞれの溶液が混ざらないように送液する必要がある。しかしながら、従来のマイクロリアクターシステムでは、各溶液が切り目無く流路内を流れるため、どうしても溶液の境界で内容物の拡散が起こり、サンプル溶液の混合や濃度の変化が発生してしまうという問題があった。   The method of incorporating the QCM biosensor as described above into the microreactor can measure the reaction of the sample solution in a short time. However, when sending several types of sample solutions and buffer solutions to react, each solution It is necessary to feed the solution so as not to mix. However, in the conventional microreactor system, since each solution flows through the flow path without any break, the contents inevitably diffuse at the boundary of the solution, resulting in mixing of the sample solution and change in concentration. It was.

そこで本発明は、上記課題を解決するために、サンプル溶液同士や緩衝液がマイクロリアクターの流路内部で、拡散混合すること無く反応槽部まで流れ込み、流入時と全く同じ状態で反応させ、結合定数や解離定数などの測定が可能であるマイクロリアクターシステムを提供することを目的とするものである。   Therefore, in order to solve the above-mentioned problems, the present invention allows sample solutions and buffer solutions to flow into the reaction tank without diffusion mixing inside the microreactor flow path, react in the same state as at the time of inflow, and combine them. It is an object of the present invention to provide a microreactor system capable of measuring constants and dissociation constants.

本発明のマイクロリアクターシステムは、反応槽部と、該反応槽部に分析用の溶液を供給する供給路と、前記反応槽部から前記溶液を排出する廃液路とを有するマイクロリアクターと、前記マイクロリアクターの前記供給路に接続されて前記溶液を供給する供給手段とを有するマイクロリアクターシステムにおいて、前記供給手段は、前記供給路に種類が異なる複数の前記溶液とガスとを供給する供給部と、該供給部からの送液を制御する制御部と、前記溶液とガスを貯留する貯留部とからなり、また、前記供給路は、前記反応槽に至る所定の位置で前記ガスを抜き取るガス除去手段が設けられていることを特徴とするものである。   The microreactor system of the present invention includes a microreactor having a reaction tank section, a supply path for supplying a solution for analysis to the reaction tank section, a waste liquid path for discharging the solution from the reaction tank section, and the microreactor system. A microreactor system having a supply means connected to the supply path of the reactor to supply the solution; and the supply means supplies a plurality of different solutions and gases to the supply path; A gas removal means comprising a control section for controlling the liquid feeding from the supply section and a storage section for storing the solution and the gas, and the supply path extracts the gas at a predetermined position reaching the reaction tank. Is provided.

また、前記供給部は、前記貯留部からの前記溶液を受けて加圧しながら送出する加圧式供給ポンプと、該加圧ポンプから送液された種類が異なる前記溶液を種類ごとに仕切るように互いの前記溶液の間に前記ガスを介在させながら前記溶液と前記ガスとを順次切り替えて前記供給路に供給するバルブとからなることを特徴とするものである。   In addition, the supply unit receives the solution from the storage unit and sends it out while pressurizing the solution, and the supply unit that feeds the solution from the pressurization pump so that the different types of the solution are separated from each other. And a valve for sequentially switching the solution and the gas while interposing the gas between the solutions and supplying the gas to the supply path.

また、前記ガス除去手段は、前記所定の位置で前記供給路から分岐し、外部または大気に連通するガス抜き用分岐流路からなることを特徴とするものである。   In addition, the gas removing means includes a degassing branch flow path that branches from the supply path at the predetermined position and communicates with the outside or the atmosphere.

また、本発明の送液方法は、供給路を介して種類が異なる複数の溶液を反応槽に送液する送液方法であって、種類が異なる前記溶液を種類ごとに仕切るように互いの前記溶液の間にガスを介在させて前記溶液を前記供給路に流すステップと、前記反応槽に至る所定の位置で前記ガスを抜き取るステップと、前記ガスを抜き取って前記ガスによる仕切りが排除された状態で前記溶液を前記種類ごとに前記反応槽に順次供給するステップとからなることを特徴とするものである。   The liquid feeding method of the present invention is a liquid feeding method for feeding a plurality of different types of solutions to a reaction tank via a supply path, and each of the above-mentioned different types of solutions is partitioned so as to partition each type. A state in which a gas is interposed between the solution and the solution is caused to flow through the supply path; a step of extracting the gas at a predetermined position reaching the reaction vessel; and a state where the gas is extracted and the partition by the gas is eliminated And sequentially supplying the solution to the reaction vessel for each type.

本発明によると、供給される緩衝液または反応に必要なサンプル溶液は、供給時にガスで区切られて送液されるため、溶液同士の境界が無く、溶液の拡散や混合が起こりえない。また、反応槽部にガスが導入してしまうと、QCMなどのセンサはガスの影響で異常な信号を出力するが、本発明では流路は反応槽部手前に供給路から分岐するように接続されたガス抜き分岐路を有する構造となっているため、溶液を区切っていたガスは反応槽部直前でガス抜き分岐路に排出され、この時点で溶液のみが反応槽部に入る。従って、マイクロリアクター内部では、溶液供給時に溶液の拡散混合も無い、センサへのガスの影響も無い、精度の良い結合定数や解離定数などの測定が可能となる。   According to the present invention, since the supplied buffer solution or the sample solution necessary for the reaction is separated and sent by gas at the time of supply, there is no boundary between the solutions, and diffusion and mixing of the solution cannot occur. In addition, when gas is introduced into the reaction vessel, sensors such as QCM output an abnormal signal due to the influence of the gas. In the present invention, the flow channel is connected to branch from the supply channel before the reaction vessel. Therefore, the gas that has partitioned the solution is discharged to the degassing branch immediately before the reaction tank section, and only the solution enters the reaction tank section at this point. Therefore, in the microreactor, there is no diffusion mixing of the solution when supplying the solution, and there is no influence of the gas on the sensor, and it is possible to measure the coupling constant and the dissociation constant with high accuracy.

(実施の形態の概要)
供給手段によってマイクロリアクター1に緩衝液とサンプル溶液を順次供給し、反応槽部2に固定した抗体42と送液したサンプル溶液に含まれる抗原43の結合定数や解離定数を測定する。緩衝液とサンプル液が拡散混合しないように溶液は空気によって仕切られて送液され、反応槽部2手前で仕切っていた空気をガス抜き分岐路8経由で取り除く。空気を取り除くための構造として、供給路3と接続した反応槽部2の入り口近傍から空気を流せるようにガス抜き分岐路8を接続し、その先は大気に開放されている構造となっている。
(実施の形態の詳細)
以下、本発明について図面を参照しつつ詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。
(実施の形態1)
図1は、本発明のマイクロリアクターシステムの構成を説明する図である。先ず、マイクロリアクター1の構成について説明する。マイクロリアクター1の基坂部は樹脂基板21からなる。樹脂基板21は、シリコンゴムの一種であるPDMS(ポリジメチルシロキサン)に凹部を形成し、これを積層して張り合わせた構造となっている。そして、凹部は流体が流れる部分となり、ガス抜き分岐路8は反応槽部2手前の供給路3から分岐し、開放口9に接続されている。その他、溶液供給口5、反応槽部2からの排出路7、排出口4が形成されている。
(Outline of the embodiment)
The buffer solution and the sample solution are sequentially supplied to the microreactor 1 by the supply means, and the binding constants and dissociation constants of the antibody 42 immobilized on the reaction tank unit 2 and the antigen 43 contained in the sent sample solution are measured. The solution is partitioned and sent by air so that the buffer solution and the sample solution are not diffusively mixed, and the air partitioned in front of the reaction vessel 2 is removed via the degassing branch 8. As a structure for removing air, a degassing branching path 8 is connected so that air can flow from the vicinity of the inlet of the reaction tank unit 2 connected to the supply path 3, and the other end is open to the atmosphere. .
(Details of the embodiment)
Hereinafter, the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment.
(Embodiment 1)
FIG. 1 is a diagram illustrating the configuration of a microreactor system according to the present invention. First, the configuration of the microreactor 1 will be described. The base slope portion of the microreactor 1 is made of a resin substrate 21. The resin substrate 21 has a structure in which a recess is formed in PDMS (polydimethylsiloxane) which is a kind of silicon rubber, and these are laminated and bonded together. The concave portion becomes a part through which the fluid flows, and the gas vent branch path 8 branches from the supply path 3 in front of the reaction tank section 2 and is connected to the open port 9. In addition, a solution supply port 5, a discharge path 7 from the reaction tank unit 2, and a discharge port 4 are formed.

次に、マイクロリアクターシステム14の構成について説明する。本マイクロリアクターシステムは上記のマイクロリアクター1とこれに溶液を供給する供給手段とからなり、この供給手段は供給路に種類が異なる複数の前記溶液とガスとを供給する供給部17と、該供給部からの送液を制御する制御部23と、前記溶液とガスを貯留する貯留部(タンク)10、11、12とから構成されている。マイクロリアクター1の供給口5にはチューブ20を用いて供給部17が接続されており、この接続手段17には第1の溶液用容器11と第2の溶液用容器12とガス容器10から延びたそれぞれの配管13、25、24が接続されている。また、排出口4にもチューブ20が取り付けられ、廃液タンク16に接続されている。供給部17は信号線22を介して制御手段23が接続されており、制御手段23が送液の制御を行う構成となっている。ただし、QCMバイオセンサの駆動・検出用回路は図中では省略している。   Next, the configuration of the microreactor system 14 will be described. The microreactor system includes the microreactor 1 described above and a supply unit that supplies a solution to the microreactor 1, and the supply unit supplies a plurality of different solutions and gases to a supply path, and the supply unit The control part 23 which controls the liquid feeding from a part, and the storage parts (tank) 10, 11, and 12 which store the said solution and gas are comprised. A supply unit 17 is connected to the supply port 5 of the microreactor 1 using a tube 20, and this connection means 17 extends from the first solution container 11, the second solution container 12, and the gas container 10. The respective pipes 13, 25, 24 are connected. A tube 20 is also attached to the discharge port 4 and connected to the waste liquid tank 16. The supply unit 17 is connected to a control unit 23 via a signal line 22, and the control unit 23 is configured to control liquid feeding. However, the drive / detection circuit of the QCM biosensor is omitted in the figure.

マイクロリアクター1の一例として、溶液供給口5と溶液排出口4は直径約3mm、供給路3と排出路7は幅約300μm、深さ50μmに作製した。また、反応槽部2は最大幅が6mmとなるように作製した。そして、ガス抜き分岐路8は供給路との接続部の幅5μm以下に、流路幅を50μm以下に製作した。また、樹脂基板21の凹部は溶液を均一に流すために、表面に親水化処理コーティング処理を行った。ただし、ガス抜き分岐路8は流路内の表面に親水化処理コーティングを施さず疎水の状態を保持している。
ここでは疎水性の材質をもつ樹脂を用いてマイクロリアクター1を形成したために、ガス抜き分岐路8以外の流路に親水化処理を行ったが、親水性の素材(例えばガラス)を用いてマイクロリアクター1を作る場合は、ガス抜き分岐路8に溶液が流れ込まないように、図1に横線で示した分岐路の分岐部近傍に疎水化処理を施し、疎水領域50を形成しても良い。このように形成されたガス抜き分岐流路8には、水溶液系の液体は流れ込むことは無く、ガスのみが通過できる状態の流路となる。また、反応槽部2には生化学物質の吸着・結合反応を測定するために反応槽部底面の一部にQCMバイオセンサ6を配置している。QCMバイオセンサ6の電極や配線は図1では省略している。本実施の形態1ではバイオセンサとして水晶振動子からなるQCMバイオセンサを用いた。
As an example of the microreactor 1, the solution supply port 5 and the solution discharge port 4 were made to have a diameter of about 3 mm, and the supply channel 3 and the discharge channel 7 had a width of about 300 μm and a depth of 50 μm. Moreover, the reaction tank part 2 was produced so that the maximum width might be 6 mm. The degassing branch 8 was manufactured to have a width of 5 μm or less and a flow width of 50 μm or less at the connection portion with the supply path. In addition, the concave portion of the resin substrate 21 was subjected to a hydrophilic treatment coating treatment on the surface in order to allow the solution to flow uniformly. However, the degassing branch 8 does not have a hydrophilic treatment coating on the surface in the flow path and maintains a hydrophobic state.
Here, since the microreactor 1 is formed using a resin having a hydrophobic material, the flow path other than the degassing branch path 8 is subjected to a hydrophilization treatment. However, a hydrophilic material (for example, glass) is used for the microreactor. When the reactor 1 is made, the hydrophobic region 50 may be formed by applying a hydrophobization treatment in the vicinity of the branch portion of the branch path shown by a horizontal line in FIG. 1 so that the solution does not flow into the gas vent branch path 8. The aqueous solution liquid does not flow into the degassing branch flow path 8 formed in this way, and the flow path is in a state in which only gas can pass. In addition, a QCM biosensor 6 is arranged in a part of the bottom surface of the reaction tank in order to measure the adsorption / binding reaction of biochemical substances in the reaction tank 2. The electrodes and wiring of the QCM biosensor 6 are omitted in FIG. In the first embodiment, a QCM biosensor composed of a quartz resonator is used as the biosensor.

次に、本発明の送液方法については図2のフローチャートに基づいて、供給部17については図5を用いて説明する。供給部17は内部には加圧して送液できるポンプ26、例えばローラーポンプやダイヤフラムポンプが配置され、溶液を押し流すことができる構成を持っており、先ず、供給部17から第1の溶液19を供給する(図2、ステップS1)。
そして、マイクロリアクター1内部が第1の溶液19により満たされた後、供給部17は第1の溶液19から第2の溶液15に、双方の溶液の間にガス18が介在するように供給液を切り替える(図2、ステップS2)。
この切り替えは制御手段23により制御されたバルブ(スライド式開閉バルブ)27によって行う。供給部17は、送液が切り替わる瞬間に、バルブ27が一瞬ガス配管口28を経由して切り替わる構造となっているため、第1の溶液19と第2の溶液15の間に少量のガス18が挟まる。このとき、ガス18は圧縮されて配管24内に存在するため、溶液がガス配管24に逆流することは無い。従って、第2の溶液15は先に流していた第1の溶液19との間にガス18を介在して送液されることとなる。
さらに、供給部17が送液を続けることにより、マイクロアクター1内の供給路3に第2の溶液15が流れ込む状態となる。間にガス18を介在した第1の溶液19と第2の溶液15は反応槽部2へと向かって流れて行き、第1の溶液19の最後部が反応槽部2手前のガス抜き分岐路8を通り過ぎたとき、第1の溶液19と第2の溶液15間に介在するガス18がガス抜き分岐路8に押し出される(図2、ステップS3)。
このとき初めて第1の溶液19と第2の溶液15の液界面が接する。この状態で第2の溶液15が反応槽部2に流れ混む(図2、ステップS4)ため、反応槽部2へのガス流入は発生しない。以上が本発明の送液方法である。
Next, the liquid feeding method of the present invention will be described with reference to the flowchart of FIG. 2, and the supply unit 17 will be described with reference to FIG. The supply unit 17 is provided with a pump 26 that can supply liquid under pressure, for example, a roller pump or a diaphragm pump, and has a configuration that allows the solution to be washed away. First, the first solution 19 is supplied from the supply unit 17. Supply (FIG. 2, step S1).
After the interior of the microreactor 1 is filled with the first solution 19, the supply unit 17 supplies the supply solution so that the gas 18 is interposed between the two solutions from the first solution 19 to the second solution 15. Are switched (FIG. 2, step S2).
This switching is performed by a valve (sliding on-off valve) 27 controlled by the control means 23. The supply unit 17 has a structure in which the valve 27 is switched for a moment via the gas piping port 28 at the moment when the liquid feeding is switched, so that a small amount of gas 18 is provided between the first solution 19 and the second solution 15. Get caught. At this time, since the gas 18 is compressed and exists in the pipe 24, the solution does not flow back into the gas pipe 24. Accordingly, the second solution 15 is sent between the first solution 19 and the first solution 19 that has been flown through the gas 18.
Furthermore, when the supply unit 17 continues to supply liquid, the second solution 15 flows into the supply path 3 in the microactor 1. The first solution 19 and the second solution 15 with the gas 18 interposed therebetween flow toward the reaction tank unit 2, and the last part of the first solution 19 is a degassing branch before the reaction tank unit 2. When the gas passes through 8, the gas 18 interposed between the first solution 19 and the second solution 15 is pushed out to the degassing branch 8 (FIG. 2, step S3).
At this time, the liquid interface between the first solution 19 and the second solution 15 contacts for the first time. In this state, the second solution 15 flows into and mixes with the reaction vessel 2 (FIG. 2, step S4), so that no gas flows into the reaction vessel 2. The above is the liquid feeding method of the present invention.

次に、本実施の形態1のマイクロリアクターシステム14を用いて、抗原―抗体反応の測定を行ったので説明する。本実施の形態1では第1の溶液19としてリン酸などの緩衝液を、第2の溶液15として抗原を含んだサンプル溶液を用意し、ガス18には圧縮された空気を用いた。   Next, the measurement of the antigen-antibody reaction was performed using the microreactor system 14 of the first embodiment, which will be described. In the first embodiment, a buffer solution such as phosphoric acid is prepared as the first solution 19, and a sample solution containing an antigen is prepared as the second solution 15, and compressed air is used as the gas 18.

まず、QCMバイオセンサ6の表面に、SAM膜41を介して抗体42を修飾しておく(図4(a))。次に、リン酸などの緩衝液(第1の溶液19)を供給部17により送液する。緩衝液(第1の溶液19)は供給口5を通過してマイクロリアクター1に送液され、供給路3から反応槽部2、排出路7、排出口4、廃液タンク16へと流れる。   First, the antibody 42 is modified on the surface of the QCM biosensor 6 via the SAM film 41 (FIG. 4A). Next, a buffer solution such as phosphoric acid (first solution 19) is fed by the supply unit 17. The buffer solution (first solution 19) passes through the supply port 5, is sent to the microreactor 1, and flows from the supply path 3 to the reaction tank unit 2, the discharge path 7, the discharge port 4, and the waste liquid tank 16.

緩衝液(第1の溶液19)がマイクロリアクター1内の流路を満たし、流量を1μL/min程度に安定させた後、供給する溶液を抗原43を含むサンプル溶液(第2の溶液15)に切り替えた。ここで、サンプル液(第2の溶液15)は全部で約20μL送液する。緩衝液(第1の溶液19)とサンプル液(第2の溶液15)は、間に空気(ガス18)を挟んだ状態で供給路3を流れ(図3参照)、1μL/minの速度で反応槽部2に向かって進み、サンプル液(第2の溶液15)が反応槽部2手前に差し掛かったときに、緩衝液(第1の溶液19)との境に介在した空気(ガス18)がガス抜き流路8に排出された。
そして、緩衝液(第1の溶液19)は、緩衝液(第1の溶液19)界面とサンプル液(第2の溶液15)界面が接すると同時に反応槽部2へと流れ込んだ。そして、サンプル溶液(第2の溶液15)中の抗原43がQCMバイオセンサ6表面に固定化されている抗体42と結合反応(抗原―抗体反応)を生じた(図4(b)参照)と思われる信号がQCMバイオセンサ6より検出された。この信号には空気(ガス18)が混入したような特異的な信号変化は見られなかった。
After the buffer solution (first solution 19) fills the flow path in the microreactor 1 and the flow rate is stabilized at about 1 μL / min, the supplied solution is changed to the sample solution containing the antigen 43 (second solution 15). Switched. Here, a total of about 20 μL of the sample solution (second solution 15) is fed. The buffer solution (first solution 19) and the sample solution (second solution 15) flow through the supply path 3 with air (gas 18) sandwiched therebetween (see FIG. 3) at a rate of 1 μL / min. Air (gas 18) intervening at the boundary with the buffer solution (first solution 19) when the sample solution (second solution 15) approaches the reaction vessel 2 before the reaction vessel 2 is reached. Was discharged to the gas vent channel 8.
Then, the buffer solution (first solution 19) flowed into the reaction vessel 2 at the same time when the interface between the buffer solution (first solution 19) and the sample solution (second solution 15) contacted each other. Then, the antigen 43 in the sample solution (second solution 15) caused a binding reaction (antigen-antibody reaction) with the antibody 42 immobilized on the surface of the QCM biosensor 6 (see FIG. 4B). A possible signal was detected by the QCM biosensor 6. This signal did not show a specific signal change as if air (gas 18) was mixed.

そして、サンプル液(第2の溶液15)の送液開始から約20分後(20μLを流した後)に、供給部17により再び緩衝液(第1の溶液19)の供給に切り替えた。すると、サンプル液(第2の溶液15)と緩衝液(第1の溶液19)の間に空気(ガス18)が介在した状態でマイクロリアクター1に溶液が送液され、先程と同様に、緩衝液(第1の溶液19)が反応槽部2手前に差し掛かったときに、サンプル液(第2の溶液15)との境に介在した空気(ガス18)がガス抜き流路8に排出され、サンプル液(第2の溶液15)が、サンプル液(第2の溶液15)界面と緩衝液(第1の溶液19)界面が接すると同時に反応槽部2へと流れ込んだ。そして、抗体42に吸着していた抗源43が解離したと思われる信号がQCMセンサより検出された。この信号にも空気(ガス18)が混入したような特異的な信号変化は見られなかった。   Then, about 20 minutes after starting the feeding of the sample solution (second solution 15) (after flowing 20 μL), the supply unit 17 switched again to supplying the buffer solution (first solution 19). Then, the solution is sent to the microreactor 1 with air (gas 18) interposed between the sample solution (second solution 15) and the buffer solution (first solution 19). When the liquid (first solution 19) reaches the front of the reaction vessel 2, the air (gas 18) intervening with the sample liquid (second solution 15) is discharged to the gas vent channel 8, The sample solution (second solution 15) flowed into the reaction vessel 2 at the same time when the interface between the sample solution (second solution 15) and the buffer solution (first solution 19) contacted each other. A signal that seems to have dissociated the anti-source 43 adsorbed on the antibody 42 was detected by the QCM sensor. This signal also did not show a specific signal change as if air (gas 18) was mixed.

このように、本実施の形態1では、反応槽部2にサンプル液が入る直前まで、他の溶液との接触が起こらず、しかも空気のようなガスが反応槽部2に入ることも無い送液が可能である。したがって、抗原―抗体反応をリアルタイムで計測でき、反応の定量化だけではなく結合定数や解離定数などの反応速度に関するアフィニティー特性をも計測することが可能となる。本実施の形態1では抗原―抗体反応に関して述べたが、DNAのハイブリダイゼーション反応、蛋白質の結合、酵素反応など様々な生化学反応に用いることができる。   As described above, in the first embodiment, the contact with the other solution does not occur and the gas such as air does not enter the reaction tank 2 until just before the sample liquid enters the reaction tank 2. Liquid is possible. Therefore, the antigen-antibody reaction can be measured in real time, and it is possible to measure not only the reaction quantification but also the affinity characteristics related to the reaction rate such as the binding constant and the dissociation constant. Although the antigen-antibody reaction has been described in the first embodiment, it can be used for various biochemical reactions such as DNA hybridization reaction, protein binding, and enzyme reaction.

また、本実施の形態1ではバイオセンサにQCMバイオセンサを用いたが、光を利用したSPRバイオセンサ、エバネッセント波励起型センサを用いても構わない。また、バルブとしてスライド式バルブを用いたが回転式のバルブでも良いし、ガスを介在して供給できるバルブであればどんなバルブでも構わない。   In the first embodiment, the QCM biosensor is used as the biosensor. However, an SPR biosensor or an evanescent wave excitation type sensor using light may be used. Further, although a slide type valve is used as a valve, a rotary type valve may be used, and any valve may be used as long as it can be supplied via gas.

本発明のマイクロリアクターシステムのブロック構成図である。It is a block block diagram of the microreactor system of this invention. 本発明の送液方法を示すフローチャート図である。It is a flowchart figure which shows the liquid feeding method of this invention. 本発明の送液方法を説明するための説明図である。It is explanatory drawing for demonstrating the liquid feeding method of this invention. 本発明のマイクロリアクターの動作を説明するための説明図であり、(a)は抗体を固定した状態、(b)は抗原を送液している状態を示す図である。It is explanatory drawing for demonstrating operation | movement of the microreactor of this invention, (a) is the state which fixed the antibody, (b) is a figure which shows the state which is feeding the antigen. 本発明の供給手段の動作を説明するための説明図である。It is explanatory drawing for demonstrating operation | movement of the supply means of this invention. 従来のQCMバイオセンサの構造を示す概観図であり、(a)は上面図、(b)はB−B´断面図である。It is a general-view figure which shows the structure of the conventional QCM biosensor, (a) is a top view, (b) is BB 'sectional drawing.

符号の説明Explanation of symbols

1 マイクロリアクター
2 反応槽部
3 供給路
4 排出口
5 供給口
6 QCMバイオセンサ
7 排出路
8 ガス抜き分岐路
9 開放口
10 ガス容器
11 第1の溶液用容器
12 第2の溶液用容器
13 配管
14 マイクロリアクターシステム
15 第2の溶液
16 廃液タンク
17 供給部
18 ガス
19 第1の溶液
20 チューブ
21 樹脂基板
22 信号線
23 制御手段
24 配管
25 配管
26 ポンプ
27 バルブ
28 ガス配管口
41 SAM膜
42 抗体
43 抗原
50 疎水領域
100 QCMセンサ
101 検出用チャネル
102 補正用チャネル
103 サンプル溶液
DESCRIPTION OF SYMBOLS 1 Microreactor 2 Reaction tank part 3 Supply path 4 Discharge port 5 Supply port 6 QCM biosensor 7 Discharge path 8 Degassing branch path 9 Opening port 10 Gas container 11 First solution container 12 Second solution container 13 Piping 14 Microreactor system 15 Second solution 16 Waste liquid tank 17 Supply unit 18 Gas 19 First solution 20 Tube 21 Resin substrate 22 Signal line 23 Control means 24 Pipe 25 Pipe 26 Pump 27 Valve 28 Gas pipe port 41 SAM membrane 42 Antibody 43 Antigen 50 Hydrophobic region 100 QCM sensor 101 Detection channel 102 Correction channel 103 Sample solution

Claims (5)

反応槽部と、該反応槽部に分析用の溶液を供給する供給路と、前記反応槽部から前記溶液を排出する廃液路とを有するマイクロリアクターと、前記マイクロリアクターの前記供給路に接続されて前記溶液を供給する供給手段とを有するマイクロリアクターシステムにおいて、
前記供給手段は、前記供給路に種類が異なる複数の前記溶液とガスとを供給する供給部と、該供給部からの送液を制御する制御部と、前記溶液とガスを貯留する貯留部とからなり、また、前記供給路には、前記反応槽に至る所定の位置で前記ガスを抜き取るガス除去手段が設けられていることを特徴とするマイクロリアクターシステム。
A microreactor having a reaction tank part, a supply path for supplying an analysis solution to the reaction tank part, a waste liquid path for discharging the solution from the reaction tank part, and connected to the supply path of the microreactor. A microreactor system having a supply means for supplying the solution,
The supply means includes a supply unit that supplies a plurality of different solutions and gases to the supply path, a control unit that controls liquid feeding from the supply unit, and a storage unit that stores the solution and gas. The microreactor system is characterized in that the supply path is provided with gas removing means for extracting the gas at a predetermined position reaching the reaction tank.
前記供給部は、前記貯留部からの前記溶液を受けて加圧しながら送出する加圧式供給ポンプと、該加圧ポンプから送液された種類が異なる前記溶液を種類ごとに仕切るように互いの前記溶液の間に前記ガスを介在させながら前記溶液と前記ガスとを順次切り替えて前記供給路に供給するバルブとからなることを特徴とする請求項1に記載のマイクロリアクターシステム。   The supply unit receives the solution from the storage unit and sends it out while pressurizing, and the supply unit is configured to partition the solutions sent from the pressurization pump into different types. 2. The microreactor system according to claim 1, further comprising a valve that sequentially switches the solution and the gas while supplying the gas between the solutions and supplies the gas to the supply path. 前記ガス除去手段は、前記所定の位置で前記供給路から分岐し、外部または大気に連通するガス抜き用分岐流路からなることを特徴とする請求項1または2に記載のマイクロリアクターシステム。   3. The microreactor system according to claim 1, wherein the gas removing unit includes a degassing branch channel that branches from the supply channel at the predetermined position and communicates with the outside or the atmosphere. 前記ガス抜き用分岐流路は、分岐流路内の表面全体または分岐部近傍の流路内表面が疎水性を有することを特徴とする請求項1〜3のいずれかに記載のマイクロリアクターシステム。   The microreactor system according to any one of claims 1 to 3, wherein the degassing branch channel has hydrophobicity on the entire surface in the branch channel or on the inner surface in the vicinity of the branch part. 供給路を介して種類が異なる複数の溶液を反応槽に送液する送液方法であって、
種類が異なる前記溶液を種類ごとに仕切るように互いの前記溶液の間にガスを介在させて前記溶液を前記供給路に流すステップと、
前記反応槽に至る所定の位置で前記ガスを抜き取るステップと、
前記ガスを抜き取って前記ガスによる仕切りが排除された状態で前記溶液を前記種類ごとに前記反応槽に順次供給するステップと、
からなることを特徴とする送液方法。
A liquid feeding method for feeding a plurality of different types of solutions to a reaction tank via a supply path,
Flowing the solution through the supply path by interposing a gas between the solutions so as to partition the solutions of different types for each type;
Extracting the gas at a predetermined position reaching the reaction vessel;
Withdrawing the gas and supplying the solution to the reaction vessel sequentially for each type in a state where partitioning by the gas is eliminated;
A liquid feeding method comprising:
JP2005350900A 2005-12-05 2005-12-05 Microreactor system and liquid feeding method Expired - Fee Related JP4593451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350900A JP4593451B2 (en) 2005-12-05 2005-12-05 Microreactor system and liquid feeding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350900A JP4593451B2 (en) 2005-12-05 2005-12-05 Microreactor system and liquid feeding method

Publications (2)

Publication Number Publication Date
JP2007155491A true JP2007155491A (en) 2007-06-21
JP4593451B2 JP4593451B2 (en) 2010-12-08

Family

ID=38240065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350900A Expired - Fee Related JP4593451B2 (en) 2005-12-05 2005-12-05 Microreactor system and liquid feeding method

Country Status (1)

Country Link
JP (1) JP4593451B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008236A1 (en) * 2007-07-10 2009-01-15 Konica Minolta Medical & Graphic, Inc. Method of mixing liquids in micro-inspection chip and inspection instrument
US8388908B2 (en) 2009-06-02 2013-03-05 Integenx Inc. Fluidic devices with diaphragm valves
US8394642B2 (en) 2009-06-05 2013-03-12 Integenx Inc. Universal sample preparation system and use in an integrated analysis system
US8431340B2 (en) 2004-09-15 2013-04-30 Integenx Inc. Methods for processing and analyzing nucleic acid samples
US8476063B2 (en) 2004-09-15 2013-07-02 Integenx Inc. Microfluidic devices
US8512538B2 (en) 2010-05-28 2013-08-20 Integenx Inc. Capillary electrophoresis device
US8557518B2 (en) 2007-02-05 2013-10-15 Integenx Inc. Microfluidic and nanofluidic devices, systems, and applications
US8584703B2 (en) 2009-12-01 2013-11-19 Integenx Inc. Device with diaphragm valve
US8672532B2 (en) 2008-12-31 2014-03-18 Integenx Inc. Microfluidic methods
US8748165B2 (en) 2008-01-22 2014-06-10 Integenx Inc. Methods for generating short tandem repeat (STR) profiles
US8763642B2 (en) 2010-08-20 2014-07-01 Integenx Inc. Microfluidic devices with mechanically-sealed diaphragm valves
US9121058B2 (en) 2010-08-20 2015-09-01 Integenx Inc. Linear valve arrays
US10191071B2 (en) 2013-11-18 2019-01-29 IntegenX, Inc. Cartridges and instruments for sample analysis
US10208332B2 (en) 2014-05-21 2019-02-19 Integenx Inc. Fluidic cartridge with valve mechanism
US10525467B2 (en) 2011-10-21 2020-01-07 Integenx Inc. Sample preparation, processing and analysis systems
US10690627B2 (en) 2014-10-22 2020-06-23 IntegenX, Inc. Systems and methods for sample preparation, processing and analysis
US10865440B2 (en) 2011-10-21 2020-12-15 IntegenX, Inc. Sample preparation, processing and analysis systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200472A (en) * 1985-03-02 1986-09-05 Shimadzu Corp Distribution of liquid reagent
JPH09257748A (en) * 1996-03-21 1997-10-03 Technol Res Assoc Of Medical & Welfare Apparatus Liquid circuit
JPH09262084A (en) * 1996-03-27 1997-10-07 Technol Res Assoc Of Medical & Welfare Apparatus Dna amplifying apparatus
JP2001310465A (en) * 2000-04-28 2001-11-06 Fuji Photo Film Co Ltd Method for splitting gas-liquid phase, phase splitter, method of forming image, and image forming apparatus
JP2005000770A (en) * 2003-06-10 2005-01-06 Hitachi Ltd Minute reaction device for solid/liquid interface reaction
JP2005199164A (en) * 2004-01-15 2005-07-28 Hitachi Industries Co Ltd Microfluidic system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200472A (en) * 1985-03-02 1986-09-05 Shimadzu Corp Distribution of liquid reagent
JPH09257748A (en) * 1996-03-21 1997-10-03 Technol Res Assoc Of Medical & Welfare Apparatus Liquid circuit
JPH09262084A (en) * 1996-03-27 1997-10-07 Technol Res Assoc Of Medical & Welfare Apparatus Dna amplifying apparatus
JP2001310465A (en) * 2000-04-28 2001-11-06 Fuji Photo Film Co Ltd Method for splitting gas-liquid phase, phase splitter, method of forming image, and image forming apparatus
JP2005000770A (en) * 2003-06-10 2005-01-06 Hitachi Ltd Minute reaction device for solid/liquid interface reaction
JP2005199164A (en) * 2004-01-15 2005-07-28 Hitachi Industries Co Ltd Microfluidic system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551714B2 (en) 2004-09-15 2013-10-08 Integenx Inc. Microfluidic devices
US8476063B2 (en) 2004-09-15 2013-07-02 Integenx Inc. Microfluidic devices
US8431340B2 (en) 2004-09-15 2013-04-30 Integenx Inc. Methods for processing and analyzing nucleic acid samples
US8431390B2 (en) 2004-09-15 2013-04-30 Integenx Inc. Systems of sample processing having a macro-micro interface
US9752185B2 (en) 2004-09-15 2017-09-05 Integenx Inc. Microfluidic devices
US8557518B2 (en) 2007-02-05 2013-10-15 Integenx Inc. Microfluidic and nanofluidic devices, systems, and applications
JPWO2009008236A1 (en) * 2007-07-10 2010-09-02 コニカミノルタエムジー株式会社 Micro inspection chip liquid mixing method and inspection apparatus
WO2009008236A1 (en) * 2007-07-10 2009-01-15 Konica Minolta Medical & Graphic, Inc. Method of mixing liquids in micro-inspection chip and inspection instrument
US8748165B2 (en) 2008-01-22 2014-06-10 Integenx Inc. Methods for generating short tandem repeat (STR) profiles
US8672532B2 (en) 2008-12-31 2014-03-18 Integenx Inc. Microfluidic methods
US8388908B2 (en) 2009-06-02 2013-03-05 Integenx Inc. Fluidic devices with diaphragm valves
US8394642B2 (en) 2009-06-05 2013-03-12 Integenx Inc. Universal sample preparation system and use in an integrated analysis system
US8562918B2 (en) 2009-06-05 2013-10-22 Integenx Inc. Universal sample preparation system and use in an integrated analysis system
US9012236B2 (en) 2009-06-05 2015-04-21 Integenx Inc. Universal sample preparation system and use in an integrated analysis system
US8584703B2 (en) 2009-12-01 2013-11-19 Integenx Inc. Device with diaphragm valve
US8512538B2 (en) 2010-05-28 2013-08-20 Integenx Inc. Capillary electrophoresis device
US8763642B2 (en) 2010-08-20 2014-07-01 Integenx Inc. Microfluidic devices with mechanically-sealed diaphragm valves
US9731266B2 (en) 2010-08-20 2017-08-15 Integenx Inc. Linear valve arrays
US9121058B2 (en) 2010-08-20 2015-09-01 Integenx Inc. Linear valve arrays
US10525467B2 (en) 2011-10-21 2020-01-07 Integenx Inc. Sample preparation, processing and analysis systems
US10865440B2 (en) 2011-10-21 2020-12-15 IntegenX, Inc. Sample preparation, processing and analysis systems
US11684918B2 (en) 2011-10-21 2023-06-27 IntegenX, Inc. Sample preparation, processing and analysis systems
US10191071B2 (en) 2013-11-18 2019-01-29 IntegenX, Inc. Cartridges and instruments for sample analysis
US10989723B2 (en) 2013-11-18 2021-04-27 IntegenX, Inc. Cartridges and instruments for sample analysis
US10208332B2 (en) 2014-05-21 2019-02-19 Integenx Inc. Fluidic cartridge with valve mechanism
US10961561B2 (en) 2014-05-21 2021-03-30 IntegenX, Inc. Fluidic cartridge with valve mechanism
US11891650B2 (en) 2014-05-21 2024-02-06 IntegenX, Inc. Fluid cartridge with valve mechanism
US10690627B2 (en) 2014-10-22 2020-06-23 IntegenX, Inc. Systems and methods for sample preparation, processing and analysis
US12099032B2 (en) 2014-10-22 2024-09-24 IntegenX, Inc. Systems and methods for sample preparation, processing and analysis

Also Published As

Publication number Publication date
JP4593451B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4593451B2 (en) Microreactor system and liquid feeding method
JP4683538B2 (en) Analysis system and analysis method including microchip for analysis
JP4627395B2 (en) Analytical cartridge and liquid feeding control device
JP3989446B2 (en) Flow system for protein detection and protein detection method
US9931630B2 (en) Autonomous and programmable sequential flow of solutions in capillary microfluidics
JP4111179B2 (en) Chemical analyzer and chemical analysis system
WO2007052471A1 (en) Microreactor and method of liquid feeding making use of the same
WO2006112498A1 (en) Testing chip for analysis of sample, and microanalysis system
JP4881115B2 (en) Microreactor and microreactor system
US8021629B2 (en) Analyzer
JP2009178146A (en) Chip for biological sample reaction and method for carrying out biological sample reaction
JP4657867B2 (en) Microreactor and microreactor system
JP4687413B2 (en) Method for mixing two or more liquids in a microchip and a micro total analysis system
JP2006284323A (en) Micro total analysis system
JP5077227B2 (en) Reaction method and analysis device in flow path of microchip
JP2007139501A (en) Filling method of reagent into microchip
JP5131538B2 (en) Reaction liquid filling method
CA3037219A1 (en) Analysis system for testing a sample
JP2006266925A (en) Micro-total analyzing system
US20200341021A1 (en) Dispensing device, dispensing apparatus and method using same, and inspection apparatus and method
JP2009122022A (en) Biological material sensing chip, device, and method
EP2847597B1 (en) Functionalized microfluidic device and method
JP4517909B2 (en) Micro total analysis system
KR100593481B1 (en) Adaptive microfluidic chip and microfluidic control device and method using the same
JP5192073B2 (en) Microreactor and microreactor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080717

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4593451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees