JP2007154440A - Concrete chipping device - Google Patents

Concrete chipping device Download PDF

Info

Publication number
JP2007154440A
JP2007154440A JP2005347576A JP2005347576A JP2007154440A JP 2007154440 A JP2007154440 A JP 2007154440A JP 2005347576 A JP2005347576 A JP 2005347576A JP 2005347576 A JP2005347576 A JP 2005347576A JP 2007154440 A JP2007154440 A JP 2007154440A
Authority
JP
Japan
Prior art keywords
concrete
cylindrical container
concrete surface
water
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005347576A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kimura
克彦 木村
Hiroshi Kimura
博 木村
Shinji Urano
真次 浦野
Takashi Takura
隆 田蔵
Kazuo Murakami
一夫 村上
Keiichi Takahashi
圭一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2005347576A priority Critical patent/JP2007154440A/en
Publication of JP2007154440A publication Critical patent/JP2007154440A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve efficient chipping work by preventing a leakage of insulating water for filling a part for positively causing concrete breaking by high-voltage pulse electric discharge in a method of chipping the surface of a concrete structure. <P>SOLUTION: A cylindrical container installed on the concrete surface interposing a seal member between the lower end peripheral edge and the concrete surface is filled with the insulating water with viscosity imparted by adding a thickener so that a J-funnel flow-down time is 5-15 seconds. Discharge electrodes are erected at a predetermined space, and high-voltage pulse applied to the discharge electrodes is propagated from the concrete surface to the interior to chip the concrete surface between the discharge electrodes in a thin layer state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はコンクリートはつり装置に係り、高電圧パルス放電を用いて既設コンクリートの表面の所定範囲を効率よく、はつることができるようにしたコンクリートはつり装置に関する。   The present invention relates to a concrete suspension device, and more particularly to a concrete suspension device that can efficiently suspend a predetermined range of the surface of existing concrete using high-voltage pulse discharge.

従来、高電圧パルス放電を利用した岩石やコンクリートの破砕工法が提案されている(特許文献1参照)。この種の高電圧パルス放電を利用したコンクリートの破砕作業は、たとえば絶縁流体で覆われたコンクリート表面に、所定の離れをもって配置された放電端子およびアース端子を接触させ、放電端子側に高電圧パルスを印加させ、放電端子およびアース端子が接触しているコンクリートの表面を所定範囲にわたり、破砕するものである。この高電圧パルス放電によってコンクリートを破砕する原理としては、通常は絶縁体として作用せず、高電圧パルスを作用させたときにあたかも絶縁体として作用する水(以下、本明細書では、常時は導体であるが、高電圧パルス作用時にあたかも絶縁体として用いる水を「絶縁水」と呼ぶ。)でコンクリート表面が満たされることにより、放電は微細な空気泡などを含有するコンクリート内部を通り、放電経路内部が高圧プラズマ化し、コンクリートが破砕されるメカニズムからなりたっているものである。   Conventionally, a rock or concrete crushing method using high-voltage pulse discharge has been proposed (see Patent Document 1). The concrete crushing operation using this type of high-voltage pulse discharge is performed by, for example, bringing a discharge terminal and a ground terminal, which are arranged at a predetermined distance, into contact with a concrete surface covered with an insulating fluid, and then applying a high-voltage pulse to the discharge terminal side. Is applied, and the surface of the concrete in contact with the discharge terminal and the ground terminal is crushed over a predetermined range. The principle of crushing concrete by this high voltage pulse discharge is that water that does not normally act as an insulator but acts as an insulator when a high voltage pulse is applied (hereinafter referred to as a conductor in this specification). However, when the concrete surface is filled with water used as an insulator during high voltage pulse action, it is called “insulating water.” As a result, the discharge passes through the interior of the concrete containing fine air bubbles and the discharge path. It consists of a mechanism in which the inside becomes high-pressure plasma and the concrete is crushed.

なお、本明細書では、大きな岩石やコンクリートを小割りのブロックに破砕させるような芯抜き破砕作業等に対して、特にコンクリートの表面の所定の範囲を数mm〜十数cmの範囲で薄層に割り、剥がすように破砕する作業を「はつり」と呼んでいる。したがって、本明細書では、破砕、はつり、破砕する、はつる等、ほぼ同義に用いてられている。   In this specification, for cored crushing operations such as crushing large rocks or concrete into small blocks, the specific range of the concrete surface is a thin layer in the range of several mm to several tens of cm. The work of breaking up into pieces and crushing them off is called "Hatsuri". Therefore, in this specification, it is used almost synonymously, such as crushing, hanging, crushing, hulling.

上述のように、高電圧パルス作用時に絶縁材料として用いることができる水(絶縁水)を用いて、高電圧パルス放電破砕でコンクリートのはつり作業を行うためには、絶縁水の絶縁性能が十分得られるように、コンクリート表面を所定の水深で覆うことが好ましい。特許文献2には、岩石の表面に、内部に電極端子が配設されている破砕ヘッドを密着し、その内部にポンプを介して絶縁流体を供給する技術が開示されている。   As described above, in order to suspend concrete by high voltage pulse discharge crushing using water (insulating water) that can be used as an insulating material at the time of high voltage pulse action, insulation performance of insulating water is sufficiently obtained. It is preferable to cover the concrete surface with a predetermined water depth. Patent Document 2 discloses a technique in which a crushing head having an electrode terminal disposed therein is brought into close contact with the surface of a rock, and an insulating fluid is supplied to the inside through a pump.

特開平9−119283号公報。JP-A-9-119283. 特開平11−236793号公報。JP-A-11-236793.

ところで、特許文献1では、絶縁流体としてディーゼルオイル、水、海水、グリース、作動油等を用いて、立設された電極を破砕対象である岩石等の内部に向かって進行するように構成されている。そしてその破砕された空間内に絶縁流体を貯留させて、連続した破砕作業を行うようにしているが、特許文献2のように、破砕ヘッドを用いて絶縁流体に加圧して破砕対象物内に制御浸透させることは考慮していないので、破砕対象物の破砕の効率が悪いという問題があった。   By the way, in patent document 1, it is comprised so that a standing electrode may advance toward the inside of the rock etc. which are crushing objects, using diesel oil, water, seawater, grease, hydraulic oil etc. as an insulating fluid. Yes. Then, the insulating fluid is stored in the crushed space, and continuous crushing work is performed. However, as in Patent Document 2, the insulating fluid is pressurized by using a crushing head and placed in the crushing object. There is a problem that the efficiency of crushing the object to be crushed is poor because the controlled permeation is not taken into consideration.

一方、特許文献2では、破砕ヘッド内の絶縁流体に加圧することにより、破砕対象物内の所定深さまで絶縁流体を制御させながら浸透させるようになっている。このため、破砕対象物の内部の深い位置に放電経路を形成して破砕面を生じさせることができるので、効率の良い破砕作業が実現するとしている。   On the other hand, in Patent Document 2, by pressurizing the insulating fluid in the crushing head, the insulating fluid is permeated while being controlled to a predetermined depth in the crushing object. For this reason, since a discharge path can be formed in a deep position inside the object to be crushed to generate a crushing surface, an efficient crushing operation is realized.

しかし、たとえばコンクリート表面の所定の平面範囲を所定の深さではつるようなはつり作業では、はつり作業を行う方向に放電電極端子を所定の距離だけ移動させていくので、特許文献2に示したような破砕ヘッドの他に流体加圧装置からの供給管を連結させた状態で、移動した位置において破砕ヘッドをコンクリート表面に密着させ、その破砕ヘッド内に絶縁流体を加圧供給する作業を連続して行う手順を繰り返さなければならない。このため、破砕作業がきわめて煩雑で非効率的になるという問題があった。
また、コンクリート表面のはつり作業が進行するに連れて、破砕ヘッドの下面がすでにはつられ、欠けたコンクリート表面の部位に重なってしまう場合がある。この状態ではコンクリート表面と破砕ヘッドとの間に隙間が生じてしまい、内部の水等の絶縁物が流出してしまう。
However, for example, in a hanger operation that hangs a predetermined plane range of the concrete surface at a predetermined depth, the discharge electrode terminal is moved by a predetermined distance in the direction in which the hanger operation is performed. With the supply pipe from the fluid pressurizer connected to the crushing head, the crushing head is brought into close contact with the concrete surface at the moved position, and the operation of pressurizing and supplying the insulating fluid into the crushing head is continued. Must be repeated. For this reason, there has been a problem that the crushing operation is extremely complicated and inefficient.
Further, as the concrete surface lifting operation proceeds, the lower surface of the crushing head may already be pulled and overlapped with the chipped portion of the concrete surface. In this state, a gap is generated between the concrete surface and the crushing head, and an insulator such as water inside flows out.

また、絶縁流体としては、一般に水を使用するのが、はつり作業を行うの現場での対応が容易であり、かつ経済的である。しかし、コンクリート表面には微妙な凹凸があるため、上述した破砕ヘッド等の下面との間にわずかな隙間が生じ、漏水するおそれがある。そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、コンクリート表面の凹凸による絶縁水の漏水等を確実に防止できるようにしたコンクリートはつり装置を提供することにある。   In general, the use of water as the insulating fluid is easy and economical at the site where the lifting operation is performed. However, since the concrete surface has subtle irregularities, a slight gap is formed between the above-described crushing head and other lower surfaces, which may cause water leakage. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a concrete suspension device that solves the above-mentioned problems of the prior art and reliably prevents leakage of insulating water due to irregularities on the concrete surface.

上記目的を達成するために、本発明はコンクリート表面上に設置された筒状容器内に粘性を付与した絶縁水を満たすとともに、放電電極を所定間隔をあけて立設し、前記放電電極に付与される高電圧パルスを前記コンクリート表面から内部に伝播させて、前記放電電極間のコンクリート表面を薄層状にはつりとることを特徴とする。   In order to achieve the above object, the present invention fills a cylindrical container placed on a concrete surface with insulating water having viscosity, and stands discharge electrodes at predetermined intervals to give the discharge electrodes. The high voltage pulse is propagated from the concrete surface to the inside, and the concrete surface between the discharge electrodes is suspended in a thin layer.

このとき、前記筒状容器の下端周縁と前記コンクリート表面との間にシール部材を介装して前記絶縁水の漏水を防止することが好ましい。   At this time, it is preferable to prevent leakage of the insulating water by interposing a sealing member between a lower end periphery of the cylindrical container and the concrete surface.

前記絶縁水は、Jロート流下時間が5〜15秒となるように、増粘剤を添加して粘性を増すことが好ましい。   The insulating water is preferably added with a thickener to increase the viscosity so that the J funnel flow time is 5 to 15 seconds.

前記シール部材は、前記筒状容器の下面周縁に連接された硬質樹脂リング部材と、周状をなして前記樹脂リング部材の下面の一部に一体的に突出形成された軟質樹脂リング部とから構成させることが好ましい。   The seal member includes a hard resin ring member connected to a lower surface periphery of the cylindrical container, and a soft resin ring portion that is formed in a circumferential shape and integrally protrudes from a part of the lower surface of the resin ring member. It is preferable to configure.

本発明によれば、コンクリートはつり作業の進行により、はつり装置の容器下端とはつられたコンクリートとの間に生じる隙間を完全に閉塞できるため、前記容器内に貯水した粘性を有する絶縁水の漏水を確実に防止できるという効果を奏する。   According to the present invention, since the concrete can completely close the gap generated between the lower end of the container of the suspension device and the concrete suspended by the progress of the suspension operation, the leakage of the insulating water having viscosity stored in the container is prevented. There is an effect that it can be surely prevented.

以下、本発明のコンクリートはつり装置の実施するための最良の形態として、以下の実施例について添付図面を参照して説明する。   Hereinafter, the concrete of the present invention will be described with reference to the accompanying drawings as the best mode for carrying out the suspension device.

図1は、本発明のコンクリートはつり装置(以下、単にはつり装置10と記す。)の一実施例で、はつり装置10の本体部内の放電電極の設置状態をわかるように、装置の一部を断面で示した概略全体構成図である。同図に示したように、はつり装置10の本体部は、はつり作業の対象となるコンクリート表面上に載置され水12で満たされたた筒状容器と、この筒状容器11内には図示しない支持フレームに保持された2本の放電電極13とからなり、放電電極13は、コンクリート表面1の高電圧パルス破砕が可能な端子間距離をとって設置されている。本実施例では、放電電極13は、端子先端13aを構成するφ5mmの銅線の周囲を高密度ポリエチレン樹脂被覆材13bで絶縁被覆した、自立可能な棒状体から構成されている。なお、本実施例では、高電圧パルス発生源として、200kV,400kV程度の高電圧電源と、この高圧電源を所定のパルス電圧として対象に印加可能な電荷容量のコンデンサを備えた公知の高電圧パルス発生装置5が用いられている。   FIG. 1 shows an embodiment of a concrete suspension device of the present invention (hereinafter simply referred to as a suspension device 10), and a part of the device is shown in cross section so that the installation state of the discharge electrode in the main body of the suspension device 10 can be understood. It is a schematic whole block diagram shown by. As shown in the figure, the main body portion of the suspension device 10 includes a cylindrical container placed on a concrete surface to be suspended and filled with water 12, and the cylindrical container 11 is illustrated in the figure. It consists of two discharge electrodes 13 held by a support frame that is not, and the discharge electrodes 13 are installed at a distance between terminals that enables high-voltage pulse crushing of the concrete surface 1. In this embodiment, the discharge electrode 13 is composed of a self-supporting rod-like body in which the periphery of a φ5 mm copper wire constituting the terminal tip 13a is insulated and coated with a high-density polyethylene resin coating material 13b. In this embodiment, a known high voltage pulse having a high voltage power source of about 200 kV and 400 kV as a high voltage pulse generation source and a capacitor having a charge capacity that can be applied to the target using the high voltage power source as a predetermined pulse voltage. A generator 5 is used.

公知の高電圧パルス発生装置5から導出された導線6が接続された2本の放電電極13(陽極電極端子13+、陰極電極端子13−)の先端を、コンクリート表面1に所定の離れをあけて接触させ、一定の時間間隔をあけて発生させる高電圧パルスを陽極端子13+側からコンクリート表面1に放電させ、このパルス電流を陰極端子13−側までコンクリート内を導通させることで生じる衝撃力をコンクリート内に伝播させることで、2本の放電電極13間で、所定の幅、深さまでのコンクリート表面1を薄い塊状に剥離して破砕させることができる。   The tips of the two discharge electrodes 13 (the anode electrode terminal 13+ and the cathode electrode terminal 13-) connected to the conductor 6 derived from the known high voltage pulse generator 5 are spaced apart from the concrete surface 1 by a predetermined distance. A high voltage pulse generated at a certain time interval is discharged from the anode terminal 13+ side to the concrete surface 1, and the impulse force generated by conducting the pulse current through the concrete to the cathode terminal 13− side is applied to the concrete. By propagating inward, the concrete surface 1 up to a predetermined width and depth can be peeled and crushed into a thin lump between the two discharge electrodes 13.

この放電電極13を収容する筒状容器11の直径は、はつり範囲を規定する放電電極間距離Lに応じて決定することが好ましいが、容器の高さは、高電圧パルスにとっての絶縁物である絶縁水12でコンクリート表面1が満たされ、放電が確実にコンクリート内部を伝播し、放電経路となったコンクリート部分が破砕されように、十分な水深Dが確保できる程度に設定することが好ましい。具体的には放電電極13間距離Lの1/2倍程度の水深を確保することができる程度の寸法にすることが好ましい。なお、筒断面形状は破砕時に水中を伝播した衝撃波による破損のおそれを最小限にするため、隅角部等のない円筒形状とすることが好ましい。   The diameter of the cylindrical container 11 that accommodates the discharge electrode 13 is preferably determined according to the distance L between the discharge electrodes that defines the suspension range, but the height of the container is an insulator for the high voltage pulse. It is preferable to set it to such an extent that a sufficient water depth D can be ensured so that the concrete surface 1 is filled with the insulating water 12, the electric discharge is surely propagated through the concrete, and the concrete portion that becomes the electric discharge path is crushed. Specifically, it is preferable to make the dimensions such that a water depth of about ½ times the distance L between the discharge electrodes 13 can be secured. In addition, in order to minimize the risk of damage due to a shock wave that has propagated in water during crushing, the cylindrical cross-sectional shape is preferably a cylindrical shape having no corners or the like.

一方、この筒状容器11の下端には、下端全周にわたりシール部材が設けられる。そして図1に、示したように、内部に絶縁水12が貯水された際に、下端からの漏水を防止するために、シール部材20がコンクリート表面1に確実に密着することが重要となってくる。そこで、筒状容器11の肉厚は上述した衝撃波に耐えうる厚さであるとともに、容器全体の自重作用により、シール部材20のコンクリートへの密着性が向上する程度に、その自重が増加するように設定することも好ましい。なお、凹凸形状があるコンクリート面への密着性を向上させるために、図2で後述するように、筒状容器11を上側から加重するリング状のウエイト部材16を用いることで対処することも可能である。   On the other hand, a sealing member is provided at the lower end of the cylindrical container 11 over the entire lower end. As shown in FIG. 1, when the insulating water 12 is stored in the interior, it is important that the sealing member 20 is in close contact with the concrete surface 1 in order to prevent water leakage from the lower end. come. Therefore, the thickness of the cylindrical container 11 is such that it can withstand the above-described shock wave, and its own weight is increased to the extent that the adhesion of the seal member 20 to the concrete is improved by the self-weight action of the entire container. It is also preferable to set to. In addition, in order to improve the adhesion to a concrete surface having an uneven shape, it is possible to cope by using a ring-shaped weight member 16 that weights the cylindrical container 11 from the upper side, as will be described later with reference to FIG. It is.

本実施例では、シール部材20として、コンクリート表面1の凹凸に追従して変形可能な材質を有する弾性成形部材としてシリコーン樹脂が用いられているが、たとえば自己接着性を示す非加硫ブチルゴム等の軟質合成ゴム、各種軟質ゴムエラストマー系、ウレタン系エラストマー、ゲル状を呈する軟質ウレタン樹脂等、筒状容器11と、凹凸形状のあるコンクリート表面1との間の隙間を閉塞可能な各種材料を用いることができる。   In this embodiment, a silicone resin is used as the sealing member 20 as an elastic molding member having a material that can be deformed following the unevenness of the concrete surface 1. For example, a non-vulcanized butyl rubber that exhibits self-adhesiveness is used. Use various materials capable of closing the gap between the cylindrical container 11 and the concavo-convex concrete surface 1 such as soft synthetic rubber, various soft rubber elastomers, urethane elastomers, gel-like soft urethane resins, etc. Can do.

また、筒状容器11内には水供給管3が配管されており、外部貯水容器内に貯留されている絶縁水12が、破砕作業に先立って外部ポンプPの稼働によって筒状容器11内の所定水深まで供給される。そして、破砕作業後、筒状容器11内のコンクリート破砕片が混ざった絶縁水12は再度、外部貯水容器4に還流される。コンクリート破砕片は環流水の経路中間に設けられたフィルタ(図示せず)で除去することが好ましい。   In addition, a water supply pipe 3 is provided in the cylindrical container 11, and the insulating water 12 stored in the external water storage container is moved into the cylindrical container 11 by the operation of the external pump P prior to the crushing operation. Supplied to a predetermined depth. After the crushing operation, the insulating water 12 mixed with the concrete crushed pieces in the cylindrical container 11 is returned to the external water storage container 4 again. The concrete fragments are preferably removed with a filter (not shown) provided in the middle of the circulating water path.

この筒状容器11内に貯水される絶縁水12は、通常の水道水をベースとし、所定割合の増粘剤が添加され、絶縁水12の粘性がわずかに高められている(以下、この水を粘性水12と呼ぶ)。この結果、コンクリート表面1に接触する筒状容器11の下端とコンクリートはつり面との隙間から粘性水12の流出する量を低減できる。本実施例では、粘性水12は、水道水に対して増粘剤を、0.5〜5.0質量%程度添加して製造することが好ましい。この粘性水12の品質管理は、後述するようにJロート流下時間を用いて行うことが好ましい。粘性水12の粘性は、貯水された筒状容器11下部の隙間からの流出防止の面からは大きい方が好ましいが、粘性が高いと、使用ポンプの負荷が増大し、また粘性水12内に、はつりコンクリート片が混入した場合の除去に手間がかかるので、上記Jロート流下時間内におさまる程度の粘性を有することが好ましい。具体的には、Jロート流下時間で約5〜15秒が適当で、とくに後処理を考慮した場合には約5〜10秒が適当ある。なお、水としては増粘剤の粘性発揮を阻害しないものであれば、岩盤湧水、現場揚水等を適宜使用することができる。   The insulating water 12 stored in the cylindrical container 11 is based on normal tap water, and a predetermined proportion of a thickening agent is added to slightly increase the viscosity of the insulating water 12 (hereinafter referred to as this water). Is called viscous water 12). As a result, the amount of the viscous water 12 flowing out from the gap between the lower end of the cylindrical container 11 contacting the concrete surface 1 and the suspension surface can be reduced. In the present embodiment, the viscous water 12 is preferably produced by adding about 0.5 to 5.0% by mass of a thickener to tap water. The quality control of the viscous water 12 is preferably performed using the J funnel flow time as will be described later. The viscosity of the viscous water 12 is preferably large from the viewpoint of preventing outflow from the gap in the lower part of the stored cylindrical container 11. However, if the viscosity is high, the load on the pump used increases and the viscosity of the viscous water 12 is increased. Since it takes a lot of time to remove the suspended concrete pieces, it is preferable to have a viscosity that can be accommodated within the flow time of the J funnel. Specifically, about 5 to 15 seconds is appropriate for the flow time of the J funnel, and about 5 to 10 seconds is appropriate particularly when post-treatment is considered. In addition, as a water, if it does not inhibit the viscosity display of a thickener, a rock spring, an in-situ pumping, etc. can be used suitably.

増粘剤としては、使用水道水に添加して容易に溶ける、セルロース系水溶性高分子、アクリル系高分子、植物性高分子材料等が好適である。なお、コンクリート表面1が平滑で、シール部材20による水密性が十分確保できる状態であれば、増粘剤を添加することなく、通常の水道水を使用することができることはいうまでもない。   As the thickener, a cellulose-based water-soluble polymer, an acrylic polymer, a vegetable polymer material, and the like that are easily dissolved by adding to the tap water used are suitable. Needless to say, normal tap water can be used without adding a thickener, as long as the concrete surface 1 is smooth and the water-tightness of the seal member 20 can be sufficiently secured.

次に、図2における加重リングとしてのウエイト部材16について簡単に説明する。同図に示したように、図1に示した以後、ひきつづきコンクリート表面1のはつり作業を行っていくと、図2に示したように、筒状容器11の下端の一部がはつられたコンクリート表面1の一部に位置する場合がある。コンクリート表面1が、図1に示したように、ほぼ水平面であれば、筒状容器11の自重でシール部材20はコンクリート表面1に密着して漏水のおそれはないが、図2に示したように、コンクリートが破砕した状態の表面は、モルタルや骨材の破砕面や、骨材が抜け落ちた個所等が現れる。そのため、シール部材20をこのはつり後のコンクリート表面1に確実に密着させることが重要である。そこで、図2に示した工程では、筒状容器11の上部に加重リングを載置し、上方からの押圧力を増し、シール部材20をはつり後のコンクリート表面1に十分変形させ、はつり作業によって生じた凹凸形状面に密着させている。本実施例では、加重リングとして鋼製ウエイト16を用いたが、コンクリート表面1に設けられたアンカー部(図示せず)を利用してワイヤ等の引張部材等を用いて筒状容器11をコンクリート面側に押圧させることも可能である。   Next, the weight member 16 as the weight ring in FIG. 2 will be briefly described. As shown in FIG. 1, when the concrete surface 1 is continuously lifted after the process shown in FIG. 1, the concrete in which a part of the lower end of the cylindrical container 11 is held is shown in FIG. May be located on part of the surface 1. If the concrete surface 1 is substantially horizontal as shown in FIG. 1, the sealing member 20 is in close contact with the concrete surface 1 due to the weight of the cylindrical container 11 and there is no fear of water leakage, but as shown in FIG. In addition, the crushed surface of mortar and aggregate, the location where the aggregate has fallen, and the like appear on the surface where the concrete is crushed. For this reason, it is important that the sealing member 20 is firmly attached to the concrete surface 1 after the suspension. Therefore, in the process shown in FIG. 2, a weight ring is placed on the upper part of the cylindrical container 11, the pressing force from above is increased, and the seal member 20 is sufficiently deformed to the concrete surface 1 after the suspension. The resulting uneven surface is in close contact. In this embodiment, the steel weight 16 is used as the weighting ring, but the cylindrical container 11 is made of concrete using a tension member such as a wire using an anchor portion (not shown) provided on the concrete surface 1. It is also possible to press the surface side.

[シール部材の変形例]
上述のシール部材20は、筒状容器11の直径に等しいリング状の単一材質からなる成形部材を用いた例を示したが、このシール部材20を2種類の部材で構成した変形例について図3〜図5を参照して説明する。
本変形例では、図3に示したように、筒状容器11の下端全周にわたり、硬質樹脂製の第1のリング状シール部材21を設け、その第1のリング状シール部材21の下面に軟質樹脂製の第2のリング状シール部材22を2重に設けた構造になっている。図3は、この2重構造シール部材20(21,22)が設けられた筒状容器11全体を示した断面図である。同図におけるシール部材20の拡大図を図5(a),(b)に示した。図5の各図から明らかなように、筒状容器11をコンクリート表面1に載置する前の初期形状は図5(a)に示した形状からなる。そして、筒状容器11が図3に示したような平滑なコンクリート表面1にセットされた際には、図5(b)に示したように、第1のシール部材21は筒状容器11の自重で変形するとともに、より軟質の第2のシール部材22は、完全に扁平に変形し、コンクリート表面1と密着する。次いで、図4に示したように、筒状容器11がはつりコンクリートの表面に載置されると、シール部材20の形状は、図5(c),(d)に示したように、第1のシール部材21が大きな窪み1aに倣ってほぼ矩形断面を保持しつつコンクリートの形状に倣って変形するとともに、先端の第2のシール部材22がコンクリート表面1の細かい凹凸面に食い込むように押圧され、図4に示したように、はつり作業により凹んだコンクリートの一部に筒状容器11がかかるため、容器11自体はやや傾いた状態となるが、筒状容器11下面は確実にコンクリート表面1に密着し、後に筒状容器11内に貯水される粘性水12は、この底面とコンクリート表面1との間から漏れることがない。
[Modification of seal member]
Although the above-described seal member 20 is an example in which a molded member made of a single ring-shaped material equal to the diameter of the cylindrical container 11 is used, a modification example in which the seal member 20 is composed of two types of members is illustrated. 3 to 5 will be described.
In the present modification, as shown in FIG. 3, a first ring-shaped seal member 21 made of hard resin is provided over the entire lower end of the cylindrical container 11, and the lower surface of the first ring-shaped seal member 21 is provided. The second ring-shaped sealing member 22 made of a soft resin is provided in a double manner. FIG. 3 is a cross-sectional view showing the entire cylindrical container 11 provided with the double structure sealing member 20 (21, 22). Enlarged views of the seal member 20 in FIG. 5 are shown in FIGS. As is apparent from each drawing of FIG. 5, the initial shape before the cylindrical container 11 is placed on the concrete surface 1 is the shape shown in FIG. When the cylindrical container 11 is set on the smooth concrete surface 1 as shown in FIG. 3, as shown in FIG. While being deformed by its own weight, the softer second seal member 22 is completely deformed into a flat shape and is in close contact with the concrete surface 1. Next, as shown in FIG. 4, when the cylindrical container 11 is placed on the surface of the suspended concrete, the shape of the seal member 20 is the first as shown in FIGS. 5 (c) and 5 (d). The seal member 21 is deformed following the shape of the concrete while maintaining a substantially rectangular cross section following the large depression 1a, and the second seal member 22 at the tip is pressed so as to bite into the fine uneven surface of the concrete surface 1. As shown in FIG. 4, since the cylindrical container 11 is applied to a part of the concrete recessed by the suspending operation, the container 11 itself is slightly inclined, but the bottom surface of the cylindrical container 11 is surely the concrete surface 1. The viscous water 12 that is in close contact with the water and is stored in the cylindrical container 11 later does not leak from between the bottom surface and the concrete surface 1.

図6は、コンクリート壁面7のはつり作業にこのはつり装置10を適用した他の実施例を示した説明図である。同図に示したように、筒状容器11は内部に粘性水12を貯水するために、水密性を有する脱着可能な蓋部15を有している。そして、この蓋部15で覆われた筒状容器11は固定バンド8を介してコンクリート壁面7に施工されたアンカー部9に保持されるようになっている。このとき、内部に粘性水12を満たすために、容器上部に水供給管3が接続され、この水供給管3に図1と同様の外部ポンプP、外部貯水容器4が設けられている。なお、本実施例では固定バンドによって筒状容器11が固定されてるが、筒状容器11を壁面に固定するその他の固定機構として、たとえばブーム操作により各種作業が可能な重機のブーム先端アタッチメントとしてこの筒状容器11を搭載する架台を設け、ブーム操作により、架台上の筒状容器11を、対象となるコンクリート壁面7に適度な押圧力によって配置させることも可能である。   FIG. 6 is an explanatory view showing another embodiment in which the lifting device 10 is applied to the lifting work of the concrete wall surface 7. As shown in the figure, the cylindrical container 11 has a water-tight removable lid 15 for storing viscous water 12 therein. And the cylindrical container 11 covered with this cover part 15 is hold | maintained at the anchor part 9 constructed in the concrete wall surface 7 via the fixed band 8. FIG. At this time, in order to fill the inside with the viscous water 12, a water supply pipe 3 is connected to the upper part of the container, and the same external pump P and external water storage container 4 as those in FIG. In this embodiment, the cylindrical container 11 is fixed by a fixing band. However, as another fixing mechanism for fixing the cylindrical container 11 to the wall surface, for example, as a boom tip attachment of a heavy machine capable of performing various operations by boom operation. It is also possible to provide a gantry on which the cylindrical container 11 is mounted and to arrange the cylindrical container 11 on the gantry on the target concrete wall surface 7 with an appropriate pressing force by a boom operation.

本発明のコンクリートはつり装置の全体構成を示した一部断面図。The concrete of this invention is the partial cross section figure which showed the whole structure of the fishing device. 図1に示したはつり装置の設置状態例を示した一部断面図。The partial cross section figure which showed the example of the installation state of the suspension apparatus shown in FIG. シール部材の他の実施例による筒状容器底部のシール状態を説明した一部断面図。The fragmentary sectional view explaining the sealing state of the cylindrical container bottom part by other Examples of a sealing member. シール部材の他の実施例による筒状容器底部のシール状態を説明した一部断面図。The fragmentary sectional view explaining the sealing state of the cylindrical container bottom part by other Examples of a sealing member. 図3,図4に示したシール部材の変形状態を示した拡大説明図。FIG. 5 is an enlarged explanatory view showing a deformed state of the seal member shown in FIGS. 3 and 4. はつり装置をコンクリート壁面に適用した例を示した説明図。Explanatory drawing which showed the example which applied the suspension apparatus to the concrete wall surface.

符号の説明Explanation of symbols

1 コンクリート表面
5 高電圧パルス発生装置
7 コンクリート壁面
10 はつり装置
11 筒状容器
12 絶縁水(粘性水)
13 放電電極
20 シール部材
DESCRIPTION OF SYMBOLS 1 Concrete surface 5 High voltage pulse generation device 7 Concrete wall surface 10 Hanging device 11 Cylindrical container 12 Insulating water (viscous water)
13 Discharge electrode 20 Seal member

Claims (4)

コンクリート表面上に設置された筒状容器内に粘性を付与した絶縁水を満たすとともに、放電電極を所定間隔をあけて立設し、前記放電電極に付与される高電圧パルスを前記コンクリート表面から内部に伝播させて、前記放電電極間のコンクリート表面を薄層状にはつりとることを特徴とするコンクリートはつり装置。   Fill the cylindrical container installed on the concrete surface with insulating water that has been given viscosity, set up the discharge electrode at a predetermined interval, and generate high voltage pulses applied to the discharge electrode from the concrete surface. The concrete suspension device is characterized in that the concrete surface between the discharge electrodes is suspended in a thin layer. 前記筒状容器の下端周縁と前記コンクリート表面との間にシール部材を介装して前記絶縁水の漏水を防止することを特徴とする請求項1に記載のコンクリートはつり装置。   The concrete suspension device according to claim 1, wherein a sealing member is interposed between a lower end periphery of the cylindrical container and the concrete surface to prevent leakage of the insulating water. 前記絶縁水は、Jロート流下時間が5〜15秒となるように、増粘剤を添加して粘性を増したことを特徴とする請求項1に記載のコンクリートはつり装置。   The concrete suspension device according to claim 1, wherein the insulating water is increased in viscosity by adding a thickener so that a J funnel flow time is 5 to 15 seconds. 前記シール部材は、前記筒状容器の下面周縁に連接された硬質樹脂リング部材と、周状をなして前記樹脂リング部材の下面の一部に一体的に突出形成された軟質樹脂リング部とからなることを特徴とする請求項1に記載のコンクリートはつり装置。   The seal member includes a hard resin ring member connected to a lower surface periphery of the cylindrical container, and a soft resin ring portion that is formed in a circumferential shape and integrally protrudes from a part of the lower surface of the resin ring member. The concrete suspending apparatus according to claim 1, wherein
JP2005347576A 2005-12-01 2005-12-01 Concrete chipping device Pending JP2007154440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005347576A JP2007154440A (en) 2005-12-01 2005-12-01 Concrete chipping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347576A JP2007154440A (en) 2005-12-01 2005-12-01 Concrete chipping device

Publications (1)

Publication Number Publication Date
JP2007154440A true JP2007154440A (en) 2007-06-21

Family

ID=38239160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347576A Pending JP2007154440A (en) 2005-12-01 2005-12-01 Concrete chipping device

Country Status (1)

Country Link
JP (1) JP2007154440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002489A (en) * 2015-06-05 2017-01-05 三菱電機株式会社 Chipping device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483792A (en) * 1987-09-24 1989-03-29 Fanuc Ltd Packing for sealing door
JPH07286444A (en) * 1994-02-28 1995-10-31 Denki Kagaku Kogyo Kk Electrochemical treatment method of concrete
JPH0857823A (en) * 1994-08-24 1996-03-05 Sanyo Chem Ind Ltd Production of aggregate exposure block
JPH10115172A (en) * 1996-08-22 1998-05-06 Komatsu Ltd Underground excavator by electrical crushing method and excavator and excavation method thereof
JPH10212891A (en) * 1997-01-30 1998-08-11 Komatsu Ltd Electric crushing method
JPH11279360A (en) * 1998-03-26 1999-10-12 Denki Kagaku Kogyo Kk Hard resin composition and extrusion molded article
JP2000213273A (en) * 1999-01-20 2000-08-02 Komatsu Ltd Electric crushing method and electric cursing electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483792A (en) * 1987-09-24 1989-03-29 Fanuc Ltd Packing for sealing door
JPH07286444A (en) * 1994-02-28 1995-10-31 Denki Kagaku Kogyo Kk Electrochemical treatment method of concrete
JPH0857823A (en) * 1994-08-24 1996-03-05 Sanyo Chem Ind Ltd Production of aggregate exposure block
JPH10115172A (en) * 1996-08-22 1998-05-06 Komatsu Ltd Underground excavator by electrical crushing method and excavator and excavation method thereof
JPH10212891A (en) * 1997-01-30 1998-08-11 Komatsu Ltd Electric crushing method
JPH11279360A (en) * 1998-03-26 1999-10-12 Denki Kagaku Kogyo Kk Hard resin composition and extrusion molded article
JP2000213273A (en) * 1999-01-20 2000-08-02 Komatsu Ltd Electric crushing method and electric cursing electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002489A (en) * 2015-06-05 2017-01-05 三菱電機株式会社 Chipping device

Similar Documents

Publication Publication Date Title
TWI745514B (en) Foundation for a structure
KR20070113420A (en) Intergrated-aluminium electrode having foundation improving of apparatus housing
MX2014012653A (en) Method for the galvanic protection of a reinforced concrete structure.
CN109538209A (en) A kind of reduction coal seam tight roof method based on electroporation
RU2006138511A (en) ELECTROHYDRAULIC METHOD FOR OIL PRODUCTION AND DEVICE FOR ITS IMPLEMENTATION
JP2007154440A (en) Concrete chipping device
TW202219354A (en) Foundation for a structure and method of installing the same
JP2017508893A5 (en)
JP4674335B2 (en) Concrete suspension equipment
CN211689813U (en) Avoid extravagant embedment device for highway construction of pitch
JP2007152168A (en) Concrete chipping apparatus
JP2007154441A (en) Concrete chipping method
WO2004081543A3 (en) Method of testing a cryogenic storage vessel with cathodic protection
JP2009221751A (en) Crushing-stripping apparatus for sheet-like body, and stripping elimination method for sheet-like body
JP2008055393A (en) Concrete crushing apparatus with high voltage pulse discharge
JP2007154443A (en) Concrete chipping device
CN205258651U (en) Local electrolysis rust cleaning device of medical instrument
CN203240127U (en) Pipeline cable penetrating and plugging apparatus
JP3565170B2 (en) Power probe for crushing and its use
JP2000213273A (en) Electric crushing method and electric cursing electrode
CN209354144U (en) A kind of rock tunnel(ling) machine cutterhead of high pressure pulse discharge-mechanically combining broken rock
RU2008137728A (en) METHOD FOR DESTRUCTION OF REINFORCED CONCRETE PRODUCTS AND DEVICE FOR ITS IMPLEMENTATION
CN207328757U (en) A kind of gravity foundation of marine stretching anode system
JP2009090171A (en) Concrete crushing apparatus with high-voltage pulse discharge
RU2617677C1 (en) Deep anode earth electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Effective date: 20100427

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100608

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20101207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405