JP2007152517A - Rotor heating device and method therefor - Google Patents

Rotor heating device and method therefor Download PDF

Info

Publication number
JP2007152517A
JP2007152517A JP2005352803A JP2005352803A JP2007152517A JP 2007152517 A JP2007152517 A JP 2007152517A JP 2005352803 A JP2005352803 A JP 2005352803A JP 2005352803 A JP2005352803 A JP 2005352803A JP 2007152517 A JP2007152517 A JP 2007152517A
Authority
JP
Japan
Prior art keywords
rotor
drive shaft
heating
temperature
heating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005352803A
Other languages
Japanese (ja)
Inventor
Kenichi Hirata
健一 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2005352803A priority Critical patent/JP2007152517A/en
Publication of JP2007152517A publication Critical patent/JP2007152517A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P11/00Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for 
    • B23P11/02Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for  by first expanding and then shrinking or vice versa, e.g. by using pressure fluids; by making force fits
    • B23P11/025Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for  by first expanding and then shrinking or vice versa, e.g. by using pressure fluids; by making force fits by using heat or cold

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor heating device and a method therefor reducing bending amount of a drive shaft and reducing a time required for bending correction when the rotor and the drive shaft are fixed by shrink fitting. <P>SOLUTION: A rotor heating coil 20 and a drive shaft heating coil 21 are separately provided to heat the rotor 1. Even after the drive shaft 6 is inserted, the temperature of the rotor is kept and the drive shaft can be heated. After the drive shaft is inserted to the rotor, the temperature of the drive shaft is raised to approximately the same temperature of that of the rotor, and then cooled down in the manufacturing method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電動機用ロータを製造する際の焼きばめ工程における加熱装置と焼きばめ方法に関する。   The present invention relates to a heating device and a shrink-fitting method in a shrink-fitting process when manufacturing a rotor for an electric motor.

従来、ロータと駆動軸を焼きばめする際、図3に示すように、ロータ外周部に加熱コイルを配置した加熱装置を使用し、ロータを加熱、拡径し、駆動軸をロータ内径に挿入し、ついで冷却する方法が一般的である(例えば、特許文献1参照)。図3において、1はロータ、2はロータ鉄心、3はロータ鉄心内径、4はエンドリング、5は加熱コイルであり、加熱コイル5に電流を流し、誘導加熱の原理により、ロータ鉄心内径3が常温の駆動軸の太さより太くなるまで加熱、拡径し、駆動軸をロータ鉄心内径3に挿入し、ついで冷却することによりロータ鉄心内径は縮径し、ロータ1と駆動軸は焼きばめ固定される。
また、図4に示すように、加熱した油中にロータを浸した状態でロータを加熱、拡径し、駆動軸をロータ内径に挿入して駆動軸がロータと略同一温度になるまで油中に保持し、ついで冷却する方法をとっている例もある(例えば、特許文献2参照)。図4において、6は駆動軸、7は容器、8は油、9は台、10はヒータである。容器7内の油8をヒータ10によって所定の温度まで加熱、保持した状態で、油中にある台9の上にロータ1を置き、ロータ鉄心内径3が常温の駆動軸6の太さより太くなるまで加熱、拡径し、駆動軸6をロータ鉄心内径3に挿入し、さらに、駆動軸6の温度がロータ1の温度と略同一温度になるまで保持した後、油の加熱保持を止め、常温まで油中で冷却することにより、ロータ1と駆動軸6は焼きばめ固定される。
Conventionally, when shrink-fitting the rotor and drive shaft, as shown in FIG. 3, a heating device having a heating coil arranged on the outer periphery of the rotor is used to heat and expand the rotor, and the drive shaft is inserted into the rotor inner diameter. Then, a cooling method is generally used (see, for example, Patent Document 1). In FIG. 3, 1 is a rotor, 2 is a rotor iron core, 3 is an inner diameter of the rotor core, 4 is an end ring, 5 is a heating coil, a current is passed through the heating coil 5, and the rotor iron inner diameter 3 is Heat and expand until the thickness of the drive shaft at room temperature is increased, insert the drive shaft into the rotor core inner diameter 3, then cool down to reduce the rotor core inner diameter, and the rotor 1 and drive shaft are fixed by shrinkage fitting Is done.
Further, as shown in FIG. 4, the rotor is heated and expanded in a state where the rotor is immersed in heated oil, and the drive shaft is inserted into the rotor inner diameter until the drive shaft reaches substantially the same temperature as the rotor. There is also an example in which a method of holding and then cooling is used (for example, see Patent Document 2). In FIG. 4, 6 is a drive shaft, 7 is a container, 8 is oil, 9 is a table, and 10 is a heater. In a state where the oil 8 in the container 7 is heated and held by the heater 10 to a predetermined temperature, the rotor 1 is placed on the base 9 in the oil, and the rotor core inner diameter 3 becomes thicker than the thickness of the drive shaft 6 at room temperature. The drive shaft 6 is inserted into the rotor core inner diameter 3, and the temperature of the drive shaft 6 is maintained until the temperature of the rotor 1 is substantially the same as the temperature of the rotor 1. By cooling in oil until the rotor 1 and the drive shaft 6 are fixed by shrinkage fitting.

このように、従来、ロータ外周部に配置した加熱コイルによりロータを加熱し、駆動軸を挿入、冷却してロータと駆動軸を焼きばめ固定するという方法、あるいは、加熱した油中にロータを浸してロータを加熱し、駆動軸を挿入し、駆動軸の温度がロータの温度と略同一になった後、冷却してロータと駆動軸を焼きばめ固定するという方法がとられていた。
特開平3−82349(第4頁、図2) 特開平2001−87949(第4頁、図1)
Thus, conventionally, the rotor is heated by a heating coil disposed on the outer periphery of the rotor, the drive shaft is inserted and cooled, and the rotor and the drive shaft are fixed by shrinkage fitting, or the rotor is placed in heated oil. A method has been adopted in which the rotor is heated by dipping, the drive shaft is inserted, the temperature of the drive shaft becomes substantially the same as the temperature of the rotor, and then the rotor and the drive shaft are shrink-fitted and fixed.
JP-A-3-82349 (4th page, FIG. 2) JP-A-2001-87949 (page 4, FIG. 1)

ところが、従来のロータ外周部に配置した加熱コイルによりロータを加熱し、駆動軸を挿入、冷却してロータと駆動軸を焼きばめ固定するという方法では、図5に示すように、焼きばめ部において、ロータ冷却時のロータの収縮による径方向の力30、軸方向の力31、径方向の力30により生じる軸方向の力32と駆動軸自体の熱膨張による軸方向の力33が複合し、軸方向の力34となって駆動軸に作用する。特にロータ端面部に近いほどこの力は大きい。また、この力は、焼きばめ部の周方向全体に均一に生じることはほとんど無く、周方向において、不均一になると考えられる。この場合、軸方向の軸長の変化が周方向で不均一となり、その結果、焼きばめ後に駆動軸が大きく曲がるという問題を生じ、曲がり修正のために多大な時間を要するという問題があった。   However, in the conventional method in which the rotor is heated by a heating coil disposed on the outer periphery of the rotor, the drive shaft is inserted and cooled, and the rotor and the drive shaft are fixed by shrink fitting, as shown in FIG. In this section, the radial force 30 due to the contraction of the rotor during cooling of the rotor, the axial force 31, the axial force 32 generated by the radial force 30 and the axial force 33 due to the thermal expansion of the drive shaft itself are combined. The axial force 34 acts on the drive shaft. In particular, the closer to the rotor end face, the greater this force. In addition, this force hardly occurs uniformly in the entire circumferential direction of the shrink-fitted portion, and is considered to be non-uniform in the circumferential direction. In this case, the change of the axial length in the axial direction becomes non-uniform in the circumferential direction. As a result, there is a problem that the drive shaft bends greatly after shrink fitting, and it takes a lot of time to correct the bend. .

また、加熱した油中にロータを浸してロータを加熱し、駆動軸を挿入し、駆動軸の温度がロータの温度と略同一になった後、冷却してロータと駆動軸を焼きばめ固定するという方法では、駆動軸の温度がロータの温度と略同一になる過程では前記駆動軸自体の熱膨脹による軸方向の力33が駆動軸に作用するものの、冷却を開始する前には、すでに、ロータと駆動軸は概一体化されており、駆動軸に対して、ロータの収縮による前記径方向の力30、前記軸方向の力31、前記径方向の力により生じる軸方向の力32はほとんど生じないことになる。したがって、前記軸方向の力34も小さくなり、焼きばめ後においても駆動軸が大きく曲がるという問題は生じ難くなる。しかしながら、この方法においては、駆動軸は、油からの伝熱により加熱されており、ロータ温度と略同一温度に達するまでにはかなりの時間を要し、また、ロータを油中に浸すため、ロータが積層鉄心で構成されている場合、鉄心間に油が浸透するが、焼きばめ後にロータにマグネットを接着固定する場合などには、浸透した油はほぼ完全に除去することが必要となり、そのために多大な時間を要するという問題もあった。   In addition, the rotor is immersed in heated oil to heat the rotor, the drive shaft is inserted, and after the temperature of the drive shaft becomes substantially the same as the rotor temperature, it is cooled and the rotor and the drive shaft are fixed by shrinkage fitting. In the method, the axial force 33 due to the thermal expansion of the drive shaft itself acts on the drive shaft in the process in which the temperature of the drive shaft becomes substantially the same as the temperature of the rotor. The rotor and the drive shaft are generally integrated, and the radial force 30 due to the contraction of the rotor, the axial force 31 and the axial force 32 generated by the radial force are almost the same with respect to the drive shaft. It will not occur. Accordingly, the axial force 34 is also reduced, and the problem that the drive shaft bends greatly even after shrink fitting is less likely to occur. However, in this method, the drive shaft is heated by heat transfer from oil, and it takes a considerable time to reach substantially the same temperature as the rotor temperature, and the rotor is immersed in oil. When the rotor is composed of laminated iron cores, oil penetrates between the iron cores, but when the magnet is bonded and fixed to the rotor after shrink fitting, it is necessary to remove the penetrated oil almost completely. Therefore, there is a problem that it takes a lot of time.

本発明はこのような問題点に鑑みてなされたものであり、ロータと駆動軸を焼きばめ固定する場合において、駆動軸が大きく曲がることを防止するとともに、油などの加熱源を使用せず、ロータおよび駆動軸の加熱に要する時間を短くすることができる加熱装置および焼きばめ方法を提供することを目的とする。   The present invention has been made in view of such a problem, and when the rotor and the drive shaft are shrink-fitted and fixed, the drive shaft is prevented from being greatly bent and a heating source such as oil is not used. An object of the present invention is to provide a heating device and a shrink-fitting method that can shorten the time required for heating the rotor and the drive shaft.

上記問題を解決するため、本発明は、次のようにしたものである。
請求項1に記載の発明は、駆動力を伝達する駆動軸にロータを焼きばめ固定するに際し、前記ロータの外周部に設けたロータ加熱コイルと、前記ロータ加熱コイルに印加するロータ加熱用の高周波電源とを有するロータ加熱装置において、
前記駆動軸の前記ロータが勘合する部位の両端にこれを誘導加熱する駆動軸加熱コイルおよび駆動軸加熱用の高周波電源を配置したものである。
In order to solve the above problem, the present invention is as follows.
According to the first aspect of the present invention, when the rotor is shrink-fitted and fixed to the drive shaft for transmitting the driving force, the rotor heating coil provided on the outer peripheral portion of the rotor and the rotor heating coil applied to the rotor heating coil are provided. In a rotor heating device having a high frequency power source,
A drive shaft heating coil for inductively heating the drive shaft and a high frequency power source for driving shaft heating are disposed at both ends of a portion of the drive shaft that engages with the rotor.

また、請求項2に記載の発明は、ロータの外周部に配置したロータ加熱コイルによって前記ロータを誘導加熱する工程と、所定の温度に加熱した前記ロータに対し駆動軸を挿入する工程と、前記ロータおよび前記駆動軸を冷却して駆動軸とロータとを焼きばめ固定する工程とからなるロータの製造方法において、前記駆動軸を挿入する工程の後段に、前記ロータの温度を保持しながら前記駆動軸を駆動軸の外周部に配置した駆動軸加熱コイルによって前記ロータの温度と略同一の温度まで加熱する工程を備えたものである。   The invention according to claim 2 includes a step of inductively heating the rotor by a rotor heating coil disposed on an outer peripheral portion of the rotor, a step of inserting a drive shaft into the rotor heated to a predetermined temperature, In a method of manufacturing a rotor comprising a step of cooling the rotor and the drive shaft and shrink-fitting the drive shaft and the rotor, the temperature of the rotor is maintained after the step of inserting the drive shaft A step of heating the drive shaft to a temperature substantially the same as the temperature of the rotor by a drive shaft heating coil disposed on the outer periphery of the drive shaft is provided.

請求項1に記載の発明によると、ロータを誘導加熱する加熱コイルおよび電源とは別に、駆動軸を誘導加熱する駆動軸加熱コイルおよび駆動軸用の高周波電源を配置したので、ロータを所定温度まで加熱、保持し、駆動軸を挿入した後、駆動軸単体の急速加熱により、短時間で駆動軸の温度をロータの温度と略同一温度まであげることができ、ロータと駆動軸が概一体となった状態から冷却することができ、冷却過程において、駆動軸を大きく曲げようとする力を軽減することができる。そのため、曲がりの少ない駆動軸を得ることができ、曲がり修正をするための時間を不要とすることができる。   According to the first aspect of the present invention, the drive shaft heating coil for induction heating the drive shaft and the high frequency power source for the drive shaft are arranged separately from the heating coil and power source for induction heating of the rotor. After heating, holding, and inserting the drive shaft, rapid heating of the drive shaft alone can raise the temperature of the drive shaft to approximately the same temperature as the rotor temperature in a short time, and the rotor and drive shaft are almost integrated. In this case, the force to bend the drive shaft greatly can be reduced during the cooling process. Therefore, a drive shaft with less bending can be obtained, and time for correcting the bending can be eliminated.

また、請求項2に記載の発明によると、前記駆動軸を挿入する工程の後段に、前記ロータの温度を保持しながら前記駆動軸をその外周部に配置した加熱コイルによって前記ロータの温度と略同一の温度まで加熱する工程を備えたので、冷却過程において、駆動軸を大きく曲げようとする力を軽減することができ、そのため、曲がりの少ない駆動軸を得ることができ、曲がり修正をするための時間を不要にすることができる。   According to the second aspect of the present invention, after the step of inserting the drive shaft, the temperature of the rotor is substantially reduced by a heating coil in which the drive shaft is disposed on the outer periphery while maintaining the temperature of the rotor. Because it has the process of heating to the same temperature, the force to bend the drive shaft greatly during the cooling process can be reduced, so that a drive shaft with less bending can be obtained and the bending can be corrected Time can be eliminated.

以下、本発明の方法の具体的実施例について、図に基づいて説明する。   Hereinafter, specific examples of the method of the present invention will be described with reference to the drawings.

図1は、本発明の実施例1の加熱装置の構成と焼きばめ時のロータおよび駆動軸の位置関係を示す断面図である。
以下、図中同一または相当部分には同一の符号を付して説明する。
FIG. 1 is a cross-sectional view showing the configuration of the heating device according to the first embodiment of the present invention and the positional relationship between the rotor and the drive shaft during shrink fitting.
Hereinafter, the same or corresponding parts in the drawings will be described with the same reference numerals.

図1において、1はロータ、3はロータ鉄心内径、4はエンドリング、6は駆動軸、20はロータ加熱コイル、21a、21bは駆動軸加熱コイル、22は絶縁体、23はロータ加熱ブロック、24a、24bは駆動軸加熱ブロック、25はロータ加熱用の高周波電源、26は駆動軸加熱用の高周波電源、27はロータ1の温度計測用の放射温度計、28は駆動軸の温度計測用の放射温度計となっている。ロータ加熱コイル20と駆動軸加熱コイル21a、21bは、それぞれ表面が絶縁処理され、所定回数、環状に巻回されており、断熱性を有する絶縁体によって保持された1つずつのブロックになっている。また、各ブロック内のコイルと電源端子を切り離さずに、各ブロックを、ある程度自由に動かすことができるように、コイルと電源端子の間はケーブルで接続された構造となっている。また、ロータ1の温度計測用の放射温度計27はロータ加熱ブロック23に、駆動軸の温度計測用の放射温度計28は、駆動軸加熱ブロック24aまたは24bに、それぞれ、取り付け穴を介してセットされている。   In FIG. 1, 1 is a rotor, 3 is an inner diameter of a rotor core, 4 is an end ring, 6 is a drive shaft, 20 is a rotor heating coil, 21a and 21b are drive shaft heating coils, 22 is an insulator, 23 is a rotor heating block, 24a and 24b are drive shaft heating blocks, 25 is a high-frequency power source for heating the rotor, 26 is a high-frequency power source for heating the drive shaft, 27 is a radiation thermometer for measuring the temperature of the rotor 1, and 28 is for measuring the temperature of the drive shaft. It is a radiation thermometer. The rotor heating coil 20 and the drive shaft heating coils 21a and 21b are each subjected to insulation treatment and wound in a ring shape a predetermined number of times, and each block is held by an insulator having heat insulation properties. Yes. Further, the coil and the power supply terminal are connected by a cable so that each block can be moved freely to some extent without separating the coil and the power supply terminal in each block. The radiation thermometer 27 for measuring the temperature of the rotor 1 is set in the rotor heating block 23, and the radiation thermometer 28 for measuring the temperature of the drive shaft is set in the drive shaft heating block 24a or 24b via the mounting holes, respectively. Has been.

つぎに、本実施例の動作について説明する。
(1)まず、駆動軸加熱ブロック24bの上にロータ加熱ブロック23をほぼ同心となるように重ね置く。
(2)ついでロータ1をロータ加熱ブロック23内のロータ加熱コイル20の内側部に、ロータ加熱コイル20とほぼ同心となるようにセットする。
(3)さらに、ロータ加熱ブロック23の上に駆動軸加熱ブロック24aをほぼ同心となるように重ねて置く。
(4)ロータ加熱コイル20に通電し、ロータ1を加熱する。
(5)ロータ1が所定の温度になった状態で、ロータ加熱用の高周波電源25の出力をロータ1の温度計測用の放射温度計27からのフィードバック信号により制御し、ロータ1の温度を保持し、
(6)駆動軸6をロータ鉄心内径3に挿入する。
(7)駆動軸加熱コイル21a、21bに通電し、駆動軸6の温度をロータ1の温度と略同一になるまであげる。
(8)その後、ロータ加熱コイル20、駆動軸加熱コイル21aおよび21bへの通電を止め、ロータ1および駆動軸6を冷却して、焼きばめ固定する。
Next, the operation of this embodiment will be described.
(1) First, the rotor heating block 23 is overlaid on the drive shaft heating block 24b so as to be substantially concentric.
(2) Next, the rotor 1 is set inside the rotor heating coil 20 in the rotor heating block 23 so as to be substantially concentric with the rotor heating coil 20.
(3) Further, the drive shaft heating block 24a is placed on the rotor heating block 23 so as to be substantially concentric.
(4) Energize the rotor heating coil 20 to heat the rotor 1.
(5) With the rotor 1 at a predetermined temperature, the output of the high-frequency power supply 25 for heating the rotor is controlled by a feedback signal from the radiation thermometer 27 for measuring the temperature of the rotor 1 to maintain the temperature of the rotor 1 And
(6) The drive shaft 6 is inserted into the rotor core inner diameter 3.
(7) Energize the drive shaft heating coils 21 a and 21 b and raise the temperature of the drive shaft 6 until it becomes substantially the same as the temperature of the rotor 1.
(8) Thereafter, energization of the rotor heating coil 20 and the drive shaft heating coils 21a and 21b is stopped, and the rotor 1 and the drive shaft 6 are cooled and fixed by shrinkage fitting.

実施例1ではこのように、ロータ1は、駆動軸6を挿入する前から冷却を始める前までの間、温度保持されており、しかもロータ鉄心内径3に挿入された駆動軸6は高周波加熱により急速加熱されるため、駆動軸6の挿入直後でも、駆動軸6から奪われるロータ1の熱量は、従来方法に比べ大幅に少なく、若干、温度が低下した後でも、ロータ1の温度は、すぐに所定の保持温度まで回復する。つまり、ロータ1は、ほとんど熱収縮しない。さらに、その後、駆動軸6は、ロータ1の温度と略同一温度まで加熱され、ロータ1と駆動軸6は概一体の単体部品に近い状態になった後、冷却されるため、駆動軸6には、ロータ1の収縮による力がほとんど生じない。その結果、駆動軸6を大きく曲げる原因となる力は軽減されるため、焼きばめ固定後においても、曲がりの少ない駆動軸6を得ることができ、曲がりを修正する手間が発生しない。
図2に同一のロータと駆動軸を使用し、従来方法と本方法を適用した場合の駆動軸の曲がり量を測定した結果を示すが、本方法の適用により駆動軸の曲がり量が大きく減少していることが明らかである。また、加熱手段として油などの液体を使用していないため、焼きばめ固定後に、油などの除去が不要であり、余分な手間を掛ける必要がない。
In the first embodiment, as described above, the temperature of the rotor 1 is maintained from before the drive shaft 6 is inserted to before the cooling is started, and the drive shaft 6 inserted into the rotor core inner diameter 3 is heated by high frequency heating. Because of the rapid heating, even after the drive shaft 6 is inserted, the amount of heat of the rotor 1 taken away from the drive shaft 6 is significantly less than that of the conventional method, and even after the temperature is slightly lowered, the temperature of the rotor 1 is immediately To a predetermined holding temperature. That is, the rotor 1 hardly heat shrinks. Further, after that, the drive shaft 6 is heated to substantially the same temperature as that of the rotor 1, and the rotor 1 and the drive shaft 6 are cooled after being brought into a state close to a substantially unitary single component. The force due to the contraction of the rotor 1 hardly occurs. As a result, since the force that causes the drive shaft 6 to be bent greatly is reduced, the drive shaft 6 with less bending can be obtained even after shrink-fitting fixing, and the trouble of correcting the bending does not occur.
Fig. 2 shows the results of measuring the amount of bending of the drive shaft when the same rotor and drive shaft are used and the conventional method and this method are applied. The application of this method greatly reduces the amount of bending of the drive shaft. It is clear that Further, since no liquid such as oil is used as the heating means, it is not necessary to remove the oil after fixing by shrink fitting, and there is no need to take extra time.

本発明の実施例1を示すロータ加熱装置の断面図Sectional drawing of the rotor heating apparatus which shows Example 1 of this invention 本発明の効果である駆動軸の曲がり量を示すグラフThe graph which shows the bending amount of the drive shaft which is an effect of this invention 従来の方法に適用したロータ加熱装置の構成を示す断面図Sectional drawing which shows the structure of the rotor heating apparatus applied to the conventional method 従来の他の方法に適用したロータ加熱装置の構成を示す断面図Sectional drawing which shows the structure of the rotor heating apparatus applied to the other conventional method 従来の方法を適用した場合の駆動軸の曲がりを説明する断面図Sectional drawing explaining the bending of a drive shaft at the time of applying the conventional method

符号の説明Explanation of symbols

1 ロータ
2 ロータ鉄心
3 ロータ鉄心内径
4 エンドリング
5 加熱コイル
6 駆動軸
7 容器
8 油
9 台
10 ヒータ
20 ロータ加熱コイル
21、21a、21b 駆動軸加熱コイル
22 絶縁体
23 ロータ加熱ブロック
24a、24b 駆動軸加熱ブロック
25、26 高周波電源
27、28 放射温度計
30 ロータの収縮による径方向の力
31 ロータの収縮による軸方向の力
32 ロータの収縮による径方向の力によって生じる軸方向の力
33 駆動軸の熱膨脹による軸方向の力
34 駆動軸の軸方向に生じる複合力
DESCRIPTION OF SYMBOLS 1 Rotor 2 Rotor core 3 Rotor core inner diameter 4 End ring 5 Heating coil 6 Drive shaft 7 Container 8 Oil 9 Base 10 Heater 20 Rotor heating coils 21, 21a, 21b Drive shaft heating coil 22 Insulator 23 Rotor heating blocks 24a, 24b Drive Shaft heating blocks 25, 26 High-frequency power sources 27, 28 Radiation thermometer 30 Radial force 31 due to rotor contraction Axial force 32 due to rotor contraction Axial force 33 caused by radial force due to rotor contraction Drive shaft Force in the axial direction due to thermal expansion of the shaft 34 Combined force generated in the axial direction of the drive shaft

Claims (2)

駆動力を伝達する駆動軸にロータを焼きばめ固定するに際し、前記ロータの外周部に設けたロータ加熱コイルと、前記ロータ加熱コイルに印加するロータ加熱用の高周波電源とを有するロータ加熱装置において、
前記駆動軸の前記ロータが勘合する部位の両端にこれを誘導加熱する駆動軸加熱コイルおよび駆動軸加熱用の高周波電源を配置したことを特徴とするロータ加熱装置。
In a rotor heating apparatus having a rotor heating coil provided on an outer peripheral portion of the rotor and a high-frequency power source for rotor heating applied to the rotor heating coil when the rotor is shrink-fitted and fixed to a drive shaft for transmitting a driving force ,
A rotor heating apparatus, wherein a drive shaft heating coil for induction heating and a high frequency power source for driving shaft heating are disposed at both ends of a portion of the drive shaft that engages with the rotor.
ロータの外周部に配置したロータ加熱コイルによって前記ロータを誘導加熱する工程と、所定の温度に加熱した前記ロータに対し駆動軸を挿入する工程と、前記ロータおよび前記駆動軸を冷却して駆動軸とロータとを焼きばめ固定する工程とからなるロータの製造方法において、
前記駆動軸を挿入する工程の後段に、前記ロータの温度を保持しながら前記駆動軸を駆動軸の外周部に配置した駆動軸加熱コイルによって前記ロータの温度と略同一の温度まで加熱する工程を備えたことを特徴とするロータの製造方法。
A step of inductively heating the rotor by a rotor heating coil disposed on an outer periphery of the rotor; a step of inserting a drive shaft into the rotor heated to a predetermined temperature; and the drive shaft by cooling the rotor and the drive shaft And a method of manufacturing a rotor comprising a step of shrink-fitting and fixing a rotor,
Subsequent to the step of inserting the drive shaft, a step of heating the drive shaft to a temperature substantially equal to the temperature of the rotor by a drive shaft heating coil disposed on the outer periphery of the drive shaft while maintaining the temperature of the rotor. A method for manufacturing a rotor, comprising:
JP2005352803A 2005-12-07 2005-12-07 Rotor heating device and method therefor Pending JP2007152517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005352803A JP2007152517A (en) 2005-12-07 2005-12-07 Rotor heating device and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005352803A JP2007152517A (en) 2005-12-07 2005-12-07 Rotor heating device and method therefor

Publications (1)

Publication Number Publication Date
JP2007152517A true JP2007152517A (en) 2007-06-21

Family

ID=38237505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005352803A Pending JP2007152517A (en) 2005-12-07 2005-12-07 Rotor heating device and method therefor

Country Status (1)

Country Link
JP (1) JP2007152517A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102622A (en) * 2011-11-09 2013-05-23 Nissan Motor Co Ltd Heat treatment method for rotor core and heat treatment device
DE112012000293T5 (en) 2011-02-08 2013-09-05 Aisin Aw Co., Ltd. Manufacturing method for a rotor of an electric motor
US8951030B2 (en) 2011-02-08 2015-02-10 Aisin Aw Co., Ltd. Resin filling device
CN105391252A (en) * 2015-12-21 2016-03-09 南车株洲电机有限公司 Unwinding technology and equipment for motor rotor
CN108480914A (en) * 2018-03-09 2018-09-04 浙江巨龙自动化设备有限公司 The magneto assembling line full-automatic pressing machine of bearing sensing heating
JP2021007285A (en) * 2019-06-28 2021-01-21 アイシン精機株式会社 Superconducting rotary electric machine
CN112912206A (en) * 2018-09-07 2021-06-04 赫尔穆特·迪博尔德金戒指工具厂 Shrinking apparatus and method for inductively heating a shrink chuck
CN114221506A (en) * 2021-11-18 2022-03-22 上海电气电站设备有限公司 Insulation baking and pressing equipment for linear part of generator rotor coil

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012000293T5 (en) 2011-02-08 2013-09-05 Aisin Aw Co., Ltd. Manufacturing method for a rotor of an electric motor
US8951030B2 (en) 2011-02-08 2015-02-10 Aisin Aw Co., Ltd. Resin filling device
US9240709B2 (en) 2011-02-08 2016-01-19 Aisin Aw Co., Ltd. Manufacturing method for electric motor rotor
DE112012000293B4 (en) 2011-02-08 2018-10-18 Aisin Aw Co., Ltd. Manufacturing method for a rotor of an electric motor
JP2013102622A (en) * 2011-11-09 2013-05-23 Nissan Motor Co Ltd Heat treatment method for rotor core and heat treatment device
CN105391252A (en) * 2015-12-21 2016-03-09 南车株洲电机有限公司 Unwinding technology and equipment for motor rotor
CN108480914A (en) * 2018-03-09 2018-09-04 浙江巨龙自动化设备有限公司 The magneto assembling line full-automatic pressing machine of bearing sensing heating
CN108480914B (en) * 2018-03-09 2024-03-22 浙江巨龙自动化设备股份有限公司 Bearing induction heating full-automatic press-in machine for permanent magnet motor assembly line
CN112912206A (en) * 2018-09-07 2021-06-04 赫尔穆特·迪博尔德金戒指工具厂 Shrinking apparatus and method for inductively heating a shrink chuck
JP2021007285A (en) * 2019-06-28 2021-01-21 アイシン精機株式会社 Superconducting rotary electric machine
CN114221506A (en) * 2021-11-18 2022-03-22 上海电气电站设备有限公司 Insulation baking and pressing equipment for linear part of generator rotor coil

Similar Documents

Publication Publication Date Title
JP2007152517A (en) Rotor heating device and method therefor
JP6603737B2 (en) Method for manufacturing electric drive machine, electric drive machine, and motor vehicle
JP5197220B2 (en) Reactor manufacturing method
JP5607708B2 (en) Electric motor stator
JP4887990B2 (en) Stator heating method
JP2001092283A (en) Fixing device
JP5573395B2 (en) Stator manufacturing method
JP2008172961A (en) Apparatus and method for heating stator coil
JP5823179B2 (en) Stator heating method and apparatus using induction heating
JP5493718B2 (en) Heating apparatus and method for manufacturing stator
JP2008118731A (en) Heating device and heating method for stator coil and core
JP6943743B2 (en) Manufacturing method of stator for motor
JP2847800B2 (en) Mounting method of armature winding of slotless iron core
JP4356406B2 (en) Heating apparatus for rotating electrical machine coil
JP6931777B2 (en) Motor manufacturing method, motor manufacturing equipment, resin sealing jig and motor
JP2006296151A (en) Method of manufacturing stator
JP2019097311A (en) Insulation structure creation method for winding junction in stator of rotary electric machine
JP7329961B2 (en) Heat treatment method for iron core member, jig for heat treatment
CN109038907B (en) Motor and method for manufacturing the same
JP2019114466A (en) Manufacturing method of sheath heater
JP2015019472A (en) Method for manufacturing stator and apparatus for manufacturing stator
JP2019175759A (en) Induction heating device and method of attaching and detaching by induction heating
JP4187635B2 (en) High frequency induction heating coil
JP4518907B2 (en) Static induction equipment coil
JP2006187146A (en) Neutral point fixing structure of motor