JP2007151371A - System cooperation-type variation suppressing system and output variation suppression method - Google Patents

System cooperation-type variation suppressing system and output variation suppression method Download PDF

Info

Publication number
JP2007151371A
JP2007151371A JP2005346267A JP2005346267A JP2007151371A JP 2007151371 A JP2007151371 A JP 2007151371A JP 2005346267 A JP2005346267 A JP 2005346267A JP 2005346267 A JP2005346267 A JP 2005346267A JP 2007151371 A JP2007151371 A JP 2007151371A
Authority
JP
Japan
Prior art keywords
output
fluctuation
power generation
amount
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005346267A
Other languages
Japanese (ja)
Other versions
JP4546389B2 (en
Inventor
Akifumi Somatani
聡文 杣谷
Kuni Endo
久仁 遠藤
Akira Takeuchi
章 竹内
Yasushi Hiraoka
靖史 平岡
Mitsuru Kudo
満 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005346267A priority Critical patent/JP4546389B2/en
Publication of JP2007151371A publication Critical patent/JP2007151371A/en
Application granted granted Critical
Publication of JP4546389B2 publication Critical patent/JP4546389B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the output variation of un-controlling type power generation equipment represented by wind force and solar power generation, without causing large additional investment and deterioration of the operating ratio. <P>SOLUTION: An absorption requiring output variation calculating part 31A calculates the output variation which should be absorbed in un-controlling type power generation equipment from power generation output values of non-controlling type power generation equipment 2<SB>1</SB>to 2<SB>m</SB>, weather information and system constraint value from a system entrepreneur 6. A variation absorbable amount calculating part 32A calculates the variation absorption amount which each equipment arranged in respective consumers 1<SB>1</SB>to 1<SB>n</SB>that are the absorption destinations of output variation for calculated output variation which is to be absorbed by using equipment information on the operation of equipment. A variation allocation part 34A transmits the calculated output variation that are to be absorbed, to the respective consumers 1<SB>1</SB>to 1<SB>n</SB>. Equipment output adjusting parts 21 of the respective consumers 1<SB>1</SB>to 1<SB>n</SB>adjust the outputs of each equipment arranged at the consumers, by adjusting them to transmitted in matching with the output variation that is to be absorbed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の非制御型発電設備と、電気式蓄熱設備または蓄電設備または出力制御が可能でかつ排熱を蓄積する手段を有する熱電併給型発電設備の少なくともいずれかを備えた複数の需要家とを有する系統協調型変動抑制システムに関する。   The present invention relates to a plurality of demands comprising at least one of a plurality of non-control power generation facilities and an electric heat storage facility or power storage facility or a combined heat and power generation facility having output control and means for accumulating exhaust heat. The present invention relates to a system coordination type fluctuation suppression system having a house.

地球温暖化対策として、化石燃料を使用しない自然エネルギーによる発電設備が脚光を浴びている。なかでも風力発電設備や太陽光発電設備は技術的に完成度が高く、今後の増設が期待されている。   As a measure against global warming, power generation facilities using natural energy that does not use fossil fuels are in the spotlight. Among them, wind power generation facilities and solar power generation facilities are technically highly complete, and future expansion is expected.

前記発電設備は、自然のエネルギーである風力や太陽光を電力に変換するものである。該発電設備は、入力である風や太陽光等の自然エネルギーの変動従って発電出力が変動するが、効率を落とすことなく人為的に出力を一定に制御することが困難である。該当する発電設備としては、風力や太陽光の他に波力や潮汐力等を利用した発電がある。以降このような発電設備を「非制御型発電設備」と呼ぶことにする。   The power generation facility converts natural energy, such as wind power and sunlight, into electric power. In the power generation facility, the power generation output fluctuates in accordance with fluctuations in input natural energy such as wind and sunlight, but it is difficult to artificially control the output constant without reducing efficiency. Applicable power generation facilities include power generation using wind power and tidal power in addition to wind power and sunlight. Hereinafter, such a power generation facility is referred to as a “non-controlled power generation facility”.

非制御型発電設備の出力変動は、電力需給バランスの観点や電力系統の安定確保の観点から、何らかの方法で吸収する必要があるが、これまでは電力系統の慣性や電力系統内に設けられた調整用発電設備の出力を調整することより対処してきた。
総合資源エネルギー調査新エネルギー部会 第11回新エネルギー部会 資料5−2 風力発電系統連系対策小委員中間報告副題:平成16年7月27日中間報告に盛り込まれた対策のレビュー結果 P.33他
Output fluctuations of uncontrolled power generation facilities need to be absorbed in some way from the viewpoint of the balance between power supply and demand and the stability of the power system, but until now it has been installed in the inertia of the power system and in the power system. It has been dealt with by adjusting the output of the power generation equipment for adjustment.
11th New Energy Subcommittee, Comprehensive Resource and Energy Survey Material 5-2 Sub-committee Report on Wind Power System Interconnection Measure Subcommittee: Review Results of Measures Included in July 27, 2004 Interim Report 33 others

自然エネルギーによる発電設備の増加により、電力系統で扱う電力に対する非制御型発電設備の出力が占める割合が増加し、その出力変動を吸収しきれない状態に近づきつつある。非制御型発電設備による発電出力変動量が調整発電設備による調整能力を上回れば、電力系統における周波数維持が困難となり、正常な電力系統の運用が不可能となる。特に夜間においては、需給の関係から稼動する調整用発電設備の容量が少なく、さらなる自然エネルギーを原動力とする発電設備の導入が困難となりつつある。   Due to the increase in power generation facilities due to natural energy, the ratio of the output of uncontrolled power generation facilities to the power handled by the power system has increased, and it is approaching a state where the output fluctuation cannot be absorbed. If the amount of fluctuation in power generation output by the non-control power generation facility exceeds the adjustment capability by the adjustment power generation facility, it will be difficult to maintain the frequency in the power system, and normal power system operation will be impossible. Especially at night, the capacity of the power generation equipment for adjustment that operates is small due to supply and demand, and it is becoming difficult to introduce power generation equipment that uses further natural energy as a driving force.

電力系統への影響を抑えつつ、非制御型発電設備をさらに導入するためには、夜間のように調整用発電設備の余力の少ない時間帯に、非制御型発電設備を解列したり、同発電設備の直近に蓄電設備を設け、出力の変動を平準化する方法が提案されている。   In order to further introduce non-controlled power generation facilities while suppressing the impact on the power system, the non-controlled power generation facilities can be disconnected or the A method has been proposed in which a power storage facility is provided in the immediate vicinity of a power generation facility to level out fluctuations in output.

しかし、解列による方法では、その分当該発電設備稼働率が低下する。また、蓄電設備による出力変動の緩和手法では、蓄電設備への追加の設備投資が必要で、特に30分以上の長周期変動を吸収するためには、非制御型発電設備の定格出力に近い能力を有する蓄電設備が必要となり、追加の投資や蓄電池劣化時の交換費用の負担が極めて大きくなる。このように前記両手法共に、発電コストの大幅な上昇や投資回収を困難にするという問題があり、実質的に新たな非制御型発電設備の導入を阻害する要因となっている。   However, in the method using the disconnection, the power generation facility operation rate decreases accordingly. Moreover, the output fluctuation mitigation method using power storage equipment requires additional capital investment in the power storage equipment, and in particular to absorb long-period fluctuations of 30 minutes or more, the ability close to the rated output of uncontrolled power generation equipment Therefore, the burden of additional investment and replacement costs when the storage battery deteriorates becomes extremely large. As described above, both methods have a problem that the power generation cost is significantly increased and the investment recovery is difficult, which substantially hinders the introduction of new uncontrolled power generation facilities.

本発明の目的は、上述の問題を解決するためになされたもので、大幅な追加投資や稼動率の低下を招くことなく、風力や太陽光発電に代表される非制御型発電設備の出力変動を緩和し、電力系統に悪影響を与えないようにしつつ、同発電設備のさらなる導入の促進を図る系統協調型変動抑制システムおよび出力変動抑制方法を提供することにある。   The object of the present invention was made to solve the above-mentioned problems, and output fluctuations of non-control power generation facilities represented by wind power and solar power generation without causing significant additional investment or reduction in operating rate. It is intended to provide a system-coordinated fluctuation suppression system and an output fluctuation suppression method that alleviate the problem and prevent further adverse effects on the power system, while further promoting the introduction of the power generation equipment.

この目的を達成するため、本発明の系統協調型変動抑制システムは、非制御型発電設備の発電出力値と、気象情報と、系統事業者からの系統制約値とから非制御型発電設備の、吸収すべき出力変動分を算出する要吸収出力変動量算出手段と、算出された、吸収すべき出力変動分に対し、出力変動の吸収先である、各需要家に設置された各設備が吸収可能な変動吸収量を、該設備の運転に関する設備情報を用いて算出する変動吸収可能量算出手段と、算出された、吸収すべき出力変動分を各需要家に送信する変動量割当手段と、送信されてきた、吸収すべき出力変動分に合わせて、当該需要家に設置された各設備の出力を調整する設備出力調整手段とを有する。   In order to achieve this object, the system-coordinated fluctuation suppression system of the present invention is based on the power generation output value of the non-control power generation facility, the weather information, and the system constraint value from the system operator. Absorption required output fluctuation amount calculation means for calculating the output fluctuation amount to be absorbed, and each facility installed at each consumer that absorbs the output fluctuation with respect to the calculated output fluctuation amount to be absorbed. A variable absorbable amount calculating means for calculating a possible variable absorbable amount using facility information relating to the operation of the facility; a calculated variable amount assigning means for transmitting the calculated output fluctuation amount to be absorbed to each consumer; It has equipment output adjusting means for adjusting the output of each equipment installed in the consumer in accordance with the transmitted output fluctuation to be absorbed.

ここで、非制御型発電設備の出力の変動分を吸収するにあたり、調整用発電所による系統安定化の概念とは、変動分を直接系統内の発電量で調整するのではなく、主に需要家内に設置されることの多い、電気式蓄熱設備または熱電併給型発電設備または蓄電設備の時間的な設備余力を利用して、非制御型発電設備の発電出力変動を相殺する方向に、需要家内に設置されることの多い前記設備の電力需要を変化させて系統安定化に寄与させる点が異なる。   Here, in absorbing fluctuations in the output of uncontrolled power generation facilities, the concept of system stabilization by the power plant for adjustment is not to adjust fluctuations directly with the amount of power generated in the grid, but mainly to demand. In order to offset fluctuations in power generation output of uncontrolled power generation facilities by using the remaining capacity of electrical heat storage facilities, combined heat and power generation power generation facilities or power storage facilities, which are often installed in homes, It is different in that it contributes to system stabilization by changing the power demand of the equipment that is often installed in the plant.

また、時間的な設備余力とは、電気式蓄熱設備または熱電併給型発電設備または蓄電設備はエネルギー蓄積機能があるため、需要が発生する前の所定の時刻に必要な蓄熱量または蓄電量を満足すれば、瞬時的には熱源機等の出力を変化させても需要家に影響を及ぼさない、すなわち瞬時的に見れば余力が存在することを意味するものとする。   In addition, the time required for the facility capacity is that the electric heat storage facility, the combined heat and power generation facility, or the power storage facility has an energy storage function, so that the required amount of heat storage or storage at a predetermined time before demand occurs is satisfied. Thus, even if the output of the heat source machine or the like is changed instantaneously, it does not affect the consumer, that is, it means that there is a surplus power when viewed instantaneously.

本発明の実施態様によれば、系統協調型変動抑制システムは、出力変動吸収への協力の可否、可の場合は吸収可能な変動量および/または協力可能時間帯を申告する手段を有する。協力可能量等を吸収先である需要家が予め申告することにより、故障や保守による設備停止や協力可能量の変動等を割当てに反映でき、より正確な制御が可能となる。   According to the embodiment of the present invention, the system-coordinated fluctuation suppression system has means for reporting whether or not cooperation in absorbing output fluctuations is possible, and if possible, the amount of fluctuations that can be absorbed and / or the cooperation possible time zone. When the customer who is the absorption destination declares the cooperation possible amount or the like in advance, the facility stoppage due to failure or maintenance, the change of the cooperation possible amount, etc. can be reflected in the allocation, and more accurate control becomes possible.

本発明の実施態様によれば、変動吸収可能量算出手段はさらに、当該需要家の過去の出力変動吸収への協力度および/または当該需要家に設置された各設備の出力変動に対する耐性情報を用いて、各需要家に設置された設備が吸収すべき出力変動分を算出する。変動吸収分の割当て量算定にあたって、データベースに蓄積した各需要家の過去の出力変動吸収への貢献量や回数、各設備の繰り返し寿命等の変動耐性情報を考慮することにより、特定設備に過大な変動吸収負担が重ならないように割当てることができる。   According to the embodiment of the present invention, the variable absorbable amount calculating means further obtains the degree of cooperation with respect to the output fluctuation absorption of the consumer and / or tolerance information against the output fluctuation of each facility installed in the consumer. It is used to calculate the amount of output fluctuation that should be absorbed by the equipment installed at each consumer. In calculating the amount of fluctuation absorption, it is necessary to take into account fluctuation tolerance information such as the amount and frequency of contribution to the past output fluctuation absorption of each customer accumulated in the database, and the fluctuation tolerance information such as the repeated life of each equipment. The variable absorption burden can be assigned so as not to overlap.

本発明の実施態様によれば、要吸収出力変動量算出手段は、非制御型発電設備の発電出力値として、予測に基づく発電出力値を用いる。変動吸収対象である非制御型発電設備の出力変動を、発電予測に基づく出力とすることにより、予め時間帯別必要吸収量を設定することができる。これにより、変動を吸収する側の時間的設備余力を算定しやすくなり、必要蓄熱量または必要蓄電量確保のための安全マージン、すなわち運転余力を変動吸収に振り分けることができるので、結果として対応可能な変動吸収量を増やすことができる。   According to the embodiment of the present invention, the required absorption output fluctuation amount calculation means uses the power generation output value based on the prediction as the power generation output value of the non-control power generation facility. By setting the output fluctuation of the non-control power generation facility that is the subject of fluctuation absorption as the output based on the power generation prediction, it is possible to set the necessary absorption amount for each time zone in advance. As a result, it becomes easier to calculate the time-capacity surplus capacity on the side that absorbs fluctuations, and the safety margin for securing the required heat storage amount or the required power storage amount, that is, the operating surplus capacity can be allocated to fluctuation absorption. The amount of fluctuation absorption can be increased.

本発明の実施態様によれば、系統協調型変動抑制システムは、各需要家に設置された設備の、出力変動吸収分の算出に必要な時間を考慮して定められた所定の時刻における蓄熱量または蓄電量を算出する手段と、前記設備が賄うべき熱需要量または電力需要量を予測する手段と、前記所定の時刻における蓄熱量または蓄電量と前記予測された熱需要量または電力需要量より所定の目標時刻における目標蓄熱量または目標蓄電量を算出する手段と、前記目標蓄熱量または目標蓄電量を満足しつつ可能な変動吸収分を算出する手段を有する。変動吸収可能量の算出にあたって、蓄熱量や蓄電量を把握し、需要家内の熱または電力需要を予測することにより、目標時刻の必要蓄熱量または蓄電量をより正確に算出することができる。これにより、変動吸収対象設備の出力変動範囲や出力の変化率、およびこれらの接続可能な時間をより正確に算定できるため、これらを組合わせることにより、必要吸収量に合致した吸収特性を実現するとともに、正確かつ大きな変動吸収量を確保でき、システム全体で見れば、吸収可能な出力変動量を増やすことができる。   According to the embodiment of the present invention, the system-coordinated fluctuation suppression system is a heat storage amount at a predetermined time determined in consideration of the time required for calculating the output fluctuation absorption amount of the equipment installed in each consumer. Or means for calculating the amount of electricity stored, means for predicting the amount of heat demand or power demand to be covered by the equipment, and the amount of heat storage or electricity storage at the predetermined time and the predicted amount of heat demand or power demand. A means for calculating a target heat storage amount or a target power storage amount at a predetermined target time; and a means for calculating a possible fluctuation absorption while satisfying the target heat storage amount or the target power storage amount. In calculating the variable absorbable amount, it is possible to more accurately calculate the required heat storage amount or power storage amount at the target time by grasping the heat storage amount or power storage amount and predicting the heat or power demand in the consumer. This makes it possible to calculate the output fluctuation range and output change rate of the equipment subject to fluctuation absorption more accurately, and the time that these can be connected, so by combining these, you can achieve absorption characteristics that match the required amount of absorption. In addition, an accurate and large amount of fluctuation absorption can be secured, and the amount of output fluctuation that can be absorbed can be increased as viewed in the entire system.

本発明の実施態様によれば、系統協調型変動抑制システムは、発電出力の予測または熱または電力の需要予測に関し、所定の時刻毎に予測と実績とのずれを照合し、前記ずれ量またはずれ量の推移が所定の基準値を超えた場合かまたは予測に使用した説明変数が所定の基準値を超えて変化した場合に再予測する手段と、再予測に基づき、変動吸収量を前記各需要家に設置された設備に再割当する手段とを有する。発電出力の予測値や需要家内での熱または電力の需要予測値と実測値とを照合し、ずれを基に予測を修正するか、または予測に用いた予報値等がある規定を超えて変更となった場合に予測を修正することにより、予測精度を向上させることができる。修正した予測に基づき変動吸収量を再割当てすることにより、変動抑制効果を向上させることができる。   According to the embodiment of the present invention, the system-coordinated fluctuation suppression system relates to the prediction of the power generation output or the demand prediction of heat or power, and collates the deviation between the prediction and the actual results at every predetermined time, and Means for re-predicting when the amount transition exceeds a predetermined reference value or when the explanatory variable used for the prediction changes beyond a predetermined reference value, And means for reassigning the equipment installed in the house. Compare the predicted value of the power generation output or the predicted value of demand for heat or electricity in the customer with the actual measurement value, and correct the prediction based on the deviation, or change beyond the provisions with the forecast value used for the prediction, etc. In this case, the prediction accuracy can be improved by correcting the prediction. By reallocating the fluctuation absorption amount based on the corrected prediction, the fluctuation suppression effect can be improved.

本発明の実施態様によれば、非制御型発電設備が風力発電設備である。この場合、複数を一括して必要吸収分を求めることにより、単体毎に吸収する場合に比べ、重ね合わせの効果により微少変動成分の減少が期待できるため、より効率的に出力変動を吸収することが可能となる。   According to an embodiment of the present invention, the uncontrolled power generation facility is a wind power generation facility. In this case, it is possible to expect a decrease in the minute fluctuation component due to the effect of superposition, by absorbing the output fluctuation more efficiently, by obtaining the necessary absorption amount in batches, compared with the case where absorption is performed for each unit. Is possible.

本発明の実施態様によれば、非制御型発電設備が太陽光発電設備である。この場合、発電設備は需要家近くに設置されることが多いことから、比較的直近で変動を吸収することができ、系統への影響を和らげる効果がより高くなる。   According to the embodiment of the present invention, the uncontrolled power generation facility is a solar power generation facility. In this case, since the power generation equipment is often installed near the consumer, the fluctuation can be absorbed relatively recently, and the effect of reducing the influence on the system becomes higher.

本発明の実施態様によれば、電気式蓄熱設備が給湯用電気式熱源設備や空調用電気式熱源設備である。これらは、主に夜間に蓄熱を行うものが多くある。これらは一般的に朝までに蓄熱が完了していればよく、途中で出力を変化させても支障が少ないことから、夜間の電力需要調整として積極的に活用しやすく、調整発電所の余力の小さい夜間に効果的に変動を吸収することができる。   According to the embodiment of the present invention, the electric heat storage facility is an electric heat source facility for hot water supply or an electric heat source facility for air conditioning. Many of these perform heat storage mainly at night. Generally, it is sufficient that the heat storage is completed by the morning, and there is little trouble even if the output is changed midway. It can absorb fluctuations effectively at small nights.

本発明の実施態様によれば、熱電併給発電設備がエンジン式発電設備または燃料電池式発電設備と蓄熱材料または蓄熱設備とにより構成される。熱電併給型発電設備としてエンジン式発電設備または燃料電池式発電設備を用い、複数台数の合計として所定の変動吸収となるよう運転台数や機器の特性を考慮した発電出力調整を行うことにより、同発電設備のエネルギー効率を損なうことなく変動吸収を行うことができる。   According to the embodiment of the present invention, the combined heat and power generation facility is constituted by an engine type power generation facility or a fuel cell type power generation facility and a heat storage material or a heat storage facility. By using an engine-type power generation facility or a fuel cell-type power generation facility as a combined heat and power generation facility, and adjusting the power generation output in consideration of the number of operating units and the characteristics of the equipment so as to absorb the specified fluctuation as the total of multiple units, Fluctuation absorption can be performed without impairing the energy efficiency of the facility.

本発明によれば、風力や太陽光発電に代表される非制御型発電設備の出力変動を、需要家に設置された電気式蓄熱設備や蓄電設備、制御可能な熱電併給型発電設備の時間的余力を利用して吸収することにより、新たに大幅な追加投資をすることなく電力系統への悪影響を防止できる。これにより、非制御型発電設備の効率を下げることなく、非制御型発電設備のさらなる導入の促進を図ることができる。   According to the present invention, output fluctuations of non-control power generation facilities represented by wind power and solar power generation can be measured with respect to temporal changes of electric heat storage facilities and power storage facilities installed in consumers and controllable combined heat and power generation facilities. By absorbing the remaining capacity, it is possible to prevent adverse effects on the power system without making a new additional investment. Thereby, further introduction of non-control type power generation equipment can be promoted without lowering the efficiency of the non-control type power generation equipment.

次に、本発明の実施の形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

[第1の実施形態]
図1は本発明の第1の実施形態による系統協調型変動抑制システムの構成を示している。
[First Embodiment]
FIG. 1 shows the configuration of a system coordination type fluctuation suppression system according to the first embodiment of the present invention.

本実施形態の系統協調型変動抑制システムは複数の需要家11,12,…,1nと複数の非制御型発電設備21,22,…,2mと制御センタ3で構成されている。 System cooperation type variation suppression system of the present embodiment a plurality of customer 1 1, 1 2, ..., 1 n and a plurality of non-controlled power plant 2 1, 2 2, ..., is composed of a 2 m control center 3 ing.

需要家11は一般電力負荷11と蓄電設備13と熱電併給型発電設備14とを備え、需要家12は一般電力負荷11と電気式蓄熱設備12と蓄電設備13を備え、需要家13は一般電力負荷11と熱電併給型発電設備14を備え、需要家14は一般電力負荷11と蓄電設備13を備え、・・・、需要家1nは一般電力負荷11と電気式蓄熱設備12を備え、これらと非制御型発電設備21〜2mは電力系統4で接続されている。また、制御センタ3と各需要家11〜1nと非制御型発電設備21〜2mは通信回線5によって互いに接続されている。ここで、一般電力負荷11とは電気式蓄熱設備12以外の電力負荷設備を指す。 And a customer 1 1 generally power load 11 and the power storage equipment 13 and cogeneration power generating facility 14, customer 1 2 The general power load 11 and electric thermal storage facility 12 includes a storage equipment 13, customer 1 3 has a general power load 11 and cogeneration power generating facility 14, customer 1 4 is provided with a normal power load 11 and the power storage equipment 13,..., customer 1 n general power load 11 and electric thermal storage facility 12 These are connected to the non-control type power generation equipment 2 1 to 2 m by the electric power system 4. In addition, the control center 3, each of the consumers 1 1 to 1 n and the non-controlled power generation facilities 2 1 to 2 m are connected to each other by a communication line 5. Here, the general power load 11 refers to a power load facility other than the electric heat storage facility 12.

図2は制御センタ3と需要家11〜1nの構成を示している。制御センタ3は要吸収出力変動量算出部31Aと変動吸収可能量算出部32Aと登録設備情報データベース33Aと変動量割当部34Aを有し、各需要家11〜1nは設備出力調整・充放電量調整部21を有している。 FIG. 2 shows the configuration of the control center 3 and the consumers 1 1 to 1 n . The control center 3 has a required absorption output fluctuation amount calculation unit 31A, a variable absorption possible amount calculation unit 32A, a registered facility information database 33A, and a variation amount allocation unit 34A, and each of the consumers 1 1 to 1 n adjusts and outputs the facility output. A discharge amount adjusting unit 21 is provided.

要吸収出力変動量算出部31Aは非制御型発電設備21〜2mの発電出力値(現在値、時間または分単位の近い過去の履歴、年や季節単位の履歴)と、気象情報(天気概況、風速、温度または温度分布等で、予報値の他、現在値や過去値(例えば、1時間前の値))を説明変数として、例えば重回帰法により、発電出力の予測値(時刻別推移)を推定し、これと、系統事業者6からの系統制約値を比較し、例えば系統制約値からの逸脱分を要吸収出力変動分と定める。ここで、「系統制約値」とは、接続先系統において許容される発電機の出力変動幅や出力変化率を指す。例えば風力発電の場合、発電の出力変動は、接続した系統の電圧や周波数の擾乱を招く。この擾乱の度合いは、出力変動幅のみでなく、当該系統の設計容量、日々や時間帯別の取扱い容量、当該系統を管理する調整発電所の当該日時の調整能力、または当該調整発電所までの距離、他の系統との連系点までの距離等により変化する。このように、系統制約値は固定ではなく、当該日時の系統の運用条件により変化する。 Main absorbent output change amount calculation unit 31A and the non-controlled power plant 2 1 to 2 power output value of m (the current value, hours and minutes of the recent past history, age and history of seasonal units), weather information (weather In general conditions, wind speed, temperature or temperature distribution, etc., forecast values, current values and past values (for example, values one hour ago)) as explanatory variables, for example, predicted values of power generation output (by time) by multiple regression method Transition) and the system constraint value from the system operator 6 are compared, and, for example, a deviation from the system constraint value is determined as an absorption output fluctuation required. Here, the “system constraint value” refers to the output fluctuation range and output change rate of the generator allowed in the connection destination system. For example, in the case of wind power generation, fluctuations in the output of power generation cause disturbances in the voltage and frequency of the connected system. The degree of this disturbance is not only the output fluctuation range, but also the design capacity of the system, the handling capacity by day and time, the adjustment capacity of the coordinating power station that manages the system, or the time to the coordinating power station. It varies depending on the distance and the distance to the connection point with other systems. In this way, the system constraint value is not fixed, but changes depending on the operating conditions of the system at the date and time.

変動吸収可能量算出部32Aは、要吸収出力変動量算出部31Aで求められた要吸収出力変動分に対し、変動の吸収先である、需要家11〜1nに設置された電気式蓄熱設備12または蓄電設備13または熱電併給型発電設備14に関する、登録設備情報データベース33Aの登録情報、例えば単位時間当たりの許容出力変動幅や最大定格、最小運転可能出力、部分負荷効率特性等の設備情報を制約条件として、例えばタブサーチや遺伝的アルゴリズムを用いて最適化問題を解き、各設備が吸収すべき時刻別の変動量を求める。この際の評価関数としては、例えばコストが最小やエネルギー使用量が最小等を本システムの運営目的に応じて選択する。なお、発電出力変動の履歴を基に、例えばある1時間内でつじつまを合わせる等、後追いで出力変動を吸収する方法もある。系統の条件によっては、このような後追い吸収が許容できる場合も想定される。この場合、発電出力の予測は必須ではない。 The variable absorbable amount calculation unit 32A is an electric heat storage installed in the consumers 1 1 to 1 n that is the absorption destination of the change with respect to the required absorption output variation obtained by the required absorption output variation calculation unit 31A. Registration information of the registered facility information database 33A regarding the facility 12, the storage facility 13, or the combined heat and power generation facility 14, such as the facility information such as the allowable output fluctuation range per unit time, maximum rating, minimum operable output, and partial load efficiency characteristics As a constraint, the optimization problem is solved using, for example, a tab search or a genetic algorithm, and the amount of fluctuation for each time that each facility should absorb is obtained. As the evaluation function at this time, for example, the minimum cost or the minimum energy consumption is selected according to the operation purpose of the system. There is also a method of absorbing the output fluctuation in a follow-up manner based on the history of the power generation output fluctuation, for example, by matching up within one hour. Depending on the system conditions, it may be assumed that such follow-up absorption is acceptable. In this case, it is not essential to predict the power generation output.

変動量割当部34Aは変動吸収可能量算出部32Aで求められた変動量(割当て値)を各需要家11〜1nに送信する。各需要家11〜1nに設けられた設備出力調整・充放電量調整部21は、例えば電気式蓄熱設備12の場合は、熱源機の出力を調整し、その消費電力を割当て値に合うよう変化させ、蓄電設備13の場合は、割当て値に合うよう充電または放電電力を調整する。さらに、熱電併給型発電設備14の場合は、発電出力を変化させ、併設された一般電力負荷11と合計した消費電力の変動が割当て値に合うように調整する。 The fluctuation amount assigning unit 34A transmits the fluctuation amount (assigned value) obtained by the fluctuation absorbable amount calculating unit 32A to each of the consumers 1 1 to 1 n . For example, in the case of the electric heat storage facility 12, the facility output adjustment / charge / discharge amount adjustment unit 21 provided in each of the consumers 1 1 to 1 n adjusts the output of the heat source unit and matches the power consumption to the assigned value. In the case of the power storage facility 13, the charging or discharging power is adjusted to match the assigned value. Furthermore, in the case of the combined heat and power generation facility 14, the power generation output is changed, and adjustment is performed so that the fluctuation of the total power consumption with the installed general power load 11 matches the allocated value.

前記割当てでは、制約条件として設備の特性を挙げているが、これに限定されるものはなく、例えば燃料または電力の季節や時間帯別の料金や最大受電電力等の情報を制約条件に加えてもよい。また、評価関数として、個々の需要家単位ではなく、本発明の系統強調型変動抑制システム全体でコストが最小またはエネルギー使用量が最小となるように割当ててもよい。   In the above allocation, the characteristics of the facility are listed as a constraint condition, but there is no limitation to this. For example, information such as the fuel or power season and the charge for each time zone or maximum received power is added to the constraint condition. Also good. Further, the evaluation function may be assigned so that the cost is minimized or the amount of energy used is minimized not in individual consumer units but in the entire system emphasis type fluctuation suppressing system of the present invention.

ここで、変動吸収量の各需要家への割り振りの概念を図3により説明する。まず、各需要家から得られたあるいは予め登録された出力許容範囲(図3(1)の斜線部)を単位時間毎に分割し、単位出力ブロックを求める(図3(2))。この「単位出力ブロック」は、所定の時間単位別の出力の組合わせに使用可能な単位出力のことで、これらをブロック時間単位別に、予め求めてある必要変動吸収量に合うように組立てる。拠出可能な出力変動量は、例えば、所定の時間単位t01(時刻t0からt1の間)では、需要家がA01を2個分、需要家BがB01を2個分、需要家CはC01を3個分である。制御センタ3では、前記7個のブロックを組合わせて時間単位t01で満たさなければならない合計出力値を算出する。このような処理を繰り返し、図3(3)に示すように、必要な時間帯(図3の例では、時刻t0からt4まで)の変動吸収のためのパターンを作り出し、結果を各需要家A、B、Cに割り振る(図3(4))。図3(4)中、太線は各需要家A、B、Cの出力曲線である。 Here, the concept of allocating the variable absorption amount to each consumer will be described with reference to FIG. First, the output allowable range obtained from each customer or registered in advance (the hatched portion in FIG. 3 (1)) is divided for each unit time to obtain a unit output block (FIG. 3 (2)). The “unit output block” is a unit output that can be used for a combination of outputs for each predetermined time unit, and is assembled for each block time unit so as to meet the required fluctuation absorption amount obtained in advance. For example, in a predetermined time unit t 01 (between times t 0 and t 1 ), the amount of output fluctuation that can be contributed is the demand for two A 01 for consumer and two for B 01 for consumer B. House C is for 3 C 01s . The control center 3 calculates the total output value that must be satisfied by the time unit t 01 by combining the seven blocks. Repeating such processing, as shown in FIG. 3 (3), (in the example of FIG. 3, from time t 0 to t 4) required time period creating a pattern for the fluctuation absorber of the results demand Allocate to houses A, B, and C (FIG. 3 (4)). In FIG. 3 (4), the thick line is the output curve of each customer A, B, C.

変動吸収のためのパターンを作り出すための単位出力ブロックの組合わせ方は幾通りかあるが、例えば「コスト最低」、「エネルギー消費最低」のような目標を定め、かつ各需要家の特性、例えば出力変動を繰り返してよいか否か等の制約を考慮した上で、最適化問題を解くことにより求める。例えば、図3の例では、出力変動に向かない需要家Aの出力の変化が少ない結果となっており、逆にもともと許容出力範囲が広く、出力変化の繰り返しに強い需要家Cの出力が大きく変化する結果となっている。   There are several ways of combining unit output blocks to create a pattern for fluctuation absorption. For example, the target such as “minimum cost” and “minimum energy consumption” is set, and the characteristics of each customer, for example, This is obtained by solving an optimization problem in consideration of constraints such as whether or not output fluctuations may be repeated. For example, in the example of FIG. 3, the change in the output of the customer A that is not suitable for the output fluctuation is small, and conversely, the allowable output range is wide and the output of the customer C that is resistant to repeated output changes is large. The result is changing.

なお、出力許容範囲の代わりに、各需要家から得られたあるいは予め登録された出力許容変化率を単位時間毎に分割し、単位出力変化率を求め、これらをブロック時間単位別に、予め求めてある必要変動吸収量に合うように組立ててもよい。「単位出力変化率」は、所定の時間単位別の出力の組合わせに使用可能な単位変化率のことである。   In addition, instead of the allowable output range, the allowable output change rate obtained from each customer or registered in advance is divided for each unit time to obtain the unit output change rate, and these are obtained in advance for each block time unit. It may be assembled to meet a certain amount of fluctuation absorption. The “unit output change rate” is a unit change rate that can be used for a combination of outputs by predetermined time units.

[第2の実施形態]
図4は本発明の第2の実施形態における制御センタ3と需要家11〜1nの構成を示している。本実施形態では各需要家11〜1nに申告部22をさらに有し、制御センタ3は図2での変動吸収可能量算出部32Aの代りに変動吸収可能量算出部32Bを備えている。各需要家11〜1nでは、設備のメンテナンスや故障、さらには行事の影響(催しにより熱や電気の負荷が普段よりも大幅に変化する)により、設備の予め登録された許容値等が変わる場合がある。これを割当て値に反映させるために、変動吸収可能量算出部32Bによる変動吸収可能量の算出に先立って、申告部22によって変動吸収への協力の可否、変動吸収への協力可能量、協力可能時間帯等を申告情報として予め制御センタ3に申告する。制御センタ3の変動吸収可能量算出部32Bはこの申告情報を第1の実施形態で述べた制約条件に加えて各需要家11〜1nの設備に割当てる時間帯別の変動吸収量を算出する。
[Second Embodiment]
FIG. 4 shows the configuration of the control center 3 and the customers 1 1 to 1 n in the second embodiment of the present invention. In the present embodiment, each customer 1 1 to 1 n further has a reporting unit 22, and the control center 3 includes a variable absorbable amount calculating unit 32B instead of the variable absorbable amount calculating unit 32A in FIG. . At each customer 1 1 to 1 n , the pre-registered allowable value of the equipment, etc., due to the maintenance and breakdown of the equipment, and the influence of the event (the heat and electricity load changes significantly due to the event) May change. In order to reflect this in the allocated value, prior to the calculation of the variable absorbable amount by the variable absorbable amount calculating unit 32B, the reporting unit 22 determines whether cooperation for variable absorption is possible, the possible amount of cooperation for variable absorption, and possible cooperation A time zone or the like is reported to the control center 3 in advance as reporting information. The variable absorbable amount calculating unit 32B of the control center 3 calculates the variable absorbable amount for each time zone assigned to the facilities of each of the consumers 1 1 to 1 n in addition to the report information in the constraint condition described in the first embodiment. To do.

[第3の実施形態]
図5は本発明の第3の実施形態における制御センタ3と需要家11〜1nの構成を示している。本実施形態では、登録設備情報・貢献度データベース33Bに第1、第2の実施形態で述べた制約条件に加えて、各需要家11〜1nの過去の変動吸収への貢献量(KW・H)や回数、各設備の変動に対する繰り返し寿命等の変動耐性情報が登録されている。変動吸収可能量算出部32Cは、登録設備情報・貢献度データベース33Bに登録されているこれらの情報を制約条件として、第2の実施形態と同様に、例えばタブサーチや遺伝的アルゴリズムを用いて最適化問題を解き、各設備が吸収すべき時刻別の変動量を求める。変動量割当部34Bは変動吸収可能量算出部32Cで求められた変動量(割当て値)を各需要家11〜1nに送信するとともに、割当てた変動吸収量を履歴として登録設備情報・貢献度データベース33Bに保存する。
[Third Embodiment]
FIG. 5 shows the configuration of the control center 3 and the consumers 1 1 to 1 n in the third embodiment of the present invention. In this embodiment, in addition to the constraints described in the first and second embodiments in the registered facility information / contribution database 33B, the contribution amount (KW) of each consumer 1 1 to 1 n to the past fluctuation absorption. -The fluctuation tolerance information such as H), the number of times, and the repetition life against the fluctuation of each facility is registered. The variable absorbable amount calculation unit 32C uses the information registered in the registered facility information / contribution database 33B as a constraint, and uses, for example, a tab search or a genetic algorithm to optimize the information as in the second embodiment. Solve the problem, and find the amount of fluctuation by time that each facility should absorb. The fluctuation amount assigning unit 34B transmits the fluctuation amount (assigned value) obtained by the variable absorbable amount calculating unit 32C to each of the consumers 1 1 to 1 n and registers the facility absorption / registration as the history of the assigned fluctuation absorbing amount. This is stored in the database 33B.

本実施形態において、需要家11〜1nの過去の貢献量や回数、各設備の繰り返し寿命等の変動耐性情報を考慮するのは、例えば設備に調整余力があっても特定の蓄電設備に深い充放電を頻繁に強いると設備劣化が進むことや、出力変更に伴うヒートサイクルによる熱源機や蓄熱設備の劣化を考慮する等、それぞれの設備の特性を考慮し、特定の設備に過大な変動吸収負担が重ならないようにするためである。 In the present embodiment, consideration is given to fluctuation tolerance information such as the past contribution amount and frequency of the consumers 1 1 to 1 n and the repetitive life of each equipment, for example, even if there is room for adjustment in the equipment. Excessive fluctuations in specific equipment, taking into account the characteristics of each equipment, such as equipment deterioration when frequent deep charging / discharging is frequently applied, and deterioration of heat source equipment and heat storage equipment due to heat cycle accompanying output change This is to prevent the absorption burden from overlapping.

[第4の実施形態]
図6は本発明の第4の実施形態における制御センタ3と需要家11〜1nの構成図である。本実施形態では、制御センタ3は、第3の実施形態における制御センタ3において、発電量予測部35をさらに有し、要吸収出力変動量算出部31Aの代りに要吸収出力変動量算出部31Bを有している。発電量予測部35は非制御型発電設備21〜2mの出力と、データベース35Aに蓄積した、天気予報、風速や風向および/または日射量等の気象情報、発電出力の履歴等を説明変数として、ニューラルネット法や重回帰法等により予測発電出力を算出する。なお、最適な説明変数は、当該設備の種類だけでなく設置位置によっても変わる場合があるので、上記例に限らず他に適切な説明変数があればそれを用いる。要吸収出力変動量算出部31Bは予測発電出力値と系統事業者6からの系統制約値とから、第1から第3の実施形態と同様にして、吸収すべき発電出力変動分を算出する。他は第3の実施形態と同じである。
[Fourth Embodiment]
FIG. 6 is a configuration diagram of the control center 3 and the consumers 1 1 to 1 n according to the fourth embodiment of the present invention. In the present embodiment, the control center 3 further includes a power generation amount prediction unit 35 in the control center 3 in the third embodiment, and instead of the absorption output fluctuation amount calculation unit 31A, an absorption output fluctuation amount calculation unit 31B. have. Power generation amount prediction unit 35 and the output of the non-controlled power plant 2 1 to 2 m, and stored in the database 35A, weather, wind speed and wind direction and / or weather information of solar radiation, etc., a history of power output explanatory variables As described above, the predicted power generation output is calculated by a neural network method, a multiple regression method, or the like. Note that the optimum explanatory variable may vary depending not only on the type of the equipment but also on the installation position. Therefore, not only the above example but also other appropriate explanatory variables are used. The required absorption output fluctuation amount calculation unit 31B calculates the power generation output fluctuation amount to be absorbed from the predicted power generation output value and the system constraint value from the system operator 6 in the same manner as in the first to third embodiments. Others are the same as the third embodiment.

[第5の実施形態]
図7は本発明の第5の実施形態における制御センタ3と需要家11〜1nの構成を示している。制御センタ3の構成は第4の実施形態における制御センタ3の構成と同じである。需要家11〜1nは設備出力量調整・充放電量調節部21と申告部22に加えて、データベース23と現在蓄熱・蓄電量算出部24と熱・電力需要予測部25と目標蓄電蓄熱量算出部26と協力可能量算出部27を有している。
[Fifth Embodiment]
FIG. 7 shows the configuration of the control center 3 and the consumers 1 1 to 1 n in the fifth embodiment of the present invention. The configuration of the control center 3 is the same as the configuration of the control center 3 in the fourth embodiment. In addition to the equipment output amount adjustment / charge / discharge amount adjustment unit 21 and the reporting unit 22, the customers 1 1 to 1 n , the database 23, the current heat storage / storage amount calculation unit 24, the heat / power demand prediction unit 25, and the target storage energy storage An amount calculation unit 26 and a cooperable amount calculation unit 27 are included.

現在蓄熱・蓄電量算出部24は、変動吸収分の割当ての算定に必要な時間を考慮して定められる所定の時刻、つまり割り振り予定時刻から各種の算定、需要予測計算または割り振り等の処理に必要な時間を遡った時刻や、予測の精度を考慮して(何時間までの蓄電量を予測に組み込むか等)定められる時刻における蓄熱量や蓄電量(以降、便宜上現在蓄熱量、現在蓄電量と記す)を算出する。なお、上記時刻は、処理に支障を及ぼさない範囲で変化させてもよく、上記時刻そのものを最適化の対象(何時定めれば、良い結果が得られるかを演算し変化させる)としてもよい。また、精度上支障がなければ予め固定した時刻としてもよい。熱・電力需要予測部25は、データベース23の過去の需要、気温等の情報から、上記時刻に需要家11〜1nの熱または電力の需要を予測する。目標蓄電蓄熱量算出部26は現在蓄熱量、現在蓄電量と需要予測結果から、上記所定の時刻における必要蓄熱量または蓄電量を算出する。協力可能量算出部27は、これに基づき各設備が協力可能な出力変動範囲や出力の変化率、およびこれらの協力可能な時間を算定し、申告部22を介して制御センタ3へ申告する。ここで、現在蓄熱量は例えば蓄熱媒体として水等の液体を利用する場合は、所定の液位における温度を、また蓄熱媒体として建物躯体を利用する場合は、予め定めた部位の温度を計測することにより求めることができる。また、現在蓄電量は、過去の充放電電流の積算値から求めることができる。また、電力や熱の需要予測は、例えば過去の30日間の需要履歴、平日と休日の違いを示すパラメータや予測する時間帯の天気予報や気温、湿度の予報値またはこれらの履歴を説明変数として、重回帰法やニューラルネット法により求める。なお、前記の説明変数はあくまで例であり、設備構成や予測する対象、例えば空調用の熱か給湯用の熱か等の違いによっても、最適な変数が異なるので、予測に適した変数を選ぶ。また、図7では、現在蓄熱量または現在蓄電量の算出から、熱または電力の需要予測、目標時刻における必要蓄熱量または蓄電量の算出、およびこれらに基づき前記協力可能な出力変動範囲の各量を需要家内で算出し制御センタ3へ申告しているが、これらの機能の一部または全部を制御センタ3内にて実行してもよい。この場合、協力可能変動量の申告に代えて、前記算出に必要なデータを制御センタ3へ申告すればよい。 The current heat storage / storage amount calculation unit 24 is necessary for processing such as various calculations, demand prediction calculation or allocation from a predetermined time determined in consideration of the time required for calculation of fluctuation absorption allocation, that is, the scheduled allocation time. The amount of heat stored and the amount of electricity stored at a predetermined time considering the accuracy of the prediction and the accuracy of the prediction (how many hours the amount of electricity will be included in the prediction, etc.) To calculate). Note that the time may be changed within a range that does not interfere with the processing, and the time itself may be an optimization target (calculates and changes when to obtain a good result). If there is no problem in accuracy, the time may be fixed in advance. Thermal and power demand prediction unit 25, past demand database 23, the information such as air temperature, predicts the customer 1 1 to 1 n of the heat or power demand of the said time. The target power storage heat amount calculation unit 26 calculates the necessary heat storage amount or the power storage amount at the predetermined time from the current heat storage amount, the current power storage amount, and the demand prediction result. Based on this, the cooperation possible amount calculation unit 27 calculates the output fluctuation range and output change rate in which each facility can cooperate, and the cooperation possible time, and reports it to the control center 3 via the reporting unit 22. Here, for example, when using a liquid such as water as the heat storage medium, the current heat storage amount is measured at a predetermined liquid level, and when using a building enclosure as the heat storage medium, the temperature of a predetermined part is measured. Can be obtained. Further, the current power storage amount can be obtained from an integrated value of past charge / discharge currents. In addition, the demand forecast for power and heat is, for example, a demand history for the past 30 days, a parameter indicating a difference between weekdays and holidays, a weather forecast for a forecast time zone, a forecast value for temperature and humidity, or these history as explanatory variables. Obtained by multiple regression method or neural network method. Note that the above explanatory variables are only examples, and optimum variables differ depending on the difference in equipment configuration and the object to be predicted, for example, heat for air conditioning or heat for hot water supply. . Further, in FIG. 7, from the calculation of the current heat storage amount or the current power storage amount, the demand prediction of heat or electric power, the calculation of the necessary heat storage amount or the power storage amount at the target time, and each amount of the output fluctuation range that can be cooperated based on these However, some or all of these functions may be executed in the control center 3. In this case, the data required for the calculation may be reported to the control center 3 instead of reporting the cooperable variation amount.

[第6の実施形態]
図8は、本発明の第6の実施形態の変動吸収可能量算出部32Cにおける、予測の修正と変動吸収量の再割当てに関する処理のフローチャートである。
[Sixth Embodiment]
FIG. 8 is a flowchart of processing related to correction of prediction and reassignment of variable absorption amount in the variable absorption amount calculation unit 32C according to the sixth embodiment of this invention.

発電出力の予測値や需要家内での熱または電力の需要予測値と実測値とを照合し、ずれ量またはずれ量の推移を求め、その値が予め定めた基準値を超えた場合や、先の予測に用いた説明変数、例えば天気予報や気温や湿度、または風向、風速等の予報値が、予め定めた基準値を超えて変更となった場合に再度予測をやり直し(ステップ101−103)、この新たな予測値を基に必要に応じて変動吸収の再割当てを実施する(ステップ104)。なお、システム全体を通しての制御フローは第5の実施形態で示した図7と同じであるが、所定の時刻毎に予測結果の検証を行い、必要な場合に再予測しかつその結果を基に再割当てを行う機能が第5の実施形態に追加された点が異なる。また、本実施形態におけるシステム構成は、第1の実施形態で示した図2と同様でよい。   The predicted value of power generation output or the predicted value of demand for heat or power in the customer is compared with the actual measurement value to determine the amount of deviation or the amount of deviation, and when that value exceeds a predetermined reference value, When an explanatory variable used for the prediction, for example, a forecast value such as weather forecast, temperature, humidity, wind direction, wind speed, etc. is changed beyond a predetermined reference value, the forecast is performed again (steps 101-103). Based on the new predicted value, the variable absorption is reassigned as necessary (step 104). The control flow throughout the entire system is the same as that of FIG. 7 shown in the fifth embodiment. However, the prediction result is verified every predetermined time, re-predicted when necessary, and based on the result. The difference is that a function for performing reassignment is added to the fifth embodiment. Further, the system configuration in this embodiment may be the same as that shown in FIG. 2 in the first embodiment.

[第7の実施形態]
図9は、本発明の第7の実施形態による系統協調型変動抑制システムの構成図である。本実施形態では、非制御型発電設備21〜2mとして風力発電設備または太陽光発電設備を用いている。風力発電設備の場合は、調整発電所能力が下がる夜間の変動吸収制御が主となり、夜間蓄熱式の設備による変動吸収が主となる。また、太陽光発電の場合は昼間の制御となるため、昼間の稼動率が高くなる蓄電設備や熱電併給型発電設備による調整が主となり易い。なお、制御フローは、先に述べた第1から第6の実施形態で示した図2から図8のいずれでもよい。
[Seventh Embodiment]
FIG. 9 is a configuration diagram of a system coordination type fluctuation suppression system according to the seventh embodiment of the present invention. In the present embodiment uses a wind power generation equipment or solar power equipment as a non-controlled power plant 2 1 to 2 m. In the case of wind power generation facilities, fluctuation absorption control is mainly performed at night when the capacity of the regulated power plant is reduced, and fluctuation absorption by a night heat storage type facility is mainly performed. In the case of solar power generation, since daytime control is performed, adjustment by a power storage facility or a combined heat and power generation facility that increases the daytime operation rate is likely to be mainly performed. The control flow may be any of FIGS. 2 to 8 shown in the first to sixth embodiments described above.

[第8の実施形態]
図10は、本発明の第8の実施形態による系統協調型変動抑制システムの構成図である。本実施形態では、電気式蓄熱設備12として、給湯用電気式熱源設備および空調用電気式熱源設備を用いている。給湯用電気式熱源設備の具体例としては、電気ヒータを熱源とするいわゆる電気温水器やヒートポンプ式温水器等があげられる。また、空調熱源設備の具体例としては、氷蓄熱槽や冷温水槽等の蓄熱槽と同蓄熱槽に温熱または冷熱を供給する電気式冷凍機またはヒートポンプからなる冷房または暖房設備のほか、蓄熱材と電気ヒータとを組み合わせた蓄熱式電気暖房器具や蓄熱式電気床暖房、さらに建物躯体を蓄熱媒体として同躯体に温熱または冷熱を供給する電気式冷房または暖房設備も、本実施形態に言う電気式蓄熱設備12の空調熱源設備に該当する。
[Eighth Embodiment]
FIG. 10 is a configuration diagram of a system coordination type fluctuation suppression system according to the eighth embodiment of the present invention. In the present embodiment, as the electrical heat storage facility 12, an electrical heat source facility for hot water supply and an electrical heat source facility for air conditioning are used. Specific examples of the electric heat source equipment for hot water supply include a so-called electric water heater or heat pump water heater using an electric heater as a heat source. Specific examples of air-conditioning heat source equipment include cooling storage or heating equipment consisting of a heat storage tank such as an ice heat storage tank or a cold / hot water tank and an electric refrigerator or heat pump that supplies heat or cold to the heat storage tank, and a heat storage material. The heat storage type electric heating appliance combined with the electric heater, the heat storage type electric floor heating, and the electric cooling or heating facility for supplying the building body with heat or cold as a heat storage medium are also referred to in this embodiment. This corresponds to the air conditioning heat source facility of the facility 12.

上記の例の中で、特に電気ヒータを用いた熱源機は、入り切りや出力調整範囲等の制約が少なく制御に適している。   Among the above examples, a heat source machine using an electric heater is particularly suitable for control with few restrictions such as on / off and output adjustment range.

なお、制御フローは、先に述べた第1から第6の実施形態で示した図2、図4から図8のいずれでもよい。   The control flow may be any of FIG. 2 and FIG. 4 to FIG. 8 shown in the first to sixth embodiments described above.

[第9の実施形態]
図11は、本発明の第9の実施形態による系統協調型変動抑制システムの構成図である。本実施形態では、出力制御可能な熱電併給型発電設備14として、エンジン式発電設備または燃料電池式発電設備を用いている。
[Ninth Embodiment]
FIG. 11 is a configuration diagram of a system coordination type fluctuation suppression system according to the ninth embodiment of the present invention. In the present embodiment, an engine type power generation facility or a fuel cell type power generation facility is used as the combined heat and power generation facility 14 capable of output control.

本実施形態では吸収すべき出力変動分の割当て結果を基に、一般負荷11の変動分を考慮して発電出力を変更し、割当てられた吸収量に相当する見かけ上の負荷変動を発生させる。なお、熱電併給型発電設備14に接続された一般負荷11の消費電力が発電出力より小さく、余剰分を電力系統に放出する、いわゆる逆潮流となる事態も想定されるが、発電コストまたは系統事業者との協議上問題なければ系統に対し電力を供給してもよい。また、前記逆潮流が許されない場合は、当該条件を制約条件に含めて割当て量を算出する。   In the present embodiment, based on the assignment result of the output fluctuation to be absorbed, the power generation output is changed in consideration of the fluctuation of the general load 11, and an apparent load fluctuation corresponding to the assigned absorption amount is generated. In addition, although the power consumption of the general load 11 connected to the combined heat and power generation facility 14 is smaller than the power generation output and a surplus is discharged to the power system, a so-called reverse power flow situation is assumed. If there is no problem in discussion with the person in charge, power may be supplied to the grid. If the reverse power flow is not permitted, the allocation amount is calculated by including the condition in the constraint condition.

エンジン式発電設備は、頻繁な起動および停止が可能であるが部分負荷時の効率が低いため、定格出力付近での運転とし運転台数を変化させて全体として出力を調整する。また、燃料電池式発電設備の場合は、頻繁な起動停止に向かないことから、単機毎の発電出力の調整を主にとし、加えて一定の起動および停止回数の制約を設けた上で運転台数の制御を行い、全体として発電出力を調整する。   Engine-type power generation equipment can be started and stopped frequently, but its efficiency at the time of partial load is low. Therefore, the output is adjusted as a whole by changing the number of units in operation near the rated output. In addition, in the case of fuel cell type power generation equipment, since it is not suitable for frequent start / stop, the adjustment of the power generation output for each unit is mainly used, and in addition, the number of operating units is set with a certain number of start and stop restrictions. The power generation output is adjusted as a whole.

なお、制御フローは、先に述べた第1から第6の実施形態で示した図2、図4から図8のいずれでもよい。   The control flow may be any of FIG. 2 and FIG. 4 to FIG. 8 shown in the first to sixth embodiments described above.

本発明の第1の実施形態による系統協調型変動抑制システムの構成を示す図である。It is a figure which shows the structure of the system | strain cooperation type | mold fluctuation suppression system by the 1st Embodiment of this invention. 本発明の第2の実施形態による系統協調型変動抑制システムにおける制御センタと需要家の構成を示す図である。It is a figure which shows the structure of the control center and customer in the system | strain cooperation type | mold fluctuation suppression system by the 2nd Embodiment of this invention. 変動吸収量の各需要家への割り振りの概念を説明する図である。It is a figure explaining the concept of allocation to each consumer of fluctuation absorption. 本発明の第3の実施形態による系統協調型変動抑制システムにおける制御センタと需要家の構成を示す図である。It is a figure which shows the structure of the control center and customer in the system | strain cooperation type | mold fluctuation suppression system by the 3rd Embodiment of this invention. 本発明の第4の実施形態による系統協調型変動抑制システムにおける制御センタと需要家の構成を示す図である。It is a figure which shows the structure of the control center and customer in the system | strain cooperation type | mold fluctuation suppression system by the 4th Embodiment of this invention. 本発明の第5の実施形態による系統協調型変動抑制システムにおける制御センタと需要家の構成を示す図である。It is a figure which shows the structure of the control center and customer in the system | strain cooperation type | mold fluctuation suppression system by the 5th Embodiment of this invention. 本発明の第6の実施形態による系統協調型変動抑制システムにおける制御センタと需要家の構成を示す図である。It is a figure which shows the structure of the control center and customer in the system | strain cooperation type | mold fluctuation suppression system by the 6th Embodiment of this invention. 本発明の第7の実施形態における変動吸収可能量算出部32Cの予測の修正と変動吸収量の再割当てに関する処理のフローチャートである。It is a flowchart of the process regarding correction of the prediction of the variable absorption amount calculation part 32C in the 7th Embodiment of this invention, and reassignment of a variable absorption amount. 本発明の第8の実施形態による系統協調型変動抑制システムの構成を示す図である。It is a figure which shows the structure of the system | strain cooperation type | mold fluctuation suppression system by the 8th Embodiment of this invention. 本発明の第9の実施形態による系統協調型変動抑制システムの構成を示す図である。It is a figure which shows the structure of the system | strain cooperation type | mold fluctuation suppression system by the 9th Embodiment of this invention. 本発明の第10の実施形態による系統協調型変動抑制システムの構成を示す図である。It is a figure which shows the structure of the system | strain cooperation type | mold fluctuation suppression system by the 10th Embodiment of this invention.

符号の説明Explanation of symbols

1〜1n 需要家
1〜2m 非制御型発電設備
3 制御センタ
4 電力系統
5 通信回線
6 系統事業者
11 一般電力負荷
12 電気式蓄熱設備
13 蓄電設備
14 熱電併給型発電設備
21 設備出力量調整・充放電量調整部
22 申告部
23 データベース
24 現在蓄熱・蓄電量算出部
25 熱・電力需要予測部
26 目標蓄電蓄熱量算出部
27 協力可能量算出部
31A,31B 要吸収出力変動量算出部
32A,32B、32C 変動吸収可能量算出部
33A、33B データベース
34A,34B 変動量割当部
35 発電出力予測部
35A データベース
35B 発電出力予測部
101〜104 ステップ
1 1 to 1 n consumers 2 1 to 2 m Non-controlled power generation equipment 3 Control center 4 Power system 5 Communication line 6 System operator 11 General power load 12 Electric heat storage equipment 13 Power storage equipment 14 Combined heat and power generation equipment 21 Equipment Output amount adjustment / charge / discharge amount adjustment unit 22 Declaration unit 23 Database 24 Current heat storage / power storage amount calculation unit 25 Heat / power demand prediction unit 26 Target power storage heat storage amount calculation unit 27 Cooperation possible amount calculation unit 31A, 31B Absorption required output fluctuation amount Calculation unit 32A, 32B, 32C Fluctuation absorbable amount calculation unit 33A, 33B Database 34A, 34B Fluctuation amount allocation unit 35 Power generation output prediction unit 35A Database 35B Power generation output prediction unit 101-104 steps

Claims (10)

自然エネルギーを入力とする複数の非制御型発電設備と、電気式蓄熱設備、蓄電設備、出力制御が可能でかつ排熱を蓄積する手段を有する熱電併給型発電設備の少なくともいずれかを備えた複数の需要家とを有する系統協調型変動抑制システムにおいて、
前記非制御型発電設備の発電出力値と、気象情報と、系統事業者からの系統制約値とから前記非制御型発電設備の、吸収すべき出力変動分を算出する要吸収出力変動量算出手段と、
前記算出された、吸収すべき出力変動分に対し、出力変動の吸収先である、各需要家に設置された前記各設備が吸収可能な変動吸収量を、該設備の運転に関する設備情報を用いて算出する変動吸収可能量算出手段と、
前記算出された、吸収すべき出力変動分を各需要家に送信する変動量割当手段と、
送信されてきた、吸収すべき出力変動分に合わせて、当該需要家に設置された前記各設備の出力を調整する設備出力調整手段と
を有することを特徴とする系統協調型変動抑制システム。
A plurality of at least one of a plurality of non-control type power generation facilities that receive natural energy and an electric heat storage facility, a power storage facility, and a combined heat and power generation facility that can control output and store exhaust heat In the system-coordinated fluctuation suppression system with
Absorption required output fluctuation amount calculation means for calculating the output fluctuation amount to be absorbed of the non-control type power generation equipment from the power generation output value of the non-control type power generation equipment, weather information, and the system constraint value from the grid operator When,
For the calculated output fluctuation amount to be absorbed, the fluctuation absorption amount that can be absorbed by each equipment installed in each customer, which is the absorption destination of the output fluctuation, is used for the equipment information regarding the operation of the equipment. A variable absorbable amount calculating means for calculating
A fluctuation amount allocating means for transmitting the calculated output fluctuation to be absorbed to each consumer;
A system-coordinated fluctuation suppression system comprising: facility output adjusting means for adjusting the output of each facility installed in the consumer in accordance with the transmitted output fluctuation to be absorbed.
前記各需要家が、出力変動吸収への協力の可否、可の場合は吸収可能な変動量および/または協力可能時間帯を申告する手段を有する、請求項1記載の系統協調型変動抑制システム。   The system cooperation type | mold fluctuation | variation suppression system of Claim 1 which has a means to declare each said consumer whether the cooperation to output fluctuation absorption is possible, the fluctuation amount which can be absorbed, and / or the cooperation possible time slot | zone. 前記変動吸収可能量算出手段はさらに、当該需要家の過去の出力変動吸収への協力度および/または当該需要家に設置された前記各設備の出力変動に対する耐性情報を用いて、前記各需要家に設置された設備が吸収すべき出力変動分を算出する、請求項2記載の系統協調型変動抑制システム。   The fluctuation-absorbable amount calculating means further uses the degree of cooperation with respect to absorption of past output fluctuations of the consumer and / or tolerance information against output fluctuations of the facilities installed in the consumer, to each of the consumers. The system coordination type | mold fluctuation suppression system of Claim 2 which calculates the output fluctuation part which the installation installed in should be absorbed. 前記要吸収出力変動量算出手段は、前記非制御型発電設備の発電出力値として、予測に基づく発電出力値を用いる、請求項1から請求項3のいずれかに記載の系統協調型変動抑制システム。   4. The system-coordinated fluctuation suppression system according to claim 1, wherein the absorption output fluctuation amount calculation unit uses a power generation output value based on prediction as a power generation output value of the non-control power generation facility. . 前記各需要家に設置された設備の、出力変動吸収分の算出に必要な時間を考慮して定められた所定の時刻における蓄熱量または蓄電量を算出する手段と、前記設備が賄うべき熱需要量または電力需要量を予測する手段と、前記所定の時刻における蓄熱量または蓄電量と前記予測された熱需要量または電力需要量より所定の目標時刻における目標蓄熱量または目標蓄電量を算出する手段と、前記目標蓄熱量または目標蓄電量を満足しつつ可能な変動吸収分を算出する手段を有する、請求項1から4のいずれかに記載の系統協調型変動抑制システム。   Means for calculating a heat storage amount or a storage amount at a predetermined time determined in consideration of a time required for calculating an output fluctuation absorption amount of the equipment installed in each consumer; and a heat demand to be covered by the equipment Means for predicting the amount or power demand amount, and means for calculating the target heat storage amount or target power storage amount at a predetermined target time from the heat storage amount or power storage amount at the predetermined time and the predicted heat demand amount or power demand amount The system coordination type | mold fluctuation suppression system in any one of Claim 1 to 4 which has a means to calculate the fluctuation | variation absorption possible while satisfy | filling the said target thermal storage amount or the target electrical storage amount. 発電出力の予測または熱または電力の需要予測に関し、所定の時刻毎に予測と実績とのずれを照合し、前記ずれ量またはずれ量の推移が所定の基準値を超えた場合かまたは予測に使用した説明変数が所定の基準値を超えて変化した場合に再予測する手段と、再予測に基づき、変動吸収量を前記各需要家に設置された設備に再割当する手段とを有する、請求項4または5に記載の系統協調型変動抑制システム。   Regarding the prediction of power generation output or the demand prediction of heat or electric power, the deviation between the prediction and the actual result is collated at a predetermined time, and the deviation amount or the transition of the deviation amount exceeds a predetermined reference value or is used for the prediction. Means for re-predicting when the explanatory variable has changed beyond a predetermined reference value, and means for re-allocating the variable absorption amount to the equipment installed in each consumer based on the re-prediction. The system coordination type | mold fluctuation suppression system of 4 or 5. 前記非制御型発電設備が風力発電設備または太陽光発電設備である、請求項1から請求項6のいずれかに記載の系統協調型変動抑制システム。   The system cooperation type | mold fluctuation suppression system in any one of Claims 1-6 whose said non-control type | mold power generation equipment is a wind power generation equipment or a solar power generation equipment. 前記電気式蓄熱設備が給湯用電気式熱源設備または空調用電気式熱源設備である、請求項1から請求項7のいずれかに記載の系統協調型変動抑制システム。   The system cooperation type | mold fluctuation suppression system in any one of Claims 1-7 whose said electrical heat storage equipment is the electrical heat source equipment for hot-water supply, or the electrical heat source equipment for an air conditioning. 前記熱電併給発電設備がエンジン式発電設備または燃料電池式発電設備と蓄熱材料または蓄熱設備とにより構成される、請求項1から請求項8のいずれかに記載の系統協調型変動抑制システム。   The system cooperation type | mold fluctuation suppression system in any one of Claims 1-8 by which the said combined heat and power generation equipment is comprised with an engine type power generation equipment or a fuel cell type power generation equipment, and a thermal storage material or a thermal storage equipment. 自然エネルギーを入力とする複数の非制御型発電設備と、電気式蓄熱設備、蓄電設備、出力制御が可能でかつ排熱を蓄積する手段を有する熱電併給型発電設備の少なくともいずれかを備えた複数の需要家とを有する系統協調型変動抑制システムにおける出力変動抑制方法であって、
前記非制御型発電設備の発電出力値と、気象情報と、系統事業者からの系統制約値とから前記非制御型発電設備の、吸収すべき出力変動分を算出するステップと、
前記算出された、吸収すべき出力変動分に対し、出力変動の吸収先である、各需要家に設置された前記各設備が吸収可能な変動吸収量を、該設備の運転に関する設備情報を用いて算出するステップと、
前記算出された、吸収すべき出力変動分を各需要家に送信するステップと、
送信されてきた、吸収すべき出力変動分に合わせて、当該需要家に設置された前記各設備の出力を調整するステップと
を有する、系統協調型変動抑制システムにおける出力変動抑制方法。
A plurality of at least one of a plurality of non-control type power generation facilities that receive natural energy and an electric heat storage facility, a power storage facility, and a combined heat and power generation facility that can control output and store exhaust heat An output fluctuation suppression method in a system coordination fluctuation suppression system having a customer of
Calculating the power fluctuation output to be absorbed of the non-control power generation facility from the power generation output value of the non-control power generation facility, meteorological information, and the system constraint value from the grid operator;
For the calculated output fluctuation amount to be absorbed, the fluctuation absorption amount that can be absorbed by each equipment installed in each customer, which is the absorption destination of the output fluctuation, is used for the equipment information regarding the operation of the equipment. Calculating step,
Transmitting the calculated output fluctuation to be absorbed to each consumer;
Adjusting the output of each facility installed in the customer according to the output fluctuation to be absorbed that has been transmitted. The output fluctuation suppression method in the system coordination fluctuation suppression system.
JP2005346267A 2005-11-30 2005-11-30 System coordination type fluctuation suppression system and output fluctuation suppression method Expired - Fee Related JP4546389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005346267A JP4546389B2 (en) 2005-11-30 2005-11-30 System coordination type fluctuation suppression system and output fluctuation suppression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005346267A JP4546389B2 (en) 2005-11-30 2005-11-30 System coordination type fluctuation suppression system and output fluctuation suppression method

Publications (2)

Publication Number Publication Date
JP2007151371A true JP2007151371A (en) 2007-06-14
JP4546389B2 JP4546389B2 (en) 2010-09-15

Family

ID=38212096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005346267A Expired - Fee Related JP4546389B2 (en) 2005-11-30 2005-11-30 System coordination type fluctuation suppression system and output fluctuation suppression method

Country Status (1)

Country Link
JP (1) JP4546389B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2040193A2 (en) 2007-09-19 2009-03-25 Canon Finetech Inc. Barcode generation system, computer readable recording medium, printing device, and test chart
JP2011087383A (en) * 2009-10-14 2011-04-28 Nihon Techno Co Ltd Power transaction unit
JP2011125122A (en) * 2009-12-09 2011-06-23 Sony Corp Battery control system, battery control device, and method and program for controlling battery
WO2011086886A1 (en) * 2010-01-12 2011-07-21 パナソニック株式会社 Demand/supply control device, demand/supply control method, and demand/supply control system
WO2011118766A1 (en) * 2010-03-25 2011-09-29 三洋電機株式会社 Electric power supply system, central management device, power system stabilization system, central management device control method, and central management device control program
WO2012004644A1 (en) * 2010-07-05 2012-01-12 パナソニック電工株式会社 Energy management system
JP2012039686A (en) * 2010-08-04 2012-02-23 Hitachi Ltd System operation method using storage battery
JP2012205436A (en) * 2011-03-28 2012-10-22 Toshiba Corp Charge and discharge determination device and program
WO2012147155A1 (en) * 2011-04-26 2012-11-01 株式会社 日立製作所 Power management device, power management system, power management method, and power management program
CN102891504A (en) * 2011-07-21 2013-01-23 日立民用电子株式会社 Power control unit
JP2013110792A (en) * 2011-11-17 2013-06-06 Fuji Electric Co Ltd Power stabilization controller, power stabilization program
WO2013099156A1 (en) * 2011-12-27 2013-07-04 川崎重工業株式会社 Grid controller for smart grid system, smart grid system equipped with same, and control method thereof
JP2013528349A (en) * 2010-06-10 2013-07-08 ベーシック ホールディングス Heat storage device control device
JP2013146140A (en) * 2012-01-13 2013-07-25 Chugoku Electric Power Co Inc:The Load management system and load management method
WO2013132872A1 (en) * 2012-03-08 2013-09-12 パナソニック株式会社 Frequency control method
JP2013539953A (en) * 2010-09-10 2013-10-28 コンヴァージ,インコーポレーテッド Method and system for controlling building load in conjunction with a renewable energy source to increase the apparent size of the renewable energy source
JP2014509177A (en) * 2011-02-02 2014-04-10 コンサート インコーポレイテッド System and method for estimating and supplying operational reserve energy capacity that can be allocated through the use of active load management
JP2014117018A (en) * 2012-12-07 2014-06-26 Daikin Ind Ltd Control device for hyperthermic apparatus
WO2014132659A1 (en) * 2013-03-01 2014-09-04 日本電気株式会社 Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
JP2014200153A (en) * 2013-03-29 2014-10-23 株式会社東芝 Energy management system, energy management apparatus and energy management method
KR101503408B1 (en) 2008-12-26 2015-03-17 닛폰 후료쿠카이하츠 가부시키가이샤 Wind-driven electricity generation system of type having storage battery, and device for controlling charge and discharge of storage battery
JP2015056975A (en) * 2013-09-12 2015-03-23 パナソニック株式会社 Home power generation control system and information communication system
JP2015126564A (en) * 2013-12-25 2015-07-06 大阪瓦斯株式会社 Power transfer system
JP5909672B2 (en) * 2010-11-02 2016-04-27 パナソニックIpマネジメント株式会社 Control device
WO2016084347A1 (en) * 2014-11-25 2016-06-02 日本電気株式会社 Energy management apparatus, energy management method, and program recording medium
JP2016123171A (en) * 2014-12-24 2016-07-07 中国電力株式会社 Power system control device
JP2016536718A (en) * 2013-09-16 2016-11-24 アマゾン・テクノロジーズ・インコーポレーテッド Customer selectable power source options for network accessible service units
JP2016213954A (en) * 2015-05-08 2016-12-15 国立大学法人 鹿児島大学 Distributed power storage system for renewable energy power
JP2017070159A (en) * 2015-10-02 2017-04-06 株式会社日立製作所 Communication facility power demand management device and power demand management method
WO2017154080A1 (en) * 2016-03-07 2017-09-14 株式会社東芝 Capacity distribution control device, capacity distribution device, and capacity distribution system
JP7339329B2 (en) 2018-08-24 2023-09-05 オープン エネルギー リミテッド Battery energy storage system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10257695A (en) * 1997-03-14 1998-09-25 Toko Electric Co Ltd Load centralized control system
JPH1155856A (en) * 1997-08-05 1999-02-26 Hakko Denki Kk Electric power system operation system and terminal equipment for consumer used in the system
JP2002010500A (en) * 2000-06-15 2002-01-11 Toshiba Eng Co Ltd Control system for electric power demand and supply
JP2002262457A (en) * 2001-02-27 2002-09-13 Sanyo Electric Co Ltd Electric power dealing method and dealing system
JP2002262458A (en) * 2001-03-02 2002-09-13 Toshiba Eng Co Ltd Electric power supply system utilizing weather forecast information
JP2003235182A (en) * 2002-02-05 2003-08-22 Ricoh Co Ltd Power supply remote control system and the same method
JP2004274851A (en) * 2003-03-06 2004-09-30 Osaka Gas Co Ltd Energy accommodation system
JP2005151746A (en) * 2003-11-18 2005-06-09 Hitachi Ltd Cogeneration system control method and co-generation system control device
JP2005278338A (en) * 2004-03-25 2005-10-06 Osaka Gas Co Ltd Power supply system
JP2006204081A (en) * 2004-12-24 2006-08-03 Hitachi Ltd Supply and demand adjusting method, system and service by distributed power source

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10257695A (en) * 1997-03-14 1998-09-25 Toko Electric Co Ltd Load centralized control system
JPH1155856A (en) * 1997-08-05 1999-02-26 Hakko Denki Kk Electric power system operation system and terminal equipment for consumer used in the system
JP2002010500A (en) * 2000-06-15 2002-01-11 Toshiba Eng Co Ltd Control system for electric power demand and supply
JP2002262457A (en) * 2001-02-27 2002-09-13 Sanyo Electric Co Ltd Electric power dealing method and dealing system
JP2002262458A (en) * 2001-03-02 2002-09-13 Toshiba Eng Co Ltd Electric power supply system utilizing weather forecast information
JP2003235182A (en) * 2002-02-05 2003-08-22 Ricoh Co Ltd Power supply remote control system and the same method
JP2004274851A (en) * 2003-03-06 2004-09-30 Osaka Gas Co Ltd Energy accommodation system
JP2005151746A (en) * 2003-11-18 2005-06-09 Hitachi Ltd Cogeneration system control method and co-generation system control device
JP2005278338A (en) * 2004-03-25 2005-10-06 Osaka Gas Co Ltd Power supply system
JP2006204081A (en) * 2004-12-24 2006-08-03 Hitachi Ltd Supply and demand adjusting method, system and service by distributed power source

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2040193A2 (en) 2007-09-19 2009-03-25 Canon Finetech Inc. Barcode generation system, computer readable recording medium, printing device, and test chart
KR101503408B1 (en) 2008-12-26 2015-03-17 닛폰 후료쿠카이하츠 가부시키가이샤 Wind-driven electricity generation system of type having storage battery, and device for controlling charge and discharge of storage battery
JP2011087383A (en) * 2009-10-14 2011-04-28 Nihon Techno Co Ltd Power transaction unit
US8749202B2 (en) 2009-12-09 2014-06-10 Sony Corporation Battery control system, battery controller, battery control method and program
JP2011125122A (en) * 2009-12-09 2011-06-23 Sony Corp Battery control system, battery control device, and method and program for controlling battery
US9696695B2 (en) 2009-12-09 2017-07-04 Sony Corporation Battery control system, battery controller, battery control method and program
US9037307B2 (en) 2010-01-12 2015-05-19 Panasonic Intellectual Property Management Co., Ltd. Supply-and-demand control apparatus, supply-and-demand control method, and supply-and-demand control system
CN102349213A (en) * 2010-01-12 2012-02-08 松下电器产业株式会社 Demand/supply control device, demand/supply control method, and demand/supply control system
JP5789792B2 (en) * 2010-01-12 2015-10-07 パナソニックIpマネジメント株式会社 Supply and demand control device, supply and demand control method, and supply and demand control system
WO2011086886A1 (en) * 2010-01-12 2011-07-21 パナソニック株式会社 Demand/supply control device, demand/supply control method, and demand/supply control system
JPWO2011118766A1 (en) * 2010-03-25 2013-07-04 三洋電機株式会社 Power supply system, centralized management device, system stabilization system, centralized management device control method, and centralized management device control program
WO2011118766A1 (en) * 2010-03-25 2011-09-29 三洋電機株式会社 Electric power supply system, central management device, power system stabilization system, central management device control method, and central management device control program
JP2013528349A (en) * 2010-06-10 2013-07-08 ベーシック ホールディングス Heat storage device control device
WO2012004644A1 (en) * 2010-07-05 2012-01-12 パナソニック電工株式会社 Energy management system
JP2012016253A (en) * 2010-07-05 2012-01-19 Panasonic Electric Works Co Ltd Energy management system
JP2012039686A (en) * 2010-08-04 2012-02-23 Hitachi Ltd System operation method using storage battery
JP2013539953A (en) * 2010-09-10 2013-10-28 コンヴァージ,インコーポレーテッド Method and system for controlling building load in conjunction with a renewable energy source to increase the apparent size of the renewable energy source
JP5909672B2 (en) * 2010-11-02 2016-04-27 パナソニックIpマネジメント株式会社 Control device
JP2014509177A (en) * 2011-02-02 2014-04-10 コンサート インコーポレイテッド System and method for estimating and supplying operational reserve energy capacity that can be allocated through the use of active load management
JP2012205436A (en) * 2011-03-28 2012-10-22 Toshiba Corp Charge and discharge determination device and program
WO2012147155A1 (en) * 2011-04-26 2012-11-01 株式会社 日立製作所 Power management device, power management system, power management method, and power management program
JP5755729B2 (en) * 2011-04-26 2015-07-29 株式会社日立製作所 Power management apparatus, power management system, power management method, and power management program
JPWO2012147155A1 (en) * 2011-04-26 2014-07-28 株式会社日立製作所 Power management apparatus, power management system, power management method, and power management program
CN102891504A (en) * 2011-07-21 2013-01-23 日立民用电子株式会社 Power control unit
JP2013110792A (en) * 2011-11-17 2013-06-06 Fuji Electric Co Ltd Power stabilization controller, power stabilization program
WO2013099156A1 (en) * 2011-12-27 2013-07-04 川崎重工業株式会社 Grid controller for smart grid system, smart grid system equipped with same, and control method thereof
JP2013146140A (en) * 2012-01-13 2013-07-25 Chugoku Electric Power Co Inc:The Load management system and load management method
US9660442B2 (en) 2012-03-08 2017-05-23 Panasonic Intellectual Property Management Co., Ltd. Frequency regulation method
WO2013132872A1 (en) * 2012-03-08 2013-09-12 パナソニック株式会社 Frequency control method
JPWO2013132872A1 (en) * 2012-03-08 2015-07-30 パナソニックIpマネジメント株式会社 Frequency control method
JP2014117018A (en) * 2012-12-07 2014-06-26 Daikin Ind Ltd Control device for hyperthermic apparatus
JPWO2014132659A1 (en) * 2013-03-01 2017-02-02 日本電気株式会社 Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
US10181737B2 (en) 2013-03-01 2019-01-15 Nec Corporation Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
US9859735B2 (en) 2013-03-01 2018-01-02 Nec Corporation Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
WO2014132659A1 (en) * 2013-03-01 2014-09-04 日本電気株式会社 Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
JP2014200153A (en) * 2013-03-29 2014-10-23 株式会社東芝 Energy management system, energy management apparatus and energy management method
JP2015056975A (en) * 2013-09-12 2015-03-23 パナソニック株式会社 Home power generation control system and information communication system
JP2016536718A (en) * 2013-09-16 2016-11-24 アマゾン・テクノロジーズ・インコーポレーテッド Customer selectable power source options for network accessible service units
JP2015126564A (en) * 2013-12-25 2015-07-06 大阪瓦斯株式会社 Power transfer system
JPWO2016084347A1 (en) * 2014-11-25 2017-09-07 日本電気株式会社 Energy management apparatus, energy management method and program
WO2016084347A1 (en) * 2014-11-25 2016-06-02 日本電気株式会社 Energy management apparatus, energy management method, and program recording medium
US10389165B2 (en) 2014-11-25 2019-08-20 Nec Corporation Energy management apparatus, energy management method and program recording medium
JP2016123171A (en) * 2014-12-24 2016-07-07 中国電力株式会社 Power system control device
JP2016213954A (en) * 2015-05-08 2016-12-15 国立大学法人 鹿児島大学 Distributed power storage system for renewable energy power
JP2017070159A (en) * 2015-10-02 2017-04-06 株式会社日立製作所 Communication facility power demand management device and power demand management method
WO2017154080A1 (en) * 2016-03-07 2017-09-14 株式会社東芝 Capacity distribution control device, capacity distribution device, and capacity distribution system
JP7339329B2 (en) 2018-08-24 2023-09-05 オープン エネルギー リミテッド Battery energy storage system

Also Published As

Publication number Publication date
JP4546389B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4546389B2 (en) System coordination type fluctuation suppression system and output fluctuation suppression method
US10514663B2 (en) Microgrid system and controller
JP6145670B2 (en) Power flow control system, management device, program
JP6420912B2 (en) Management server, management method and management system
US9634508B2 (en) Method for balancing frequency instability on an electric grid using networked distributed energy storage systems
JP6063632B2 (en) System and method for operating a capacitor bank
JP6101188B2 (en) Wind farm control method and control device
US20160187910A1 (en) Unit and Method for Energy Regulation of an Electrical Production and Consumption System
JP2007129873A (en) Device and method for managing energy demand
US20120249152A1 (en) Charging/discharging determination apparatus and computer-readable non-transitory medium storing charging/discharging determination program
JP6373476B2 (en) Power management apparatus, power management system, and power management method
WO2016017424A1 (en) Control device, apparatus control device, reporting method, and recording medium
JP5617033B2 (en) Supply / demand planning control system for low voltage system and supply / demand planning control method for low voltage system
JP6623514B2 (en) Supply and demand control device, supply and demand control method, and power supply system
JP6820677B2 (en) Power management equipment and programs
FI128279B (en) A method and a system for dynamic aggregation of a fleet of power units to provide frequency regulation of a power system
JP2019068667A (en) Charge discharge control device
JP2019534675A (en) System and method for operating a commercial power grid
JP6680606B2 (en) Power control system and power control method
CN114365370A (en) Regional energy management device and regional energy management method
JP2018085825A (en) Power supply control device, power supply control program, and power charge setting system
JP2014086367A (en) Operation control method and operation control system for fuel cell in apartment house
JP6960314B2 (en) Power management system
JP2017046507A (en) System stabilization system
Nguyen et al. Coordinated dispatch of renewable energy sources and HVAC load using stochastic programming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees