JP2007149349A - Laminated battery - Google Patents

Laminated battery Download PDF

Info

Publication number
JP2007149349A
JP2007149349A JP2005338038A JP2005338038A JP2007149349A JP 2007149349 A JP2007149349 A JP 2007149349A JP 2005338038 A JP2005338038 A JP 2005338038A JP 2005338038 A JP2005338038 A JP 2005338038A JP 2007149349 A JP2007149349 A JP 2007149349A
Authority
JP
Japan
Prior art keywords
current collector
negative electrode
thickness
active material
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005338038A
Other languages
Japanese (ja)
Inventor
Tatsuhiro Atsumi
龍大 渥美
Masaharu Yoshinaga
雅治 吉長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2005338038A priority Critical patent/JP2007149349A/en
Publication of JP2007149349A publication Critical patent/JP2007149349A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thinned laminated battery having a high volume energy density. <P>SOLUTION: The laminated battery includes an electrode assembly in which tabular positive electrodes 3 and tabular negative electrodes 1 and 4 are laminated through a separator 2. An active material layer is formed only on the inside of a current collector of the positive electrode or the negative electrode 1 of the outer-most layers of the electrode assembly, and the thickness of the current collector of the outer-most layer is made to be thicker than those of other current collectors of the same polarity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、平板状の正極と負極をセパレータを介して積層した積層型電池の構造に関する。   The present invention relates to a structure of a stacked battery in which a flat positive electrode and a negative electrode are stacked via a separator.

近年、携帯電話、デジタルカメラ、ポータブルオーディオなどの小型の電子機器の電源として各種の電池が用いられており、リチウムイオン電池等の非水電解液を使用した小型で大容量の密閉型電池が用いられている。電子機器の薄型化に伴い電池も薄型機器に適した積層型電池がスペース効率が優れており、用いられてきている。   In recent years, various types of batteries have been used as power sources for small electronic devices such as mobile phones, digital cameras, portable audios, etc., and small, large-capacity sealed batteries using non-aqueous electrolytes such as lithium ion batteries have been used. It has been. As electronic devices have been made thinner, stacked batteries suitable for thin devices have become more space efficient and have been used.

従来の積層型電池は、図4に示すように、正極の集電体の両面に正極活物質層を塗布した正極と、負極の集電体の両面に負極活物質層を塗布した負極をそれぞれ圧縮し、切断した後セパレータを介して積層した構造としていた(例えば特許文献1参照)。   As shown in FIG. 4, a conventional stacked battery includes a positive electrode in which a positive electrode active material layer is applied on both sides of a positive electrode current collector and a negative electrode in which a negative electrode active material layer is applied on both sides of a negative electrode current collector. It was made into the structure laminated | stacked through the separator after compressing and cut | disconnecting (for example, refer patent document 1).

しかしながら、積層型電池の最外層において、正極或いは負極の集電体の両面にそれぞれの活物質層を塗布した場合、外側の活物質層は電池容量に寄与しない、余分な活物質層として存在していた。そのため、図5に示すように、積層型電池の最外層において、集電体の片面に活物質を塗布した電極を用いた積層型電池の例があった(例えば特許文献2参照)。   However, when the active material layers are applied to both surfaces of the positive electrode or negative electrode current collector in the outermost layer of the stacked battery, the outer active material layer does not contribute to the battery capacity and exists as an extra active material layer. It was. Therefore, as shown in FIG. 5, there is an example of a stacked battery using an electrode in which an active material is applied to one side of a current collector in the outermost layer of the stacked battery (see, for example, Patent Document 2).

特開2004−55425号公報JP 2004-55425 A 特開2003−151535号公報JP 2003-151535 A

このような積層型電池を製作する際に、中心部の電極となる、集電体の両面に活物質層を塗布した電極を作製する場合には、活物質の塗布工程後の活物質の密度向上と膜厚均一化のための圧縮工程においては、図7に示すように、両面に活物質層が存在するため、集電体9の厚さ(t2)が薄い場合でも両面から均一に圧力がかかり、電極が湾曲等することなく作製できる一方、最外層の電極となる集電体の片面に活物質を塗布した電極の製作にあたっては、集電体9の厚さ(t2)が薄い場合には、活物質の塗布工程後の圧縮工程において集電体側と、活物質層側で圧縮率、伸び率等物性の違いにより、図8に示すように、集電体側に湾曲し、平板状の電極が作製できず、積層型電池を組み立てた場合には図6のように最外層の電極が湾曲するという問題があった。 When manufacturing an electrode having an active material layer applied to both sides of a current collector, which is an electrode in the center when manufacturing such a stacked battery, the density of the active material after the active material application step In the compression process for improving and uniforming the film thickness, as shown in FIG. 7, since there are active material layers on both sides, even if the current collector 9 has a small thickness (t 2 ), it is uniform from both sides. While pressure can be applied and the electrode can be manufactured without bending, etc., the thickness (t 2 ) of the current collector 9 is determined when manufacturing an electrode in which an active material is applied to one side of the current collector that is the outermost layer electrode. In the case of being thin, in the compression step after the active material application step, the current collector side and the active material layer side are curved toward the current collector side as shown in FIG. When a flat electrode cannot be produced and a stacked battery is assembled, the outermost electrode is curved as shown in FIG. There is a problem that that.

本発明の課題は、電池容量に寄与しない活物質層を省略したにもかかわらず、電極が良好に圧縮され、体積エネルギー密度が高く薄型化した、積層型電池を提供することにある。   An object of the present invention is to provide a stacked battery in which an electrode is favorably compressed, a volume energy density is high, and a thickness is reduced even though an active material layer that does not contribute to battery capacity is omitted.

上記課題を解決するための本発明の積層型電池は、平板状の正極と、平板状の負極がセパレータを介して積層された電極集合体を含み、前記電極集合体の最外層の正極あるいは負極の集電体の内側のみに活物質層が片面塗布され、最外層の集電体の厚さが他の同極の集電体の厚さより厚くしたことを特徴とする。   In order to solve the above problems, a laminated battery of the present invention includes a flat positive electrode and an electrode assembly in which a flat negative electrode is laminated via a separator, and the positive electrode or negative electrode of the outermost layer of the electrode assembly. The active material layer is applied on only one side of the current collector, and the thickness of the outermost current collector is made thicker than the thickness of other current collectors of the same polarity.

前記最外層の集電体の厚さ(t1)と前記他の同極の集電体の厚さ(t2)の比t1/t2が3.0以上であるとよい。 A ratio t 1 / t 2 between the thickness (t 1 ) of the outermost current collector and the thickness (t 2 ) of the other current collector of the same polarity is preferably 3.0 or more.

前記最外層の集電体上の活物質層の厚さ(d)と前記最外層の集電体の厚さ(t1)の比d/t1が1.0以上3.0以下であるとよい。 The ratio d / t 1 between the thickness (d) of the active material layer on the outermost current collector and the thickness (t 1 ) of the outermost current collector is 1.0 or more and 3.0 or less. Good.

本発明の積層型電池によれば、最外層の電極の集電体の内側のみに活物質層を片面塗布することにより、活物質の材料使用量を削減することによるコスト低減と、活物質層の厚さの減少による積層型電池の厚さの低減を図ることができる。   According to the multilayer battery of the present invention, the active material layer is applied only on the inside of the current collector of the outermost electrode, thereby reducing the cost by reducing the amount of active material used, and the active material layer The thickness of the stacked battery can be reduced by reducing the thickness of the battery.

次に、本発明の実施の形態を図面に基づいて説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の積層型電池の電極集合体の構造を説明する断面図、図2は、図1のA部の拡大断面図、図3は、本発明の積層型電池の最外層の片面塗布電極の圧縮工程を説明する断面図である。   1 is a cross-sectional view illustrating the structure of an electrode assembly of a multilayer battery of the present invention, FIG. 2 is an enlarged cross-sectional view of part A of FIG. 1, and FIG. 3 is an outermost layer of the multilayer battery of the present invention. It is sectional drawing explaining the compression process of a single-sided application electrode.

積層型電池は、図1及び図2に示すような平板状の正極3と平板状の負極1,4がセパレータ2を介して積層された電極集合体を含む構造となっているが、電極集合体の作製方法について、リチウムイオン二次電池を例に挙げて説明する。   The stacked battery has a structure including an electrode assembly in which a plate-like positive electrode 3 and plate-like negative electrodes 1 and 4 are laminated via a separator 2 as shown in FIGS. A method for manufacturing the body will be described using a lithium ion secondary battery as an example.

正極3は帯状のアルミニウム箔からなる正極集電体6にLiMO2(ただしMは少なくとも1種類の遷移金属を表す)で表される複合酸化物、たとえばLiCoO2、LiNiO2、LiMn24などを、カーボンブラック等の導電性物質、ポリフッ化ビニリデン(PVDF)等の結着剤とN−メチル−2−ピロリドン(NMP)等の溶剤に分散混合し調製した正極塗料を塗布装置によって塗布し乾燥させ正極活物質層5を正極集電体6の片面に形成した後に、正極集電体6の反対面の所定の部分に同様に正極塗料を塗布し、両面に正極活物質層5を形成した正極3を作製する。 The positive electrode 3 is composed of a positive electrode current collector 6 made of a strip-shaped aluminum foil and a composite oxide represented by LiMO 2 (where M represents at least one transition metal), such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4, etc. Apply a positive electrode paint prepared by dispersing and mixing in a conductive material such as carbon black, a binder such as polyvinylidene fluoride (PVDF) and a solvent such as N-methyl-2-pyrrolidone (NMP), and drying. After forming the positive electrode active material layer 5 on one surface of the positive electrode current collector 6, the positive electrode paint was similarly applied to a predetermined portion on the opposite surface of the positive electrode current collector 6 to form the positive electrode active material layer 5 on both surfaces. The positive electrode 3 is produced.

負極1,4は帯状の銅箔からなる負極集電体8,9の表面に、リチウムイオンをドープ及び脱ドープ可能な、熱分解炭素類、ピッチコークス、ニードルコークス、石油コークスなどのコークス類、グラファイト類、ガラス状炭素類、フェノール樹脂、フラン樹脂などを焼成した有機高分子化合物焼成体、炭素繊維、活性炭などの炭素質材料、ポリアセチレン、ポリピロール類の導電性高分子材料等をカーボンブラックなどの導電性物質、ポリフッ化ビニリデン(PVDF)等の結着剤とN−メチル−2−ピロリドン(NMP)等の溶剤に分散混合し調製した負極塗料を塗布装置によって塗布し乾燥させ負極活物質層7を負極集電体8,9の片面に形成した後に、最外層となる負極1を除く負極集電体9の反対面の所定の部分に同様に負極塗料を塗布して両面に負極活物質層7を形成した負極4を作製する。   The negative electrodes 1 and 4 are made of coke such as pyrolytic carbons, pitch coke, needle coke, and petroleum coke that can be doped and dedoped with lithium ions on the surfaces of the negative electrode current collectors 8 and 9 made of strip-shaped copper foil. Graphite, glassy carbons, organic polymer compound fired bodies obtained by firing phenolic resins, furan resins, carbonaceous materials such as carbon fibers and activated carbon, conductive polymer materials such as polyacetylene and polypyrrole, etc. A negative electrode coating material prepared by dispersing and mixing in a conductive material, a binder such as polyvinylidene fluoride (PVDF) and a solvent such as N-methyl-2-pyrrolidone (NMP) is applied and dried by a coating apparatus, and the negative electrode active material layer 7 Is formed on one side of the negative electrode current collectors 8 and 9, and then the negative electrode paint is similarly applied to a predetermined portion on the opposite surface of the negative electrode current collector 9 excluding the negative electrode 1 serving as the outermost layer. Forming the anode 4 to form a negative electrode active material layer 7 on both sides coated.

このとき、最外層となる負極1の負極集電体8上には、片面のみに負極活物質層7を形成し、最外層以外の負極4の負極集電体9上には、両面に負極活物質層7を形成するため、後工程の圧縮工程で不具合を起こさないために最外層の負極集電体8の厚さ(t1)はそれ以外の負極集電体9の厚さ(t2)より厚い材料を使用する。このようにして作製した、正極3、負極1,4を活物質の充填密度の向上のため所定の厚みに圧縮する。このときの負極集電体8の厚さ(t1)は負極活物質層7の厚さ(d)との関係によりそれぞれの物性等から決定する。 At this time, the negative electrode active material layer 7 is formed only on one surface on the negative electrode current collector 8 of the negative electrode 1 which is the outermost layer, and the negative electrode on both surfaces is formed on the negative electrode current collector 9 of the negative electrode 4 other than the outermost layer. In order to form the active material layer 7, the thickness (t 1 ) of the outermost negative electrode current collector 8 is set to the thickness of the other negative electrode current collector 9 (t 2 ) Use thicker material. The positive electrode 3 and the negative electrodes 1 and 4 thus produced are compressed to a predetermined thickness in order to improve the packing density of the active material. The thickness (t 1 ) of the negative electrode current collector 8 at this time is determined from the physical properties and the like according to the relationship with the thickness (d) of the negative electrode active material layer 7.

図3は、本発明の片面に活物質層が塗布された負極集電体の圧縮工程を説明する断面図である。   FIG. 3 is a cross-sectional view illustrating a compression process of a negative electrode current collector in which an active material layer is applied on one side of the present invention.

負極集電体8の片面に負極活物質層7が形成された負極1を両面から圧縮ロ−ラーによりロールプレスを行う。このとき、負極集電体8を厚くし、曲げ等に対する機械的強度を高めることにより、負極1の負極集電体8側への湾曲を防止している。   The negative electrode 1 having the negative electrode active material layer 7 formed on one side of the negative electrode current collector 8 is roll-pressed from both sides by a compression roller. At this time, the negative electrode current collector 8 is thickened to increase the mechanical strength against bending or the like, thereby preventing the negative electrode 1 from bending toward the negative electrode current collector 8.

その後、裁断装置によって正極3および負極1,4を所定の形状に裁断し、導電タブを接合した後に、セパレータ2を介して、正極3及び負極1,4を所定の位置に合わせて積層し最外周には片面に活物質層が塗布された負極1を配置した後に、外部接続素子と接続し、電池外装体に収納して非水電解液を注液した後に、封止することによって積層型電池を製造する。   After that, the positive electrode 3 and the negative electrodes 1 and 4 are cut into a predetermined shape by a cutting device, and the conductive tabs are joined. Then, the positive electrode 3 and the negative electrodes 1 and 4 are laminated in a predetermined position via the separator 2 and stacked. After disposing the negative electrode 1 coated with an active material layer on one side on the outer periphery, it is connected to an external connection element, housed in a battery outer package, injected with a nonaqueous electrolyte, and then sealed to form a laminated type Manufacture batteries.

最外層となる負極集電体8に厚さ(t1)が30μmの銅箔を、最外層箔以外の負極集電体9に厚さ(t2)が10μmの銅箔を用い、負極活物質層7の片面の厚み(d)を70μmとして、t1/t2が3.0、d/t1が2.3となるように作製した。 A copper foil having a thickness (t 1 ) of 30 μm is used for the negative electrode current collector 8 serving as the outermost layer, and a copper foil having a thickness (t 2 ) of 10 μm is used for the negative electrode current collector 9 other than the outermost layer foil. The material layer 7 was prepared so that the thickness (d) of one surface of the material layer 7 was 70 μm, t 1 / t 2 was 3.0, and d / t 1 was 2.3.

最外層となる負極集電体8に厚さ(t1)が50μmの銅箔を、最外層箔以外の負極集電体9に厚さ(t2)が10μmの銅箔を用い、負極活物質層7の片面の厚み(d)を70μmとして、t1/t2が5.0、d/t1が1.4となるように作製した。 A copper foil having a thickness (t 1 ) of 50 μm is used for the negative electrode current collector 8 serving as the outermost layer, and a copper foil having a thickness (t 2 ) of 10 μm is used for the negative electrode current collector 9 other than the outermost layer foil. The material layer 7 was prepared so that the thickness (d) of one side of the material layer 7 was 70 μm, t 1 / t 2 was 5.0, and d / t 1 was 1.4.

最外層となる負極集電体8に厚さ(t1)が70μmの銅箔を、最外層箔以外の負極集電体9に厚さ(t2)が10μmの銅箔を用い、負極活物質層7の片面の厚み(d)を70μmとして、t1/t2が7.0、d/t1が1.0となるように作製した。 A copper foil having a thickness (t 1 ) of 70 μm is used for the negative electrode current collector 8 serving as the outermost layer, and a copper foil having a thickness (t 2 ) of 10 μm is used for the negative electrode current collector 9 other than the outermost layer foil. The thickness (d) of one side of the material layer 7 was 70 μm, and t 1 / t 2 was 7.0 and d / t 1 was 1.0.

最外層となる負極集電体8に厚さ(t1)が60μmの銅箔を、最外層箔以外の負極集電体9に厚さ(t2)が20μmの銅箔を用い、負極活物質層7の片面の厚み(d)を60μmとして、t1/t2が3.0、d/t1が1.0となるように作製した。 A copper foil having a thickness (t 1 ) of 60 μm is used for the negative electrode current collector 8 serving as the outermost layer, and a copper foil having a thickness (t 2 ) of 20 μm is used for the negative electrode current collector 9 other than the outermost layer foil. The thickness (d) of one side of the material layer 7 was set to 60 μm, and t 1 / t 2 was 3.0 and d / t 1 was 1.0.

最外層となる負極集電体8に厚さ(t1)が70μmの銅箔を、最外層箔以外の負極集電体9に厚さ(t2)が10μmの銅箔を用い、負極活物質層7の片面の厚み(d)を160μmとして、t1/t2が7.0、d/t1が2.3となるように作製した。 A copper foil having a thickness (t 1 ) of 70 μm is used for the negative electrode current collector 8 serving as the outermost layer, and a copper foil having a thickness (t 2 ) of 10 μm is used for the negative electrode current collector 9 other than the outermost layer foil. The thickness (d) of one side of the material layer 7 was 160 μm, and t 1 / t 2 was 7.0 and d / t 1 was 2.3.

(比較例1)
最外層となる負極集電体8に厚さ(t1)が10μmの銅箔を、最外層箔以外の負極集電体9にも厚さ(t2)が10μmの銅箔を用い、負極活物質層7の片面の厚み(d)を70μmとして、t1/t2が1.0、d/t1が7.0となるように作製した。
(Comparative Example 1)
A copper foil having a thickness (t 1 ) of 10 μm is used for the negative electrode current collector 8 as the outermost layer, and a copper foil having a thickness (t 2 ) of 10 μm is used for the negative electrode current collector 9 other than the outermost layer foil. The active material layer 7 was prepared so that the thickness (d) on one side was 70 μm, t 1 / t 2 was 1.0, and d / t 1 was 7.0.

(比較例2)
最外層となる負極集電体8に厚さ(t1)が20μmの銅箔を、最外層箔以外の負極集電体9に厚さ(t2)が10μmの銅箔を用い、負極活物質層7の片面の厚み(d)を70μmとして、t1/t2が2.0、d/t1が3.5となるように作製した。
(Comparative Example 2)
The negative electrode current collector 8 as the outermost layer is made of a copper foil having a thickness (t 1 ) of 20 μm, and the negative electrode current collector 9 other than the outermost layer foil is made of a copper foil having a thickness (t 2 ) of 10 μm. The thickness (d) of one side of the material layer 7 was set to 70 μm, and t 1 / t 2 was 2.0 and d / t 1 was 3.5.

(比較例3)
最外層となる負極集電体8に厚さ(t1)が20μmの銅箔を、最外層箔以外の負極集電体9に厚さ(t2)が10μmの銅箔を用い、負極活物質層7の片面の厚み(d)を16μmとして、t1/t2が2.0、d/t1が0.8となるように作製した。
(Comparative Example 3)
The negative electrode current collector 8 as the outermost layer is made of a copper foil having a thickness (t 1 ) of 20 μm, and the negative electrode current collector 9 other than the outermost layer foil is made of a copper foil having a thickness (t 2 ) of 10 μm. The thickness (d) of one side of the material layer 7 was 16 μm, and t 1 / t 2 was 2.0 and d / t 1 was 0.8.

(比較例4)
最外層となる負極集電体8に厚さ(t1)が50μmの銅箔を、最外層箔以外の負極集電体9に厚さ(t2)が10μmの銅箔を用い、負極活物質層7の片面の厚み(d)を40μmとして、t1/t2が5.0、d/t1が0.8となるように作製した。
(Comparative Example 4)
A copper foil having a thickness (t 1 ) of 50 μm is used for the negative electrode current collector 8 serving as the outermost layer, and a copper foil having a thickness (t 2 ) of 10 μm is used for the negative electrode current collector 9 other than the outermost layer foil. The thickness (d) of one side of the material layer 7 was set to 40 μm, and t 1 / t 2 was 5.0 and d / t 1 was 0.8.

なお、負極活物質層7の厚みは圧縮後の厚みを表している。圧縮後電極は平面に静置した時に電極の反りが30μm以上の時に反りあり、端部1cm以内の反りを端部反りと判断し、実施例1〜実施例4、比較例1〜比較例4の電極圧縮後の反りの結果を表1にまとめた。   In addition, the thickness of the negative electrode active material layer 7 represents the thickness after compression. After compression, the electrode is warped when the electrode is warped at 30 μm or more when it is placed on a flat surface, and warpage within 1 cm of the end is judged as end warpage. Examples 1 to 4 and Comparative Examples 1 to 4 Table 1 summarizes the results of warping after electrode compression.

Figure 2007149349
Figure 2007149349

表1に示す結果から、最外層の負極集電体の厚さ(t1)と他の負極の集電体の厚さ(t2)の比t1/t2が3.0以上の場合、また、最外層の負極集電体上の活物質層の厚さ(d)と最外層の集電体の厚さ(t1)の比d/t1が1.0以上3.0以下であると、電極圧縮後に反りがなく良好な電極が得られる。 From the results shown in Table 1, when the ratio t 1 / t 2 of the thickness (t 1 ) of the outermost negative electrode current collector to the thickness of the other negative electrode current collector (t 2 ) is 3.0 or more In addition, the ratio d / t 1 between the thickness (d) of the active material layer on the outermost negative electrode current collector and the thickness (t 1 ) of the outermost current collector is 1.0 or more and 3.0 or less. When it is, there is no curvature after electrode compression and a good electrode is obtained.

実施例1〜実施例4において、積層型電池は特に限定していないが、角型リチウム二次電池、リチウムポリマー二次電池、その他に適用できる。また、実施例1〜実施例4において、最外層電極を片面塗布負極としているが、最外層電極が片面塗布正極にも適用できる。   In Examples 1 to 4, the stacked battery is not particularly limited, but can be applied to prismatic lithium secondary batteries, lithium polymer secondary batteries, and others. In Examples 1 to 4, the outermost layer electrode is a single-sided coated negative electrode, but the outermost layer electrode can also be applied to a single-sided coated positive electrode.

本発明の積層型電池の電極集合体の構造を説明する断面図。Sectional drawing explaining the structure of the electrode assembly of the laminated battery of this invention. 図1のA部の拡大断面図。The expanded sectional view of the A section of FIG. 本発明の積層型電池の最外層の片面塗布電極の圧縮工程を説明する断面図。Sectional drawing explaining the compression process of the single-sided coating electrode of the outermost layer of the laminated battery of this invention. 従来の積層型電池の電極集合体の構造の一例を説明する断面図。Sectional drawing explaining an example of the structure of the electrode assembly of the conventional multilayer battery. 従来の積層型電池の電極集合体の構造の第二の例を説明する断面図。Sectional drawing explaining the 2nd example of the structure of the electrode assembly of the conventional multilayer battery. 従来の積層型電池の電極集合体の構造の第二の例の課題を説明する断面図。Sectional drawing explaining the subject of the 2nd example of the structure of the electrode assembly of the conventional multilayer battery. 従来の積層型電池の両面塗布電極の圧縮工程を説明する断面図。Sectional drawing explaining the compression process of the double-sided coating electrode of the conventional laminated type battery. 従来の積層型電池の片面塗布電極の圧縮工程を説明する断面図。Sectional drawing explaining the compression process of the single-sided coating electrode of the conventional laminated type battery.

符号の説明Explanation of symbols

1 (本発明の片面塗布)負極
11 (従来の片面塗布)負極
2 セパレータ
3 (両面塗布)正極
4 (両面塗布)負極
5 正極活物質層
6 正極集電体
7 負極活物質層
8 (本発明の片面塗布負極の)負極集電体
9 (両面塗布負極の)負極集電体
10 圧縮ローラー
DESCRIPTION OF SYMBOLS 1 (single-sided application | coating of this invention) Negative electrode 11 (Conventional single-sided coating) Negative electrode 2 Separator 3 (Double-sided coating) Positive electrode 4 (Double-sided coating) Negative electrode 5 Positive electrode active material layer 6 Positive electrode collector 7 Negative electrode active material layer 8 (Invention) Negative electrode current collector 9 (of single-side coated negative electrode) negative electrode current collector 10 (of double-sided negative electrode) compression roller

Claims (3)

平板状の正極と、平板状の負極がセパレータを介して積層された電極集合体を含み、前記電極集合体の最外層の正極あるいは負極の集電体の内側のみに活物質層が片面塗布され、最外層の集電体の厚さが他の同極の集電体の厚さより厚いことを特徴とする積層型電池。   It includes an electrode assembly in which a plate-like positive electrode and a plate-like negative electrode are laminated via a separator, and an active material layer is applied only on the inside of the outermost positive electrode or negative electrode current collector of the electrode assembly. The multilayer battery is characterized in that the outermost current collector is thicker than other current collectors of the same polarity. 前記最外層の集電体の厚さ(t1)と前記他の同極の集電体の厚さ(t2)の比t1/t2が3.0以上であることを特徴とする請求項1記載の積層型電池。 A ratio t 1 / t 2 between the thickness (t 1 ) of the outermost current collector and the thickness (t 2 ) of the other current collector of the same polarity is 3.0 or more. The stacked battery according to claim 1. 前記最外層の集電体上の活物質層の厚さ(d)と前記最外層の集電体の厚さ(t1)の比d/t1が1.0以上3.0以下であることを特徴とする請求項1または2に記載の積層型電池。 The ratio d / t 1 between the thickness (d) of the active material layer on the outermost current collector and the thickness (t 1 ) of the outermost current collector is 1.0 or more and 3.0 or less. The multilayer battery according to claim 1 or 2, wherein
JP2005338038A 2005-11-24 2005-11-24 Laminated battery Pending JP2007149349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005338038A JP2007149349A (en) 2005-11-24 2005-11-24 Laminated battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005338038A JP2007149349A (en) 2005-11-24 2005-11-24 Laminated battery

Publications (1)

Publication Number Publication Date
JP2007149349A true JP2007149349A (en) 2007-06-14

Family

ID=38210537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005338038A Pending JP2007149349A (en) 2005-11-24 2005-11-24 Laminated battery

Country Status (1)

Country Link
JP (1) JP2007149349A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101357137B1 (en) 2011-11-29 2014-02-03 엘에스엠트론 주식회사 Electrode assembly and electric energy storage device having the same
KR101431278B1 (en) * 2008-12-19 2014-08-20 주식회사 엘지화학 Secondary battery having enhanced uniformity of temperature distribution
JP2015023009A (en) * 2013-07-24 2015-02-02 新神戸電機株式会社 Laminated nonaqueous-electrolyte battery
WO2016089144A3 (en) * 2014-12-03 2016-07-28 주식회사 엘지화학 Method for manufacturing electrode assembly for secondary battery
JP2019029294A (en) * 2017-08-02 2019-02-21 株式会社村田製作所 Method of manufacturing secondary battery
WO2023092300A1 (en) * 2021-11-23 2023-06-01 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, and electric apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050346A (en) * 1996-08-05 1998-02-20 Shin Kobe Electric Mach Co Ltd Battery
JPH11345630A (en) * 1998-06-02 1999-12-14 Ngk Insulators Ltd Lithium secondary battery
JP2002231315A (en) * 2001-01-29 2002-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery and manufacturing method therefor
JP2003257496A (en) * 2001-12-28 2003-09-12 Tdk Corp Lithium secondary battery
JP2004164898A (en) * 2002-11-11 2004-06-10 Nissan Motor Co Ltd Manufacturing method of bipolar battery, and bipolar battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050346A (en) * 1996-08-05 1998-02-20 Shin Kobe Electric Mach Co Ltd Battery
JPH11345630A (en) * 1998-06-02 1999-12-14 Ngk Insulators Ltd Lithium secondary battery
JP2002231315A (en) * 2001-01-29 2002-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery and manufacturing method therefor
JP2003257496A (en) * 2001-12-28 2003-09-12 Tdk Corp Lithium secondary battery
JP2004164898A (en) * 2002-11-11 2004-06-10 Nissan Motor Co Ltd Manufacturing method of bipolar battery, and bipolar battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431278B1 (en) * 2008-12-19 2014-08-20 주식회사 엘지화학 Secondary battery having enhanced uniformity of temperature distribution
KR101357137B1 (en) 2011-11-29 2014-02-03 엘에스엠트론 주식회사 Electrode assembly and electric energy storage device having the same
JP2015023009A (en) * 2013-07-24 2015-02-02 新神戸電機株式会社 Laminated nonaqueous-electrolyte battery
WO2016089144A3 (en) * 2014-12-03 2016-07-28 주식회사 엘지화학 Method for manufacturing electrode assembly for secondary battery
CN107004892A (en) * 2014-12-03 2017-08-01 株式会社Lg化学 For the method for the electrode assemblie for manufacturing secondary cell
US10297868B2 (en) 2014-12-03 2019-05-21 Lg Chem, Ltd. Method for manufacturing electrode assembly for secondary battery
CN107004892B (en) * 2014-12-03 2019-08-02 株式会社Lg化学 Method for manufacturing the electrode assembly of secondary cell
JP2019029294A (en) * 2017-08-02 2019-02-21 株式会社村田製作所 Method of manufacturing secondary battery
WO2023092300A1 (en) * 2021-11-23 2023-06-01 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, and electric apparatus

Similar Documents

Publication Publication Date Title
JP4752574B2 (en) Negative electrode and secondary battery
US7132194B2 (en) Non-aqueous electrolytic battery and its manufacturing method
KR20110058657A (en) Structure for electrode assembly and stack-folding typed electrode assembly prepared from the same
KR102508381B1 (en) All-solid-state secondary battery and its manufacturing method
JP2009163942A (en) Nonaqueous secondary battery, and its manufacturing method thereof
JP2006260904A (en) Winding type battery and its manufacturing method
JP2006310222A (en) Nonaqueous electrolyte secondary battery
JP2002208384A (en) Nonaqueous electrolyte battery and its manufacturing method
JP2007149349A (en) Laminated battery
JP3503935B2 (en) Winding battery
JP5775444B2 (en) Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery
JP2015515094A (en) Solid electrolyte battery
KR20160027364A (en) Electrode assembly for secondary battery
JP2018508093A (en) Stacked / folded electrode assembly
US20190173075A1 (en) Electrode Drying Method
JP7209660B2 (en) BATTERY MANUFACTURING METHOD AND BATTERY
JP2007123009A (en) Wound type battery
JP2007242348A (en) Lithium-ion secondary battery
JP2002175839A (en) Sealed battery
JP2007109512A (en) Non-aqueous electrolytic liquid secondary battery
JP2008021443A (en) Stacked battery
JP6611321B2 (en) Battery module and manufacturing method thereof
JP4055234B2 (en) Solid electrolyte battery
JP2004095333A (en) Laminate film for battery and non-aqueous electrolyte secondary battery
JP5278989B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080507

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717