JP2007147203A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2007147203A
JP2007147203A JP2005344995A JP2005344995A JP2007147203A JP 2007147203 A JP2007147203 A JP 2007147203A JP 2005344995 A JP2005344995 A JP 2005344995A JP 2005344995 A JP2005344995 A JP 2005344995A JP 2007147203 A JP2007147203 A JP 2007147203A
Authority
JP
Japan
Prior art keywords
indoor unit
refrigerant
heat exchanger
side heat
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005344995A
Other languages
Japanese (ja)
Other versions
JP4785508B2 (en
Inventor
Junichi Kameyama
純一 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005344995A priority Critical patent/JP4785508B2/en
Publication of JP2007147203A publication Critical patent/JP2007147203A/en
Application granted granted Critical
Publication of JP4785508B2 publication Critical patent/JP4785508B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of switching the sensible heat ratio or the dehumidification amount within a cooling capacity according to fluctuation of a sensible heat load even when the sensible heat load out of a cooling load fluctuates, or according to the operation state of other air conditioners. <P>SOLUTION: The air conditioner having a plurality of indoor units B, C, and D for performing heating/cooling operation each having indoor side heat exchangers 5 is equipped with an outdoor temperature detecting device 25 for detecting the temperature of outside air, an evaporation temperature control device 22 for changing the flow rate or pressure of a coolant from the indoor side heat exchangers 5 of the indoor units B, C, and D which are in cooling operation, and an evaporation temperature control part 28 for allowing the evaporation temperature control device 22 to change the pressure of the coolant based on the temperature of outside air and controlling the evaporation temperature of the coolant in the indoor side heat exchangers 5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は空気調和装置に関するものである。特に熱源機1台に対して複数台の室内機を接続する多室型ヒートポンプ空気調和装置で、室内機毎に冷暖房を選択的に行うことができ、冷房を行う室内機と暖房を行う室内機とを同時に運転することができる空気調和装置に有効なものである。   The present invention relates to an air conditioner. In particular, in a multi-room heat pump air conditioner in which a plurality of indoor units are connected to one heat source unit, air conditioning can be selectively performed for each indoor unit, and indoor units that perform cooling and indoor units that perform heating It is effective for an air conditioner that can be operated simultaneously.

例えば、熱源機1台に対して、複数台の室内機(熱交換器)を接続し、室内機毎に冷媒を蒸発又は凝縮液化させ、各室内機毎に冷暖房運転を選択することができる空気調和装置が提案されている(例えば特許文献1参照)。
特開2004−324947号公報
For example, air that can connect a plurality of indoor units (heat exchangers) to one heat source unit, evaporate or condense the refrigerant for each indoor unit, and select a cooling / heating operation for each indoor unit. A harmony device has been proposed (see, for example, Patent Document 1).
JP 2004-324947 A

上記文献の空気調和装置では、例えば、冷房しようとしている室内機の一部を、顕熱比(冷房負荷に対する顕熱負荷の比率)の大きい場所に使用する場合、蒸発温度を高くするよう弁装置を切替えて、冷房負荷の内、顕熱負荷を大きくすることで顕熱比を大きくする運転を選択する設定を行うことが可能であった。ここで、例えば温度、湿度が高い夏期等(以下、夏期とする)は、冷房負荷の内、潜熱負荷が大きくなるが、この状態で顕熱比の大きい運転を設定した場合には、潜熱能力が低下して冷房能力が不足する。また、例えば温度、湿度が低い冬期等(以下、冬期とする)に他の空調機器が加湿運転を行っている場合でも、一方で室内機では除湿を行ってしまい、無駄なエネルギーを消費する。そこで、冷房運転を行う環境によって、顕熱比の切り替え等判断できる運転を行えることが望ましい。   In the air conditioner of the above document, for example, when a part of the indoor unit to be cooled is used in a place where the sensible heat ratio (the ratio of the sensible heat load to the cooling load) is large, the valve device is used to increase the evaporation temperature It was possible to perform a setting for selecting an operation for increasing the sensible heat ratio by increasing the sensible heat load among the cooling loads. Here, for example, in summer when the temperature and humidity are high (hereinafter referred to as “summer”), the latent heat load increases in the cooling load. However, if operation with a large sensible heat ratio is set in this state, the latent heat capacity is set. Decreases and the cooling capacity is insufficient. In addition, for example, even when another air conditioner is performing a humidifying operation in the winter season when the temperature and humidity are low (hereinafter, referred to as winter season), the indoor unit dehumidifies and wastes energy. Therefore, it is desirable to be able to perform an operation that can determine switching of the sensible heat ratio or the like depending on the environment in which the cooling operation is performed.

この発明は、このような問題点を解決するためになされたもので、冷房負荷の内、顕熱負荷が変動するような状態を判断してその変動に応じ、または他の空調機器の運転状態に応じて、顕熱比または冷房運転に伴う除湿量を切替えることを可能とする空気調和装置を提供するものである。   The present invention has been made in order to solve such problems. In the cooling load, a state in which the sensible heat load fluctuates is determined, and the operation state of another air conditioner is determined according to the fluctuation. Accordingly, the present invention provides an air conditioner that can switch the sensible heat ratio or the amount of dehumidification associated with the cooling operation.

本発明に係る空気調和装置は、室内機側熱交換器をそれぞれ有し、冷暖房運転を行う複数の室内機を有する空気調和装置において、室外の外気温度を検出する室外気温度検出装置と、冷房運転している室内機の室内機側熱交換器からの冷媒の流量を変化させる蒸発温度制御装置と、室外の外気温度に基づいて、蒸発温度制御装置に冷媒の流量を変化させ、室内機側熱交換器における冷媒の蒸発温度を制御する蒸発温度制御部とを備えるものである。   An air conditioner according to the present invention includes an indoor unit-side heat exchanger, an air conditioner having a plurality of indoor units that perform cooling and heating operations, an outdoor air temperature detection device that detects outdoor outdoor temperature, and cooling The evaporating temperature control device that changes the flow rate of the refrigerant from the indoor unit side heat exchanger of the indoor unit that is in operation, and the evaporating temperature control device changes the flow rate of the refrigerant based on the outdoor outside air temperature, and the indoor unit side An evaporation temperature control unit for controlling the evaporation temperature of the refrigerant in the heat exchanger.

本発明によれば、冷房運転時に室外の外気温度に基づいて、蒸発温度制御が、蒸発温度制御装置により室内機側熱交換器からの冷媒の流量を変化させ、室内側の熱交換器における蒸発温度を制御するようにしたので、例えば、夏期のような外気温度が高く、湿度が高い場合に冷房運転を行う場合には、蒸発温度を低くし、顕熱比が低い(潜熱負荷が高い)運転を行い、冬期のような外気温度が低く、湿度が低い場合でも冷房運転を行わなければならない場合には、蒸発温度を高くし、顕熱比が高い運転を行うようにすることで、環境に応じた負荷による効率のよい冷房運転を行うことができる。ここでは室外の外気温度に基づいて蒸発温度を制御しているが、例えば、加湿状態、複数台による運転において、暖房運転を行っている機器があるか否か等に基づいて制御を行うようにしてもよい。   According to the present invention, the evaporating temperature control changes the flow rate of the refrigerant from the indoor unit side heat exchanger by the evaporating temperature control device based on the outdoor outside air temperature during the cooling operation, and evaporates in the indoor heat exchanger. Since the temperature is controlled, for example, when performing cooling operation when the outside air temperature is high and the humidity is high as in summer, the evaporation temperature is lowered and the sensible heat ratio is low (the latent heat load is high). If the air temperature is low and the air temperature is low, such as in winter, when the cooling operation must be performed, increase the evaporation temperature and perform the operation with a high sensible heat ratio. It is possible to perform an efficient cooling operation with a load corresponding to. Here, the evaporating temperature is controlled based on the outdoor outdoor temperature, but for example, the control is performed based on whether or not there is a device that is performing a heating operation in a humidified state or operation with multiple units. May be.

実施の形態1.
図1は、実施の形態1における空気調和装置の全体構成を示す冷媒回路図である。以下、この発明の実施の形態1を図に基づいて詳細に説明する。なお、図1では熱源機1台に室内機3台、及び中継機1台を接続した場合について説明するが、室内機及び中継機の接続数が異なっても(例えば室内機が単体又は4台以上でも)同様の効果が得られる。図1の空気調和装置は、熱源機A、互いに並列接続された室内機B、C、D、及び熱源機Aと室内機B、C、Dとを接続する中継機Eで構成されている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram illustrating the overall configuration of the air-conditioning apparatus according to Embodiment 1. Embodiment 1 of the present invention will be described below in detail with reference to the drawings. In addition, although FIG. 1 demonstrates the case where three indoor units and one relay unit are connected to one heat source unit, even if the number of connection of an indoor unit and a relay unit differs (for example, a single unit or four indoor units) The same effect can be obtained. The air conditioner of FIG. 1 includes a heat source unit A, indoor units B, C, and D connected in parallel to each other, and a relay unit E that connects the heat source unit A and the indoor units B, C, and D.

熱源機Aは圧縮機1、圧縮機1に接続され冷媒の流通方向を切り換える四方切換弁2、熱源機側熱交換器3、四方切換弁2と圧縮機1との間に接続されたアキュムレータ4が主となり構成される。そしてさらに、第3の逆止弁32、第4の逆止弁33、第5の逆止弁34、及び第6の逆止弁35を有している。第3の逆止弁32は、熱源機側熱交換器3と後述する第2の接続配管7との間に設けられ、熱源機側熱交換器3から第2の接続配管7の方向へのみ冷媒流通を許容する。第4の逆止弁33は、四方切換弁2と後述する第1の接続配管6との間に設けられ、第1の接続配管6から四方切換弁2の方向へのみ冷媒流通を許容する。第5の逆止弁34は、四方切換弁2と第2の接続配管7との間に設けられ、四方切換弁2から第2の接続配管7の方向へのみ冷媒流通を許容する。第6の逆止弁35は、熱源機側熱交換器3と第1の接続配管6との間に設けられ、第1の接続配管6から熱源機側熱交換器3の方向へのみ冷媒流通を許容する。また、外気温度検出装置25は室外の外気温度(以下、単に外気温度という)を検出し、後述する弁装置制御部21及び絞り装置制御部24に、外気温度を信号として送信する。   The heat source machine A is connected to the compressor 1, the compressor 1, a four-way switching valve 2 that switches the flow direction of the refrigerant, a heat source machine side heat exchanger 3, and an accumulator 4 connected between the four-way switching valve 2 and the compressor 1. Is mainly composed. Furthermore, it has a third check valve 32, a fourth check valve 33, a fifth check valve 34, and a sixth check valve 35. The third check valve 32 is provided between the heat source device side heat exchanger 3 and a second connection pipe 7 described later, and only in the direction from the heat source device side heat exchanger 3 to the second connection pipe 7. Allow refrigerant flow. The fourth check valve 33 is provided between the four-way switching valve 2 and a first connection pipe 6 to be described later, and allows the refrigerant to flow only from the first connection pipe 6 to the four-way switching valve 2. The fifth check valve 34 is provided between the four-way switching valve 2 and the second connection pipe 7 and allows the refrigerant to flow only in the direction from the four-way switching valve 2 to the second connection pipe 7. The sixth check valve 35 is provided between the heat source machine side heat exchanger 3 and the first connection pipe 6, and the refrigerant flows only from the first connection pipe 6 toward the heat source machine side heat exchanger 3. Is acceptable. Further, the outside air temperature detection device 25 detects the outside air temperature outside the room (hereinafter simply referred to as the outside air temperature), and transmits the outside air temperature as a signal to a valve device controller 21 and a throttle device controller 24 described later.

また、室内機B、C、Dは、それぞれ室内機側熱交換器5と、各室内機側熱交換器5に近接して室内機側熱交換器5に直列接続された流量制御装置9とで構成されている。流量制御装置9は、冷房時は室内機側熱交換器5の出口側の過熱度により、暖房時には同じく出口側の過冷却度により、室内機側の第2の接続配管7b、7c、7dを通る冷媒の流量を制御する。   Each of the indoor units B, C, and D includes an indoor unit side heat exchanger 5 and a flow rate control device 9 connected in series to the indoor unit side heat exchanger 5 in proximity to each indoor unit side heat exchanger 5. It consists of The flow rate control device 9 connects the second connection pipes 7b, 7c, and 7d on the indoor unit side according to the degree of superheat on the outlet side of the indoor unit side heat exchanger 5 during cooling and the degree of supercooling on the outlet side during heating. Control the flow rate of refrigerant passing through.

中継機Eは、四方切換弁2と接続された太い第1の接続配管6、及び熱源機側熱交換器3と接続され第1の接続配管6より細い第2の接続配管7によって熱源機Aと接続される。また、室内機B、C、Dの室内機側熱交換器5と接続された室内機側の第1の接続配管6b、6c、6dおよび室内機B、C、Dの流量制御装置9に接続された室内機側の第2の接続配管7b、7c、7dによって各室内機B、C、Dと接続される。そして、以下に述べるような内部構成を有する。   The relay E is connected to the heat source machine A by a thick first connection pipe 6 connected to the four-way switching valve 2 and a second connection pipe 7 connected to the heat source machine side heat exchanger 3 and narrower than the first connection pipe 6. Connected. Also, connected to the indoor unit side first connection pipes 6b, 6c, 6d connected to the indoor unit side heat exchanger 5 of the indoor units B, C, D and the flow rate control device 9 of the indoor units B, C, D. The indoor unit B, C, D is connected to the indoor unit side second connection pipes 7b, 7c, 7d. And it has an internal structure as described below.

第1の分岐部10は室内機側の第1の接続配管6b、6c、6dを、第1の接続配管6または第2の接続配管7に選択的に接続するものである。一端が室内機側の第1の接続配管6b、6c、6dにそれぞれ接続され、他端が一括接続されて第1の接続配管6に接続された3個の第1の弁装置8aと、一端が室内機側の第1の接続配管6b、6c、6dにそれぞれ絞り装置制御部24によってその弁開度を任意に制御される絞り装置23を介して接続され、他端が一括接続されて第1の接続配管6に接続された3個の第2の弁装置20と、一端が室内機側の第1の接続配管6b、6c、6dにそれぞれ接続され、他端が一括接続されて第2の接続配管7に接続された3個の第3の弁装置8bとから構成される。第1の弁装置8aまたは第2の弁装置20を開路、第3の弁装置8bを閉路することにより、室内機側の第1の接続配管6b、6c、6dを第1の接続配管6に接続し、第1の弁装置8a及び第2の弁装置20を閉路、第3の弁装置8bを開路することにより、室内機側の第1の接続配管6b、6c、6dを第2の接続配管7に接続する。ここで、特に第1の弁装置8a、第2の弁装置20、及び絞り装置23については、後述するように冷房運転時において室内機側熱交換器5における冷媒の温度を制御するために用いるため、蒸発温度制御装置22というものとする。   The first branch section 10 selectively connects the first connection pipes 6b, 6c, 6d on the indoor unit side to the first connection pipe 6 or the second connection pipe 7. Three first valve devices 8a, one end of which is connected to each of the first connection pipes 6b, 6c, 6d on the indoor unit side and the other end of which are connected together and connected to the first connection pipe 6; Are connected to the first connecting pipes 6b, 6c, 6d on the indoor unit side through the throttle device 23 whose valve opening is arbitrarily controlled by the throttle device controller 24, and the other end is connected in a lump. Three second valve devices 20 connected to one connection pipe 6, one end is connected to each of the first connection pipes 6 b, 6 c, 6 d on the indoor unit side, and the other end is collectively connected to the second And three third valve devices 8b connected to the connection pipe 7. By opening the first valve device 8a or the second valve device 20 and closing the third valve device 8b, the first connection pipes 6b, 6c, 6d on the indoor unit side are changed to the first connection pipe 6. By connecting, the first valve device 8a and the second valve device 20 are closed, and the third valve device 8b is opened, whereby the first connection pipes 6b, 6c and 6d on the indoor unit side are connected to the second connection. Connect to pipe 7. Here, in particular, the first valve device 8a, the second valve device 20, and the expansion device 23 are used to control the temperature of the refrigerant in the indoor unit-side heat exchanger 5 during the cooling operation, as will be described later. Therefore, the evaporation temperature control device 22 is assumed.

第2の分岐部11は室内機側の第2の接続配管7b、7c、7dにそれぞれ逆並列関係に一端が接続された第1の逆止弁17及び第2の逆止弁18と、第1の逆止弁17の各他端を一括接続した会合部17Aと、第2の逆止弁18の各他端を一括接続した会合部18Aとから構成される。気液分離装置12は第2の接続配管7の途中に設けられ、その気相部は、第1の分岐部10の第3の弁装置8bに接続され、その液相部は第2の分岐部11に接続されている。   The second branch portion 11 includes a first check valve 17 and a second check valve 18 each having one end connected in reverse parallel relation to the second connection pipes 7b, 7c, and 7d on the indoor unit side, The first check valve 17 includes a meeting portion 17A in which the other ends of the check valve 17 are connected together, and a meeting portion 18A in which the other ends of the second check valve 18 are connected together. The gas-liquid separation device 12 is provided in the middle of the second connection pipe 7, the gas phase portion is connected to the third valve device 8 b of the first branch portion 10, and the liquid phase portion is the second branch. Connected to the unit 11.

第2の流量制御装置13は気液分離装置12と第2の分岐部11との間に接続され、開閉が自在である。バイパス配管14は第2の分岐部11と上記第1の接続配管6とを結んでいる。第3の流量制御装置15はバイパス配管14の途中に設けられている。第2の熱交換部16はバイパス配管14の第3の流量制御装置15の下流部分と第2の流量制御装置13から第2の分岐部11の会合部18Aに至る配管との間で熱交換を行うものである。一方、第1の熱交換部19はバイパス配管14の第2の熱交換部16の下流部分と、気液分離装置12と第2の流量制御装置13を接続する配管との間で熱交換を行う。   The second flow rate control device 13 is connected between the gas-liquid separation device 12 and the second branching portion 11 and can be freely opened and closed. The bypass pipe 14 connects the second branch portion 11 and the first connection pipe 6. The third flow control device 15 is provided in the middle of the bypass pipe 14. The second heat exchange unit 16 exchanges heat between the downstream portion of the third flow control device 15 of the bypass pipe 14 and the pipe from the second flow control device 13 to the meeting part 18A of the second branching unit 11. Is to do. On the other hand, the first heat exchanging part 19 exchanges heat between the downstream part of the second heat exchanging part 16 of the bypass pipe 14 and the pipe connecting the gas-liquid separator 12 and the second flow rate controller 13. Do.

また、第1の圧力検出器45は第2の流量制御装置13と気液分離装置12とを接続する配管に取り付けている。第2の圧力検出器46は第2の流量制御装置13と第2の分岐部11とを接続する配管に取り付けている。   The first pressure detector 45 is attached to a pipe connecting the second flow rate control device 13 and the gas-liquid separation device 12. The second pressure detector 46 is attached to a pipe connecting the second flow rate control device 13 and the second branch portion 11.

弁装置制御部21は弁装置の内、特に冷房運転時に用いる第1、第2の弁装置8a、20の開閉を制御する。また、絞り装置制御部24は各絞り装置23の弁開度を任意に制御することができる。本実施の形態では、外気温度検出装置25が検出して信号に含めて送信してきた外気の温度に基づいて、弁装置制御部21は第1の弁装置8a、第2の弁装置20の開閉制御を行い、絞り装置制御部24は絞り装置23の弁開度制御を行う。ここで、蒸発温度制御装置22の動作を制御する弁装置制御部21及び絞り装置制御部24を蒸発温度制御部28というものとする。   The valve device control unit 21 controls the opening and closing of the first and second valve devices 8a and 20 used in the cooling operation, particularly among the valve devices. Further, the expansion device control unit 24 can arbitrarily control the valve opening degree of each expansion device 23. In the present embodiment, the valve device controller 21 opens and closes the first valve device 8a and the second valve device 20 based on the temperature of the outside air detected by the outside air temperature detection device 25 and transmitted in the signal. The throttle device control unit 24 controls the valve opening of the throttle device 23. Here, the valve device control unit 21 and the expansion device control unit 24 that control the operation of the evaporation temperature control device 22 are referred to as an evaporation temperature control unit 28.

このように構成された実施の形態1の空気調和装置によって、大きく3つの形態の運転が行われる。即ち、室内機B、C、Dの総てが冷房運転を行う場合と、室内機B、C、D総てが暖房運転を行う場合と、室内機B、C、Dのうち一部は冷房運転を行い、他の一部は暖房運転を行う場合(冷暖房同時運転)とである。更に、冷暖房同時運転については、2つの形態の運転が行われる。即ち、室内機B、C、Dのうち大部分(2台)の室内機が暖房運転を行う場合(暖房主体運転)と、室内機B、C、Dのうち大部分の室内機が冷房運転を行う場合(冷房主体運転)とである。以下で上記各運転における運転状態を説明する。   By the air conditioning apparatus of Embodiment 1 configured as described above, three types of operation are performed. That is, when all of the indoor units B, C, and D perform a cooling operation, when all the indoor units B, C, and D perform a heating operation, some of the indoor units B, C, and D are cooled. The operation is performed, and the other part is the case of performing the heating operation (simultaneous cooling and heating operation). Furthermore, two forms of operation are performed for the simultaneous cooling and heating operation. That is, when most (two) of the indoor units B, C, and D perform the heating operation (heating operation), most of the indoor units B, C, and D perform the cooling operation. (Cooling-dominated operation). The operation state in each operation will be described below.

図2は空気調和装置の冷房又は暖房のみの運転動作状態を表す図である。まず、図2を用いて冷房運転のみの場合について説明する。図2に冷媒の流れを実線矢印で示すように、圧縮機1より吐出された高温高圧の冷媒ガスは四方切換弁2を通り、熱源機側熱交換器3で熱交換して凝縮された後、第3の逆止弁32、第2の接続配管7を通り、中継機Eへ流入する。   FIG. 2 is a diagram illustrating an operation state of only the cooling or heating of the air conditioner. First, the case of only the cooling operation will be described with reference to FIG. As shown by the solid line arrow in FIG. 2, after the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2 and is condensed by exchanging heat in the heat source unit side heat exchanger 3. , Flows through the third check valve 32 and the second connection pipe 7 and flows into the relay E.

中継機Eへ流入した冷媒は気液分離装置12、第2の流量制御装置13の順に通り、第2の分岐部11へ流入する。第2の分岐部11へ流入した冷媒は、会合部17Aで室内機側の第2の接続配管7b、7c、7dに分流すると共に、各室内機B、C、Dに流入する。各室内機側熱交換器5の出口の過熱度に基づいて、流量制御装置9は所定の圧力まで冷媒を減圧させる。室内機側熱交換器5は室内空気と冷媒との熱交換をさせる。冷媒が室内機側熱交換器5内で蒸発しガス化することにより室内空気の熱を奪い、室内を冷房する。   The refrigerant that has flowed into the relay E passes through the gas-liquid separator 12 and the second flow rate controller 13 in this order, and then flows into the second branch portion 11. The refrigerant that has flowed into the second branch portion 11 is branched into the second connection pipes 7b, 7c, and 7d on the indoor unit side at the meeting portion 17A, and flows into the indoor units B, C, and D. Based on the degree of superheat at the outlet of each indoor unit side heat exchanger 5, the flow control device 9 depressurizes the refrigerant to a predetermined pressure. The indoor unit side heat exchanger 5 exchanges heat between the indoor air and the refrigerant. The refrigerant evaporates and gasifies in the indoor unit-side heat exchanger 5, thereby depriving the room air of heat and cooling the room.

そして、ガス状態となった冷媒は、室内機側の第1の接続配管6b、6c、6d、第1の分岐部10の第1の弁装置8aまたは第2の弁装置20を通り、第1の接続配管6、第4の逆止弁33、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、冷房運転を行う。冷房運転時には、第1の弁装置8aまたは第2の弁装置20は開路、第3の弁装置8bは閉路されている。   Then, the refrigerant in the gas state passes through the first connection pipes 6b, 6c, 6d on the indoor unit side, the first valve device 8a or the second valve device 20 of the first branch portion 10, and passes through the first connection piping 6b, 6c, 6d. A circulation cycle that is sucked into the compressor 1 through the connection pipe 6, the fourth check valve 33, the four-way switching valve 2, and the accumulator 4 is configured to perform a cooling operation. During the cooling operation, the first valve device 8a or the second valve device 20 is opened, and the third valve device 8b is closed.

また、この時、第1の接続配管6は低圧、第2の接続配管7は高圧のため必然的に第3の逆止弁32、第4の逆止弁33側を冷媒が流通する。また、このサイクルの時には、第2の流量制御装置13を通過した冷媒の一部がバイパス配管14へ流入し、第3の流量制御装置15で減圧されて、第2の熱交換部16において、各室内機側の第2の分岐部11に流入する冷媒との間で熱交換が行われる。さらに、第1の熱交換部19において、第2の流量制御装置13に流入する冷媒との間で熱交換が行われる。第1の熱交換部19における熱交換により蒸発した冷媒は第1の接続配管6へ流入し、第4の逆止弁33、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される。一方、第1の熱交換部19における熱交換により、冷却され過冷却度を十分につけられた冷媒は、第2の分岐部11の第1の逆止弁17、室内側の第2の接続配管7b、7c、7dを経由して、室内機B、C、Dへ流入する。   At this time, since the first connection pipe 6 is low pressure and the second connection pipe 7 is high pressure, the refrigerant inevitably flows through the third check valve 32 and the fourth check valve 33 side. Further, at the time of this cycle, a part of the refrigerant that has passed through the second flow control device 13 flows into the bypass pipe 14 and is decompressed by the third flow control device 15, and in the second heat exchange unit 16, Heat exchange is performed with the refrigerant flowing into the second branch portion 11 on each indoor unit side. Further, in the first heat exchange unit 19, heat exchange is performed with the refrigerant flowing into the second flow control device 13. The refrigerant evaporated by heat exchange in the first heat exchange section 19 flows into the first connection pipe 6 and is sucked into the compressor 1 through the fourth check valve 33, the four-way switching valve 2, and the accumulator 4. On the other hand, the refrigerant that has been cooled and sufficiently subcooled by heat exchange in the first heat exchange section 19 is the first check valve 17 of the second branch section 11 and the second connection pipe on the indoor side. It flows into indoor units B, C, D via 7b, 7c, 7d.

弁装置制御部21では外気温度検出装置25で検出された外気温度が予め設定された温度(例えば15℃)より低い場合には、室内機B、C、Dの室内機側熱交換器5の蒸発温度を高くするため、第1の弁装置8aを開、第2の弁装置20を閉とする制御を行う。また、外気温度検出装置25で検出された外気温度が予め設定された温度以上の場合には、室内機B、C、Dの室内機側熱交換器5の蒸発温度を通常の温度、または低くするために、第1の弁装置8aを閉、第2の弁装置20を開とする制御を行う。すなわち、第1の弁装置8aを開、第2の弁装置20を閉とした場合には、絞り装置23を経由せずに冷媒が流通するため圧力損失が小さく、冷媒の圧力が小さくなり、室内機側熱交換器5の蒸発温度を通常の温度または低くすることができる。一方、第1の弁装置8aを閉、第2の弁装置20を開とした場合には、絞り装置23を経由して冷媒が流通するため圧力損失が大きく、冷媒の圧力が大きくなり、室内機側熱交換器5内の冷媒に加わる圧力を高め、蒸発温度を高くすることが可能となる。   When the outside air temperature detected by the outside air temperature detecting device 25 is lower than a preset temperature (for example, 15 ° C.) in the valve device control unit 21, the indoor unit side heat exchanger 5 of the indoor units B, C, and D In order to increase the evaporation temperature, control is performed to open the first valve device 8a and close the second valve device 20. Further, when the outside air temperature detected by the outside air temperature detection device 25 is equal to or higher than a preset temperature, the evaporation temperature of the indoor unit side heat exchanger 5 of the indoor units B, C, D is set to a normal temperature or a low temperature. In order to achieve this, control is performed such that the first valve device 8a is closed and the second valve device 20 is opened. That is, when the first valve device 8a is opened and the second valve device 20 is closed, the refrigerant flows without going through the throttle device 23, so the pressure loss is small and the refrigerant pressure is small. The evaporation temperature of the indoor unit side heat exchanger 5 can be reduced to a normal temperature or a low temperature. On the other hand, when the first valve device 8a is closed and the second valve device 20 is opened, the refrigerant flows through the throttle device 23, so that the pressure loss is large and the refrigerant pressure is increased. It is possible to increase the pressure applied to the refrigerant in the machine-side heat exchanger 5 and increase the evaporation temperature.

そして、冷媒が絞り装置23を経由する場合には、絞り装置制御部24により、各絞り装置23の弁開度を任意に制御することによって、各絞り装置23を経由して冷媒が流通するときの圧力損失を任意に制御できるので、各室内機側熱交換器5の蒸発温度を個々に、かつ任意の温度にすることが可能となる。例えば、外気温度検出装置25で得られた外気温度が低いほど絞り装置23の弁開度を小さくし、冷媒が流通するときの圧力損失を大きくして室内機側熱交換器5の蒸発温度を高くし、また逆に外気温度が高いほど絞り装置23の弁開度を大きくし、冷媒が流通するときの圧力損失を小さくして室内機側熱交換器5の蒸発温度を低くするよう制御する。個々の各絞り装置23の弁開度については、各室内機の使用環境等により設定等が異なることがある。このように蒸発温度を制御することで、例えば夏期のように外気温度が高く、高湿で潜熱負荷が大きければ顕熱比の小さい運転を行い、また冬期にように外気温度が低く潜熱負荷が小さければ、その潜熱負荷に応じて顕熱比の大きい運転を行うことで、年間を通して空調負荷(顕熱負荷及び潜熱負荷)に応じた冷房運転を行うことが可能となる。   When the refrigerant passes through the expansion device 23, the expansion device control unit 24 arbitrarily controls the valve opening degree of each expansion device 23 so that the refrigerant flows through each expansion device 23. Therefore, the evaporation temperature of each indoor unit side heat exchanger 5 can be individually and arbitrarily set. For example, the lower the outside air temperature obtained by the outside air temperature detection device 25, the smaller the valve opening of the expansion device 23, and the larger the pressure loss when the refrigerant flows, so that the evaporation temperature of the indoor unit side heat exchanger 5 is increased. On the contrary, as the outside air temperature is higher, the valve opening of the expansion device 23 is increased, and the pressure loss when the refrigerant flows is reduced to control the evaporation temperature of the indoor unit-side heat exchanger 5 to be lower. . About the valve opening degree of each expansion device 23, a setting etc. may change with the use environment etc. of each indoor unit. By controlling the evaporation temperature in this way, for example, if the outside air temperature is high, such as in summer, and if the humidity is high and the latent heat load is large, the operation is performed with a low sensible heat ratio. If it is small, the cooling operation according to the air conditioning load (sensible heat load and latent heat load) can be performed throughout the year by performing the operation with a large sensible heat ratio according to the latent heat load.

図5は一般的な室内熱交換器を使用した時のある一定の空気条件下(一定の乾球温度及び湿球温度)での冷房運転時における蒸発温度を冷房能力(潜熱能力と顕熱能力の合計)、顕熱能力、顕熱比(冷房能力に対する顕熱能力の割合)を示した図である。横軸が蒸発温度、縦軸左が冷房能力及び顕熱能力、縦軸右が顕熱比を示している。図5を用いて冷房運転時における室内機側熱交換器の蒸発温度と顕熱能力との関係を説明する。図5に示しているように、蒸発温度が上昇すると冷房能力は減少するが、顕熱能力はほぼ一定能力を維持する。即ち、蒸発温度が上昇するほど顕熱比が大きくなり、潜熱能力が低くなる。従って、年間を通して冷房負荷が発生する場合において、例えば冬期のように顕熱負荷の割合を大きくした方がよい場合には蒸発温度を上げることにより顕熱比を大きくすることが望ましい。また、例えば夏期のように潜熱負荷の割合が大きくなる場合には蒸発温度を下げることにより顕熱比を小さくする(潜熱能力を高くする)ことが望ましい。絞り装置23により圧力損失を制御し、蒸発温度を制御することによって、顕熱負荷の状態に合致した冷房運転が可能となる。そして、外気温度検出装置25が検出した外気温度により、例えば時期(季節、気候等)を大まかに判断し、時期に応じた顕熱負荷(潜熱負荷)による冷房運転を行うことができる。   FIG. 5 shows the cooling capacity (latent heat capacity and sensible heat capacity) during the cooling operation under a certain air condition (constant dry bulb temperature and wet bulb temperature) when a general indoor heat exchanger is used. It is the figure which showed sensible heat capacity | capacitance and the sensible heat ratio (ratio of sensible heat capacity | capacitance with respect to cooling capacity). The horizontal axis indicates the evaporation temperature, the vertical axis left indicates the cooling capacity and the sensible heat capacity, and the vertical axis right indicates the sensible heat ratio. The relationship between the evaporation temperature and the sensible heat capacity of the indoor unit side heat exchanger during the cooling operation will be described with reference to FIG. As shown in FIG. 5, the cooling capacity decreases as the evaporation temperature rises, but the sensible heat capacity maintains a substantially constant capacity. That is, as the evaporation temperature increases, the sensible heat ratio increases and the latent heat capacity decreases. Therefore, when a cooling load is generated throughout the year, it is desirable to increase the sensible heat ratio by increasing the evaporation temperature when it is better to increase the ratio of the sensible heat load, for example, in winter. For example, when the ratio of the latent heat load increases as in the summer, it is desirable to reduce the sensible heat ratio (increase the latent heat capacity) by lowering the evaporation temperature. By controlling the pressure loss by the expansion device 23 and controlling the evaporation temperature, a cooling operation that matches the state of the sensible heat load is possible. Then, for example, the time (season, climate, etc.) is roughly determined based on the outside air temperature detected by the outside air temperature detection device 25, and the cooling operation with the sensible heat load (latent heat load) corresponding to the time can be performed.

次に、図2を用いて暖房運転のみの場合について説明する。この場合は、四方切換弁2が切り換えられ、冷媒の流れが図2に破線矢印で示すようになる。即ち、圧縮機1より吐出された高温高圧の冷媒ガスは四方切換弁2を通り、第5の逆止弁34、第2の接続配管7を通り、中継機Eへ流入する。中継機Eへ流入した冷媒は気液分離装置12、第1の分岐部10に流入する。第1の分岐部10に流入した冷媒は、第3の弁装置8b、室内機側の第1の接続配管6b、6c、6dを通り、各室内機B、C、Dに流入し、室内機側熱交換器5で室内空気と熱交換して凝縮液化し、室内を暖房する。そして、液状態となった冷媒は、各室内機側熱交換器5の出口の過冷却度により制御される流量制御装置9を通り、室内機側の第2の接続配管7b、7c、7dから第2の分岐部11に流入し、第2の逆止弁18を通った後、会合部18Aで合流し、ここから第3の流量制御装置15に流入して低圧の気液二相状態まで減圧される。低圧まで減圧された冷媒は、バイパス配管14、第2の熱交換部16、第1の熱交換部19を経た後、第1の接続配管6に通り、第6の逆止弁35、熱源機側熱交換器3に流入し熱交換して蒸発しガス状態となった冷媒は、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、暖房運転を行う。この時、第1及び第2の弁装置8a、20は閉路、第3の弁装置8bは開路されている。また、第1の接続配管6が低圧、第2の接続配管7が高圧のため必然的に第5の逆止弁34、第6の逆止弁35へ冷媒は流通する。   Next, the case of only heating operation will be described with reference to FIG. In this case, the four-way switching valve 2 is switched, and the refrigerant flow is as shown by broken-line arrows in FIG. That is, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, passes through the fifth check valve 34 and the second connection pipe 7, and flows into the relay machine E. The refrigerant that has flowed into the relay E flows into the gas-liquid separator 12 and the first branch portion 10. The refrigerant that has flowed into the first branching section 10 passes through the third valve device 8b and the first connection pipes 6b, 6c, and 6d on the indoor unit side, and flows into the indoor units B, C, and D. The side heat exchanger 5 exchanges heat with room air to condense and liquefy it, thereby heating the room. And the refrigerant | coolant which became the liquid state passes through the flow control apparatus 9 controlled by the subcooling degree of the exit of each indoor unit side heat exchanger 5, and passes from the 2nd connection piping 7b, 7c, 7d by the indoor unit side. After flowing into the second branch portion 11 and passing through the second check valve 18, they merge at the meeting portion 18 </ b> A, and flow into the third flow rate control device 15 from here to the low pressure gas-liquid two-phase state. Depressurized. The refrigerant depressurized to a low pressure passes through the bypass pipe 14, the second heat exchange unit 16, and the first heat exchange unit 19, and then passes through the first connection pipe 6, the sixth check valve 35, and the heat source unit. The refrigerant that flows into the side heat exchanger 3 and exchanges heat to evaporate into a gas state constitutes a circulation cycle that is sucked into the compressor 1 through the four-way switching valve 2 and the accumulator 4, and performs a heating operation. At this time, the first and second valve devices 8a and 20 are closed, and the third valve device 8b is opened. In addition, since the first connection pipe 6 is low pressure and the second connection pipe 7 is high pressure, the refrigerant inevitably flows to the fifth check valve 34 and the sixth check valve 35.

図3は空気調和装置の暖房主体の運転動作状態を表す図である。次に、冷暖房同時運転における暖房主体の場合について図3を用いて説明する。ここでは室内機B、Cの2台が暖房運転を行い、室内機Dが冷房運転を行うものとして説明する。即ち、図3に破線矢印で示すように圧縮機1より吐出された高温高圧の冷媒ガスは四方切換弁2、第5の逆止弁34、第2の接続配管7を通り、中継機Eに流入する。中継機Eに流入した冷媒は気液分離装置12を経て、第1の分岐部10に流入する。第1の分岐部10へ流入した冷媒は、室内機B、Cに接続された第3の弁装置8b、室内機側の第1の接続配管6b、6cの順に通り、暖房しようとしている室内機B、Cに流入し、室内機側熱交換器5で室内空気と熱交換して凝縮液化し、室内を暖房する。そして、この液状態となった冷媒は、室内機側熱交換器5の出口の過冷却度により制御され、ほぼ全開状態の流量制御装置9を通り少し減圧されて高圧と低圧の中間の圧力(中間圧)になり、室内機側の第2の接続配管7b、7cから第2の逆止弁18を通り会合部18Aで合流する。   FIG. 3 is a diagram illustrating a driving operation state of the air-conditioning apparatus that is mainly heating. Next, the case of heating mainly in the simultaneous cooling and heating operation will be described with reference to FIG. Here, two indoor units B and C will be described as performing heating operation, and the indoor unit D performing cooling operation. That is, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, the fifth check valve 34, and the second connection pipe 7 as shown by broken line arrows in FIG. Inflow. The refrigerant that has flowed into the relay machine E flows into the first branch section 10 through the gas-liquid separator 12. The refrigerant that has flowed into the first branch section 10 passes through the third valve device 8b connected to the indoor units B and C and the first connection pipes 6b and 6c on the indoor unit side in this order, and the indoor unit that is going to be heated It flows into B and C, heat-exchanges with indoor air with the indoor unit side heat exchanger 5, is condensed and liquefied, and the room is heated. The refrigerant in the liquid state is controlled by the degree of supercooling at the outlet of the indoor unit-side heat exchanger 5 and is slightly depressurized through the flow control device 9 in a substantially fully open state, so that the intermediate pressure between the high pressure and the low pressure ( Intermediate pressure), the second connection pipes 7b and 7c on the indoor unit side pass through the second check valve 18 and merge at the meeting portion 18A.

冷房しようとしている室内機Dへの冷媒の流れは、中継機Eの第2の分岐部11の会合部18Aで合流した冷媒の一部が第2の熱交換部16を経て第2の分岐部11の会合部17Aに至り、室内機Dに接続された第1の逆止弁17、室内側の第2の接続配管7dを通り、室内機側熱交換器5に入り熱交換して蒸発しガス状態となって室内を冷房し、第1の分岐部10の室内機Dに接続された第1の弁装置8aまたは第2の弁装置20を介して第1の接続配管6に流入する。   The refrigerant flowing to the indoor unit D that is going to be cooled has a second branching portion in which a part of the refrigerant joined at the meeting portion 18A of the second branching portion 11 of the relay E passes through the second heat exchanging portion 16. 11 passes through the first check valve 17 connected to the indoor unit D and the second connection pipe 7d on the indoor side, enters the indoor unit side heat exchanger 5 and exchanges heat to evaporate. It becomes a gas state, cools the room, and flows into the first connection pipe 6 via the first valve device 8a or the second valve device 20 connected to the indoor unit D of the first branching section 10.

一方、室内機B、Cから中継機Eの第2の分岐部11の会合部18Aに流入した室内機B、Cの暖房用の冷媒の他の一部は、第2の接続配管7の高圧と第2の分岐部11の中間圧との差を一定にするように制御される開閉自在な第3の流量制御装置15を通って、バイパス配管14に流入し、第1の接続配管6に至るため、ここで室内機Dを冷房した冷媒と合流して太い第1の接続配管6に流入し、第6の逆止弁35、熱源機側熱交換器3に流入し熱交換して蒸発しガス状態となった冷媒は、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、暖房主体運転を行う。   On the other hand, the other part of the refrigerant for heating the indoor units B and C that has flowed from the indoor units B and C into the meeting portion 18A of the second branching unit 11 of the relay device E is the high pressure of the second connection pipe 7. And the third flow control device 15 that can be opened and closed that is controlled so as to make the difference between the intermediate pressure of the second branch portion 11 constant, flows into the bypass pipe 14, and enters the first connection pipe 6. Therefore, the indoor unit D joins with the cooled refrigerant and flows into the thick first connection pipe 6 and flows into the sixth check valve 35 and the heat source unit side heat exchanger 3 to exchange heat and evaporate. The refrigerant in the gas state constitutes a circulation cycle that is sucked into the compressor 1 through the four-way switching valve 2 and the accumulator 4 and performs heating-main operation.

このとき、暖房しようとしている室内機B、Cに接続される第1の弁装置8a、第2の弁装置20は閉路、第3の弁装置8bは開路され、冷房しようとしている室内機Dに接続される第1の弁装置8aまたは第2の弁装置20は開路、第3の弁装置8bは閉路されている。また、第1の接続配管6が低圧、第2の接続配管7が高圧のため必然的に第5の逆止弁34、第6の逆止弁35へ冷媒は流通する。   At this time, the first valve device 8a and the second valve device 20 connected to the indoor units B and C to be heated are closed, the third valve device 8b is opened, and the indoor unit D to be cooled is The first valve device 8a or the second valve device 20 to be connected is opened, and the third valve device 8b is closed. In addition, since the first connection pipe 6 is low pressure and the second connection pipe 7 is high pressure, the refrigerant inevitably flows to the fifth check valve 34 and the sixth check valve 35.

また、このサイクルの時、バイパス配管14へ入った冷媒は、第3の流量制御装置15で低圧まで減圧されて、第2の熱交換部16で第2の分岐部11へ流入する冷媒との間で、更に第1の熱交換部19で第2の流量制御装置13へ流入する冷媒との間で熱交換を行い蒸発した冷媒は、第1の接続配管6へ入り、第6の逆止弁35を経て、熱源機側熱交換器3に流入し熱交換して蒸発しガス状態となる。そして、この冷媒は四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される。一方、第1及び第2の熱交換部19、16で熱交換し冷却され過冷却度を十分につけられた冷媒は冷房しようとしている室内機Dへ流入する。   Further, during this cycle, the refrigerant that has entered the bypass pipe 14 is decompressed to a low pressure by the third flow control device 15, and the refrigerant that flows into the second branch portion 11 by the second heat exchange unit 16. Then, the refrigerant that has evaporated by the heat exchange with the refrigerant flowing into the second flow rate control device 13 in the first heat exchanging unit 19 enters the first connection pipe 6 and enters the sixth check After passing through the valve 35, it flows into the heat source unit side heat exchanger 3 and exchanges heat to evaporate into a gas state. The refrigerant is sucked into the compressor 1 through the four-way switching valve 2 and the accumulator 4. On the other hand, the refrigerant that has been cooled by exchanging heat in the first and second heat exchanging units 19 and 16 and having a sufficient degree of supercooling flows into the indoor unit D that is going to be cooled.

この暖房主体運転時において弁装置制御部21では外気温度検出装置25で検出された外気温度が予め設定された温度より低い場合には、冷房しようとしている室内機Dの室内機側熱交換器5の蒸発温度を高くするため、その室内機に相当する第1の弁装置8aを閉、第2の弁装置20を開とする制御を行い、また、外気温度検出装置25で検出された外気温度が予め設定された温度より高い場合には、冷房しようとしている室内機Dの室内機側熱交換器5の蒸発温度を通常の温度、または低くするために、その室内機に相当する第1の弁装置8aを開、第2の弁装置20を閉とする制御を行う。すなわち、第1の弁装置8aを開、第2の弁装置20を閉とした場合には、絞り装置23を経由せず冷媒が流通するため圧力損失が小さく室内機側熱交換器5の蒸発温度を通常の温度または低くすることができる。一方、第1の弁装置8aを閉、第2の弁装置20を開とした場合には、絞り装置23を経由して冷媒が流通するため圧力損失が大きく室内機側熱交換器5の蒸発温度を高くすることが可能となる。このとき、絞り装置制御部24により絞り装置23の弁開度を任意に制御することによって、絞り装置23を経由して冷媒が流通するときの圧力損失を任意に制御できるので、各室内機側熱交換器5の蒸発温度を個々に、かつ任意の温度に高くすることが可能となる。このように、冷房しようとする室内機Dの蒸発温度を個々に制御することの効果は、前述した全ての室内機による冷房運転時の効果と同じであるので、ここでは説明を省略する。   When the outside air temperature detected by the outside air temperature detection device 25 is lower than the preset temperature in the valve device controller 21 during the heating main operation, the indoor unit side heat exchanger 5 of the indoor unit D to be cooled is used. In order to increase the evaporation temperature of the air, the first valve device 8a corresponding to the indoor unit is closed and the second valve device 20 is opened, and the outside air temperature detected by the outside air temperature detecting device 25 is controlled. Is higher than a preset temperature, in order to reduce the evaporation temperature of the indoor unit-side heat exchanger 5 of the indoor unit D that is going to be cooled to a normal temperature or a low temperature, the first corresponding to the indoor unit Control is performed to open the valve device 8a and close the second valve device 20. That is, when the first valve device 8a is opened and the second valve device 20 is closed, the refrigerant flows without passing through the expansion device 23, so the pressure loss is small and the evaporation of the indoor unit side heat exchanger 5 is performed. The temperature can be normal or lower. On the other hand, when the first valve device 8a is closed and the second valve device 20 is opened, the refrigerant flows through the expansion device 23, so that the pressure loss is large and the indoor unit-side heat exchanger 5 evaporates. The temperature can be increased. At this time, by arbitrarily controlling the valve opening degree of the expansion device 23 by the expansion device control unit 24, the pressure loss when the refrigerant flows through the expansion device 23 can be arbitrarily controlled. It becomes possible to raise the evaporation temperature of the heat exchanger 5 individually and arbitrarily. Thus, since the effect of individually controlling the evaporation temperature of the indoor unit D to be cooled is the same as the effect during the cooling operation by all the indoor units described above, the description thereof is omitted here.

図4は空気調和装置の冷房主体の運転動作状態を表す図である。次に、冷暖房同時運転における冷房主体の場合について図4を用いて説明する。ここでは、室内機B、Cの2台が冷房運転を行い、室内機Dが暖房運転を行うものとして説明する。即ち、図4に冷媒の流れを実線矢印で示すように、圧縮機1より吐出された高温高圧の冷媒ガスは四方切換弁2を通り、熱源機側熱交換器3で任意量熱交換して気液2相の高温高圧冷媒となり、第3の逆止弁32、第2の接続配管7を通り、中継機Eに流入する。中継機Eに流入した冷媒は気液分離装置12へ送られ、ここで、ガス冷媒と液冷媒に分離され、分離されたガス冷媒は、第2の接続配管7を経て中継機Eの第1の分岐部10の第3の弁装置8b、室内機側の第1の接続配管6dの順に通り、暖房しようとしている室内機Dに流入し、室内機側熱交換器5で室内空気と熱交換して凝縮液化し、室内を暖房する。   FIG. 4 is a diagram showing a cooling operation state of the air conditioner. Next, the case of the cooling main in the simultaneous cooling and heating operation will be described with reference to FIG. Here, the explanation will be made assuming that the two indoor units B and C perform the cooling operation and the indoor unit D performs the heating operation. That is, as shown by the solid arrows in FIG. 4, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2 and exchanges an arbitrary amount of heat with the heat source unit side heat exchanger 3. It becomes a gas-liquid two-phase high-temperature and high-pressure refrigerant and flows into the relay E through the third check valve 32 and the second connection pipe 7. The refrigerant that has flowed into the relay E is sent to the gas-liquid separator 12 where the refrigerant is separated into a gas refrigerant and a liquid refrigerant, and the separated gas refrigerant passes through the second connection pipe 7 to the first of the relay E. Through the third valve device 8b of the branching section 10 and the first connecting pipe 6d on the indoor unit side, and flows into the indoor unit D to be heated, and exchanges heat with indoor air in the indoor unit side heat exchanger 5 The liquid is condensed and heated.

更に、室内機側熱交換器5の出口の過冷却度により制御されほぼ全開状態の流量制御装置9を通り少し減圧されて、高圧と低圧の中間の圧力(中間圧)となり、室内側の第2の接続配管7dを経て、第2の分岐部11の第2の逆止弁18を通り会合部18Aからバイパス配管14に流入し、第3の流量制御装置15で低圧まで減圧されて、第2の熱交換部16で第2の分岐部11に流入する冷媒との間で熱交換を行い、また、第1の熱交換部19で第2の流量制御装置13へ流入する冷媒との間で熱交換を行い蒸発した冷媒は、第1の接続配管6に至る。一方、中継器Eの気液分離装置12で分離された残りの液冷媒は、第1の熱交換部19で熱交換して冷却され過冷却度を十分につけた後、高圧と中間圧の差を一定にするように制御される第2の流量制御装置13を通って第2の分岐部11の会合部17Aに流入する。   Furthermore, it is controlled by the degree of supercooling at the outlet of the indoor unit-side heat exchanger 5 and is slightly depressurized through the flow control device 9 which is in a fully open state, resulting in an intermediate pressure between the high pressure and the low pressure (intermediate pressure). 2 through the second connection pipe 7d, through the second check valve 18 of the second branching section 11 and into the bypass pipe 14 from the meeting section 18A, the pressure is reduced to a low pressure by the third flow control device 15, Heat exchange with the refrigerant flowing into the second branching section 11 at the second heat exchanging section 16 and between the refrigerant flowing into the second flow control device 13 at the first heat exchanging section 19 The refrigerant that has evaporated and exchanged heat reaches the first connection pipe 6. On the other hand, the remaining liquid refrigerant separated by the gas-liquid separation device 12 of the relay E is cooled by exchanging heat at the first heat exchanging unit 19 and sufficiently subcooled, and then the difference between the high pressure and the intermediate pressure. Flows into the meeting part 17A of the second branch part 11 through the second flow rate control device 13 that is controlled to be constant.

冷房しようとしている室内機B、Cへの冷媒の流れは、中継機Eの第2の分岐部11の会合部17Aから室内機B、Cに接続された第1の逆止弁17、室内機側の第2の接続配管7b、7cを通り、各室内機B、Cに流入する。そして、この冷媒は、室内機B、Cの室内機側熱交換器5の出口の過熱度により制御される流量制御装置9により低圧まで減圧されて室内機側熱交換器5で室内空気と熱交換して蒸発しガス化され室内を冷房する。そして、このガス状態となった冷媒は、室内機側の第1の接続配管6b、6c、第1の分岐部10の第1の弁装置8aまたは第2の弁装置20を経て、第1の接続配管6へ流入し、バイパス配管14を経て第1の接続配管6に流入する上述の室内機Dの暖房用冷媒と合流した後、第4の逆止弁33、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、冷房主体運転を行う。   The refrigerant flow to the indoor units B and C to be cooled is the first check valve 17 connected to the indoor units B and C from the meeting part 17A of the second branching unit 11 of the relay machine E, the indoor unit It passes through the second connection pipes 7b and 7c on the side and flows into the indoor units B and C. And this refrigerant | coolant is pressure-reduced to low pressure by the flow control device 9 controlled by the superheat degree of the exit of the indoor unit side heat exchanger 5 of the indoor units B and C, and indoor air and heat in the indoor unit side heat exchanger 5 It is exchanged and evaporated to gasify, and the room is cooled. Then, the refrigerant in the gas state passes through the first connection pipes 6b and 6c on the indoor unit side, the first valve device 8a or the second valve device 20 of the first branching section 10, and the first The fourth check valve 33, the four-way switching valve 2, and the accumulator 4 are flown into the connection pipe 6, merged with the above-described indoor unit D heating refrigerant flowing into the first connection pipe 6 through the bypass pipe 14. After that, a circulation cycle that is sucked into the compressor 1 is configured, and the cooling main operation is performed.

この時、冷房しようとしている室内機B、Cに接続される第1の弁装置8aまたは第2の弁装置20は開路、第3の弁装置8bは閉路され、暖房しようとしている室内機Dに接続される第1、第2の弁装置8a、20は閉路、第3の弁装置8bは開路されている。また、第1の接続配管6は低圧、第2の接続配管7は高圧のため必然的に第3の逆止弁32、第4の逆止弁33へ冷媒は流通する。   At this time, the first valve device 8a or the second valve device 20 connected to the indoor units B and C to be cooled is opened, the third valve device 8b is closed, and the indoor unit D to be heated is connected. The connected first and second valve devices 8a and 20 are closed, and the third valve device 8b is opened. Further, since the first connection pipe 6 is low pressure and the second connection pipe 7 is high pressure, the refrigerant inevitably flows to the third check valve 32 and the fourth check valve 33.

この冷房主体運転時において弁装置制御部21では外気温度検出装置25で検出された外気温度が予め設定された温度より低い場合には、冷房しようとしている室内機B、Cの室内機側熱交換器5の蒸発温度を高くするため、その室内機に相当する第1の弁装置8aを閉、第2の弁装置20を開とする制御を行い、また、外気温度検出装置25で検出された外気温度が予め設定された温度より高い場合には、冷房しようとしている室内機B、Cの室内機側熱交換器5の蒸発温度を通常の温度、または低くするために、その室内機に相当する第1の弁装置8aを開、第2の弁装置20を閉とする制御を行う。すなわち、第1の弁装置8aを開、第2の弁装置20を閉とした場合には、絞り装置23を経由せず冷媒が流通するため圧力損失が小さく室内機側熱交換器5の蒸発温度を通常の温度または低くすることができる。一方、第1の弁装置8aを閉、第2の弁装置20を開とした場合には絞り装置23を経由して冷媒が流通するため圧力損失が大きく室内機側熱交換器5の蒸発温度を高くすることが可能となる。このとき、絞り装置制御部24により絞り装置23の弁開度を任意に制御することによって、絞り装置23を経由して冷媒が流通するときの圧力損失を任意に制御できるので、各室内機側熱交換器5の蒸発温度を個々に、かつ任意の温度に高くすることが可能となる。このように、冷房運転している室内機B、Cの蒸発温度を個々に制御することの効果は、前述した冷房運転時の効果と同じであるので、ここでは説明を省略する。   During this cooling main operation, when the outside air temperature detected by the outside air temperature detecting device 25 is lower than a preset temperature in the valve device control unit 21, the indoor unit side heat exchange of the indoor units B and C to be cooled is performed. In order to increase the evaporation temperature of the vessel 5, the first valve device 8 a corresponding to the indoor unit is closed and the second valve device 20 is opened, and the outside air temperature detection device 25 detects the temperature. When the outside air temperature is higher than a preset temperature, it corresponds to the indoor unit in order to lower the evaporation temperature of the indoor unit side heat exchanger 5 of the indoor units B and C to be cooled to a normal temperature or lower. The first valve device 8a is opened and the second valve device 20 is closed. That is, when the first valve device 8a is opened and the second valve device 20 is closed, the refrigerant flows without passing through the expansion device 23, so the pressure loss is small and the evaporation of the indoor unit side heat exchanger 5 is performed. The temperature can be normal or lower. On the other hand, when the first valve device 8a is closed and the second valve device 20 is opened, the refrigerant flows through the expansion device 23, so the pressure loss is large and the evaporation temperature of the indoor unit side heat exchanger 5 is large. Can be increased. At this time, by arbitrarily controlling the valve opening degree of the expansion device 23 by the expansion device control unit 24, the pressure loss when the refrigerant flows through the expansion device 23 can be arbitrarily controlled. It becomes possible to raise the evaporation temperature of the heat exchanger 5 individually and arbitrarily. Thus, since the effect of individually controlling the evaporation temperatures of the indoor units B and C that are in the cooling operation is the same as the effect during the cooling operation described above, the description thereof is omitted here.

以上のように実施の形態1によれば、特に冷房運転時において、弁装置制御部21が、外気温度検出装置25が検出した外気温度に基づいて、例えば所定の温度以上であるか否かを判断して、第1の弁装置8a、第2の弁装置20の開閉の切り替え制御を行うようにし、所定の温度より低いと判断した場合には、絞り装置23を経由させ、室内機側熱交換器5において冷媒の蒸発温度が高くなるように制御するようにしたので、例えば外気温度を判断し、夏期のような外気温度が高く、湿度が高い場合に冷房運転を行う場合には、顕熱比が低い(潜熱負荷が高い)運転を行い、冬期のような外気温度が低く、湿度が低い場合でも冷房運転を行わなければならない場合には、顕熱比が高い運転を行うようにすることで、環境に応じた負荷による効率のよい冷房運転を行うことができる。また、絞り装置23は各室内機毎に独立して設けられているので、絞り装置制御部24は、各室内機の環境に応じて弁開度を制御し、蒸発温度の制御を行うことができる。本実施の形態では、複数台の室内機で冷暖同時運転可能な空気調和装置に適用しているが、室内機が1台の空気調和装置にも適用することができる。また、熱源機A、複数台の室内機B、C、D及び中継機Eにより冷凍サイクルを構成し、各室内機それぞれに蒸発温度制御装置22を設けることにより、例えば他の室内機が暖房運転をしており、冷房運転をしている室内機が1台であっても適用することができる。また、蒸発温度制御装置22を、第1の弁装置8a及び第2の弁装置20の弁装置と絞り装置23とで構成したので、絞り装置23のない圧力損失が少ない配管と、絞り装置23を設けた圧力損失が少なからず存在する配管とを弁装置で切り替えることで、冷房負荷の大きな切り替えを行うことができる。また、絞り装置23による細かな制御も行うことができる。   As described above, according to the first embodiment, particularly during the cooling operation, the valve device control unit 21 determines whether or not the temperature is, for example, a predetermined temperature or more based on the outside air temperature detected by the outside air temperature detecting device 25. The switching control of opening and closing of the first valve device 8a and the second valve device 20 is performed, and when it is determined that the temperature is lower than a predetermined temperature, the indoor unit side heat is passed through the expansion device 23. The exchanger 5 is controlled so that the evaporation temperature of the refrigerant becomes high. For example, when the outside air temperature is judged and the cooling operation is performed when the outside air temperature is high and the humidity is high, such as in summer, it is obvious. Operate at a low heat ratio (high latent heat load), and operate at a high sensible heat ratio when cooling operation must be performed even when the outside air temperature is low and the humidity is low, such as in winter. By the load according to the environment It is possible to perform the rate good cooling operation. In addition, since the expansion device 23 is provided independently for each indoor unit, the expansion device control unit 24 can control the valve opening degree according to the environment of each indoor unit and control the evaporation temperature. it can. In this embodiment, the present invention is applied to an air conditioner that can be operated simultaneously with cooling and heating with a plurality of indoor units. However, the present invention can also be applied to an air conditioner with one indoor unit. In addition, the refrigeration cycle is configured by the heat source unit A, the plurality of indoor units B, C, D and the relay unit E, and the evaporating temperature control device 22 is provided in each indoor unit. Therefore, the present invention can be applied even if there is only one indoor unit that is in cooling operation. Further, since the evaporating temperature control device 22 is constituted by the valve devices of the first valve device 8a and the second valve device 20 and the throttle device 23, there is no pipe having a small pressure loss without the throttle device 23, and the throttle device 23. A large switching of the cooling load can be performed by switching a pipe having a considerable pressure loss with a valve device. Further, fine control by the diaphragm device 23 can be performed.

実施の形態2.
図6は、実施の形態2における空気調和装置の全体構成を示す冷媒回路図である。次に図6に基づいて実施の形態2の空気調和装置について説明する。この図において、図1と同一または相当部分には同一符号を付して説明を省略する。図6において、室内機Dには加湿装置26が搭載されており、加湿運転を行うことができる。また、弁装置制御部21は、加湿装置26が加湿運転を行っているか否かを判断する。ここで、冷房運転、暖房運転、冷暖同時運転(冷房主体運転及び暖房主体運転)時における冷媒の流れについては、上述した実施の形態1と同じであるため、本実施の形態では説明を省略する。
Embodiment 2. FIG.
FIG. 6 is a refrigerant circuit diagram illustrating the overall configuration of the air-conditioning apparatus according to Embodiment 2. Next, the air conditioner of Embodiment 2 will be described based on FIG. In this figure, the same or corresponding parts as in FIG. In FIG. 6, the humidifier 26 is mounted on the indoor unit D, and a humidifying operation can be performed. Further, the valve device control unit 21 determines whether or not the humidifying device 26 is performing a humidifying operation. Here, since the refrigerant flow during the cooling operation, the heating operation, and the simultaneous cooling / heating operation (cooling main operation and heating main operation) is the same as that in the first embodiment, description thereof is omitted in the present embodiment. .

実施の形態2においては、弁装置制御部21及び絞り装置制御部24について説明する。ここでは、室内機B、Cが冷房運転、室内機Dが加湿運転を行う場合について説明する。実施の形態1では、弁装置制御部21が、弁装置8aを閉及び第2の弁装置20を開とするか、弁装置8aを開及び第2の弁装置20を閉とするかを、外気温度検出装置25が検出した外気温度に基づいて判断した。本実施の形態は、加湿装置26が加湿運転しているか否かに基づいて判断するものである。加湿装置26による加湿運転をしているということは、基本的には、他の室内機においても、除湿を行うような潜熱負荷が高い冷房運転を行う必要性が特に認められないものと考えられるからである。   In the second embodiment, the valve device control unit 21 and the expansion device control unit 24 will be described. Here, the case where the indoor units B and C perform the cooling operation and the indoor unit D performs the humidification operation will be described. In Embodiment 1, the valve device controller 21 closes the valve device 8a and opens the second valve device 20, or opens the valve device 8a and closes the second valve device 20. The determination was made based on the outside air temperature detected by the outside air temperature detection device 25. In the present embodiment, the determination is made based on whether or not the humidifying device 26 is performing a humidifying operation. The fact that the humidifying operation is performed by the humidifying device 26 basically means that the necessity of performing a cooling operation with a high latent heat load such as dehumidification is not recognized in other indoor units. Because.

そのため、弁装置制御部21では、室内機Dの加湿装置26が加湿運転を行っているか否かを判断し、加湿装置26が加湿運転を行っていると判断した場合には、室内機側の第1の接続配管6b、6cに接続された第1の弁装置8aを閉、第2の弁装置20を開とする制御を行い、絞り装置23を経由させ、室内機B、Cの室内機側熱交換器5における蒸発温度が高くなるように制御する。一方、加湿装置26が加湿運転を行っていないと判断した場合には、室内機側の第1の接続配管6b、6cに接続された第1の弁装置8aを開、第2の弁装置20を閉として、絞り装置23を経由させず、室内機B、Cの室内機側熱交換器5における蒸発温度を制御する。   Therefore, the valve device control unit 21 determines whether or not the humidifying device 26 of the indoor unit D is performing a humidifying operation, and if it is determined that the humidifying device 26 is performing a humidifying operation, Control is performed such that the first valve device 8a connected to the first connection pipes 6b and 6c is closed and the second valve device 20 is opened, and the indoor units of the indoor units B and C are passed through the expansion device 23. It controls so that the evaporation temperature in the side heat exchanger 5 becomes high. On the other hand, when it is determined that the humidifying device 26 is not performing the humidifying operation, the first valve device 8a connected to the first connection pipes 6b and 6c on the indoor unit side is opened, and the second valve device 20 is opened. Is closed, and the evaporation temperature in the indoor unit side heat exchanger 5 of the indoor units B and C is controlled without passing through the expansion device 23.

図7は冷房運転時の室内機側熱交換器5の蒸発温度と除湿量の関係を示す図である。図7に示すように、蒸発温度を高くすることによって、顕熱比が大きくなると共に、除湿量が小さくなる。そのため、加湿運転を行っている装置がある場合に冷房運転を行うときには、除湿を行ってしまわないように蒸発温度を制御することで、エネルギーの無駄な消費を防止することが可能となる。   FIG. 7 is a diagram showing the relationship between the evaporation temperature of the indoor unit side heat exchanger 5 and the dehumidification amount during the cooling operation. As shown in FIG. 7, by increasing the evaporation temperature, the sensible heat ratio increases and the dehumidification amount decreases. For this reason, when there is a device performing a humidifying operation, when performing a cooling operation, it is possible to prevent wasteful consumption of energy by controlling the evaporation temperature so that dehumidification is not performed.

このとき、絞り置制御部24により絞り装置23の弁開度を任意に制御することによって、絞り装置23を経由して冷媒が流通するときの圧力損失を任意に制御できるので、各室内機側熱交換器5の蒸発温度を個々に、かつ任意の温度にすると共に除湿量も任意に制御することが可能となる。   At this time, by arbitrarily controlling the valve opening degree of the expansion device 23 by the expansion control unit 24, the pressure loss when the refrigerant flows through the expansion device 23 can be arbitrarily controlled. The evaporating temperature of the heat exchanger 5 can be set individually and arbitrarily, and the amount of dehumidification can be arbitrarily controlled.

以上のように実施の形態2によれば、弁装置制御部21が、加湿装置26が加湿運転をしているか否かを判断し、第1の弁装置8a、第2の弁装置20の開閉の切り替え制御を行うようにし、例えば加湿運転が行われている場合には、絞り装置23を経由させ、蒸発温度が高くなるように制御するようにしたので、除湿を行わなくてもよいと考えられる環境下において顕熱比の高い、効率のよい冷房運転を行うことができる。   As described above, according to the second embodiment, the valve device control unit 21 determines whether the humidifying device 26 is performing a humidifying operation, and opens and closes the first valve device 8a and the second valve device 20. For example, when the humidifying operation is being performed, the evaporating temperature is controlled via the expansion device 23 so that the dehumidification is not necessary. Efficient cooling operation with a high sensible heat ratio can be performed under a certain environment.

実施の形態3.
図8は、実施の形態3の空気調和装置における全体構成を示す冷媒回路図である。次に、この発明の実施の形態3を図8に基づいて説明する。図8において、図1と同一または相当部分には同一符号を付して説明を省略する。また、冷暖同時運転(冷房主体運転及び暖房主体運転)時における冷媒の流れは、上述した実施の形態1と同じであるため説明は省略する。
Embodiment 3 FIG.
FIG. 8 is a refrigerant circuit diagram illustrating the overall configuration of the air-conditioning apparatus according to Embodiment 3. Next, Embodiment 3 of the present invention will be described with reference to FIG. In FIG. 8, the same or corresponding parts as in FIG. In addition, since the refrigerant flow during the cooling and heating simultaneous operation (cooling main operation and heating main operation) is the same as that in the first embodiment, description thereof is omitted.

実施の形態3においては、弁装置制御部21及び絞り装置制御部24について説明する。ここで、本実施の形態では、室内機B、Cが冷房運転、室内機Dが暖房運転を行う場合について説明する。弁装置制御部21は、少なくとも1台の室内機が暖房運転を行っているか否かを判断する。例えば、第1の弁装置8a及び第2の弁装置20を閉としている室内機側の第1の接続配管が1つでもあれば、暖房運転が行われていると判断する。例えば、室内機Dが暖房運転を行っている場合には、室内機側の第1の接続配管6b、6cに接続された第1の弁装置8aを閉、第2の弁装置20を開とする制御を行い、絞り装置23を経由させて室内機B、Cの室内機側熱交換器5における蒸発温度が高くなるように制御する。一方、どの室内機も暖房運転を行っていない場合には、室内機側の第1の接続配管6b、6cに接続された第1の弁装置8aを開、第2の弁装置20を閉とし、絞り装置23を経由させず、室内機B、Cの室内機側熱交換器5における蒸発温度が低くなるようにする。   In the third embodiment, the valve device control unit 21 and the expansion device control unit 24 will be described. Here, in the present embodiment, a case where the indoor units B and C perform the cooling operation and the indoor unit D performs the heating operation will be described. The valve device control unit 21 determines whether or not at least one indoor unit is performing the heating operation. For example, if there is at least one first connection pipe on the indoor unit side that closes the first valve device 8a and the second valve device 20, it is determined that the heating operation is being performed. For example, when the indoor unit D performs the heating operation, the first valve device 8a connected to the first connection pipes 6b and 6c on the indoor unit side is closed, and the second valve device 20 is opened. The evaporating temperature in the indoor unit side heat exchanger 5 of the indoor units B and C is controlled to be higher through the expansion device 23. On the other hand, when none of the indoor units is performing the heating operation, the first valve device 8a connected to the first connection pipes 6b and 6c on the indoor unit side is opened, and the second valve device 20 is closed. The evaporating temperature in the indoor unit side heat exchanger 5 of the indoor units B and C is lowered without passing through the expansion device 23.

少なくとも1台の室内機が暖房運転をしているということは冬期ということが言える。したがってこの状態で他方の室内機が冷房運転を行う場合には、蒸発温度を高く制御して顕熱比の大きい運転を実施して、冬期の顕負荷割合が大きい空調負荷に合致した運転が行える。このとき、絞り装置制御部24により絞り装置23の弁開度を任意に制御することによって、絞り装置23を経由して冷媒が流通するときの圧力損失を任意に制御できるので、各室内機側熱交換器5の蒸発温度を個々に、かつ任意の温度に高く制御することが可能となる。   It can be said that winter is when at least one indoor unit is in heating operation. Therefore, when the other indoor unit performs a cooling operation in this state, an operation with a high sensible heat ratio is performed by controlling the evaporation temperature to be high, and an operation that matches the air conditioning load with a large sensible load ratio in winter can be performed. . At this time, by arbitrarily controlling the valve opening degree of the expansion device 23 by the expansion device control unit 24, the pressure loss when the refrigerant flows through the expansion device 23 can be arbitrarily controlled. It is possible to control the evaporation temperature of the heat exchanger 5 individually and arbitrarily to an arbitrary temperature.

以上のように実施の形態3によれば、弁装置制御部21が、室内機が暖房運転しているか否かを判断し、第1の弁装置8a、第2の弁装置20の開閉の切り替え制御を行うようにし、例えば少なくとも1台の室内機において暖房運転が行われている場合には、他の室内機において冷房運転を行う場合には、その室内機側の第1の接続配管に接続された第1の弁装置8aを閉、第2の弁装置20を開とする制御を行って絞り装置23を経由させ、蒸発温度が高くなるように制御するようにしたので、例えば冬期のような顕熱負荷の大きい環境下において、他の室内機において冷房運転を行う場合に、顕熱比の高い、効率のよい冷房運転を行うことができる。   As described above, according to the third embodiment, the valve device control unit 21 determines whether the indoor unit is in a heating operation, and switches between opening and closing of the first valve device 8a and the second valve device 20. For example, when heating operation is performed in at least one indoor unit, when cooling operation is performed in another indoor unit, it is connected to the first connection pipe on the indoor unit side The first valve device 8a thus closed is closed and the second valve device 20 is opened to control the evaporating temperature through the expansion device 23. For example, in the winter season In an environment with a large sensible heat load, when performing a cooling operation in another indoor unit, it is possible to perform an efficient cooling operation with a high sensible heat ratio.

実施の形態4.
図9は、実施の形態4の空気調和装置における全体構成を示す冷媒回路図である。次に、この発明の実施の形態4を図9に基づいて説明する。図9において、図1と同一または相当部分には同一符号を付して説明を省略する。図9において、外気導入口27は室内機Dに外気を導入するために設けられているものである。ここで、冷暖同時運転(冷房主体運転及び暖房主体運転)時における冷媒の流れは、上述した実施の形態1と同じであるため説明は省略する。
Embodiment 4 FIG.
FIG. 9 is a refrigerant circuit diagram illustrating an overall configuration of the air-conditioning apparatus according to Embodiment 4. Next, a fourth embodiment of the present invention will be described with reference to FIG. In FIG. 9, the same or corresponding parts as in FIG. In FIG. 9, the outside air introduction port 27 is provided for introducing outside air into the indoor unit D. Here, the flow of the refrigerant during the simultaneous cooling and heating operation (cooling main operation and heating main operation) is the same as that in the above-described first embodiment, and thus description thereof is omitted.

実施の形態4においては、弁装置制御部21及び絞り装置制御部24について説明する。ここで、本実施の形態では、室内機B、Cが冷房運転、室内機Dが暖房運転を行う場合について説明する。弁装置制御部21は、室内機Dが暖房運転を行っているか否かを判断する。例えば、室内機側の第1の接続配管6dに接続された第1の弁装置8a及び第2の弁装置20が閉であれば、室内機Dが暖房運転しているものと判断する。室内機Dが暖房運転を行っている場合には、室内機側の第1の接続配管6b、6cに接続された第1の弁装置8aを閉、第2の弁装置20を開とする制御を行い、室内機B、Cの室内機側熱交換器5における蒸発温度が高くなるように制御する。一方、室内機Dが暖房運転を行っていない場合には、室内機側の第1の接続配管6b、6cに接続された第1の弁装置8aを開、第2の弁装置20を閉とし、絞り装置23を経由させず、室内機B、Cの室内機側熱交換器5における蒸発温度が低くなるようにする。   In the fourth embodiment, the valve device control unit 21 and the expansion device control unit 24 will be described. Here, in the present embodiment, a case where the indoor units B and C perform the cooling operation and the indoor unit D performs the heating operation will be described. The valve device control unit 21 determines whether or not the indoor unit D is performing a heating operation. For example, if the first valve device 8a and the second valve device 20 connected to the first connection pipe 6d on the indoor unit side are closed, it is determined that the indoor unit D is in the heating operation. When the indoor unit D performs a heating operation, the first valve device 8a connected to the first connection pipes 6b and 6c on the indoor unit side is closed and the second valve device 20 is opened. And the evaporating temperature in the indoor unit side heat exchanger 5 of the indoor units B and C is controlled to be high. On the other hand, when the indoor unit D is not performing the heating operation, the first valve device 8a connected to the first connection pipes 6b and 6c on the indoor unit side is opened, and the second valve device 20 is closed. The evaporating temperature in the indoor unit side heat exchanger 5 of the indoor units B and C is lowered without passing through the expansion device 23.

外気を導入している室内機Dが暖房運転をしているということは外気温度が低い状態であり、冬期であると考えられるからである。したがって、この状態で他の室内機が冷房運転を行う場合には、蒸発温度を高く制御し、顕熱比の大きい冷房運転を実施して、冬期のような顕熱負荷の割合が大きい冷房負荷に合致した運転が行える。逆に外気を導入している室内機Dが暖房運転をしていないということは外気温度が高い状態であり、夏期であると考えられる。したがって、この状態で他の室内機が冷房運転を行う場合には、蒸発温度が低くなるようにして顕熱比の小さい冷房運転を実施して、夏期のような潜熱負荷の割合が大きい冷房負荷に合致した運転が行える。このとき、絞り装置制御部24により絞り装置23の弁開度を任意に制御することによって、絞り装置23を経由して冷媒が流通するときの圧力損失を任意に制御できるので、各室内機側熱交換器5の蒸発温度を個々に、かつ任意の温度に高く制御することが可能となる。   This is because the indoor unit D that introduces outside air is in a heating operation because the outside air temperature is low and it is considered to be in winter. Therefore, when other indoor units perform cooling operation in this state, the evaporating temperature is controlled to be high, the cooling operation with a large sensible heat ratio is performed, and the cooling load with a large ratio of the sensible heat load as in the winter season. Can be operated in accordance with. Conversely, the fact that the indoor unit D that introduces outside air is not in a heating operation is a state in which the outside air temperature is high and is considered to be summer. Therefore, when other indoor units perform cooling operation in this state, cooling operation with a low sensible heat ratio is performed so that the evaporation temperature is low, and a cooling load with a large latent heat load ratio such as in summer is performed. Can be operated in accordance with. At this time, by arbitrarily controlling the valve opening degree of the expansion device 23 by the expansion device control unit 24, the pressure loss when the refrigerant flows through the expansion device 23 can be arbitrarily controlled. It is possible to control the evaporation temperature of the heat exchanger 5 individually and arbitrarily to an arbitrary temperature.

実施の形態5.
上述の実施の形態では、冷房時において、各室内機と第1の接続配管6に接続される室内機側の第1の接続配管を2系統にし、一方の配管にできる限り圧力損失が生じないようにしている。しかし、例えば、配管等の都合で1系統にしかできない場合であっても、圧力損失は生じるものの、絞り装置23の絞りを全開にすることで代用することもできる。
Embodiment 5. FIG.
In the above-described embodiment, at the time of cooling, the indoor unit side first connection pipe connected to each indoor unit and the first connection pipe 6 is made into two systems, and pressure loss does not occur in one pipe as much as possible. I am doing so. However, for example, even when only one system can be used due to the circumstances of piping or the like, although pressure loss occurs, it can be substituted by fully opening the throttling device 23.

この発明の実施の形態1を示す空気調和装置の全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the air conditioning apparatus which shows Embodiment 1 of this invention. 図1に示す空気調和装置の冷房又は暖房のみの運転動作状態図である。It is a driving | running operation state figure of only air_conditioning | cooling or heating of the air conditioning apparatus shown in FIG. 図1に示す空気調和装置の暖房主体の運転動作状態図である。It is a driving | running operation state figure of the heating main body of the air conditioning apparatus shown in FIG. 図1に示す空気調和装置の冷房主体の運転動作状態図である。It is a driving | running operation state figure of the cooling main body of the air conditioning apparatus shown in FIG. 冷房運転時の室内機側熱交換器の蒸発温度と顕熱能力の関係を示す図である。It is a figure which shows the relationship between the evaporation temperature of the indoor unit side heat exchanger at the time of air_conditionaing | cooling operation, and sensible heat capability. この発明の実施の形態2を示す空気調和装置の全体構成図である。It is a whole block diagram of the air conditioning apparatus which shows Embodiment 2 of this invention. 冷房運転時の室内機側熱交換器の蒸発温度と除湿量の関係を示す図である。It is a figure which shows the relationship between the evaporation temperature of the indoor unit side heat exchanger at the time of air_conditionaing | cooling operation, and dehumidification amount. この発明の実施の形態3を示す空気調和装置の全体構成図である。It is a whole block diagram of the air conditioning apparatus which shows Embodiment 3 of this invention. この発明の実施の形態4を示す空気調和装置の全体構成図である。It is a whole block diagram of the air conditioning apparatus which shows Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 圧縮機、2 四方切換弁、3 熱源機側熱交換器、4 アキュムレータ、5 室内機側熱交換器、6 第1の接続配管、6a、6b、6c 室内機側の第1の接続配管、7 第2の接続配管、7a、7b、7c 室内機側の第2の接続配管、8a 第1の弁装置、8b 第3の弁装置、9 流量制御装置、10 第1の分岐部、11 第2の分岐部、12 気液分離装置、13 第2の流量制御装置、14 バイパス配管、15 第3の流量制御装置、16 第2の熱交換部、17 第1の逆止弁、17A、18A 会合部、18 第2の逆止弁、19 第1の熱交換部、20 第2の弁装置、21 弁装置制御部、22 蒸発温度制御装置、23 絞り装置、24 絞り装置制御部、25 外気温度検出装置、26 加湿装置、27 外気導入口、28 蒸発温度制御部、32 第3の逆止弁、33 第4の逆止弁、34 第5の逆止弁、35 第6の逆止弁、45 第1の圧力検出器、46 第2の圧力検出器、A 熱源機、B、C、D 室内機、E 中継機。
DESCRIPTION OF SYMBOLS 1 Compressor, 2 way switching valve, 3 Heat source machine side heat exchanger, 4 Accumulator, 5 Indoor unit side heat exchanger, 6 1st connection piping, 6a, 6b, 6c 1st connection piping on the indoor unit side, 7 Second connection piping, 7a, 7b, 7c Second connection piping on the indoor unit side, 8a First valve device, 8b Third valve device, 9 Flow control device, 10 First branch, 11th 2 branch portions, 12 gas-liquid separator, 13 second flow control device, 14 bypass piping, 15 third flow control device, 16 second heat exchange portion, 17 first check valve, 17A, 18A Meeting unit, 18 Second check valve, 19 First heat exchange unit, 20 Second valve device, 21 Valve device control unit, 22 Evaporation temperature control device, 23 Throttle device, 24 Throttle device control unit, 25 Outside air Temperature detection device, 26 humidification device, 27 outside air inlet, 28 evaporation temperature control unit, 32 third Check valve, 33 fourth check valve, 34 fifth check valve, 35 sixth check valve, 45 first pressure detector, 46 second pressure detector, A heat source machine, B, C, D Indoor unit, E Repeater.

Claims (6)

室内機側熱交換器をそれぞれ有し、冷暖房運転を行う複数の室内機を有する空気調和装置において、
室外の外気温度を検出する室外気温度検出装置と、
冷房運転している前記室内機の前記室内機側熱交換器からの冷媒の流量又は圧力を変化させる蒸発温度制御装置と、
前記室外の外気温度に基づいて、前記蒸発温度制御装置に前記冷媒の流量又は圧力を変化させ、前記室内機側熱交換器における前記冷媒の蒸発温度を制御する蒸発温度制御部とを備えることを特徴とする空気調和装置。
In the air conditioner having a plurality of indoor units each having an indoor unit side heat exchanger and performing air conditioning operation,
An outdoor temperature detection device for detecting outdoor outdoor temperature,
An evaporation temperature control device that changes the flow rate or pressure of the refrigerant from the indoor unit-side heat exchanger of the indoor unit that is performing cooling operation;
An evaporating temperature control unit that controls the evaporating temperature of the refrigerant in the indoor unit heat exchanger by changing the flow rate or pressure of the refrigerant in the evaporating temperature control device based on the outdoor outside air temperature. An air conditioner characterized.
室内機側熱交換器をそれぞれ有する複数の室内機のうち、加湿運転を行う加湿装置を有する室内機が少なくとも1台含まれた空気調和装置において、
冷房運転している前記室内機の前記室内機側熱交換器からの冷媒の流量又は圧力を変化させる蒸発温度制御装置と、
前記加湿装置による加湿運転が行われているか否かに基づいて、前記蒸発温度制御装置に前記の流量又は圧力を変化させ、冷房運転している室内機の前記室内機側熱交換器における前記冷媒の蒸発温度を制御する蒸発温度制御部と
を備えることを特徴とする空気調和装置。
Among the plurality of indoor units each having an indoor unit side heat exchanger, in an air conditioner including at least one indoor unit having a humidifying device that performs a humidifying operation,
An evaporation temperature control device that changes the flow rate or pressure of the refrigerant from the indoor unit-side heat exchanger of the indoor unit that is performing cooling operation;
The refrigerant in the indoor unit-side heat exchanger of the indoor unit that is performing the cooling operation by changing the flow rate or pressure in the evaporation temperature control device based on whether or not the humidifying operation by the humidifier is performed. An air conditioning apparatus comprising: an evaporation temperature control unit that controls the evaporation temperature of the air.
室内機側熱交換器をそれぞれ有し、冷暖房運転を行う複数の室内機を有する空気調和装置において、
冷房運転している前記室内機の前記室内機側熱交換器における冷媒の流量又は圧力を変化させる蒸発温度制御装置と、
前記複数の室内機の少なくとも1の室内機が暖房運転を行っているか否かに基づいて、前記蒸発温度制御装置に前記冷媒の流量又は圧力を変化させ、冷房運転している室内機の前記室内機側熱交換器における前記冷媒の蒸発温度を制御する蒸発温度制御部と
を備えることを特徴とする空気調和装置。
In the air conditioner having a plurality of indoor units each having an indoor unit side heat exchanger and performing air conditioning operation,
An evaporation temperature control device that changes the flow rate or pressure of the refrigerant in the indoor unit-side heat exchanger of the indoor unit that is performing cooling operation;
Based on whether or not at least one indoor unit of the plurality of indoor units is performing a heating operation, the flow rate or pressure of the refrigerant is changed in the evaporation temperature control device, and the indoor unit is performing a cooling operation. An air conditioner comprising: an evaporation temperature control unit that controls an evaporation temperature of the refrigerant in the machine-side heat exchanger.
前記複数の室内機の少なくとも1の室内機が暖房運転を行っているか否かに基づく代わりに、前記複数の室内機のうち、室外の外気と冷媒との熱交換を行う室内機側熱交換器を有する室内機が暖房運転を行っているか否かに基づいて、前記蒸発温度制御部は前記蒸発温度制御装置に前記冷媒の流量又は圧力を変化させることを特徴とする請求項3記載の空気調和装置。   An indoor unit side heat exchanger that performs heat exchange between outdoor air and refrigerant out of the plurality of indoor units, instead of based on whether or not at least one of the plurality of indoor units is performing a heating operation. The air conditioning according to claim 3, wherein the evaporating temperature control unit causes the evaporating temperature control device to change the flow rate or pressure of the refrigerant based on whether or not the indoor unit having a heating operation is performed. apparatus. 前記空気調和装置は、
圧縮機と、該圧縮機から吐出された冷媒の流路を切り換える切換弁と、該切換弁に接続された熱源機側熱交換器とを有する1台の熱源機、
前記室内機側熱交換器と、前記室内機側熱交換器に接続された流量制御装置とを有する複数台の室内機及び
前記熱源機と前記各室内機とを第1及び第2の接続配管を介して接続し、各室内機にあわせて前記第1の接続配管側の前記冷媒の流路上に設けられる前記蒸発温度制御装置を有する第1の分岐部と、前記各室内機側熱交換器を前記第2の接続配管に接続し得る第2の分岐部からなる中継機により冷凍サイクルを構成することを特徴とする請求項1〜4のいずれかに記載の空気調和装置。
The air conditioner is
One heat source machine having a compressor, a switching valve for switching the flow path of the refrigerant discharged from the compressor, and a heat source machine side heat exchanger connected to the switching valve,
A plurality of indoor units having the indoor unit side heat exchanger and a flow rate control device connected to the indoor unit side heat exchanger, and the first and second connecting pipes connecting the heat source unit and the indoor units. A first branch section having the evaporating temperature control device provided on the refrigerant flow path on the first connection pipe side in accordance with each indoor unit, and each indoor unit side heat exchanger The air conditioning apparatus according to any one of claims 1 to 4, wherein a refrigeration cycle is configured by a relay machine including a second branch portion that can be connected to the second connection pipe.
前記蒸発温度制御装置は、
前記冷媒の流量を変化させることができる絞り装置と、
前記第1の接続配管の、前記絞り装置が設けられた配管と設けられていない配管との間で前記冷媒の流路を切り替える弁装置と
で構成することを特徴とする請求項5記載の空気調和装置。
The evaporation temperature control device includes:
A throttle device capable of changing the flow rate of the refrigerant;
6. The air according to claim 5, wherein the first connecting pipe is constituted by a valve device that switches a flow path of the refrigerant between a pipe provided with the throttle device and a pipe not provided with the throttle device. Harmony device.
JP2005344995A 2005-11-30 2005-11-30 Air conditioner Expired - Fee Related JP4785508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005344995A JP4785508B2 (en) 2005-11-30 2005-11-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005344995A JP4785508B2 (en) 2005-11-30 2005-11-30 Air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010165892A Division JP5279768B2 (en) 2010-07-23 2010-07-23 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007147203A true JP2007147203A (en) 2007-06-14
JP4785508B2 JP4785508B2 (en) 2011-10-05

Family

ID=38208806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344995A Expired - Fee Related JP4785508B2 (en) 2005-11-30 2005-11-30 Air conditioner

Country Status (1)

Country Link
JP (1) JP4785508B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009105516A3 (en) * 2008-02-20 2009-11-12 Liebert Corporation Improved humidity control for multiple unit a/c system installations
CN101893287A (en) * 2010-08-13 2010-11-24 林开生 Constant-temperature constant-humidity air conditioner with heat pump type dehumidifying device and control system thereof
JP2011075179A (en) * 2009-09-30 2011-04-14 Daikin Industries Ltd Air conditioning system
JP5188571B2 (en) * 2008-04-30 2013-04-24 三菱電機株式会社 Air conditioner
WO2013102953A1 (en) * 2012-01-05 2013-07-11 三菱電機株式会社 Air-conditioning device
JP7370505B1 (en) 2023-04-24 2023-10-27 三菱電機株式会社 air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107121991B (en) * 2017-05-31 2019-02-15 合肥亿迈杰软件有限公司 A kind of intelligent humidity control method based on region division
CN107120809B (en) * 2017-06-13 2019-12-17 珠海格力电器股份有限公司 control method and device of air conditioning system and air conditioning system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122458A (en) * 1990-09-13 1992-04-22 Sanyo Electric Co Ltd Temperature and humidity control device
JPH05215437A (en) * 1992-01-23 1993-08-24 Matsushita Refrig Co Ltd Multi-chamber type air conditioner
JPH0712424A (en) * 1993-06-21 1995-01-17 Mitsubishi Electric Corp Air conditioner
JPH11304285A (en) * 1998-04-17 1999-11-05 Hitachi Ltd Air conditioner
JP2000121129A (en) * 1998-10-15 2000-04-28 Hitachi Ltd Air conditioner
JP2000146315A (en) * 1998-11-16 2000-05-26 Sanyo Electric Co Ltd Refrigerating device and air conditioner
JP2002022205A (en) * 2000-07-03 2002-01-23 Daikin Ind Ltd Air-conditioning system
WO2004040208A1 (en) * 2002-10-30 2004-05-13 Mitsubishi Denki Kabushiki Kaisha Air conditioner
JP2004324947A (en) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp Air conditioning system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122458A (en) * 1990-09-13 1992-04-22 Sanyo Electric Co Ltd Temperature and humidity control device
JPH05215437A (en) * 1992-01-23 1993-08-24 Matsushita Refrig Co Ltd Multi-chamber type air conditioner
JPH0712424A (en) * 1993-06-21 1995-01-17 Mitsubishi Electric Corp Air conditioner
JPH11304285A (en) * 1998-04-17 1999-11-05 Hitachi Ltd Air conditioner
JP2000121129A (en) * 1998-10-15 2000-04-28 Hitachi Ltd Air conditioner
JP2000146315A (en) * 1998-11-16 2000-05-26 Sanyo Electric Co Ltd Refrigerating device and air conditioner
JP2002022205A (en) * 2000-07-03 2002-01-23 Daikin Ind Ltd Air-conditioning system
WO2004040208A1 (en) * 2002-10-30 2004-05-13 Mitsubishi Denki Kabushiki Kaisha Air conditioner
JP2004324947A (en) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp Air conditioning system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009105516A3 (en) * 2008-02-20 2009-11-12 Liebert Corporation Improved humidity control for multiple unit a/c system installations
CN101952665A (en) * 2008-02-20 2011-01-19 利厄伯特公司 Be used for the improvement humidity control of a plurality of unit air handling system device
US7987023B2 (en) 2008-02-20 2011-07-26 Liebert Corporation Humidity control for multiple unit A/C system installations
JP5188571B2 (en) * 2008-04-30 2013-04-24 三菱電機株式会社 Air conditioner
US8820106B2 (en) 2008-04-30 2014-09-02 Mitsubishi Electric Corporation Air conditioning apparatus
JP2011075179A (en) * 2009-09-30 2011-04-14 Daikin Industries Ltd Air conditioning system
CN101893287A (en) * 2010-08-13 2010-11-24 林开生 Constant-temperature constant-humidity air conditioner with heat pump type dehumidifying device and control system thereof
WO2013102953A1 (en) * 2012-01-05 2013-07-11 三菱電機株式会社 Air-conditioning device
US9719691B2 (en) 2012-01-05 2017-08-01 Mitsubishi Electric Corporation Air-conditioning apparatus
JP7370505B1 (en) 2023-04-24 2023-10-27 三菱電機株式会社 air conditioner

Also Published As

Publication number Publication date
JP4785508B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4675810B2 (en) Air conditioner
JP4785508B2 (en) Air conditioner
JP6223469B2 (en) Air conditioner
JPH04295568A (en) Air-conditioning machine, indoor unit for said air-conditioning machine and operating method of air-conditioning machine
JP4553761B2 (en) Air conditioner
JPH0754217B2 (en) Air conditioner
JP5734205B2 (en) Air conditioner
JPWO2019053876A1 (en) Air conditioner
JPWO2012085965A1 (en) Air conditioner
KR20190088692A (en) Method for controlling multi-type air conditioner
JP5872052B2 (en) Air conditioner
JP5279768B2 (en) Air conditioner
JP2004317091A (en) Air conditioner, refrigerant circuit of air conditioner and control method for refrigerant circuit in air conditioner
JP2522361B2 (en) Air conditioner
JP2005291553A (en) Multiple air conditioner
CN114719353B (en) Constant temperature and humidity air conditioner and control method thereof
JP2004108715A (en) Air conditioner for many rooms
JP2004324947A (en) Air conditioning system
KR20190088693A (en) Method for controlling multi-type air conditioner
WO2008114952A1 (en) Multi-unit air conditioning system and controlling method for the same
JP4020705B2 (en) Heat pump and dehumidifying air conditioner
US11913680B2 (en) Heat pump system
US20220090816A1 (en) Multi-air conditioner for heating, cooling, and ventilation
JP7493126B2 (en) Air conditioners
JP2522371B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4785508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees