JP2007146786A - Vane pump - Google Patents

Vane pump Download PDF

Info

Publication number
JP2007146786A
JP2007146786A JP2005344556A JP2005344556A JP2007146786A JP 2007146786 A JP2007146786 A JP 2007146786A JP 2005344556 A JP2005344556 A JP 2005344556A JP 2005344556 A JP2005344556 A JP 2005344556A JP 2007146786 A JP2007146786 A JP 2007146786A
Authority
JP
Japan
Prior art keywords
pump
chamber
support hole
fluid pressure
cam ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005344556A
Other languages
Japanese (ja)
Inventor
Yoshihiro Tsukahara
義弘 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp filed Critical Showa Corp
Priority to JP2005344556A priority Critical patent/JP2007146786A/en
Publication of JP2007146786A publication Critical patent/JP2007146786A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Power Steering Mechanism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that muddy water resides in a support hole of a pump casing for a pump shaft in a vane pump. <P>SOLUTION: In the vane pump 10 having the pump shaft 1 supported in the support hole 15A of the pump casing 11 and having a pulley 80 fixed on a projection part 12A projecting outward from the support hole 15A of the pump shaft 12, an inner surface 92 of a hole opening part 91 facing an outside of the support hole 15A is formed in a taper shape expanding outward. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は自動車のパワーステアリング装置等に用いられて好適なベーンポンプに関する。   The present invention relates to a vane pump suitable for use in an automobile power steering device or the like.

ベーンポンプとして、特許文献1に記載の如く、ポンプケーシングの支持孔にポンプ軸を支持し、ポンプ軸の上記支持孔から外方に突出する突出部にプーリを固定してなるものがある。
実開平5-24983
As a vane pump, there is a vane pump in which a pump shaft is supported by a support hole of a pump casing, and a pulley is fixed to a protruding portion that protrudes outward from the support hole of the pump shaft, as described in Patent Document 1.
5-24983

特許文献1のベーンポンプは、ポンプケーシングの支持孔から突出しているポンプ軸の突出部にプーリを固定するに際し、ポンプケーシングの支持孔の孔開口部に接近して孔開口部との間に微小隙間を形成する水切り部をプーリに設け、支持孔、ひいてはポンプケーシングの内部の軸受等への泥水の侵入を防止しようとしている。   In the vane pump of Patent Document 1, when the pulley is fixed to the projecting portion of the pump shaft projecting from the support hole of the pump casing, a small gap is provided between the hole opening and the hole opening of the support hole of the pump casing. A draining portion for forming a water is provided in the pulley to prevent the muddy water from entering the support hole, and hence the bearing inside the pump casing.

特許文献1のベーンポンプにあっても、支持孔の孔開口部への泥水の侵入を完全には防止できない。孔開口部に一旦侵入した泥水は支持孔に滞留し、ひいてはポンプケーシングの内部の軸受等に侵入し、各部の錆発生、機械的損傷を引き起こすおそれがある。   Even in the vane pump of Patent Document 1, it is not possible to completely prevent muddy water from entering the opening of the support hole. The muddy water that has once entered the hole opening stays in the support hole and eventually enters the bearings in the pump casing, which may cause rusting and mechanical damage of each part.

本発明の課題は、ベーンポンプにおいて、ポンプ軸のためのポンプケーシングの支持孔に泥水が滞留することを防止することにある。   An object of the present invention is to prevent muddy water from staying in a support hole of a pump casing for a pump shaft in a vane pump.

請求項1の発明は、ポンプケーシングの支持孔にポンプ軸を支持し、ポンプ軸の上記支持孔から外方に突出する突出部にプーリを固定してなるベーンポンプにおいて、前記支持孔の外方に臨む孔開口部の内面を外方に向けて拡開するテーパ状にしたものである。   The invention of claim 1 is a vane pump in which a pump shaft is supported in a support hole of a pump casing, and a pulley is fixed to a protruding portion protruding outward from the support hole of the pump shaft. The inner surface of the hole opening that faces is tapered so as to expand outward.

プーリとポンプケーシングの間から支持孔の孔開口部に侵入した泥水は、孔開口部の外方に向けて拡開するテーパ状内面の勾配に沿って外方へ排出される。これにより、泥水が支持孔に滞留することがなくなり、泥水がポンプケーシングの内部の軸受等に侵入せず、各部の錆発生、機械的損傷を引き起こすこともない。   The muddy water that has entered the hole opening of the support hole from between the pulley and the pump casing is discharged outward along the gradient of the tapered inner surface that expands outward from the hole opening. As a result, the muddy water does not stay in the support holes, and the muddy water does not enter the bearings or the like inside the pump casing, thereby causing no rust and mechanical damage in each part.

図1はベーンポンプを示す断面図、図2は図1のII−II線に沿う断面図、図3はポンプケーシングの支持孔開口部を拡大して示す断面図である。   1 is a cross-sectional view showing a vane pump, FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1, and FIG. 3 is an enlarged cross-sectional view showing a support hole opening of a pump casing.

可変容量型ポンプ10は、自動車の油圧パワーステアリング装置の油圧発生源となるベーンポンプであり、図1、図2に示す如く、ポンプケーシング11に挿入されるポンプ軸12にセレーションにより固定されて回転駆動されるロータ13を有している。ポンプケーシング11は、ポンプハウジング11Aとカバー11Bをボルト14で一体化して構成されている。ポンプ軸12は、ポンプハウジング11Aの支持孔15Aに設けられた軸受16A(ボールベアリング)、軸受16B(ブッシュ)と、カバー11Bの支持孔15Bに設けられた軸受16C(ブッシュ)に支持される。支持孔15Aにはオイルシール16Dが嵌装されている。   The variable displacement pump 10 is a vane pump serving as a hydraulic pressure generation source of a hydraulic power steering device of an automobile. As shown in FIGS. 1 and 2, the variable displacement pump 10 is rotationally driven by being fixed to a pump shaft 12 inserted into a pump casing 11 by serrations. The rotor 13 is provided. The pump casing 11 is configured by integrating a pump housing 11A and a cover 11B with bolts 14. The pump shaft 12 is supported by a bearing 16A (ball bearing) and a bearing 16B (bush) provided in the support hole 15A of the pump housing 11A, and a bearing 16C (bush) provided in the support hole 15B of the cover 11B. An oil seal 16D is fitted in the support hole 15A.

ロータ13は周方向の多数位置のそれぞれに設けた溝13Aにベーン17を収容し、各ベーン17を溝13Aに沿う半径方向に移動可能としている。   The rotor 13 accommodates the vanes 17 in grooves 13A provided at a plurality of positions in the circumferential direction, and the vanes 17 can be moved in the radial direction along the grooves 13A.

ポンプケーシング11のポンプハウジング11Aの嵌装孔20には、プレッシャプレート18、アダプタリング19が積層状態で嵌着され、これらは後述する支点ピン21によって周方向に位置決めされた状態でカバー11Bにより側方から固定保持されている。支点ピン21の一端はカバー11Bに装着固定されている。   In the fitting hole 20 of the pump housing 11A of the pump casing 11, a pressure plate 18 and an adapter ring 19 are fitted in a laminated state, and these are positioned on the side by the cover 11B while being positioned in a circumferential direction by a fulcrum pin 21 described later. It is fixed and held from one side. One end of the fulcrum pin 21 is attached and fixed to the cover 11B.

ポンプケーシング11のポンプハウジング11Aに固定されている上述のアダプタリング19にはカムリング22が嵌装されている。カムリング22は、ロータ13とある偏心量をもってロータ13を囲み、プレッシャプレート18とカバー11Bの間で、ロータ13の外周部との間にポンプ室23を形成する。そして、ポンプ室23のロータ回転方向上流側の吸込領域には、カバー11Bに設けた吸込ポート24が開口し、この吸込ポート24にはハウジング11A、カバー11Bに設けた吸込通路(ドレン通路)25Aを介してポンプ10の吸込口26が連通せしめられている。他方、ポンプ室23のロータ回転方向下流側の吐出領域には、プレッシャプレート18に設けた吐出ポート27が開口し、この吐出ポート27にはハウジング11Aに設けた高圧力室28A、吐出通路28Bを介してポンプ10の吐出口29が連通せしめられている。   A cam ring 22 is fitted on the adapter ring 19 fixed to the pump housing 11 </ b> A of the pump casing 11. The cam ring 22 surrounds the rotor 13 with a certain amount of eccentricity with the rotor 13, and forms a pump chamber 23 between the pressure plate 18 and the cover 11 </ b> B and the outer periphery of the rotor 13. A suction port 24 provided in the cover 11B is opened in the suction region on the upstream side in the rotor rotation direction of the pump chamber 23. The suction port 24 has a suction passage (drain passage) 25A provided in the housing 11A and the cover 11B. The suction port 26 of the pump 10 is communicated with each other. On the other hand, a discharge port 27 provided in the pressure plate 18 opens in a discharge region downstream of the pump chamber 23 in the rotor rotation direction. The discharge port 27 has a high pressure chamber 28A and a discharge passage 28B provided in the housing 11A. The discharge port 29 of the pump 10 is communicated with each other.

これにより、可変容量型ポンプ10にあっては、ポンプ軸12によってロータ13を回転駆動し、ロータ13のベーン17が遠心力でカムリング22に押し付けられて回転するとき、ポンプ室23のロータ回転方向上流側では隣り合うベーン17間とカムリング22とが囲む容積を回転とともに拡大して作動流体を吸込ポート24から吸込み、ポンプ室23のロータ回転方向下流側では隣り合うベーン17間とカムリング22とが囲む容積を回転とともに減縮して作動流体を吐出ポート27から吐出する。   Thus, in the variable displacement pump 10, when the rotor 13 is rotationally driven by the pump shaft 12 and the vane 17 of the rotor 13 is pressed against the cam ring 22 by centrifugal force and rotates, the rotor rotation direction of the pump chamber 23 On the upstream side, the volume surrounded by the adjacent vanes 17 and the cam ring 22 is enlarged as the rotation rotates, and the working fluid is sucked in from the suction port 24. On the downstream side of the pump chamber 23 in the rotor rotation direction, the adjacent vanes 17 and the cam ring 22 The working volume is discharged from the discharge port 27 by reducing the volume enclosed by the rotation.

可変容量型ポンプ10は、図2に示す如く、吐出ポート27のポンプ軸12まわりにおける開口範囲αを、後述する第2流体圧室42の側に角度βだけずらして配置している。   As shown in FIG. 2, the variable displacement pump 10 is arranged such that the opening range α around the pump shaft 12 of the discharge port 27 is shifted by an angle β toward the second fluid pressure chamber 42 described later.

しかるに、可変容量型ポンプ10は、吐出流量制御装置40を有している。
吐出流量制御装置40は、ポンプケーシング11に固定されている上述のアダプタリング19の鉛直最下部に前述の支点ピン21を載置し、カムリング22の鉛直最下部をこの支点ピン21に支持し、カムリング22をアダプタリング19内で揺動変位可能としている。
However, the variable displacement pump 10 has a discharge flow rate control device 40.
The discharge flow rate control device 40 places the aforementioned fulcrum pin 21 on the lowest vertical part of the aforementioned adapter ring 19 fixed to the pump casing 11, and supports the lowest vertical part of the cam ring 22 on this fulcrum pin 21. The cam ring 22 can be oscillated and displaced within the adapter ring 19.

吐出流量制御装置40は、ポンプケーシング11を構成するポンプハウジング11Aにおいて、カムリング22を挟んで後述する第1流体圧室41の反対側に加圧シリンダ50を螺着しOリングを介する密封状態で設け、加圧シリンダ50の油室51に吐出通路28Bから分岐した分岐連通路28Cを連通し、この油室51に挿入したピストン52を、アダプタリング19に設けたピストン孔53を通してカムリング22の外面に衝接している。また、加圧シリンダ50の油室51に付勢手段としてのばね54を配設し、ばね54はピストン52を介してカムリング22をロータ13の外周部との間でポンプ室23の容積(ポンプ容量)を最大とする方向へ付勢している。ピストン52はばね54を収容する空洞を備えた一端閉塞円筒中空体からなる。   In the pump housing 11A constituting the pump casing 11, the discharge flow rate control device 40 is screwed in a pressure cylinder 50 on the opposite side of a first fluid pressure chamber 41 (to be described later) with the cam ring 22 interposed therebetween, in a sealed state via an O-ring. The branch communication passage 28C branched from the discharge passage 28B is communicated with the oil chamber 51 of the pressurizing cylinder 50, and the piston 52 inserted into the oil chamber 51 is passed through the piston hole 53 provided in the adapter ring 19 to the outer surface of the cam ring 22. Struck with. In addition, a spring 54 as an urging means is disposed in the oil chamber 51 of the pressurizing cylinder 50, and the spring 54 has a capacity of the pump chamber 23 (pump) between the cam ring 22 and the outer peripheral portion of the rotor 13 via the piston 52. It is energizing in the direction that maximizes (capacity). The piston 52 is formed of a cylindrical hollow body having one end closed and a cavity for accommodating the spring 54.

尚、アダプタリング19は第1流体圧室41を形成する内周部の一部にカムリング移動規制ストッパ19Aを突状形成され、後述するようにポンプ室23の容積を最大とするカムリング22の移動限を規制される。また、アダプタリング19は後述する第2流体圧室42を形成する内周部の一部にカムリング移動規制ストッパ19Bを突状形成され、後述するようにポンプ室23の容積を最小とするカムリング22の移動限を規制される。   The adapter ring 19 is formed with a cam ring movement restricting stopper 19A in a protruding shape on a part of the inner peripheral portion forming the first fluid pressure chamber 41, and the cam ring 22 moves to maximize the volume of the pump chamber 23 as will be described later. The limit is regulated. Further, the adapter ring 19 has a cam ring movement restricting stopper 19B protruding from a part of an inner peripheral portion forming a second fluid pressure chamber 42 which will be described later, and the cam ring 22 which minimizes the volume of the pump chamber 23 as will be described later. The movement limit is regulated.

また、吐出流量制御装置40は、カムリング22とアダプタリング19との間に第1と第2の流体圧室41、42を形成している。即ち、第1流体圧室41と第2流体圧室42は、カムリング22とアダプタリング19の間で、支点ピン21と、その軸対称位置に設けたシール材43とで分割される。このとき、第1と第2の流体圧室41、42は、カムリング22とアダプタリング19の間の両側方をカバー11Bとプレッシャプレート18により区画され、アダプタリング19の前述したカムリング移動規制ストッパ19A、19Bにカムリング22が衝合したときに、ストッパ19Aの両側に分離される第1流体圧室41同士を連絡する連絡溝、ストッパ19Bの両側に分離される第2流体圧室42同士を連絡する連絡溝をプレッシャプレート18に備える。   In addition, the discharge flow rate control device 40 forms first and second fluid pressure chambers 41 and 42 between the cam ring 22 and the adapter ring 19. That is, the first fluid pressure chamber 41 and the second fluid pressure chamber 42 are divided between the cam ring 22 and the adapter ring 19 by the fulcrum pin 21 and the seal material 43 provided at the axially symmetric position. At this time, the first and second fluid pressure chambers 41 and 42 are partitioned on both sides between the cam ring 22 and the adapter ring 19 by the cover 11B and the pressure plate 18, and the above-described cam ring movement restriction stopper 19A of the adapter ring 19 is provided. , 19B, when the cam ring 22 abuts, the communication groove connecting the first fluid pressure chambers 41 separated on both sides of the stopper 19A, and the second fluid pressure chambers 42 separated on both sides of the stopper 19B are communicated. The pressure plate 18 is provided with a connecting groove.

ここで、前述の加圧シリンダ50の油室51はポンプ10の吐出通路28Bに連通路28Cを介して連通している。これにより、ポンプ10の吐出経路において、ポンプ室23から吐出されてプレッシャプレート18の吐出ポート27、ポンプハウジング11Aの高圧力室28Aを経由して吐出通路28Bに達した圧力流体は、連通路28Cを介して、加圧シリンダ50の周囲の環状溝55A、該加圧シリンダ50の壁面に開口した通路55Bから油室51に充填される。他方、吐出通路28Bにおいて、連通路28Cの分岐部より下流側には主絞り58が設けられる。   Here, the oil chamber 51 of the pressure cylinder 50 described above communicates with the discharge passage 28B of the pump 10 through the communication passage 28C. Thereby, in the discharge path of the pump 10, the pressure fluid discharged from the pump chamber 23 and reaching the discharge passage 28B via the discharge port 27 of the pressure plate 18 and the high pressure chamber 28A of the pump housing 11A is communicated with the communication passage 28C. The oil chamber 51 is filled from the annular groove 55A around the pressure cylinder 50 and the passage 55B opened in the wall surface of the pressure cylinder 50. On the other hand, in the discharge passage 28B, a main throttle 58 is provided downstream of the branch portion of the communication passage 28C.

そして、吐出流量制御装置40は、(1)ポンプ室23の容積を最小とする方向への移動変位をカムリング22に与える第1流体圧室41に、主絞り58の上流側の圧力を後述する切換弁装置60を介して導入し、(2)ポンプ室23の容積を最大とする方向への移動変位をカムリング22に与える第2流体圧室42に、主絞り58の下流側の圧力を吐出通路28Bから分岐連通路28D経由でアダプタリング19のピストン孔53を介して導入し、(3)ポンプ室23の容積を最大とする方向への移動変位をカムリング22に与える加圧シリンダ50の油室51に、主絞り58の上流側の圧力を吐出通路28Bから分岐連通路28C経由で加圧シリンダ50の通路55A、55Bを介して導入する。第1流体圧室41、第2流体圧室42、加圧シリンダ50の油室51に作用する圧力のバランスによって、カムリング22をばね54の付勢力に抗して移動させ、ポンプ室23の容積を変化させてポンプ10の吐出流量を制御する。   Then, the discharge flow rate control device 40 (1) the pressure on the upstream side of the main throttle 58 will be described later in the first fluid pressure chamber 41 that gives the cam ring 22 movement displacement in a direction that minimizes the volume of the pump chamber 23. Introduced via the switching valve device 60, (2) the pressure downstream of the main throttle 58 is discharged to the second fluid pressure chamber 42 which gives the cam ring 22 displacement in the direction that maximizes the volume of the pump chamber 23. The oil in the pressurizing cylinder 50 is introduced from the passage 28B via the branch communication passage 28D through the piston hole 53 of the adapter ring 19 and (3) the cam ring 22 is displaced in the direction in which the volume of the pump chamber 23 is maximized. The pressure on the upstream side of the main throttle 58 is introduced into the chamber 51 from the discharge passage 28B via the branch communication passage 28C and the passages 55A and 55B of the pressure cylinder 50. The cam ring 22 is moved against the urging force of the spring 54 by the balance of pressures acting on the first fluid pressure chamber 41, the second fluid pressure chamber 42, and the oil chamber 51 of the pressurizing cylinder 50. Is controlled to control the discharge flow rate of the pump 10.

ここで、吐出流量制御装置40にあっては、主絞り58の上、下流側の圧力差によって作動し、ポンプ室23からの圧力流体の吐出流量に応じて第1流体圧室41への供給流体圧を制御する切換弁装置60を有する。具体的には、切換弁装置60は、第1流体圧室41に接続された連絡路61と吐出通路28Bの主絞り58より上流側の連絡路67との間に介装され、連絡路61に設けた絞り61Aとの連携により、ポンプ10の低回転域では第1流体圧室41を連絡路67に対して閉じ、高回転域では第1流体圧室41を連絡路67に接続する。   Here, the discharge flow rate control device 40 is operated by a pressure difference between the upstream side and the downstream side of the main throttle 58, and is supplied to the first fluid pressure chamber 41 according to the discharge flow rate of the pressure fluid from the pump chamber 23. A switching valve device 60 for controlling the fluid pressure is provided. Specifically, the switching valve device 60 is interposed between the communication path 61 connected to the first fluid pressure chamber 41 and the communication path 67 on the upstream side of the main throttle 58 of the discharge path 28B. The first fluid pressure chamber 41 is closed with respect to the communication path 67 in the low rotation range of the pump 10, and the first fluid pressure chamber 41 is connected to the communication path 67 in the high rotation range, in cooperation with the throttle 61 </ b> A provided in FIG.

尚、切換弁装置60は、ポンプハウジング11Aに穿設した弁格納孔62にスプリング63、切換弁64を収容し、スプリング63で付勢される切換弁64をポンプハウジング11Aに螺着したキャップ65で担持している。切換弁64は、弁格納孔62に密に摺接する弁体64A、及び切換弁体64Bを備え、弁体64Aの一端側に設けた加圧室66Aに吐出通路28Bの主絞り58より上流側の連絡路67を連通し、切換弁体64Bの他端側に設けたスプリング63が格納されている背圧室66Bに吐出通路28Bの主絞り58より下流側の連絡路68を第2流体圧室42を介して連通している。また、弁体64Aと切換弁体64Bの間のドレン室66Cには前述した吸込通路(ドレン通路)25Aが貫通して形成され、タンクに連絡される。弁体64Aは、前述の連絡路61を開閉可能としている。即ち、ポンプ10の吐出圧力が低い低回転域では、スプリング63の付勢力により切換弁64を図2に示す原位置に設定し、弁体64Aにより加圧室66Aを第1流体圧室41への連絡路61に対して閉じる。ポンプ10の中高回転域では、加圧室66Aに加えられる連絡路67の高圧流体により切換弁64を移動させ、弁体64Aにより加圧室66Aを第1流体圧室41への連絡路61に対して開き、連絡路67から加圧室66Aに加えられている高圧流体を第1流体圧室41に導入する。尚、連絡路67には絞り67Aが設けられ、主絞り58の上流側からの脈動を吸収可能とする。   The switching valve device 60 accommodates a spring 63 and a switching valve 64 in a valve storage hole 62 formed in the pump housing 11A, and a cap 65 in which the switching valve 64 biased by the spring 63 is screwed to the pump housing 11A. It is supported by. The switching valve 64 includes a valve body 64A that is in close sliding contact with the valve storage hole 62, and a switching valve body 64B. The pressurizing chamber 66A provided on one end side of the valve body 64A is upstream of the main throttle 58 of the discharge passage 28B. The communication path 67 is connected to the back pressure chamber 66B in which the spring 63 provided on the other end of the switching valve body 64B is stored, and the communication path 68 downstream of the main throttle 58 of the discharge passage 28B is connected to the second fluid pressure. It communicates through the chamber 42. Further, the above-described suction passage (drain passage) 25A is formed through the drain chamber 66C between the valve body 64A and the switching valve body 64B and communicates with the tank. The valve body 64A is capable of opening and closing the connecting path 61 described above. That is, in the low rotation range where the discharge pressure of the pump 10 is low, the switching valve 64 is set to the original position shown in FIG. 2 by the biasing force of the spring 63, and the pressurizing chamber 66A is moved to the first fluid pressure chamber 41 by the valve body 64A. The communication path 61 is closed. In the middle and high rotation range of the pump 10, the switching valve 64 is moved by the high-pressure fluid in the communication path 67 applied to the pressurizing chamber 66A, and the pressurizing chamber 66A is connected to the first fluid pressure chamber 41 by the valve body 64A. On the other hand, the high-pressure fluid applied to the pressurizing chamber 66 </ b> A from the communication path 67 is introduced into the first fluid pressure chamber 41. The communication path 67 is provided with a throttle 67A so that pulsation from the upstream side of the main throttle 58 can be absorbed.

従って、吐出流量制御装置40を用いたポンプ10の吐出流量特性は以下の如くになる。
(1)ポンプ10の回転数が低い自動車の低速走行域では、ポンプ室23から吐出されて切換弁装置60の加圧室66Aに及ぶ流体の圧力が未だ低く、切換弁64は原位置に位置し、切換弁64は加圧室66Aを第1流体圧室41への連絡路61に対して閉じる。このため、主絞り58の上流側の圧力は第1流体圧室41に供給されず、第2流体圧室42には主絞り58の下流側の圧力が印加され、加圧シリンダ50の油室51には主絞り58の上流側の圧力が印加される。このため、カムリング22は第1流体圧室41と第2流体圧室42の圧力差と加圧シリンダ50のピストン52の押し力とばね54の付勢力によりポンプ室23の容積を最大とする側に維持され、ポンプ10の吐出流量は、回転数に比例して増加する。
Therefore, the discharge flow rate characteristic of the pump 10 using the discharge flow rate control device 40 is as follows.
(1) In a low-speed traveling region of an automobile in which the rotation speed of the pump 10 is low, the pressure of the fluid discharged from the pump chamber 23 and reaching the pressurizing chamber 66A of the switching valve device 60 is still low, and the switching valve 64 is in the original position. The switching valve 64 closes the pressurizing chamber 66A with respect to the communication path 61 to the first fluid pressure chamber 41. For this reason, the pressure on the upstream side of the main throttle 58 is not supplied to the first fluid pressure chamber 41, and the pressure on the downstream side of the main throttle 58 is applied to the second fluid pressure chamber 42. A pressure on the upstream side of the main throttle 58 is applied to 51. For this reason, the cam ring 22 is a side that maximizes the volume of the pump chamber 23 by the pressure difference between the first fluid pressure chamber 41 and the second fluid pressure chamber 42, the pushing force of the piston 52 of the pressurizing cylinder 50, and the biasing force of the spring 54. The discharge flow rate of the pump 10 increases in proportion to the rotation speed.

(2)ポンプ10の回転数の増加により、ポンプ室23から吐出されて切換弁装置60の加圧室66Aに及ぶ流体の圧力が高くなると、切換弁装置60はスプリング63の付勢力に抗して切換弁64を移動させて加圧室66Aを第1流体圧室41への連絡路61に対して開く。これにより、第1流体圧室41の圧力が上がり、カムリング22はポンプ室23の容積を小さくする側に移動していく。従って、ポンプ10の吐出流量は、回転数の増加に対し、回転数の増加による流量増加分と、ポンプ室23の容積減縮による流量減少分とを相殺し、一定の流量を維持する。   (2) When the pressure of the fluid discharged from the pump chamber 23 and reaching the pressurizing chamber 66A of the switching valve device 60 increases due to an increase in the rotation speed of the pump 10, the switching valve device 60 resists the urging force of the spring 63. The switching valve 64 is moved to open the pressurizing chamber 66 </ b> A with respect to the communication path 61 to the first fluid pressure chamber 41. As a result, the pressure in the first fluid pressure chamber 41 increases, and the cam ring 22 moves to the side of reducing the volume of the pump chamber 23. Therefore, the discharge flow rate of the pump 10 maintains a constant flow rate by offsetting the increase in flow rate due to the increase in rotation rate and the decrease in flow rate due to the volume reduction of the pump chamber 23 with respect to the increase in rotation rate.

尚、ポンプ10にあっては、高圧力室28Aと吸込通路(ドレン通路)25Aと、ドレン室66Cの間に、ポンプ吐出側での過大流体圧をリリーフする切換弁としてのリリーフ弁70を有している。また、ポンプ10は、吸込通路25Aからポンプ軸12の軸受15Cに向かう潤滑油供給路71(不図示)をカバー11Bに穿設し、ポンプ軸12の軸受15Bまわりから吸込通路25Bに戻る潤滑油戻り路72をポンプハウジング11Aに穿設してある。   The pump 10 has a relief valve 70 as a switching valve that relieves excessive fluid pressure on the pump discharge side between the high pressure chamber 28A, the suction passage (drain passage) 25A, and the drain chamber 66C. is doing. The pump 10 also has a lubricating oil supply passage 71 (not shown) from the suction passage 25A toward the bearing 15C of the pump shaft 12 formed in the cover 11B, and returns to the suction passage 25B from around the bearing 15B of the pump shaft 12. A return path 72 is formed in the pump housing 11A.

しかるに、ポンプ10は、ポンプケーシング11(ポンプハウジング11A)の支持孔15Aにポンプ軸12を前述の如くに軸受16A(ボールベアリング)、軸受16B(ブッシュ)により支持し、ポンプ軸12の支持孔15Aから外方に突出する突出部12Aにプーリ80を固定し、このプーリ80を介して自動車のエンジン回転力により回転駆動される。プーリ80は、ポンプ軸12の突出部12Aのセレーション部にボス80Aをセレーション結合され、突出部12Aの外端ねじ部に螺着されるナット81によりボス80Aを軸受16Aの内輪との間に挟圧されて固定される。尚、軸受16Aの外輪は、ポンプハウジング11Aの支持孔15Aの内周溝に係着される止め輪82により抜け止め保持される。   Accordingly, the pump 10 supports the pump shaft 12 in the support hole 15A of the pump casing 11 (pump housing 11A) by the bearing 16A (ball bearing) and the bearing 16B (bush) as described above, and the support hole 15A of the pump shaft 12 is supported. A pulley 80 is fixed to a projecting portion 12A projecting outward from the vehicle, and is driven to rotate by the engine rotational force of the automobile through the pulley 80. In the pulley 80, the boss 80A is serration-coupled to the serration portion of the projecting portion 12A of the pump shaft 12, and the boss 80A is sandwiched between the inner ring of the bearing 16A by a nut 81 screwed to the outer end screw portion of the projecting portion 12A. Pressed and fixed. Note that the outer ring of the bearing 16A is retained by a retaining ring 82 that is engaged with the inner peripheral groove of the support hole 15A of the pump housing 11A.

ポンプ10は、図1、図3に示す如く、ポンプケーシング11(ポンプハウジング11A)の支持孔15Aの外方(プーリ80の側壁アームの側)に臨む孔開口部91の内周面92を、外方に向けて拡開するテーパ状にしている。   As shown in FIGS. 1 and 3, the pump 10 has an inner peripheral surface 92 of a hole opening 91 facing the outside of the support hole 15A of the pump casing 11 (pump housing 11A) (side of the side wall arm of the pulley 80). It has a tapered shape that expands outward.

本実施例によれば以下の作用効果を奏する。
プーリ80とポンプケーシング11の間から支持孔15Aの孔開口部91に侵入した泥水は、孔開口部91の外方に向けて拡開するテーパ状内周面92の勾配に沿って外方へ排出される。これにより、泥水が支持孔15Aに滞留することがなくなり、泥水がポンプケーシング11の内部の軸受16A等に侵入せず、各部の錆発生、機械的損傷を引き起こすこともない。
According to the present embodiment, the following operational effects can be obtained.
The muddy water that has entered the hole opening 91 of the support hole 15 </ b> A from between the pulley 80 and the pump casing 11 outwards along the gradient of the tapered inner peripheral surface 92 that expands toward the outside of the hole opening 91. Discharged. As a result, the muddy water does not stay in the support hole 15A, and the muddy water does not enter the bearing 16A or the like inside the pump casing 11, and neither rust is generated nor mechanical damage is caused in each part.

尚、図1のポンプ10は、ポンプケーシング11(ポンプハウジング11A)の支持孔15Aにポンプ軸12を支持するに際し、支持孔15Aに外方から順に軸受16A、オイルシール16D、軸受16Bを設けた。但し、本発明にあっては、支持孔15Aに外方から順にオイルシール、軸受を設けるポンプ10においても、支持孔15Aの外方に臨む孔開口部91の内面92を外方に向けて拡開するテーパ状にすることができる。   In addition, when the pump 10 of FIG. 1 supports the pump shaft 12 in the support hole 15A of the pump casing 11 (pump housing 11A), the support hole 15A is provided with a bearing 16A, an oil seal 16D, and a bearing 16B in order from the outside. . However, in the present invention, even in the pump 10 in which the support hole 15A is provided with an oil seal and a bearing in order from the outside, the inner surface 92 of the hole opening 91 facing the outside of the support hole 15A is expanded outward. It can be tapered to open.

以上、本発明の実施例を図面により詳述したが、本発明の具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like without departing from the gist of the present invention. It is included in the present invention.

図1はベーンポンプを示す断面図である。FIG. 1 is a sectional view showing a vane pump. 図2は図1のII−II線に沿う断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 図3はポンプケーシングの支持孔開口部を拡大して示す断面図である。FIG. 3 is an enlarged cross-sectional view of the support hole opening of the pump casing.

符号の説明Explanation of symbols

10 ポンプ(ベーンポンプ)
11 ポンプケーシング
12 ポンプ軸
12A 突出部
15A 支持孔
80 プーリ
91 孔開口部
92 テーパ状内面
10 Pump (vane pump)
11 Pump casing 12 Pump shaft 12A Protruding portion 15A Support hole 80 Pulley 91 Hole opening 92 Tapered inner surface

Claims (1)

ポンプケーシングの支持孔にポンプ軸を支持し、ポンプ軸の上記支持孔から外方に突出する突出部にプーリを固定してなるベーンポンプにおいて、
前記支持孔の外方に臨む孔開口部の内面を外方に向けて拡開するテーパ状にしたことを特徴とするベーンポンプ。
In a vane pump that supports a pump shaft in a support hole of a pump casing and fixes a pulley to a protruding portion that protrudes outward from the support hole of the pump shaft.
A vane pump characterized in that an inner surface of a hole opening facing the outside of the support hole is tapered so as to expand outward.
JP2005344556A 2005-11-29 2005-11-29 Vane pump Pending JP2007146786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005344556A JP2007146786A (en) 2005-11-29 2005-11-29 Vane pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005344556A JP2007146786A (en) 2005-11-29 2005-11-29 Vane pump

Publications (1)

Publication Number Publication Date
JP2007146786A true JP2007146786A (en) 2007-06-14

Family

ID=38208473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344556A Pending JP2007146786A (en) 2005-11-29 2005-11-29 Vane pump

Country Status (1)

Country Link
JP (1) JP2007146786A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349466A (en) * 2001-03-23 2002-12-04 Tochigi Fuji Ind Co Ltd Bearing unit of supercharger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349466A (en) * 2001-03-23 2002-12-04 Tochigi Fuji Ind Co Ltd Bearing unit of supercharger

Similar Documents

Publication Publication Date Title
JP5044192B2 (en) Variable displacement pump
JP4601764B2 (en) Variable displacement pump
JP4769126B2 (en) Variable displacement pump
US7546895B2 (en) Variable displacement pump
US20070224066A1 (en) Variable displacement vane pump
JP2003021080A (en) Variable displacement pump
CA2359783C (en) Variable capacity type pump
JP2003021077A (en) Variable displacement pump
JP2009133218A (en) Vane pump
JP4787637B2 (en) Variable displacement pump
JP2007247473A (en) Variable displacement pump
JP2007146786A (en) Vane pump
JP2008111362A (en) Variable displacement pump
JP4267768B2 (en) Variable displacement pump
JP4673493B2 (en) Variable displacement pump
JP4574786B2 (en) Variable displacement pump
JP3656205B2 (en) Hydraulic pump for power steering system
JP2007146788A (en) Vane pump
JP2008274778A (en) Variable displacement pump
JP4739912B2 (en) Variable displacement pump
JP4601760B2 (en) Variable displacement pump
JP4275816B2 (en) Variable displacement pump
JP2001065470A (en) Variable displacement pump
JP5543886B2 (en) Vane pump
JP2006275063A (en) Variable displacement pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308