JP2007146259A - Magnetite-iron composite powder for powder magnetic core, its production method and powder magnetic core using the same - Google Patents

Magnetite-iron composite powder for powder magnetic core, its production method and powder magnetic core using the same Download PDF

Info

Publication number
JP2007146259A
JP2007146259A JP2005345370A JP2005345370A JP2007146259A JP 2007146259 A JP2007146259 A JP 2007146259A JP 2005345370 A JP2005345370 A JP 2005345370A JP 2005345370 A JP2005345370 A JP 2005345370A JP 2007146259 A JP2007146259 A JP 2007146259A
Authority
JP
Japan
Prior art keywords
magnetite
powder
iron composite
composite powder
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005345370A
Other languages
Japanese (ja)
Inventor
Yukiko Nakamura
由紀子 中村
Takahiro Kikuchi
孝宏 菊地
Satoshi Goto
聡志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2005345370A priority Critical patent/JP2007146259A/en
Publication of JP2007146259A publication Critical patent/JP2007146259A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder magnetic core of high performance combining excellent magnetic properties and high insulation properties using iron based metal powder having high saturated magnetic flux density Bs; to provide magnetite-iron composite powder as metal powder suitable for realizing the same; and to provide its production method. <P>SOLUTION: The magnetite-iron composite powder for a powder magnetic core comprises magnetite and is characterized by having an average primary particle diameter d of 0.7 to 5.0 μm, specific surface areas of 1.3×d<SP>-0.43</SP>to 4.0×d<SP>-0.58</SP>m<SP>2</SP>/g, and the content of chromium of 0.01 to 3.0 mass%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高周波で用いられるインダクタ素子、トランス等の磁芯材料として用いられる高性能な金属系の複合磁性材料に関し、特に金属磁性粉を成形して得られる圧粉磁芯用の軟磁性材料として用いて好適なマグネタイト−鉄複合粉末、その製造方法およびこれを用いた圧粉磁芯に関するものである。   The present invention relates to a high-performance metallic composite magnetic material used as a magnetic core material for inductor elements, transformers, etc. used at high frequencies, and in particular, a soft magnetic material for a dust core obtained by molding metallic magnetic powder. The present invention relates to a magnetite-iron composite powder suitable for use as a base material, a production method thereof, and a dust core using the same.

電子機器の小型化、駆動周波数の高周波化に伴い、これらの機器の回路部品のひとつとして用いられるインダクタンス部品においては、小型化され、かつ、高周波下で使用される場合においても高効率の磁性素子を実現できるような高性能な磁性材料の使用が求められている。   With the downsizing of electronic equipment and higher driving frequencies, inductance components used as one of the circuit parts of these equipment are miniaturized and highly efficient magnetic elements even when used at high frequencies. Therefore, the use of a high-performance magnetic material capable of realizing the above has been demanded.

このような状況において、高周波の信号用磁芯には、従来よりNi系フェライトや圧粉磁芯が使用されている。ここで、Ni系フェライトは100MHz程度までは品質係数Qが高く、良好な磁気特性を示すが、100MHzを超える高周波下では結晶構造に起因する共鳴現象の影響を受けるため、安定な初透磁率μiおよび品質係数Qを得ることが難しい。一方、上記圧粉磁芯は、金属磁性粉が導体であるために高周波下で渦電流の影響を受けやすく、フェライトと比べて品質係数Qが低く、初透磁率μiの周波数特性も劣るという欠点があった。   Under such circumstances, Ni-based ferrites and dust cores are conventionally used for high-frequency signal magnetic cores. Here, the Ni-based ferrite has a high quality factor Q up to about 100 MHz and exhibits good magnetic characteristics. However, since it is affected by a resonance phenomenon caused by the crystal structure at a high frequency exceeding 100 MHz, the Ni-based ferrite has a stable initial permeability μi. And it is difficult to obtain the quality factor Q. On the other hand, the above-mentioned dust core is susceptible to eddy currents at high frequencies because the metal magnetic powder is a conductor, has a lower quality factor Q than ferrite, and is inferior in frequency characteristics of initial permeability μi. was there.

また、高周波で用いられるDCDCコンバータ用トランスのようなパワー用磁芯には、従来よりMnZnフェライトやNiZn系フェライトが使用されている。しかし、フェライトは素材の電気抵抗が高いため、高周波域でも渦電流損失が小さく、DCDCコンバータの駆動周波数である100k〜3MHzの領域で低いコアロスを示すが、飽和磁束密度Bsが小さいために大電流励磁下では使用できないという問題があった。このため、最近のCPU駆動電圧低下に伴うCPU駆動用DCDCコンバータの大電流化に対応することが難しく、飽和磁束密度Bsの高い圧粉磁芯に対する要求が高まっている。しかしながら、圧粉磁芯は金属磁性粉が導体であるために渦電流損失が大きく、また、成形時の歪が残留してヒステリシス損失が大きいなどの欠点があり、トランスやチョークコイルとして使用するためにはコアロスを低減する必要があった。   Conventionally, MnZn ferrite and NiZn ferrite are used for power magnetic cores such as DCDC converter transformers used at high frequencies. However, since ferrite has a high electric resistance, eddy current loss is small even in a high frequency range, and low core loss is shown in the region of 100 to 3 MHz, which is the driving frequency of the DCDC converter. There was a problem that it could not be used under excitation. For this reason, it is difficult to cope with the increase in current of the DC / DC converter for CPU drive accompanying the recent drop in CPU drive voltage, and the demand for a dust core having a high saturation magnetic flux density Bs is increasing. However, the powder magnetic core has a large eddy current loss because the metal magnetic powder is a conductor, and also has the disadvantage that the distortion during molding remains and the hysteresis loss is large, so it is used as a transformer or choke coil. It was necessary to reduce the core loss.

上記のような問題に対して、本発明者らは、近年の電子機器における駆動周波数の高周波化に対応するためには、より微細な金属粉末の導入が有利との考えのもとに、特願2005−19338及び特願2005−91559において、平均一次粒径が0.7〜3μmのマグネタイト−鉄複合粉末を圧粉磁芯用として使用する技術について出願を行った。   In order to deal with the above problems, the present inventors have considered that the introduction of finer metal powder is advantageous in order to cope with the recent increase in driving frequency in electronic devices. In Japanese Patent Application No. 2005-19338 and Japanese Patent Application No. 2005-91559, an application was filed for a technique of using a magnetite-iron composite powder having an average primary particle size of 0.7 to 3 μm for a dust core.

上記の発明によれば、飽和磁束密度の高い鉄系の圧粉磁芯で電気抵抗を高めることができるため、高い周波数で用いても渦電流損失を抑制することができ、高い初透磁率μiおよび品質係数Qと、低いコアロスを併せ持つことができる圧粉磁芯用マグネタイト−鉄複合粉末およびこれを用いた圧粉磁芯を得ることができる。ここで得られた圧粉磁芯の電気抵抗値は数kΩ程度であり、初透磁率μi、品質係数Qおよびコアロスなどの磁気特性を改善する観点では十分なレベルの電気抵抗値であった。   According to the above invention, since the electric resistance can be increased with an iron-based dust core having a high saturation magnetic flux density, eddy current loss can be suppressed even when used at a high frequency, and high initial permeability μi. In addition, a magnetite-iron composite powder for a dust core that can have both a quality factor Q and a low core loss, and a dust core using the same can be obtained. The electric resistance value of the dust core obtained here was about several kΩ, which was a sufficient level of electric resistance value from the viewpoint of improving the magnetic characteristics such as initial permeability μi, quality factor Q, and core loss.

一方、最近では、電子機器のさらなる小型化を図るために、コイルを磁性粉の中に埋め込んで一体成形し、コイルと磁芯を一体化した構造でインダクタとして用いる用途が増えている。ここで、コイルと磁芯を一体化して用いる場合、部品の安全性を確保するという観点からは、上述のkΩ程度の電気抵抗では不十分であるという問題がある。部品の安全性を確保するという観点からは、圧粉磁芯の電気抵抗としては1MΩ以上の高い絶縁性が不可欠となる。   On the other hand, recently, in order to further reduce the size of electronic devices, the use of an inductor as a structure in which a coil is embedded in a magnetic powder and integrally formed and the coil and a magnetic core are integrated is increasing. Here, when the coil and the magnetic core are used in an integrated manner, there is a problem that the above-described electrical resistance of about kΩ is insufficient from the viewpoint of ensuring the safety of the parts. From the viewpoint of ensuring the safety of the parts, a high insulation property of 1 MΩ or more is essential as the electric resistance of the dust core.

また、従来の巻線型のインダクタ素子においても、最近の高密度実装技術の進展に伴い、他の部品との実装距離が狭まる傾向にあり、部品間の安全性を確保するという観点から、より高い絶縁性が求められている。   In addition, with conventional wire-wound inductor elements, with the recent development of high-density mounting technology, the mounting distance with other components tends to be narrowed, and it is higher from the viewpoint of ensuring safety between components. Insulation is required.

以上のように、圧粉磁芯で高周波信号用および高周波パワー用磁性素子に適した安全性を実現するためには、圧粉磁芯の電気抵抗を1MΩ以上に高めることが必要となる。   As described above, in order to realize the safety suitable for the magnetic element for the high frequency signal and the high frequency power with the dust core, it is necessary to increase the electric resistance of the dust core to 1 MΩ or more.

本発明はこのような事情のもとになされたものであり、本発明は、飽和磁束密度Bsの高い鉄系の金属粉末を用いて優れた磁気特性と高い絶縁性を兼ね備えた高性能な圧粉磁芯を提供すること、および、これを実現するために好適な金属粉末であるマグネタイト−鉄複合粉末およびその製造方法を提供することを目的とする。
The present invention has been made under such circumstances, and the present invention uses an iron-based metal powder having a high saturation magnetic flux density Bs to provide a high-performance pressure having both excellent magnetic properties and high insulating properties. It is an object of the present invention to provide a powder magnetic core, and to provide a magnetite-iron composite powder which is a metal powder suitable for realizing this and a method for producing the same.

圧粉磁芯の電気抵抗を高める手段として、本発明者らは粒子表面の突起の有無に注目し、鉄粉の粒子形状と圧粉磁芯の電気抵抗をはじめとする各種磁気特性および機械的特性との関係について詳細に検討を行った。   As means for increasing the electric resistance of the dust core, the present inventors paid attention to the presence or absence of protrusions on the particle surface, and various magnetic properties and mechanical properties including the particle shape of the iron powder and the electric resistance of the dust core. The relationship with characteristics was examined in detail.

まず、本発明者らが先に出願した上記特願2005−19338または特願2005−91559の方法でマグネタイト−鉄複合粉末を作製し、これに機械処理または化学処理などを加えて、粒子表面の突起状態の異なる種々の磁性粉を作製した。得られた磁性粉と結合樹脂とを混合し、圧縮成形して圧粉磁芯を作製し、電気抵抗および各種磁気特性を調査した。その結果、機械処理または化学処理などの後処理を加えて粒子表面が平滑化した粉体を用いた場合に、圧粉磁芯の電気抵抗が増大する傾向があることを見出した。   First, a magnetite-iron composite powder is prepared by the method of the above-mentioned Japanese Patent Application No. 2005-19338 or Japanese Patent Application No. 2005-91559 filed earlier by the present inventors, and mechanical treatment or chemical treatment is added thereto to Various magnetic powders having different protrusion states were prepared. The obtained magnetic powder and a binder resin were mixed, compression molded to produce a dust core, and electrical resistance and various magnetic properties were investigated. As a result, it was found that the electrical resistance of the dust core tends to increase when a powder whose surface is smoothed by applying post-treatment such as mechanical treatment or chemical treatment is used.

さらに、上記磁性粉の粉体特性と圧粉磁芯の電気抵抗の関係を詳細に調べた結果、磁性粉の比表面積が所定の範囲にある時に、圧粉磁芯の電気抵抗が増大することが判った。   Furthermore, as a result of examining the relationship between the powder characteristics of the magnetic powder and the electrical resistance of the powder magnetic core in detail, the electrical resistance of the powder magnetic core increases when the specific surface area of the magnetic powder is within a predetermined range. I understood.

本発明は、上記の知見に基づきなされたもので以下のような特徴を有する。
[1]マグネタイトを含有し、平均一次粒径dが0.7〜5.0μm、比表面積が1.3×d−0.43〜4.0×d−0.58/g、クロム含有量が0.01〜3.0mass%であることを特徴とする圧粉磁芯用マグネタイト−鉄複合粉末。
[2]上記[1]に記載の圧粉磁芯用マグネタイト−鉄複合粉末の製造方法であって、
マグネタイトを含有し、製造後のマグネタイト−鉄複合粉末のクロム含有量が0.01〜3.0mass%となる量のクロムを含有する酸化鉄を、還元性雰囲気中で還元した後、さらに、酸化性雰囲気中で徐酸化処理して得た粉粒体の粒子同士を衝突させて、前記粉粒体の粒子表面を平滑化することを特徴とする圧粉磁芯用マグネタイト−鉄複合粉末の製造方法。
[3]上記[1]に記載のマグネタイト−鉄複合粉末と、樹脂および/または無機絶縁材料とを混合し、成形してなることを特徴とする圧粉磁芯。
The present invention has been made based on the above findings and has the following characteristics.
[1] Contains magnetite, average primary particle diameter d is 0.7 to 5.0 μm, specific surface area is 1.3 × d −0.43 to 4.0 × d −0.58 m 2 / g, chromium Magnetite-iron composite powder for dust core, characterized in that the content is 0.01 to 3.0 mass%.
[2] A method for producing a magnetite-iron composite powder for a dust core according to [1] above,
An iron oxide containing magnetite and containing chromium in an amount such that the chromium content of the magnetite-iron composite powder after production is 0.01 to 3.0 mass% is reduced in a reducing atmosphere, and then further oxidized. Of a magnetite-iron composite powder for a dust core, wherein particles of particles obtained by gradual oxidation treatment in a neutral atmosphere collide with each other to smooth the particle surface of the particles Method.
[3] A dust core obtained by mixing and molding the magnetite-iron composite powder according to [1] above and a resin and / or an inorganic insulating material.

本発明によれば、飽和磁束密度の高い鉄系の圧粉磁芯で、1MΩ以上の高い電気抵抗と、高い初透磁率μi及び品質係数Qと、低いコアロスを併せ持つ圧粉磁芯、および、このような圧粉磁芯を得るのに好適な圧粉磁芯用マグネタイト−鉄複合粉末およびその製造方法が提供される。   According to the present invention, an iron-based dust core having a high saturation magnetic flux density, a dust core having both a high electrical resistance of 1 MΩ or more, a high initial permeability μi and a quality factor Q, and a low core loss, and A magnetite-iron composite powder for a dust core suitable for obtaining such a dust core and a method for producing the same are provided.

以下、本発明を実施するための最良の形態の一例を説明する。   Hereinafter, an example of the best mode for carrying out the present invention will be described.

まず、本発明のマグネタイト−鉄複合粉末は、平均一次粒径dが0.7〜5.0μm、より好ましくは0.8〜3.0μmの範囲内で良好な高周波磁気特性を示す。平均一次粒径dが0.7μm未満では単磁区構造をとる粒子の頻度が高くなるため、粒子の保持力が著しく増大して圧粉磁芯の初透磁率μi値が低下する。平均一次粒径dが5.0μmを超える範囲では渦電流や磁壁共鳴などの影響を受けるために高周波域での磁気特性が低下する。なお、前記平均一次粒径dは、SEM(走査電子顕微鏡)写真を解析して得た値である。視野の対角線上に10〜20個程度の粒子が入るような倍率でSEM写真を撮影し、対角線上の粒子の個数と倍率から、平均一次粒径dを算出した。   First, the magnetite-iron composite powder of the present invention exhibits good high-frequency magnetic properties when the average primary particle size d is in the range of 0.7 to 5.0 μm, more preferably 0.8 to 3.0 μm. When the average primary particle size d is less than 0.7 μm, the frequency of particles having a single domain structure increases, so that the retention force of the particles is remarkably increased and the initial permeability μi value of the dust core is lowered. In the range where the average primary particle diameter d exceeds 5.0 μm, the magnetic characteristics in the high frequency range are deteriorated due to the influence of eddy current and domain wall resonance. The average primary particle size d is a value obtained by analyzing an SEM (scanning electron microscope) photograph. SEM photographs were taken at a magnification such that about 10 to 20 particles were placed on the diagonal of the visual field, and the average primary particle size d was calculated from the number and magnification of the particles on the diagonal.

また、本発明のマグネタイト−鉄複合粉末は、粉体の比表面積SSA(Specific Surface Area)が1.3×d−0.43〜4.0×d−0.58/gの範囲であることが重要である。ここで、dは、上述のSEM写真を解析して得た平均一次粒径である。 The magnetite-iron composite powder of the present invention has a specific surface area SSA (Specific Surface Area) of 1.3 × d −0.43 to 4.0 × d −0.58 m 2 / g. It is important to be. Here, d is an average primary particle size obtained by analyzing the above SEM photograph.

比表面積SSAが1.3×d−0.43未満では、粒子形状が球状に近いために、圧粉磁芯の機械的強度が弱くなり、実用上においてコイル一体型インダクタとして適さない。また、比表面積SSAが4.0×d−0.58を超えると、粒子表面の平滑度が低下して圧粉磁芯の電気抵抗が1MΩ未満に低下するため好ましくない。 When the specific surface area SSA is less than 1.3 × d −0.43 , the particle shape is nearly spherical, so that the mechanical strength of the dust core becomes weak, which is not practically suitable as a coil integrated inductor. On the other hand, if the specific surface area SSA exceeds 4.0 × d −0.58 , the smoothness of the particle surface decreases and the electrical resistance of the dust core decreases to less than 1 MΩ, which is not preferable.

粉体の比表面積を上記の範囲に制御する方法としては、(1)出発原料である酸化鉄の段階で適当な比表面積の粉体を選定する方法、(2)還元過程で粒子形状を平滑化する効果のある成分、例えばCrなどを予め酸化鉄に添加してから還元処理する方法、(3)還元後の粉体同士を高速で衝突させることで粒子表面を平滑化する方法、(4)還元後の粉体を塩酸等で化学エッチングする方法、などがある。なお、上記(1)の方法は原料が限定され、また、上記(4)の方法は量産性が劣るため、上記(2)および/または(3)の方法を用いることが好適である。   Methods for controlling the specific surface area of the powder within the above range include (1) a method of selecting a powder with an appropriate specific surface area at the stage of iron oxide as a starting material, and (2) smoothing the particle shape during the reduction process. (3) A method of smoothing the particle surface by causing the powders after reduction to collide with each other at a high speed, (4) ) There is a method of chemically etching the reduced powder with hydrochloric acid or the like. Note that the method (1) is limited in raw materials, and the method (4) is inferior in mass productivity. Therefore, it is preferable to use the method (2) and / or (3).

また、本発明のマグネタイト−鉄複合粉末は、クロム含有量が0.01〜3.0mass%であることが重要である。好ましくは、0.05〜0.5mass%である。クロム含有量が0.01mass%未満では、還元処理過程における粒子の平滑化効果が小さいため電気抵抗が増大せず、また、初透磁率μi、品質係数Q、コアロスを改善する効果が小さいため好ましくない。また、クロム含有量が3.0mass%を超えると、却って電気抵抗が低下し、初透磁率μi、品質係数Qおよびコアロスが低下するため、好ましくない。   Moreover, it is important that the magnetite-iron composite powder of the present invention has a chromium content of 0.01 to 3.0 mass%. Preferably, it is 0.05-0.5 mass%. If the chromium content is less than 0.01 mass%, the particle smoothing effect in the reduction process is small, so that the electrical resistance does not increase, and the effect of improving the initial permeability μi, the quality factor Q, and the core loss is small. Absent. On the other hand, if the chromium content exceeds 3.0 mass%, the electrical resistance is lowered, and the initial permeability μi, the quality factor Q, and the core loss are lowered.

ここで、前記本発明のマグネタイト−鉄複合粉末は、マグネタイトを含有し、製造後のマグネタイト−鉄複合粉末のクロム含有量が0.01〜3.0mass%となる量のクロム(Cr)を含有する酸化鉄を出発原料として用い、これを水素或いは窒素などの還元性雰囲気中で還元処理し、さらに、酸素濃度1〜10vol.%の酸化性雰囲気中で表面を徐酸化処理して安定化した後に、炉より取り出すことで製造することができる。   Here, the magnetite-iron composite powder of the present invention contains magnetite and contains chromium (Cr) in an amount such that the chromium content of the magnetite-iron composite powder after production is 0.01 to 3.0 mass%. Iron oxide to be used as a starting material, this was reduced in a reducing atmosphere such as hydrogen or nitrogen, and the surface was stabilized in a oxidizing atmosphere having an oxygen concentration of 1 to 10 vol. Later, it can be manufactured by taking it out of the furnace.

前記原料である酸化鉄中にCrを含有することで圧粉磁芯の電磁気特性が改善する機構については明らかではないが、還元処理過程で酸化鉄(ヘマタイト)が鉄(α-Fe)に変態する際にCrが存在すると粒子形状が丸みを帯び、かつ、粒度分布が均一化する傾向があることから、粒子表面の平滑化効果が得られること、また、Crが還元処理過程で粒子の表面に濃化し表面絶縁層を形成して粒子の絶縁性を改善することなどによる可能性が考えられる。従って、本発明では、酸化鉄の還元処理過程で原料中にCrが存在することが重要であり、鉄粉に後からCrを添加する方法では本発明で得られるような電気抵抗増大効果を得ることはできない。   The mechanism of improving the electromagnetic properties of the dust core by adding Cr to the raw material iron oxide is not clear, but iron oxide (hematite) is transformed into iron (α-Fe) during the reduction process. When Cr is present, the particle shape tends to be rounded and the particle size distribution tends to be uniform, so that a particle surface smoothing effect can be obtained, and Cr is reduced during the reduction process. The possibility of improving the insulating properties of the particles by forming a surface insulating layer by concentrating on the surface is considered. Therefore, in the present invention, it is important that Cr is present in the raw material during the reduction process of iron oxide, and the method of adding Cr later to the iron powder provides the effect of increasing electrical resistance as obtained in the present invention. It is not possible.

さらに、本発明のマグネタイト−鉄複合粉末は、上記の還元処理工程の後に、粉粒体である粒子同士を、周速50m/sec以上の高速で旋回させることにより粒子同士を衝突させて粒子表面の平滑化処理を行うことが好ましい。これにより、圧粉磁芯の電気抵抗がより増大し、コアロスがより低減するからである。この平滑化処理により圧粉磁芯の電気抵抗が増大する理由は、衝突により粒子表面の突起が消滅することで、圧粉体における粒子同士の接触頻度が低減し、粒子間の絶縁性が向上するためと考えられる。また、コアロスが低減する理由は、衝突により粒子表面の突起が消失したことで、成形歪が軽減し、ヒステリシス損失が低減するためと考えられる。   Furthermore, the magnetite-iron composite powder according to the present invention has a particle surface which is made to collide with each other by swirling particles, which are powder particles, at a high speed of a peripheral speed of 50 m / sec or more after the above reduction treatment step. It is preferable to perform the smoothing process. This is because the electrical resistance of the dust core is further increased and the core loss is further reduced. The reason why the electrical resistance of the dust core is increased by this smoothing treatment is that the protrusions on the particle surface disappear due to the collision, so that the contact frequency between the particles in the compact is reduced and the insulation between the particles is improved. It is thought to do. In addition, the reason why the core loss is reduced is thought to be that the projection on the particle surface disappears due to the collision, the molding distortion is reduced, and the hysteresis loss is reduced.

粒子同士の衝突の周速が50m/sec未満では、衝突による衝撃力が小さいために平滑化効果が不十分であり、十分な電気抵抗増大効果を得ることができない。ここで、50m/sec以上の高速で粒子同士を衝突させる手段としては、例えば、(株)奈良機械製作所製のハイブリダイザーシステムなどのような機械的表面改質装置を用いることができる。ただし、同様の効果が得られる手段であれば、これに限定されるものではない。   If the peripheral speed of the collision between particles is less than 50 m / sec, the impact force due to the collision is small, the smoothing effect is insufficient, and a sufficient electrical resistance increasing effect cannot be obtained. Here, as means for causing particles to collide at a high speed of 50 m / sec or more, for example, a mechanical surface reformer such as a hybridizer system manufactured by Nara Machinery Co., Ltd. can be used. However, it is not limited to this as long as the same effect can be obtained.

以上のような方法で、本発明の圧粉磁芯用マグネタイト−鉄複合粉末を得ることができる。   By the method as described above, the magnetite-iron composite powder for dust core of the present invention can be obtained.

次に、上述の本発明に係るマグネタイト−鉄複合粉末と、樹脂および/または無機絶縁材料とを混合した後、圧縮成形し、必要に応じて樹脂の熱硬化処理を施すことで、1MΩ以上の高い絶縁性と、高周波励磁下で優れた磁気特性を示すを示す圧粉磁芯を得ることができる。   Next, after mixing the magnetite-iron composite powder according to the present invention and a resin and / or an inorganic insulating material, compression molding is performed, and if necessary, the resin is subjected to a thermosetting treatment to have a resistance of 1 MΩ or more. It is possible to obtain a dust core exhibiting high insulating properties and excellent magnetic properties under high frequency excitation.

ここで、前記樹脂は、結合用として用いられるが、その種類としては、例えば、フェノール樹脂、アクリル樹脂、シリコーン樹脂、エポキシ樹脂等を用いることができる。   Here, although the resin is used for bonding, for example, a phenol resin, an acrylic resin, a silicone resin, an epoxy resin, or the like can be used.

また、前記無機絶縁材料としては、絶縁性粉末、例えば、SiO、Al等の微粉末を用いることができる。 Further, as the inorganic insulating material, insulating powder, for example, fine powder such as SiO 2 and Al 2 O 3 can be used.

また、前記圧縮成形は、その方法は特に限定されず、通常用いられる圧縮成形の他、温間圧縮成形、射出成形等の圧縮成形方法を用いることができる。   In addition, the compression molding method is not particularly limited, and compression molding methods such as warm compression molding and injection molding can be used in addition to compression molding that is usually used.

以下に本発明の具体的実施例を記載する。 Specific examples of the present invention will be described below.

[実施例1]
フェライト用酸化鉄(JFEケミカル社製JC−DC、空気透過法により測定した平均粒径0.8μm)に対し、還元し、さらに、酸化性雰囲気中で表面を徐酸化処理して安定化した後のCr含有量が下表1の含有量(mass%)となるように酸化クロム(Cr)を添加し、純水とスチールボールを用いてボールミルで湿式混合した後、乾燥、整粒してCr含有酸化鉄を作製した。これを水素雰囲気中550〜800℃の温度で熱処理して、平均一次粒径の異なる種々の鉄粉を得た。その後、炉を開放する前に5vol.%O−N雰囲気で保持することにより、鉄粉の表層にマグネタイトを生成させてから炉外に取り出し、種々のCr含有量のマグネタイト−鉄複合粉末を得た。さらに、このマグネタイト−鉄複合粉末に対して、機械的表面改質装置((株)奈良機械製作所製のハイブリダイザーシステム)を用いて、粒子同士を、周速100m/secの速度で旋回させて粒子表面の平滑化処理を施した。
[Example 1]
After iron oxide for ferrite (JC-DC made by JFE Chemical Co., average particle size 0.8μm measured by air permeation method) is reduced and further stabilized by gradual oxidation treatment of the surface in an oxidizing atmosphere Chromium oxide (Cr 2 O 3 ) is added so that the Cr content in Table 1 is the mass (mass%) shown in Table 1 below, wet-mixed with a ball mill using pure water and steel balls, and then dried and sized. Thus, a Cr-containing iron oxide was produced. This was heat-treated at a temperature of 550 to 800 ° C. in a hydrogen atmosphere to obtain various iron powders having different average primary particle sizes. Then, before opening the furnace, it is held in a 5 vol.% O 2 —N 2 atmosphere to generate magnetite on the surface layer of the iron powder, and then taken out of the furnace. Magnetite-iron composite powders with various Cr contents Got. Furthermore, the particles are swirled at a peripheral speed of 100 m / sec using a mechanical surface reformer (hybridizer system manufactured by Nara Machinery Co., Ltd.) with respect to the magnetite-iron composite powder. The particle surface was smoothed.

得られた前記粉末の構成相をX線回折で調べた結果、全試料ともα−Fe相が99.7〜100mass%、残部0〜0.3mass%はマグネタイト相であった。SEM写真より算出した平均一次粒径および比表面積SSAを測定した結果を下表1に示す。   As a result of examining the constituent phases of the obtained powder by X-ray diffraction, the α-Fe phase was 99.7 to 100 mass% and the remaining 0 to 0.3 mass% was the magnetite phase in all samples. The average primary particle size and specific surface area SSA calculated from the SEM photograph are shown in Table 1 below.

ここで、前記SEM写真により平均一次粒径を算出する際には、視野の対角線上に10〜20個程度の粒子が入るような倍率でSEM写真を撮影し、対角線上の粒子の個数と倍率から、平均一次粒径を算出した。   Here, when the average primary particle size is calculated from the SEM photograph, the SEM photograph is taken at a magnification such that about 10 to 20 particles enter the diagonal line of the field of view, and the number and magnification of the particles on the diagonal line are taken. From this, the average primary particle size was calculated.

Figure 2007146259
Figure 2007146259

引き続き、マグネタイト−鉄複合粉末に対して5mass%のフェノール樹脂を混合し、成形圧力7t/cm(約700MPa)で圧縮成形して、外径12mmφのリング型試料を作製し、150℃×30分の熱処理を施してフェノール樹脂を硬化させた。得られたリング型試料の両端をワニ口クリップで挟み、印加電圧10Vで電気抵抗を測定した。初透磁率μiと品質係数Qの周波数特性は、LCRメータを用いてN=10巻、印加電流0.2mA、周波数100k〜30MHzの条件下で測定し、コアロスは交流BHアナライザーを用いてN1=85巻、N2=10巻、周波数f=50kHz、磁束密度Bm=100mTの条件下で測定した。 Subsequently, 5 mass% phenol resin was mixed with the magnetite-iron composite powder and compression molded at a molding pressure of 7 t / cm 2 (about 700 MPa) to produce a ring-type sample having an outer diameter of 12 mmφ, and 150 ° C. × 30 The phenolic resin was cured by heat treatment for a minute. Both ends of the obtained ring-shaped sample were sandwiched between alligator clips, and the electrical resistance was measured at an applied voltage of 10V. The frequency characteristics of the initial permeability μi and the quality factor Q are measured using an LCR meter under the conditions of N = 10 windings, an applied current of 0.2 mA, and a frequency of 100 k to 30 MHz, and the core loss is measured using an AC BH analyzer. The measurement was performed under the conditions of 85 volumes, N2 = 10 volumes, frequency f = 50 kHz, and magnetic flux density Bm = 100 mT.

本発明例および比較例の電気抵抗、初透磁率μi、品質係数Qおよびコアロスの評価結果を表1に併せて示す。表1に示すように、本発明に係る範囲のマグネタイト−鉄複合粉末を用いることにより、1MΩ以上の高抵抗、高初透磁率μi、高品質係数Qおよび低コアロスを同時に満足することができる。   Table 1 also shows the evaluation results of the electrical resistance, initial magnetic permeability μi, quality factor Q, and core loss of the inventive examples and the comparative examples. As shown in Table 1, by using the magnetite-iron composite powder in the range according to the present invention, a high resistance of 1 MΩ or more, a high initial permeability μi, a high quality factor Q, and a low core loss can be satisfied at the same time.

以上の実施例で示した通り、本発明に係るマグネタイト−鉄複合粉末を用いることで、飽和磁束密度Bsの高い金属系の圧粉磁芯で、高い絶縁性と高周波域における高い磁気特性を同時に得ることができ、本発明の効果が確認できた。   As shown in the above examples, by using the magnetite-iron composite powder according to the present invention, a metal-based dust core having a high saturation magnetic flux density Bs can be used to simultaneously achieve high insulation and high magnetic properties in a high frequency range. It was possible to obtain the effect of the present invention.

Claims (3)

マグネタイトを含有し、平均一次粒径dが0.7〜5.0μm、比表面積が1.3×d−0.43〜4.0×d−0.58/g、クロム含有量が0.01〜3.0mass%であることを特徴とする圧粉磁芯用マグネタイト−鉄複合粉末。 It contains magnetite, the average primary particle diameter d is 0.7 to 5.0 μm, the specific surface area is 1.3 × d −0.43 to 4.0 × d −0.58 m 2 / g, and the chromium content is Magnetite-iron composite powder for dust core, characterized by being 0.01 to 3.0 mass%. 請求項1に記載の圧粉磁芯用マグネタイト−鉄複合粉末の製造方法であって、
マグネタイトを含有し、製造後のマグネタイト−鉄複合粉末のクロム含有量が0.01〜3.0mass%となる量のクロムを含有する酸化鉄を、還元性雰囲気中で還元した後、さらに、酸化性雰囲気中で徐酸化処理して得た粉粒体の粒子同士を衝突させて、前記粉粒体の粒子表面を平滑化することを特徴とする圧粉磁芯用マグネタイト−鉄複合粉末の製造方法。
A method for producing a magnetite-iron composite powder for a dust core according to claim 1,
An iron oxide containing magnetite and containing chromium in an amount such that the chromium content of the magnetite-iron composite powder after production is 0.01 to 3.0 mass% is reduced in a reducing atmosphere, and then further oxidized. Of a magnetite-iron composite powder for a dust core, wherein particles of particles obtained by gradual oxidation treatment in a neutral atmosphere collide with each other to smooth the particle surface of the particles Method.
請求項1に記載のマグネタイト−鉄複合粉末と、樹脂および/または無機絶縁材料とを混合し、成形してなることを特徴とする圧粉磁芯。   A powder magnetic core comprising the magnetite-iron composite powder according to claim 1 mixed with a resin and / or an inorganic insulating material and molded.
JP2005345370A 2005-11-30 2005-11-30 Magnetite-iron composite powder for powder magnetic core, its production method and powder magnetic core using the same Pending JP2007146259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005345370A JP2007146259A (en) 2005-11-30 2005-11-30 Magnetite-iron composite powder for powder magnetic core, its production method and powder magnetic core using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005345370A JP2007146259A (en) 2005-11-30 2005-11-30 Magnetite-iron composite powder for powder magnetic core, its production method and powder magnetic core using the same

Publications (1)

Publication Number Publication Date
JP2007146259A true JP2007146259A (en) 2007-06-14

Family

ID=38208015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005345370A Pending JP2007146259A (en) 2005-11-30 2005-11-30 Magnetite-iron composite powder for powder magnetic core, its production method and powder magnetic core using the same

Country Status (1)

Country Link
JP (1) JP2007146259A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147404A (en) * 2006-12-08 2008-06-26 Sumitomo Electric Ind Ltd Soft magnetic composite material
JP2008143720A (en) * 2006-12-06 2008-06-26 Jfe Chemical Corp Magnetite-iron composite powder, its manufacturing method and dust core
DE102008025191A1 (en) 2007-05-31 2009-01-08 Keyence Corp. Photoelectric sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143720A (en) * 2006-12-06 2008-06-26 Jfe Chemical Corp Magnetite-iron composite powder, its manufacturing method and dust core
JP2008147404A (en) * 2006-12-08 2008-06-26 Sumitomo Electric Ind Ltd Soft magnetic composite material
DE102008025191A1 (en) 2007-05-31 2009-01-08 Keyence Corp. Photoelectric sensor
DE102008025191B4 (en) 2007-05-31 2020-04-23 Keyence Corp. Photoelectric sensor

Similar Documents

Publication Publication Date Title
JP2001011563A (en) Manufacture of composite magnetic material
JP3964213B2 (en) Manufacturing method of dust core and high frequency reactor
WO2005072894A1 (en) Soft magnetic material and dust core
JP2006287004A (en) Magnetic core for high frequency and inductance component using it
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
KR20020041773A (en) Magnetic core comprising a bond magnet including magnetic powder whose particle&#39;s surface is coated with oxidation-resistant metal and inductance part comprising the magnetic core
JP4171002B2 (en) Magnetite-iron composite powder for dust core and dust core using the same
JP4166460B2 (en) Composite magnetic material, magnetic element using the same, and method of manufacturing the same
JP2012204744A (en) Soft magnetic metal powder, method for producing the same, powder magnetic core and method for producing the same
EP1475808A1 (en) Powder magnetic core and high frequency reactor using the same
JP2009099732A (en) Soft magnetic metal particle with insulating oxide coating
JP2007146259A (en) Magnetite-iron composite powder for powder magnetic core, its production method and powder magnetic core using the same
JP2012222062A (en) Composite magnetic material
JP2019201155A (en) Powder magnetic core and inductor element
JP5472694B2 (en) Composite sintered body of aluminum oxide and iron, and method for producing the same
JP4568691B2 (en) Magnetite-iron-cobalt composite powder for dust core, method for producing the same, and dust core using the same
JP2008143720A (en) Magnetite-iron composite powder, its manufacturing method and dust core
JP2006294733A (en) Inductor and its manufacturing method
JP4701531B2 (en) Dust core
JP2008192896A (en) Dust core
JP4358756B2 (en) Magnetite-iron composite powder for dust core and dust core using the same
JPWO2018180659A1 (en) Manufacturing method of composite magnetic body, magnetic powder, composite magnetic body, and coil component
JP2016063068A (en) Magnetic material and device
JP7128438B2 (en) Dust core and inductor element
JP2008038187A (en) Magnetite-iron composite powder for dust core, production method therefor and dust core obtained by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420