JP2007146158A - Polishing material for composite film and polishing method - Google Patents

Polishing material for composite film and polishing method Download PDF

Info

Publication number
JP2007146158A
JP2007146158A JP2006299189A JP2006299189A JP2007146158A JP 2007146158 A JP2007146158 A JP 2007146158A JP 2006299189 A JP2006299189 A JP 2006299189A JP 2006299189 A JP2006299189 A JP 2006299189A JP 2007146158 A JP2007146158 A JP 2007146158A
Authority
JP
Japan
Prior art keywords
polishing
film
abrasive
material film
magnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006299189A
Other languages
Japanese (ja)
Other versions
JP5391516B2 (en
Inventor
Yasuo Kamigata
康雄 上方
Yutaka Ono
裕 小野
Masaya Nishiyama
雅也 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006299189A priority Critical patent/JP5391516B2/en
Publication of JP2007146158A publication Critical patent/JP2007146158A/en
Application granted granted Critical
Publication of JP5391516B2 publication Critical patent/JP5391516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Magnetic Heads (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing material and a polishing method for composite films comprising a magnetic metal membrane and an insulating material film and able to carry out a CMP treatment without generating defects such as scratches and the like on the magnetic metal membrane. <P>SOLUTION: The polishing material for composite films comprises water, abrasive grains, a monovalent organic acid and an anticorrosive agent and has 1.5-4 pH. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複合材料膜用の研磨材および研磨方法に関し、さらに詳しくはハード・ディスク・ドライブ(HDD)用の薄膜磁気ヘッドの製造に適した化学機械研磨(CMP)工程で使用する複合材料膜用研磨材およびそれを用いた研磨方法に関する。   The present invention relates to an abrasive for a composite material film and a polishing method, and more particularly, to a composite material film used in a chemical mechanical polishing (CMP) process suitable for manufacturing a thin film magnetic head for a hard disk drive (HDD). The present invention relates to a polishing material for polishing and a polishing method using the same.

HDDの記録容量は年々増加している。この記録容量の増加は記録する磁気メディアの記録領域の微小化により達成されている。磁気メディアの記録領域を微小化するためには、記録・再生を行う磁気ヘッドの記録素子部、再生素子部のサイズの小型化が必要になっている。また、記録領域の微小化に伴う再生出力感度の低下を改善するため、磁気ヘッドの構造は電磁誘導を利用した記録、再生を兼ねたインダクティブヘッドから、磁気抵抗効果を利用した再生ヘッドと電磁誘導を利用した記録ヘッドからなる複合型薄膜磁気ヘッド(MRヘッド)へ移行している。   The recording capacity of HDD is increasing year by year. This increase in recording capacity is achieved by miniaturizing the recording area of the magnetic media to be recorded. In order to miniaturize the recording area of the magnetic medium, it is necessary to reduce the size of the recording element portion and the reproducing element portion of the magnetic head that performs recording and reproduction. In addition, in order to improve the decrease in reproduction output sensitivity due to the miniaturization of the recording area, the structure of the magnetic head is changed from an inductive head that combines recording and reproduction using electromagnetic induction to a reproducing head that uses the magnetoresistive effect and electromagnetic induction. Has shifted to a composite type thin film magnetic head (MR head) composed of a recording head using a magnetic head.

MRヘッドはアルチック(AlTiC)等のセラミックス基板上に再生ヘッド、その上に記録ヘッドを順次形成し製造されている。再生ヘッドはパーマロイ等の磁性金属からなる下部シールド膜、金属の積層膜からなる磁気抵抗効果素子、パーマロイ等の磁性金属からなる上部シールド膜からなっており薄膜プロセスで形成される。MRヘッドの製造に当たっては下地材料の表面粗さを解消する目的や、加工プロセスで生じる段差を解消する目的からCMPが適用されている。CMPの適用については、例えば特許文献1、特許文献2に開示されている。   The MR head is manufactured by sequentially forming a reproducing head on a ceramic substrate such as AlTiC (AlTiC) and a recording head thereon. The reproducing head includes a lower shield film made of a magnetic metal such as permalloy, a magnetoresistive effect element made of a laminated film of metals, and an upper shield film made of magnetic metal such as permalloy, and is formed by a thin film process. In manufacturing the MR head, CMP is applied for the purpose of eliminating the surface roughness of the base material and the purpose of eliminating the level difference generated in the processing process. The application of CMP is disclosed in Patent Document 1 and Patent Document 2, for example.

下部シールド層の形成方法は基板上に絶縁材料膜を形成し、その上に磁気シールド層となる磁性金属膜を所定の形状に形成し、次いでアルミナ等の金属酸化物からなる絶縁材料膜を成膜し、その後磁性金属膜が露出するように、絶縁材料膜と磁性金属膜をCMP処理により研磨を行っている。下部シールド層の形成方法については、例えば特許文献3に開示されている。   The lower shield layer is formed by forming an insulating material film on a substrate, forming a magnetic metal film as a magnetic shield layer on the substrate in a predetermined shape, and then forming an insulating material film made of a metal oxide such as alumina. Then, the insulating material film and the magnetic metal film are polished by CMP so that the magnetic metal film is exposed. A method for forming the lower shield layer is disclosed in Patent Document 3, for example.

しかしながら、これら従来のCMP処理において、実用的な研磨速度を保ちつつ、磁性金属膜にスクラッチ等の欠陥を生じることなく、さらに磁性金属膜と絶縁材料膜間に段差を生じることなく平滑に研磨することは困難であった。スクラッチ等の欠陥はその上部に形成する磁気抵抗効果素子の感度特性に影響を及ぼし、また、磁性金属膜と絶縁材料膜間の段差は上部の素子形成時に短絡の原因になるため、製品の歩留まりが低下してしまうといった問題があった。   However, in these conventional CMP processes, while maintaining a practical polishing rate, the magnetic metal film is polished smoothly without causing defects such as scratches and without causing a step between the magnetic metal film and the insulating material film. It was difficult. Defects such as scratches affect the sensitivity characteristics of the magnetoresistive effect element formed on the top, and the step between the magnetic metal film and the insulating material film causes a short circuit when forming the upper element. There was a problem that would decrease.

このためCMP処理を、高速研磨を行う1段目の粗削り研磨工程と、研磨表面に欠陥を生じさせない低速研磨を行う2段目の仕上げ研磨工程の2段階に分け、高速研磨と研磨表面の欠陥低減の両立を図る方法が有効になっている。
特開平5−81613号公報 特開平7−272211号公報 特開2000−109816号公報
For this reason, the CMP process is divided into two stages, a first-stage rough polishing process that performs high-speed polishing and a second-stage final polishing process that performs low-speed polishing that does not cause defects on the polished surface. A method for achieving both reductions is effective.
JP-A-5-81613 JP-A-7-272211 JP 2000-109816 A

本発明は、複合材料膜の研磨表面にスクラッチや腐食等の欠陥を生じさせず、磁性金属膜と絶縁材料膜間の段差が小さい平滑な研磨が可能である複合材料膜用研磨材及び研磨方法を提供するものであり、特に、製品の歩留まり向上を可能とする仕上げ研磨工程で有用な複合材料膜用研磨材及び研磨方法を提供するものである。   The present invention relates to an abrasive for composite material film and a polishing method capable of smooth polishing with a small step between the magnetic metal film and the insulating material film without causing defects such as scratches and corrosion on the polished surface of the composite material film. In particular, the present invention provides a composite film abrasive and a polishing method that are useful in a final polishing process that enables an improvement in product yield.

本発明は、(1)水、砥粒、1価の有機酸および防食剤を含有し、pHが1.5以上4以下であることを特徴とする複合材料膜用研磨材に関する。   The present invention relates to (1) an abrasive for composite film, comprising water, abrasive grains, a monovalent organic acid, and an anticorrosive, and having a pH of 1.5 or more and 4 or less.

また、本発明は、(2)前記砥粒が、10nm以上1000nm以下のアルミナであることを特徴とする前記(1)記載の複合材料膜用研磨材に関する。   The present invention also relates to (2) the abrasive for composite film according to (1), wherein the abrasive grains are alumina having a size of 10 nm to 1000 nm.

また、本発明は、(3)前記1価の有機酸が、ヒドロキシモノカルボン酸であることを特徴とする前記(1)の複合材料膜用研磨材に関する。   The present invention also relates to (3) the abrasive for composite film according to (1), wherein the monovalent organic acid is hydroxymonocarboxylic acid.

また、本発明は、(4)前記ヒドロキシモノカルボン酸が、グリコール酸または乳酸から選ばれた少なくとも1種であることを特徴とする前記(3)記載の複合材料膜用研磨材に関する。   The present invention also relates to (4) the abrasive for composite film according to (3), wherein the hydroxymonocarboxylic acid is at least one selected from glycolic acid or lactic acid.

また、本発明は、(5)前記防食剤が、ベンゾトリアゾールまたはその誘導体から選ばれた少なくとも1種であることを特徴とする前記(1)記載の複合材料膜用研磨材に関する。   The present invention also relates to (5) the composite film abrasive according to (1), wherein the anticorrosive agent is at least one selected from benzotriazole or a derivative thereof.

また、本発明は、(6)前記複合材料膜が、磁性金属膜及び絶縁材料膜を含むことを特徴とする前記(1)記載の複合材料膜用研磨材に関する。   The present invention also relates to (6) the composite material film abrasive according to (1), wherein the composite material film includes a magnetic metal film and an insulating material film.

また、本発明は、(7)非イオン性の水溶性高分子を含有することを特徴とする前記(1)〜(6)のいずれか一項に記載の複合材料膜用研磨材に関する。   In addition, the present invention relates to (7) the abrasive for composite film according to any one of (1) to (6), which contains a nonionic water-soluble polymer.

また、本発明は、(8)前記(1)〜(7)のいずれか一項に記載の複合材料膜用研磨材を使用して、磁性金属膜及び絶縁材料膜を含む複合材料膜を研磨する工程により、磁性金属膜および絶縁材料膜の少なくとも一部を除去することを特徴とする研磨方法に関する。   Moreover, this invention grind | polishes the composite material film containing a magnetic metal film and an insulating material film using the abrasive for composite material films as described in any one of (8) said (1)-(7). The present invention relates to a polishing method characterized in that at least a part of a magnetic metal film and an insulating material film is removed by the step of.

本発明の複合材料膜用研磨材及び研磨方法は、複合材料膜の研磨表面に腐食やスクラッチ等の欠陥を生じさせず、磁性金属膜及び絶縁材料膜間の段差の小さい平滑な研磨が可能であるため、特に仕上げ研磨工程で有効であり製品の歩留まりを向上させることができる。   The abrasive for composite material film and the polishing method of the present invention do not cause defects such as corrosion and scratches on the polished surface of the composite material film, and smooth polishing with a small step between the magnetic metal film and the insulating material film is possible. Therefore, it is particularly effective in the finish polishing process, and the product yield can be improved.

本発明の複合材料膜用研磨材は、水、砥粒、1価の有機酸および防食剤を含有し、pHが1.5以上4以下である。   The abrasive for composite film of the present invention contains water, abrasive grains, monovalent organic acid and anticorrosive, and has a pH of 1.5 or more and 4 or less.

本発明における砥粒は、例えば、シリカ、アルミナ、ジルコニア、セリア、チタニア、炭化珪素等の無機物砥粒のいずれでもよいが、これらのなかでも、アルミナが好ましく、微細粒子の製造技術が確立しており、微細粒子の入手が容易なα−アルミナまたはγ−アルミナがより好ましい。α−アルミナまたはγ−アルミナの製造方法は水酸化アルミニウムの焼成による方法や、アルミニウムアルコキシドの加水分解により精製したベーマイトの焼成による方法が知られている。これら砥粒は単一で使用しても、複数種を組み合わせて使用してもよく、例えば、α−アルミナまたはγ−アルミナにベーマイトなどの含水アルミナ、シリカ、ジルコニアなどの砥粒を混合しても良い。研磨表面のスクラッチ等を低減しやすいという点で、砥粒の平均粒径は好ましくは10nm以上1000nm以下、より好ましくは30nm以上300nm以下であり、砥粒の形状は好ましくは球状である。   The abrasive grains in the present invention may be any of inorganic abrasive grains such as silica, alumina, zirconia, ceria, titania, and silicon carbide. Among these, alumina is preferable, and fine particle manufacturing technology has been established. Further, α-alumina or γ-alumina from which fine particles are easily available is more preferable. As a method for producing α-alumina or γ-alumina, a method by calcining aluminum hydroxide or a method by calcining boehmite purified by hydrolysis of aluminum alkoxide is known. These abrasive grains may be used alone or in combination of a plurality of kinds. For example, α-alumina or γ-alumina is mixed with hydrous alumina such as boehmite, silica, zirconia or the like. Also good. The average particle size of the abrasive grains is preferably 10 nm or more and 1000 nm or less, more preferably 30 nm or more and 300 nm or less, and the shape of the abrasive grains is preferably spherical in that scratches on the polished surface are easily reduced.

本発明における砥粒の配合量は、研磨材全重量に対して0.3質量%以上10質量%以下であることが好ましく、0.3質量%以上5質量%以下であることがより好ましい。砥粒の配合量が0.3質量%未満である場合は、物理的な研削作用が小さいため研磨速度が小さくなる傾向にあり、10質量%を超える場合は、研磨速度は飽和し、それ以上加えても研磨速度の上昇は認められない傾向にある。   The blending amount of the abrasive grains in the present invention is preferably 0.3% by mass or more and 10% by mass or less, and more preferably 0.3% by mass or more and 5% by mass or less with respect to the total weight of the abrasive. When the blending amount of the abrasive grains is less than 0.3% by mass, the polishing rate tends to be small because the physical grinding action is small, and when it exceeds 10% by mass, the polishing rate is saturated and more. Even when added, the polishing rate tends not to increase.

本発明における1価の有機酸は、分子内にカルボキシル基を1つ有する有機化合物であり、例えば、蟻酸、酢酸、プロピオン酸、酪酸、グリコール酸、乳酸、オキシ酪酸、グリセリン酸等の有機酸が挙げられ、これらのなかでも、CMPによる研磨速度が大きく、砥粒の凝集・沈降を抑制できスクラッチ等の研磨面の欠陥を低減し易いという点でヒドロキシモノカルボン酸が好ましく、グリコール酸または乳酸がより好ましい。かかる一価の有機酸は単一で使用しても、複数種を組み合わせて使用してもよく、例えばグリコール酸および乳酸の混合物、グリコール酸または乳酸と他の1価の有機酸との混合物であってもよい。本発明では、1価の有機酸を用いることが特徴であり、2価以上の有機酸を用いた場合に比べ、砥粒の分散安定性に優れ、砥粒の凝集・沈降が生じにくくなり、スクラッチ等の研磨表面の欠陥を低減できる。これは一般に砥粒はpH4以下の酸性側では正に帯電しているため、多価のアニオンが存在すると電荷が中和され凝集・沈降する、塩析という現象が起き易いやすいのに対し、1価のアニオンではこの現象が格段に起こりにくいためであると考えられる。   The monovalent organic acid in the present invention is an organic compound having one carboxyl group in the molecule, and examples thereof include organic acids such as formic acid, acetic acid, propionic acid, butyric acid, glycolic acid, lactic acid, oxybutyric acid, and glyceric acid. Among these, hydroxy monocarboxylic acid is preferable in that polishing rate by CMP is large, aggregation and settling of abrasive grains can be suppressed, and defects on the polished surface such as scratches can be easily reduced, and glycolic acid or lactic acid is preferable. More preferred. Such monovalent organic acids may be used singly or in combination, for example, a mixture of glycolic acid and lactic acid, a mixture of glycolic acid or lactic acid and other monovalent organic acids. There may be. In the present invention, it is characterized by using a monovalent organic acid, and compared with the case where a divalent or higher organic acid is used, the dispersion stability of the abrasive grains is excellent, and the aggregation / sedimentation of the abrasive grains is less likely to occur. Polishing surface defects such as scratches can be reduced. This is because abrasive grains are generally positively charged on the acidic side at pH 4 or lower, and when a polyvalent anion is present, the charge is neutralized and aggregates and settles easily, whereas the phenomenon of salting out tends to occur. This is considered to be because this phenomenon is much less likely to occur with a valent anion.

本発明における有機酸の配合量は、研磨材全重量に対して0.1質量%以上5.0質量%以下であることが好ましく、0.2質量%以上3.0質量%以下であることがより好ましい。   The blending amount of the organic acid in the present invention is preferably 0.1% by mass or more and 5.0% by mass or less, and 0.2% by mass or more and 3.0% by mass or less with respect to the total weight of the abrasive. Is more preferable.

本発明における防食剤は、例えば、ベンゾトリアゾール(BTA)、BTA誘導体、例えばBTAのベンゼン環の一つの水素原子をメチル基で置換したもの(トリルトリアゾール)もしくはカルボキシル基等で置換したもの(ベンゾトリアゾール−4−カルボン酸およびベンゾトリアゾール−4−カルボン酸のメチル、エチル、プロピル、ブチル及びオクチルエステル)、トリアゾール、キナルジン酸、アントニル酸、サリチルアルドキシム等が挙げられる。これらの中でもBTAもしくはその誘導体もしくはそれらの混合物であることが好ましい。かかる防食剤は単一で使用しても、複数種を組み合わせて使用してもよい。本発明では防食剤を用いることが特徴であり、それによって腐食などの欠陥がなく、磁性金属膜及び絶縁材料膜間の段差が小さい平滑な研磨表面を得ることができる。   The anticorrosive agent in the present invention is, for example, benzotriazole (BTA), BTA derivative, for example, one in which one hydrogen atom of the benzene ring of BTA is substituted with a methyl group (tolyltriazole) or one substituted with a carboxyl group (benzotriazole) -4-carboxylic acid and benzotriazole-4-carboxylic acid methyl, ethyl, propyl, butyl and octyl esters), triazole, quinaldic acid, anthonylic acid, salicylaldoxime and the like. Among these, BTA or a derivative thereof or a mixture thereof is preferable. Such anticorrosives may be used alone or in combination of two or more. The present invention is characterized by the use of an anticorrosive agent, whereby a smooth polished surface free from defects such as corrosion and having a small step between the magnetic metal film and the insulating material film can be obtained.

本発明における防食剤の配合量は、研磨材全重量に対して0.05質量%以上1質量%以下であることが好ましく、0.1質量%以上0.5質量%以下であることがより好ましい。防食剤の配合量が0.05質量%未満である場合は、研磨表面の表面粗さが大きくなる傾向にあり、1質量%を超える場合は、研磨速度が遅くなる傾向にある。   The blending amount of the anticorrosive agent in the present invention is preferably 0.05% by mass or more and 1% by mass or less, more preferably 0.1% by mass or more and 0.5% by mass or less, based on the total weight of the abrasive. preferable. When the amount of the anticorrosive agent is less than 0.05% by mass, the surface roughness of the polishing surface tends to increase, and when it exceeds 1% by mass, the polishing rate tends to be slow.

本発明の研磨材は、砥粒が水中にスラリー状に分散したものである。水の配合量は、水以外の各種成分の合計量に対する残分となる。   The abrasive of the present invention is one in which abrasive grains are dispersed in water in a slurry form. The blending amount of water is the remainder with respect to the total amount of various components other than water.

本発明の複合材料膜用研磨剤のpHは1.5以上4以下、好ましくは2以上3以下である。pHを前記範囲に設定することにより研磨表面の表面粗さを低減でき、一定の研磨速度を確保することができる。pHが1.5未満では研磨表面の表面粗さが大きくなり、pHが4を超えるとCMPによる研磨速度が遅くなり、効率的な研磨を行えない。研磨材のpHを前記範囲に調整する方法としては、前記1価の有機酸の添加量により調整する方法、アンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド等のアルカリ成分を併用する方法などが挙げられる。   The pH of the abrasive for composite film of the present invention is 1.5 or more and 4 or less, preferably 2 or more and 3 or less. By setting the pH within the above range, the surface roughness of the polishing surface can be reduced, and a constant polishing rate can be ensured. If the pH is less than 1.5, the surface roughness of the polishing surface becomes large. If the pH exceeds 4, the polishing rate by CMP becomes slow, and efficient polishing cannot be performed. Examples of the method of adjusting the pH of the abrasive to the above range include a method of adjusting the amount of the monovalent organic acid added, a method of using an alkaline component such as ammonia, sodium hydroxide, tetramethylammonium hydroxide, and the like. It is done.

本発明の研磨材は、非イオン性の水溶性高分子を含有することが好ましい。非イオン性の水溶性高分子としては、例えば、ポリビニルアルコール、ポリビニルピロリドン等のビニル基を持つモノマーを基本構成単位とするポリマー、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース類、ポリエチレンオキサイド、ポリエチレンオキサイド−ポリプロピレンオキサイド共重合体等が挙げられる。かかる非イオン性の水溶性高分子の重量平均分子量は2000以上100000以下であることが好ましい。本発明では非イオン性の水溶性高分子を添加することにより、研磨表面の表面粗さを低減できると共に研磨後の洗浄性を向上させることができる。   The abrasive of the present invention preferably contains a nonionic water-soluble polymer. Nonionic water-soluble polymers include, for example, polymers having vinyl group monomers such as polyvinyl alcohol and polyvinylpyrrolidone as basic structural units, celluloses such as methylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyethylene oxide, Examples include polyethylene oxide-polypropylene oxide copolymer. The nonionic water-soluble polymer preferably has a weight average molecular weight of 2,000 or more and 100,000 or less. In the present invention, by adding a nonionic water-soluble polymer, the surface roughness of the polished surface can be reduced and the cleaning performance after polishing can be improved.

本発明における非イオン性の水溶性高分子の配合量は、研磨材全重量に対して、0.01質量%以上2.0質量%以下とすることが好ましく、0.05質量%以上0.5質量%以下とすることがより好ましい。非イオン性の水溶性高分子の配合量が0.01質量%未満である場合は、研磨表面の表面粗さを低減する作用や研磨後の洗浄性を向上する作用が認められにくい傾向にあり、2.0質量%を超える場合は、CMPによる研磨速度が低下する傾向にある。   The blending amount of the nonionic water-soluble polymer in the present invention is preferably 0.01% by mass or more and 2.0% by mass or less, and 0.05% by mass or more and 0.0% by mass or less based on the total weight of the abrasive. More preferably, it is 5 mass% or less. When the blending amount of the nonionic water-soluble polymer is less than 0.01% by mass, the effect of reducing the surface roughness of the polished surface and the effect of improving the cleanability after polishing tend not to be recognized. If it exceeds 2.0 mass%, the polishing rate by CMP tends to decrease.

かくして得られる本発明の研磨材は磁性金属膜及び絶縁材料膜を含む複合材料膜用研磨材として有用であり、特に、複合型磁気ヘッドの素子形成工程での研磨に使用されるのに適している。被研磨材料は磁性金属膜及び絶縁材料膜を含む複合材料膜であり、これらそれぞれの膜は単層でも積層でも構わない。磁性金属膜としては、例えば、Fe−Ni系合金(パーマロイ)、Co−Fe−Ni系合金、Fe−Al系合金、Fe−Al−Si系合金、Fe−Si−Co系合金、Fe−Al−Ge系合金、Fe−Ga−Ge系合金、Fe−Si−Ge系合金、Fe−Co−Si−Al系合金等の強磁性金属材料、或いはFe−Ga−Si系合金、さらには上記Fe−Ga−Si系合金の耐蝕性や耐摩耗性の一層の向上を図るために、Fe,Ga,Co,(Feの一部をCoで置換したものを含む。),Siを基本組成とする合金に、Ti,Cr,Mn,Zr,Nb,Mo,Ta,W,Ru,Os,Rh,Ir,Re,Ni,Pb,Pt,Hf,Vの少なくとも一種を添加したものなどが挙げられる。これらの中でも、Fe−Ni系合金が賞用される。絶縁材料膜としては、例えば、アルミナ、シリカ、チタニア等の金属酸化物があげられ、これらの中でも、アルミナが賞用される。本発明の複合材料膜用研磨材は、磁性金属膜に対する研磨速度と絶縁材料膜に対する研磨速度とが同じ若しくは近い値であるため、研磨表面の磁性金属膜と絶縁材料膜との間の段差が小さく、平滑な研磨表面を得ることができる。   The abrasive material of the present invention thus obtained is useful as an abrasive material for a composite material film including a magnetic metal film and an insulating material film, and is particularly suitable for being used for polishing in an element formation process of a composite magnetic head. Yes. The material to be polished is a composite material film including a magnetic metal film and an insulating material film, and each of these films may be a single layer or a stacked layer. Examples of magnetic metal films include Fe-Ni alloys (Permalloy), Co-Fe-Ni alloys, Fe-Al alloys, Fe-Al-Si alloys, Fe-Si-Co alloys, Fe-Al -Ge-based alloys, Fe-Ga-Ge-based alloys, Fe-Si-Ge-based alloys, Fe-Co-Si-Al-based alloys and other ferromagnetic metal materials, or Fe-Ga-Si-based alloys, and the above Fe -In order to further improve the corrosion resistance and wear resistance of the Ga-Si alloy, Fe, Ga, Co, (including those in which part of Fe is replaced with Co), and Si are used as the basic composition. Examples include alloys added with at least one of Ti, Cr, Mn, Zr, Nb, Mo, Ta, W, Ru, Os, Rh, Ir, Re, Ni, Pb, Pt, Hf, and V. Among these, Fe-Ni alloys are used for prizes. Examples of the insulating material film include metal oxides such as alumina, silica, and titania. Among these, alumina is awarded. In the abrasive for composite material film of the present invention, the polishing rate for the magnetic metal film and the polishing rate for the insulating material film are the same or close to each other. Therefore, there is a step between the magnetic metal film and the insulating material film on the polishing surface. A small and smooth polished surface can be obtained.

本発明の研磨方法は、上記本発明の複合材料膜用研磨材を使用して、磁性金属膜及び絶縁材料膜を含む複合材料膜を研磨する工程により、磁性金属膜および絶縁材料膜の一部を除去することを特徴とする。かかる本発明の研磨方法は、MRヘッドにおける再生ヘッドの下部シールド層の平坦化に適用できる。下部シールド層は、例えば、磁気回路を形成するNiFe(磁性金属膜)とアルミナ(絶縁材料膜)からなる複合材料膜を用い、表面を絶縁材料膜で覆われている磁性金属膜が露出するように、複合材料膜の絶縁材料膜と磁性金属膜をCMPにより研磨を行う。本発明の研磨材を用いて研磨を行うことにより、露出する絶縁材料膜と磁性金属膜と間の段差が小さく、平坦で表面粗さの小さい研磨表面を得ることができる。   The polishing method of the present invention comprises a step of polishing a composite material film including a magnetic metal film and an insulating material film using the composite material film polishing material of the present invention, and a part of the magnetic metal film and the insulating material film. It is characterized by removing. Such a polishing method of the present invention can be applied to flattening the lower shield layer of the reproducing head in the MR head. For the lower shield layer, for example, a composite material film made of NiFe (magnetic metal film) and alumina (insulating material film) forming a magnetic circuit is used so that the magnetic metal film whose surface is covered with the insulating material film is exposed. Further, the insulating material film and the magnetic metal film of the composite material film are polished by CMP. By polishing using the polishing material of the present invention, a polished surface with a small step between the exposed insulating material film and the magnetic metal film can be obtained, and the surface can be flat and small in surface roughness.

具体的な研磨方法は、被研磨面を有する基板を研磨定盤の研磨布(パッド)上に押圧した状態で研磨材を供給しながら研磨定盤と基板とを相対的に動かすことによって被研磨面を研磨する方法が挙げられる。他に、金属製または樹脂製のブラシを接触させる方法、研磨材を所定の圧力で吹きつける方法が挙げられる。   A specific polishing method is that a substrate having a surface to be polished is pressed against a polishing cloth (pad) of a polishing surface plate, and the polishing surface plate and the substrate are moved relative to each other while the polishing material is supplied. A method of polishing the surface is mentioned. In addition, a method of bringing a metal or resin brush into contact and a method of spraying an abrasive with a predetermined pressure can be mentioned.

研磨する装置としては、例えば研磨布により研磨する場合、研磨される基板を保持できるホルダと、回転数が変更可能なモータ等に接続し、研磨布を貼り付けられる定盤とを有する一般的な研磨装置が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。また、研磨布には研磨材がたまるような溝加工を施すことが好ましい。   As an apparatus for polishing, for example, when polishing with a polishing cloth, a general apparatus having a holder that can hold a substrate to be polished and a surface plate that is connected to a motor that can change the number of rotations and to which the polishing cloth is attached. A polishing apparatus can be used. As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. Further, it is preferable that the polishing cloth is grooved so that the abrasive is accumulated.

研磨条件には制限はないが、定盤の回転速度は基板が飛び出さないように200rpm以下の低回転が好ましい。被研磨面を有する基板の研磨布への押し付け圧力(研磨圧力)が1〜100kPaであることが好ましく、CMP速度の被研磨面内均一性及びパターンの平坦性を満足するためには、5〜50kPaであることがより好ましい。   The polishing conditions are not limited, but the rotation speed of the surface plate is preferably a low rotation of 200 rpm or less so that the substrate does not jump out. The pressing pressure of the substrate having the surface to be polished on the polishing cloth (polishing pressure) is preferably 1 to 100 kPa, and in order to satisfy the uniformity of the polishing surface within the CMP rate and the flatness of the pattern, 5 to More preferably, it is 50 kPa.

基板の被研磨膜を研磨布に押圧した状態で研磨布と被研磨膜とを相対的に動かすには、具体的には基板と研磨定盤との少なくとも一方を動かせば良い。研磨定盤を回転させる他に、ホルダーを回転や揺動させて研磨しても良い。また、研磨定盤を遊星回転させる研磨方法、ベルト状の研磨布を長尺方向の一方向に直線状に動かす研磨方法等が挙げられる。なお、ホルダーは固定、回転、揺動のいずれの状態でも良い。これらの研磨方法は、研磨布と被研磨膜とを相対的に動かすのであれば、被研磨面や研磨装置により適宜選択できる。   In order to move the polishing cloth and the film to be polished relatively with the polishing film on the substrate pressed against the polishing cloth, specifically, at least one of the substrate and the polishing surface plate may be moved. In addition to rotating the polishing surface plate, polishing may be performed by rotating or swinging the holder. Further, a polishing method in which the polishing platen is rotated on a planetary surface, a polishing method in which a belt-like polishing cloth is moved linearly in one direction in the longitudinal direction, and the like can be given. The holder may be in any state of being fixed, rotating and swinging. These polishing methods can be appropriately selected depending on the surface to be polished and the polishing apparatus as long as the polishing cloth and the film to be polished are moved relatively.

研磨している間、研磨布には研磨材をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨材で覆われていることが好ましい。   During polishing, the abrasive is continuously supplied to the polishing cloth with a pump or the like. The supply amount is not limited, but it is preferable that the surface of the polishing pad is always covered with an abrasive.

研磨終了後の基板は、流水中でよく洗浄後、スピンドライヤ等を用いて基板上に付着した水滴を払い落としてから乾燥させることが好ましい。研磨布の表面状態を常に同一にしてCMPを行うために、研磨の前に研磨布のコンディショニング工程を入れるのが好ましい。例えば、ダイヤモンド粒子のついたドレッサを用いて少なくとも水を含む液で研磨布のコンディショニングを行う。続いて本発明によるCMP研磨工程を実施し、さらに、基板洗浄工程を加えるのが好ましい。   The substrate after polishing is preferably washed in running water and then dried after removing water droplets adhering to the substrate using a spin dryer or the like. In order to perform CMP with the surface state of the polishing cloth always the same, it is preferable to perform a conditioning process of the polishing cloth before polishing. For example, the polishing cloth is conditioned with a liquid containing at least water using a dresser with diamond particles. Subsequently, it is preferable to perform a CMP polishing process according to the present invention, and further add a substrate cleaning process.

磁性金属膜のパターンが露出した時点で研磨を終了するが、研磨終了時のより優れた平坦性を確保するために、さらに、オーバー研磨(例えば、所望のパターンを得られるまでの時間が100秒の場合、この100秒の研磨に加えて50秒追加して研磨することをオーバー研磨50%という。)して磁性金属膜の一部を含む深さまで研磨しても良い。本発明の研磨材を用いた研磨方法により得られる複合材料膜の研磨表面は、絶縁材料膜と磁性金属膜間の段差が小さく、好ましい段差は100nm以下である。また、研磨表面の表面粗さも小さく、好ましい表面粗さはRa(算術平均粗さ)で0.3nm以下である。   Polishing is terminated when the pattern of the magnetic metal film is exposed. In order to ensure better flatness at the end of polishing, overpolishing (for example, the time until a desired pattern is obtained is 100 seconds. In this case, polishing for an additional 50 seconds in addition to the polishing for 100 seconds may be referred to as over-polishing 50%), and may be polished to a depth including a part of the magnetic metal film. The polishing surface of the composite material film obtained by the polishing method using the polishing material of the present invention has a small step between the insulating material film and the magnetic metal film, and the preferable step is 100 nm or less. Further, the surface roughness of the polished surface is small, and the preferable surface roughness is Ra (arithmetic average roughness) of 0.3 nm or less.

本発明の複合材料膜用研磨材は、上記のようなMRヘッドの複合材料膜の研磨だけでなく、半導体デバイスにおける金属配線層の形成工程等の複合材料膜を研磨するためにも使用することができる。   The abrasive for composite material film of the present invention is used not only for polishing the composite material film of MR head as described above, but also for polishing the composite material film in the process of forming a metal wiring layer in a semiconductor device. Can do.

以下、実施例により本発明を説明する。本発明はこれらの実施例により制限されるものではない。   Hereinafter, the present invention will be described by way of examples. The present invention is not limited by these examples.

実施例1
(磁性金属膜および絶縁材料膜複合材料用研磨材の作製方法)
純度99.9重量%のγ−アルミナ粉末を純水中に懸濁し、超音波分散を行った。次いで、分級により粗大粒子を取り除き、平均粒径0.15μm、濃度10重量%のα−アルミナ懸濁液を作製した。このα−アルミナ懸濁液10質量部、グリコール酸1質量部、ベンゾトリアゾール0.2質量部および水88.8質量部を加えて溶解し研磨材(A)を作製した。研磨材(A)のpHは2.4であった。
Example 1
(Method for producing abrasive for magnetic metal film and insulating material film composite material)
A γ-alumina powder having a purity of 99.9% by weight was suspended in pure water and subjected to ultrasonic dispersion. Next, coarse particles were removed by classification to prepare an α-alumina suspension having an average particle size of 0.15 μm and a concentration of 10% by weight. 10 parts by mass of this α-alumina suspension, 1 part by mass of glycolic acid, 0.2 part by mass of benzotriazole and 88.8 parts by mass of water were added and dissolved to prepare an abrasive (A). The pH of the abrasive (A) was 2.4.

上記研磨材(A)を定盤に貼り付けたパッドに滴下しながら、下記に示す評価基板および研磨条件でCMP処理を行い、下記に示す評価を行った。   While dropping the abrasive (A) onto a pad attached to a surface plate, CMP treatment was performed under the evaluation substrate and polishing conditions shown below, and the following evaluation was performed.

(評価基板)
基板1:アルチック基板上に厚さ3μmのアルミナ膜を形成したブランケット基板。
(Evaluation board)
Substrate 1: A blanket substrate in which an alumina film having a thickness of 3 μm is formed on an Altic substrate.

基板2:アルチック基板上に厚さ2μmのパーマロイ(80%Ni−20Fe)を形成したブランケット基板。   Substrate 2: A blanket substrate in which permalloy (80% Ni-20Fe) having a thickness of 2 μm is formed on an Altic substrate.

基板3:100μm×100μm、厚さ2μmのパーマロイ膜パターン上に厚さ3μmのアルミナ膜を形成した基板を、平均粒径0.5μmのα−アルミナ2質量部、硝酸アルミニウム9水和物1質量部、水89質量部からなる粗削り用の研磨材で10分間研磨し、パーマロイ膜の厚さが1μm、アルミナ膜の厚さが1.05μmまで研磨したパターン基板。この基板3のパーマロイ膜とアルミナ膜との間の段差は50nm、表面粗さRa(算術平均粗さ)は1nmである。   Substrate 3: A substrate in which an alumina film having a thickness of 3 μm is formed on a 100 μm × 100 μm, 2 μm thick permalloy film pattern, 2 parts by mass of α-alumina having an average particle size of 0.5 μm, and 1 mass of aluminum nitrate nonahydrate. A patterned substrate which is polished for 10 minutes with a roughing abrasive consisting of 90 parts by mass of water and polished to a thickness of 1 μm for the permalloy film and 1.05 μm for the alumina film. The step between the permalloy film and the alumina film of the substrate 3 is 50 nm, and the surface roughness Ra (arithmetic average roughness) is 1 nm.

(研磨条件)
研磨装置:定盤寸法380mmφ、ロータリータイプ
研磨パッド:独立気泡を持つ発泡ポリウレタン樹脂
研磨圧力:20kPa
基板と研磨定盤との相対速度:36m/min
研磨材流量:50ml/min
研磨時間:3分
(評価項目および評価方法)
CMPによるアルミナ膜研磨速度:基板1のCMP処理前後の膜厚差を光学式膜厚測定装置で求め、研磨時間とから算出した。
(Polishing conditions)
Polishing device: Surface plate size 380 mmφ, rotary type Polishing pad: Polyurethane resin with closed cells Polishing pressure: 20 kPa
Relative speed between substrate and polishing surface plate: 36 m / min
Abrasive flow rate: 50 ml / min
Polishing time: 3 minutes (Evaluation items and evaluation method)
Alumina film polishing rate by CMP: The film thickness difference between before and after the CMP process of the substrate 1 was obtained with an optical film thickness measuring device and calculated from the polishing time.

CMPによるパーマロイ膜研磨速度:基板2のCMP処理前後の膜厚差をシート抵抗変化から換算して求め、研磨時間とから算出した。   Permalloy film polishing rate by CMP: The film thickness difference of the substrate 2 before and after the CMP process was calculated from the change in sheet resistance, and calculated from the polishing time.

アルミナ膜/パーマロイ膜間段差量:基板3のCMP処理後のアルミナ膜とパーマロイ膜との境界段差を触針式の段差計で評価した。   Step height between alumina film and permalloy film: The step difference between the alumina film and the permalloy film after the CMP treatment of the substrate 3 was evaluated with a stylus type step gauge.

表面粗さRa(算術平均粗さ):基板3の研磨後のパーマロイ膜の表面粗さをAFM(原子間力顕微鏡)で測定した。   Surface roughness Ra (arithmetic mean roughness): The surface roughness of the permalloy film after polishing of the substrate 3 was measured with an AFM (atomic force microscope).

評価の結果、アルミナ膜の研磨速度は30nm/min、パーマロイ膜の研磨速度は30nm/min、アルミナ膜/パーマロイ膜間段差量は50nm、表面粗さはRaで0.18nmであった。   As a result of the evaluation, the polishing rate of the alumina film was 30 nm / min, the polishing rate of the permalloy film was 30 nm / min, the step difference between the alumina film / permalloy film was 50 nm, and the surface roughness was 0.18 nm in Ra.

実施例2
グリコール酸1質量部を乳酸1質量部に変更したこと以外は実施例1と同様に操作して研磨材(B)を作製した。研磨材(B)のpHは2.5であった。上記研磨材(B)を使用して実施例1と同様にCMP処理を行い、評価を行った。評価の結果、アルミナ膜の研磨速度は30nm/min、パーマロイ膜の研磨速度は25nm/min、アルミナ膜/パーマロイ膜間段差量は30nm、表面粗さはRaで0.15nmであり、パーマロイ膜の研磨速度は若干低下したが実施例1と同様の結果が得られた。
Example 2
An abrasive (B) was produced in the same manner as in Example 1 except that 1 part by weight of glycolic acid was changed to 1 part by weight of lactic acid. The pH of the abrasive (B) was 2.5. Using the abrasive (B), a CMP treatment was performed in the same manner as in Example 1 for evaluation. As a result of the evaluation, the polishing rate of the alumina film was 30 nm / min, the polishing rate of the permalloy film was 25 nm / min, the step difference between the alumina film / permalloy film was 30 nm, the surface roughness was Ra of 0.15 nm, and the permalloy film Although the polishing rate was slightly reduced, the same result as in Example 1 was obtained.

実施例3
さらに重量平均分子量3万のポリビニルピロリドン0.1質量部を加えたこと以外は実施例1と同様に操作して、研磨材(C)を作製した。研磨材(C)のpHは2.4であった。上記研磨材(C)を使用して実施例1と同様にCMP処理を行い、評価を行った。評価の結果、アルミナ膜の研磨速度は25nm/min、パーマロイ膜の研磨速度は25nm/min、アルミナ膜/パーマロイ膜間段差量は50nm、表面粗さはRaで0.11nmであり、ポリビニルピロリドンを添加することにより表面粗さが向上した。
Example 3
Further, an abrasive (C) was produced in the same manner as in Example 1 except that 0.1 part by mass of polyvinylpyrrolidone having a weight average molecular weight of 30,000 was added. The pH of the abrasive (C) was 2.4. CMP was performed in the same manner as in Example 1 using the abrasive (C), and evaluation was performed. As a result of the evaluation, the polishing rate of the alumina film was 25 nm / min, the polishing rate of the permalloy film was 25 nm / min, the step difference between the alumina film / permalloy film was 50 nm, the surface roughness was 0.11 nm in Ra, and polyvinylpyrrolidone was The surface roughness was improved by the addition.

比較例1
グリコール酸を加えないこと以外は実施例1と同様に操作して研磨材(D)を作製した。研磨材(D)のpHは6.2であった。上記研磨材(D)を使用して実施例1と同様にCMP処理を行い、評価を行った。評価の結果、アルミナ膜の研磨速度は10nm/min、パーマロイ膜の研磨速度は10nm/min、アルミナ膜/パーマロイ膜間段差量は50nm、表面粗さはRaで0.85nmであり、実施例1に比べてアルミナ膜の研磨速度及びパーマロイ膜の研磨速度が低下し、表面粗さが悪化した。
Comparative Example 1
An abrasive (D) was produced in the same manner as in Example 1 except that glycolic acid was not added. The pH of the abrasive (D) was 6.2. Using the abrasive (D), CMP treatment was performed in the same manner as in Example 1 for evaluation. As a result of the evaluation, the polishing rate of the alumina film was 10 nm / min, the polishing rate of the permalloy film was 10 nm / min, the step difference between the alumina film / permalloy film was 50 nm, and the surface roughness was 0.85 nm in Ra. As compared with the above, the polishing rate of the alumina film and the polishing rate of the permalloy film were decreased, and the surface roughness was deteriorated.

比較例2
ベンゾトリアゾールを加えないこと以外は実施例1と同様に操作して研磨材(E)を作製した。研磨材(E)のpHは2.4であった。上記研磨材(E)を使用して実施例1と同様にCMP処理を行い、評価を行った。評価の結果、アルミナ膜の研磨速度は30nm/min、パーマロイ膜の研磨速度は90nm/min、アルミナ膜/パーマロイ膜間段差量は150nm、表面粗さはRaで0.45nmであり、実施例1に比べてパーマロイ膜の研磨速度が大幅に低下し、アルミナ膜/パーマロイ膜間段差量が増加し、表面粗さも悪化した。
Comparative Example 2
An abrasive (E) was produced in the same manner as in Example 1 except that benzotriazole was not added. The pH of the abrasive (E) was 2.4. CMP was performed in the same manner as in Example 1 using the abrasive (E), and evaluation was performed. As a result of the evaluation, the polishing rate of the alumina film was 30 nm / min, the polishing rate of the permalloy film was 90 nm / min, the step amount between the alumina film / permalloy film was 150 nm, and the surface roughness was 0.45 nm in Ra. In comparison with the above, the polishing rate of the permalloy film was greatly reduced, the level difference between the alumina film and the permalloy film was increased, and the surface roughness was also deteriorated.

Claims (8)

水、砥粒、1価の有機酸および防食剤を含有し、pHが1.5以上4以下であることを特徴とする複合材料膜用研磨材。   A polishing material for composite film, comprising water, abrasive grains, a monovalent organic acid, and an anticorrosive agent, and having a pH of 1.5 or more and 4 or less. 前記砥粒が、平均粒径10nm以上1000nm以下のアルミナであることを特徴とする請求項1記載の複合材料膜用研磨材。   The abrasive for composite film according to claim 1, wherein the abrasive is alumina having an average particle size of 10 nm or more and 1000 nm or less. 前記1価の有機酸が、ヒドロキシモノカルボン酸であることを特徴とする請求項1記載の複合材料膜用研磨材。   The abrasive for composite film according to claim 1, wherein the monovalent organic acid is hydroxymonocarboxylic acid. 前記ヒドロキシモノカルボン酸が、グリコール酸または乳酸から選ばれた少なくとも1種であることを特徴とする請求項3記載の複合材料膜用研磨材。   4. The abrasive for composite film according to claim 3, wherein the hydroxy monocarboxylic acid is at least one selected from glycolic acid or lactic acid. 前記防食剤が、ベンゾトリアゾールまたはその誘導体から選ばれた少なくとも1種であることを特徴とする請求項1記載の複合材料膜用研磨材。   2. The abrasive for composite material film according to claim 1, wherein the anticorrosive is at least one selected from benzotriazole or a derivative thereof. 前記複合材料膜が、磁性金属膜及び絶縁材料膜を含むことを特徴とする請求項1記載の複合材料膜用研磨材。   The composite material film abrasive according to claim 1, wherein the composite material film includes a magnetic metal film and an insulating material film. 非イオン性の水溶性高分子を含有することを特徴とする請求項1〜6のいずれか一項に記載の複合材料膜用研磨材。   The abrasive for composite material films according to any one of claims 1 to 6, comprising a nonionic water-soluble polymer. 請求請1〜7のいずれか一項に記載の複合材料膜用研磨材を使用して、磁性金属膜及び絶縁材料膜を含む複合材料膜を研磨する工程により、磁性金属膜および絶縁材料膜の少なくとも一部を除去することを特徴とする研磨方法。   By using the composite material film abrasive according to any one of claims 1 to 7 to polish the composite material film including the magnetic metal film and the insulating material film, the magnetic metal film and the insulating material film A polishing method comprising removing at least a part.
JP2006299189A 2005-11-02 2006-11-02 Abrasive for composite film and polishing method Active JP5391516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006299189A JP5391516B2 (en) 2005-11-02 2006-11-02 Abrasive for composite film and polishing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005319439 2005-11-02
JP2005319439 2005-11-02
JP2006299189A JP5391516B2 (en) 2005-11-02 2006-11-02 Abrasive for composite film and polishing method

Publications (2)

Publication Number Publication Date
JP2007146158A true JP2007146158A (en) 2007-06-14
JP5391516B2 JP5391516B2 (en) 2014-01-15

Family

ID=38207931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006299189A Active JP5391516B2 (en) 2005-11-02 2006-11-02 Abrasive for composite film and polishing method

Country Status (1)

Country Link
JP (1) JP5391516B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014013977A1 (en) * 2012-07-17 2016-06-30 株式会社フジミインコーポレーテッド Composition for polishing alloy material and method for producing alloy material using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336345A (en) * 1999-05-27 2000-12-05 Hitachi Chem Co Ltd Polishing solution for metal and polishing method
JP2004311565A (en) * 2003-04-03 2004-11-04 Hitachi Chem Co Ltd Metal polishing solution and polishing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336345A (en) * 1999-05-27 2000-12-05 Hitachi Chem Co Ltd Polishing solution for metal and polishing method
JP2004311565A (en) * 2003-04-03 2004-11-04 Hitachi Chem Co Ltd Metal polishing solution and polishing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014013977A1 (en) * 2012-07-17 2016-06-30 株式会社フジミインコーポレーテッド Composition for polishing alloy material and method for producing alloy material using the same

Also Published As

Publication number Publication date
JP5391516B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
TW562845B (en) Hybrid polishing slurry
WO2007120163A2 (en) Use of cmp for aluminum mirror and solar cell fabrication
JP2000001665A (en) Polishing composition
JP2002294225A (en) Polishing composition and manufacturing method of memory hard disk using the same
JP2003529663A (en) Polishing method of memory or hard disk surface with amino acid-containing composition
JP4836441B2 (en) Polishing liquid composition
TW200424300A (en) Polishing composition
JPH0781133B2 (en) Composition for polishing memory hard disk
JP2006302968A (en) Magnetic metal film, polishing material for insulating material film composite material, and polishing method
Jiang et al. On the advanced lapping process in the precision finishing of thin-film magnetic recording heads for rigid disc drives
JP5391516B2 (en) Abrasive for composite film and polishing method
JP4635694B2 (en) Polishing material and polishing method for polishing a composite film including a magnetic metal film and an insulating material film
US6347978B1 (en) Composition and method for polishing rigid disks
JP2006061995A (en) Polishing liquid composition
JP4156174B2 (en) Polishing liquid composition
JP4557105B2 (en) Polishing composition
JPH09143455A (en) Composition for polishing magnetic hard disk substrate and polishing magnetic hard disk substrate with the same
US7514016B2 (en) Methodology of chemical mechanical nanogrinding for ultra precision finishing of workpieces
TW562720B (en) Polishing molding and polishing surface plate using the same
JP4949432B2 (en) Manufacturing method of hard disk substrate
JP2004204116A (en) Agent for reducing small undulation
JP2690847B2 (en) Abrasive composition for mirror finish polishing of carbon substrate and polishing method
JP4114018B2 (en) Polishing composition for aluminum disk and polishing method using the polishing composition
JPH09286975A (en) Composition for precision polishing
JP3606806B2 (en) Polishing liquid composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R151 Written notification of patent or utility model registration

Ref document number: 5391516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350