JP2006302968A - Magnetic metal film, polishing material for insulating material film composite material, and polishing method - Google Patents

Magnetic metal film, polishing material for insulating material film composite material, and polishing method Download PDF

Info

Publication number
JP2006302968A
JP2006302968A JP2005118731A JP2005118731A JP2006302968A JP 2006302968 A JP2006302968 A JP 2006302968A JP 2005118731 A JP2005118731 A JP 2005118731A JP 2005118731 A JP2005118731 A JP 2005118731A JP 2006302968 A JP2006302968 A JP 2006302968A
Authority
JP
Japan
Prior art keywords
film
polishing
magnetic metal
abrasive
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005118731A
Other languages
Japanese (ja)
Inventor
Yasuo Kamigata
康雄 上方
Masato Yoshida
誠人 吉田
Shunsuke Ueda
俊輔 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005118731A priority Critical patent/JP2006302968A/en
Publication of JP2006302968A publication Critical patent/JP2006302968A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic metal film for which a polishing speed by high CMP can be maintained, a level difference between an insulating material film and a magnetic metal film is small, and CMP processing can be applied without causing defective such as a scratch on the magnetic metal film; and to provide a polishing material for an insulating material film composite material. <P>SOLUTION: The magnetic metal film and the polishing material for an insulating material film composite material contain water, abrasive grains, amino acid and inorganic acid. In this film, pH is 1.5-4 and neutralization titration equivalence by potassium hydroxide is not less than 0.05 mol/kg. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁性金属膜および絶縁材料膜複合材料用の研磨材および研磨方法に係り、特にハード・ディスク・ドライブ(HDD)用の薄膜磁気ヘッド製造に適したケミカル・メカニカル・プラナリゼーション(CMP)で使用する研磨材およびそれを用いた研磨方法に関する。   The present invention relates to an abrasive and a polishing method for a magnetic metal film and an insulating material film composite material, and in particular, chemical mechanical planarization (CMP) suitable for manufacturing a thin film magnetic head for a hard disk drive (HDD). The present invention relates to an abrasive used in the above and a polishing method using the same.

HDDの記録容量は年々増加している。この記録容量の増加は記録する磁気メディアの記録領域の微小化により達成されている。磁気メディアの記録領域を微小化するためには、記録・再生を行う磁気ヘッドの記録素子部、再生素子部のサイズの小型化が必要になっている。また、記録領域の微小化に伴う再生出力感度の低下を改善するため、磁気ヘッドの構造は電磁誘導を利用した記録、再生を兼ねたインダクティブヘッドから、磁気抵抗効果を利用した再生ヘッドと電磁誘導を利用した記録ヘッドからなる複合型薄膜磁気ヘッド(MRヘッド)へ移行している。   The recording capacity of HDD is increasing year by year. This increase in recording capacity is achieved by miniaturizing the recording area of the magnetic media to be recorded. In order to miniaturize the recording area of the magnetic medium, it is necessary to reduce the size of the recording element portion and the reproducing element portion of the magnetic head that performs recording and reproduction. In addition, in order to improve the decrease in reproduction output sensitivity due to the miniaturization of the recording area, the structure of the magnetic head is changed from an inductive head that combines recording and reproduction using electromagnetic induction to a reproducing head that uses the magnetoresistive effect and electromagnetic induction. Has shifted to a composite type thin film magnetic head (MR head) composed of a recording head using a magnetic head.

MRヘッドはアルチック(AlTiC:アルミニウムチタニウムカーバイド)等のセラミックス基板上に再生ヘッド、その上に記録ヘッドを順次形成し製造されている。再生ヘッドはパーマロイ等の磁性金属からなる下部シールド膜、金属の積層膜からなる磁気抵抗効果素子、パーマロイ等の磁性金属からなる上部シールド膜からなっており薄膜プロセスで形成される。MRヘッドの製造に当たっては下地材料の表面粗さを解消する目的や、加工プロセスで生じる段差を解消する目的からCMPが適用されている。CMPの適用については例えば特許文献1、特許文献2に開示されている。   The MR head is manufactured by sequentially forming a reproducing head on a ceramic substrate such as AlTiC (AlTiC: aluminum titanium carbide) and a recording head thereon. The reproducing head includes a lower shield film made of a magnetic metal such as permalloy, a magnetoresistive effect element made of a laminated film of metals, and an upper shield film made of magnetic metal such as permalloy, and is formed by a thin film process. In manufacturing the MR head, CMP is applied for the purpose of eliminating the surface roughness of the base material and the purpose of eliminating the level difference generated in the processing process. The application of CMP is disclosed in, for example, Patent Document 1 and Patent Document 2.

下部シールド膜の形成方法は基板上に絶縁材料膜を形成し、その上に磁気シールド層となる磁性金属膜を所定の形状に形成し、次いでアルミナ等の金属酸化物からなる絶縁材料膜を成膜し、その後磁性金属膜が露出するように、絶縁材料膜と磁性金属膜をCMPにより研磨し、絶縁材料膜と磁性金属膜に段差がないよう平坦でかつ表面粗さの小さい表面を形成している。下部シールド膜の形成方法については例えば特許文献3に開示されている。
特開平5−81613号公報 特開平7−272211号公報 特開2000−109816公報
The lower shield film is formed by forming an insulating material film on a substrate, forming a magnetic metal film as a magnetic shield layer on the substrate in a predetermined shape, and then forming an insulating material film made of a metal oxide such as alumina. Then, the insulating material film and the magnetic metal film are polished by CMP so that the magnetic metal film is exposed to form a flat surface with a small surface roughness so that there is no step between the insulating material film and the magnetic metal film. ing. For example, Patent Document 3 discloses a method for forming the lower shield film.
JP-A-5-81613 JP-A-7-272211 JP 2000-109816 A

しかしながら、このCMP処理において、実用的な研磨速度を保ちつつ、磁性金属膜にスクラッチ等の欠陥を生じることなく、さらに磁性金属膜と絶縁材料膜との間に段差を生じることなく研磨することは困難であった。スクラッチ等の欠陥があると上部に形成する磁気抵抗効果素子の感度特性に影響し、磁性金属膜と絶縁材料膜の間に段差があると上部の素子形成時に短絡などの原因になるなどの問題があった。   However, in this CMP process, it is possible to polish without causing defects such as scratches in the magnetic metal film and without causing a step between the magnetic metal film and the insulating material film while maintaining a practical polishing rate. It was difficult. Defects such as scratches affect the sensitivity characteristics of the magnetoresistive effect element formed on the top, and if there is a step between the magnetic metal film and the insulating material film, it may cause a short circuit when forming the top element. was there.

本発明は、高いCMPによる研磨速度を維持し、磁性金属膜と絶縁材料膜との段差が小さく、さらに磁性金属膜上にスクラッチ等の欠陥を生じることなくCMP処理が可能で、製品歩留まりの向上を可能とする磁性金属膜および絶縁材料膜複合材料用研磨材および研磨方法を提供するものである。   The present invention maintains a high polishing rate by CMP, has a small step between the magnetic metal film and the insulating material film, and can perform a CMP process without causing defects such as scratches on the magnetic metal film, thereby improving the product yield. The present invention provides an abrasive for a magnetic metal film and an insulating material film composite material and a polishing method.

本発明の研磨材は水、砥粒、アミノ酸および無機酸を含み、pHが1.5以上4以下、水酸化カリウムによる中和滴定等量が0.05mol/kg以上であることを特徴とする磁性金属膜および絶縁材料膜複合材料用研磨材である。   The abrasive of the present invention contains water, abrasive grains, amino acids and inorganic acids, has a pH of 1.5 or more and 4 or less, and a neutralization titration equivalent with potassium hydroxide is 0.05 mol / kg or more. It is an abrasive for a magnetic metal film and an insulating material film composite material.

無機酸は硝酸であることが好ましく、アミノ酸は第1酸解離定数(pK1)2以上3以下であることが好ましい。 The inorganic acid is preferably nitric acid, and the amino acid preferably has a first acid dissociation constant (pK 1 ) of 2 or more and 3 or less.

砥粒はα-アルミナ、またはα-アルミナと他の砥粒の混合砥粒であることが好ましく、研磨材中に非イオン性の水溶性高分子を含有することが好ましい。   The abrasive is preferably α-alumina or a mixed abrasive of α-alumina and other abrasives, and the abrasive preferably contains a nonionic water-soluble polymer.

本発明の研磨方法は上記の複合材料用研磨材を使用して磁性金属膜および絶縁材料膜を含む複合膜を研磨する工程により、磁性金属膜および絶縁材料膜の一部を除去する研磨方法である。   The polishing method of the present invention is a polishing method in which a part of the magnetic metal film and the insulating material film is removed by the step of polishing the composite film including the magnetic metal film and the insulating material film using the above-described composite material abrasive. is there.

本発明の磁性金属膜および絶縁材料膜複合材料用研磨材は、pHが1.5以上4以下の緩衝溶液であるため、被研磨物である絶縁材料膜や磁性金属膜が研磨材中に溶解してもpH変動が起こりにくく、高い研磨速度と良好な研磨速度の基板面内均一性を保つことができる。   Since the abrasive for magnetic metal film and insulating material film composite material of the present invention is a buffer solution having a pH of 1.5 or more and 4 or less, the insulating material film or magnetic metal film as the object to be polished is dissolved in the abrasive. Even in this case, it is difficult for the pH to change, and it is possible to maintain high uniformity in the substrate surface with a high polishing rate and a good polishing rate.

また、本発明の研磨材は、CMPによる高い研磨速度を維持し、磁性金属膜と絶縁材料膜の段差が小さく、さらに磁性金属膜上にスクラッチ等の欠陥を生じることなくCMP処理ができるので、製品歩留まりを向上させることができる。   In addition, the polishing material of the present invention maintains a high polishing rate by CMP, has a small step between the magnetic metal film and the insulating material film, and can perform CMP processing without causing defects such as scratches on the magnetic metal film. Product yield can be improved.

本発明における研磨材は、複合型磁気ヘッドの素子形成工程での研磨に使用されるのに適する。被研磨材料としては、絶縁材料として使用されるアルミナ等の金属酸化物と、磁性金属として使用されるパーマロイやコバルト・鉄・ニッケル系の合金との膜が混在する複合材料が挙げられ、これらの材料をそれぞれ同じ研磨速度で研磨することにより、磁性金属膜と絶縁材料膜(金属酸化物膜)との間に段差を生じることなく研磨が可能になる。本発明の磁性金属膜および絶縁材料膜複合材料用研磨材は、水、砥粒、アミノ酸および無機酸を含み、pHが1.5以上4以下、水酸化カリウムによる中和滴定等量が0.05mol/kg以上に調整されている。   The abrasive in the present invention is suitable for use in polishing in the element forming process of a composite magnetic head. Examples of materials to be polished include composite materials in which a metal oxide such as alumina used as an insulating material and a film of a permalloy or cobalt / iron / nickel alloy used as a magnetic metal are mixed. By polishing the materials at the same polishing rate, polishing can be performed without causing a step between the magnetic metal film and the insulating material film (metal oxide film). The abrasive for magnetic metal film and insulating material film composite material of the present invention contains water, abrasive grains, amino acids and inorganic acids, has a pH of 1.5 or more and 4 or less, and has a neutralization titration equivalent of 0. It is adjusted to 05 mol / kg or more.

本発明における無機酸としては硝酸、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、リン酸等が挙げられ、この中で硝酸がCMPによる研磨速度が大きく、砥粒の凝集・沈降を抑制できるという点で好ましい。   Examples of the inorganic acid in the present invention include nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, etc. Among them, nitric acid has a high polishing rate by CMP and suppresses aggregation and sedimentation of abrasive grains. It is preferable in that it can be performed.

本発明におけるアミノ酸としてはグリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、システイン、シシチン、メチオニン、アスパラギン酸、グルタミン酸、リシン、アルギニン、フェニルアラニン、チロシン、ヒスチジン、トリプトファン、プロリン、オキシプロリン等が挙げられる。これらの中で第1酸解離定数(pK)が2以上3以下のアミノ酸が、研磨材のpHを1.5以上4以下に調整しやすいと言う点で好ましい。具体的にはアラニン、アルギニン、イソロイシン、グリシン、グルタミン酸、トリプトファン、トレオニン、バリン、メチオニン、リシン、ロイシン等が挙げられ、特にグリシンが好ましい。 Examples of amino acids in the present invention include glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, cystein, methionine, aspartic acid, glutamic acid, lysine, arginine, phenylalanine, tyrosine, histidine, tryptophan, proline, oxyproline and the like. It is done. Among these, an amino acid having a first acid dissociation constant (pK 1 ) of 2 or more and 3 or less is preferable in that the pH of the abrasive is easily adjusted to 1.5 or more and 4 or less. Specific examples include alanine, arginine, isoleucine, glycine, glutamic acid, tryptophan, threonine, valine, methionine, lysine, and leucine, with glycine being particularly preferred.

本発明における砥粒はシリカ、アルミナ、ジルコニア、セリア、チタニア、炭化珪素等の無機物砥粒のいずれでもよいが、硬度が大きく高い研磨速度が得られ、かつ微細粒子の製造技術が確立しており、微細粒子の入手が容易なα-アルミナが好ましい。α-アルミナの製造方法は水酸化アルミニウムの焼成による方法や、アルミニウムアルコキシドの加水分解により精製したベーマイトの焼成による方法が知られている。このα-アルミナ粒子に他の砥粒を混合してもよい。前記、他の砥粒としては、同じアルミナであるが低温相であるγ-アルミナやベーマイトなどの含水アルミナ、シリカ、ジルコニアなどが挙げられる。砥粒の平均粒径は0.05μm〜1.0μm、好ましくは0.1μm〜0.3μmであり、球状の形状のものが磁性金属膜上のスクラッチ等を少なくできる点で好ましい。   The abrasive grains in the present invention may be any of inorganic abrasive grains such as silica, alumina, zirconia, ceria, titania, silicon carbide, etc., but the hardness is high and a high polishing rate is obtained, and the technology for producing fine particles has been established. Α-alumina, from which fine particles are easily available, is preferred. As a method for producing α-alumina, a method by calcining aluminum hydroxide or a method by calcining boehmite purified by hydrolysis of aluminum alkoxide is known. Other abrasive grains may be mixed with the α-alumina particles. Examples of the other abrasive grains include hydrous alumina such as γ-alumina and boehmite which are the same alumina but a low temperature phase, silica, zirconia and the like. The average grain size of the abrasive grains is 0.05 μm to 1.0 μm, preferably 0.1 μm to 0.3 μm, and a spherical shape is preferable in that scratches on the magnetic metal film can be reduced.

本発明における研磨材には水溶性高分子を含むことが好ましく、非イオン性の水溶性高分子がさらに好ましい。非イオン性の水溶性高分子としては、ポリビニルアルコール、ポリビニルピロリドン等のビニル基を持つモノマーを基本構成単位とするポリマー、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース類、ポリエチレンオキサイド、ポリエチレンオキサイド-ポリプロピレンオキサイド共重合体等が挙げられる。これらの水溶性高分子を添加することにより、磁性金属膜の表面粗さを低減すると同時に研磨後の洗浄性を向上させることができる。   The abrasive in the present invention preferably contains a water-soluble polymer, and more preferably a nonionic water-soluble polymer. Nonionic water-soluble polymers include polymers based on monomers having vinyl groups such as polyvinyl alcohol and polyvinylpyrrolidone, celluloses such as methylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyethylene oxide, polyethylene oxide -A polypropylene oxide copolymer etc. are mentioned. By adding these water-soluble polymers, it is possible to reduce the surface roughness of the magnetic metal film and at the same time improve the cleanability after polishing.

本発明における磁性金属膜および絶縁材料膜複合材料用研磨材のpHは、磁性金属膜および絶縁材料膜のCMPによる研磨速度が大きく、磁性金属膜に腐食を生じさせないという点でpH1.5以上4以下であり、pH2以上3以下の範囲が好ましい。pH1.5未満では磁性金属膜の表面粗さが大きくなり、また、pH4を超えるとCMPによる研磨速度が遅く実用的な研磨材とはなり得ない。pHは無機酸とアミノ酸の添加量により調整することができる。またアンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド等のアルカリ成分の添加によっても調整可能である。   In the present invention, the magnetic metal film and the insulating material film composite material have a polishing agent having a pH of 1.5 or more and 4 in that the polishing speed of the magnetic metal film and the insulating material film by CMP is large and the magnetic metal film is not corroded. It is below, and the range of pH 2-3 is preferable. If the pH is less than 1.5, the surface roughness of the magnetic metal film increases. If the pH exceeds 4, the polishing rate by CMP is too slow to be a practical abrasive. pH can be adjusted with the addition amount of an inorganic acid and an amino acid. It can also be adjusted by adding alkali components such as ammonia, sodium hydroxide and tetramethylammonium hydroxide.

本発明における磁性金属膜および絶縁材料膜複合材料用研磨材は、水酸化カリウムによる中和滴定等量が0.05mol/kg以上の、無機酸成分を含むpH緩衝溶液である。   The abrasive for magnetic metal film and insulating material film composite material in the present invention is a pH buffer solution containing an inorganic acid component having a neutralization titration equivalent amount of 0.05 mol / kg or more with potassium hydroxide.

ここでいう中和滴定等量は研磨材1kgを中和するのに必要な水酸化カリウムのモル数である。無機酸は一般に強酸であり、多量に添加するとpHが低下してしまいpH1.5以上4以下の範囲に調整するのは困難である。そこで無機酸にアミノ酸を添加することにより、pH1.5以上4以下のpH緩衝溶液とすることができる。   The neutralization titration equivalent here is the number of moles of potassium hydroxide necessary to neutralize 1 kg of the abrasive. Inorganic acids are generally strong acids, and when added in a large amount, the pH is lowered and it is difficult to adjust the pH within the range of 1.5 to 4. Therefore, a pH buffer solution having a pH of 1.5 or more and 4 or less can be obtained by adding an amino acid to the inorganic acid.

CMP研磨中には被研磨物の絶縁膜材料や磁性金属材料が研磨され、研磨材中に陽イオンとして溶解する。ここで無機酸の添加量が少ないと、被研磨膜の溶解により水素イオンが消費され研磨材のpHが上昇してしまう。このため研磨速度の低下、とくに被研磨物を溶解した研磨材が供給されると考えられる基板中央部の研磨速度が低下しやすい。これは3価と価数が大きいアルミニウムイオンを生成するアルミナ膜を研磨する場合においては特に顕著である。一方、十分な量の無機酸を含有し、pH緩衝作用のある研磨材を使用した場合は、アルミニウムイオン等の金属イオンが溶解しても、pHの上昇は抑制され、安定した研磨が可能になる。そのために必要な研磨材中の無機酸の量は、研磨速度、研磨材流量にもよるが4インチ〜8インチ(約10.2cm〜約20.3cm)径の円盤状の基板を研磨する場合には、水酸化カリウムによる中和滴定等量で0.05mol/kg以上に相当する量である。   During CMP polishing, the insulating film material and magnetic metal material of the object to be polished are polished and dissolved as cations in the polishing material. Here, if the amount of the inorganic acid added is small, hydrogen ions are consumed due to dissolution of the film to be polished, and the pH of the abrasive is increased. For this reason, the polishing rate is lowered, and in particular, the polishing rate at the central portion of the substrate, which is considered to be supplied with an abrasive in which the object to be polished is dissolved, is likely to be lowered. This is particularly noticeable when polishing an alumina film that produces aluminum ions having a high valence of three. On the other hand, when an abrasive containing a sufficient amount of inorganic acid and having a pH buffering action is used, even if metal ions such as aluminum ions are dissolved, the increase in pH is suppressed and stable polishing is possible. Become. For this purpose, the amount of inorganic acid in the abrasive is 4 to 8 inches (about 10.2 cm to about 20.3 cm) in diameter, depending on the polishing rate and the abrasive flow rate. Is an amount equivalent to 0.05 mol / kg or more by neutralization titration equivalent with potassium hydroxide.

本発明における砥粒の配合量は研磨材全重量に対して0.3質量%〜10質量%であることが好ましく、0.3質量%〜5質量%であることがより好ましい。砥粒の添加量が0.3質量%未満の場合は物理的な研削作用が小さいため研磨速度が小さくなる傾向があり、10質量%を超えると研磨速度は飽和し、それ以上加えても研磨速度の増加は認められない。   The blending amount of the abrasive grains in the present invention is preferably 0.3% by mass to 10% by mass, and more preferably 0.3% by mass to 5% by mass with respect to the total weight of the abrasive. When the added amount of abrasive grains is less than 0.3% by mass, the polishing rate tends to be small because the physical grinding action is small. When the added amount exceeds 10% by mass, the polishing rate is saturated. There is no increase in speed.

本発明における非イオン性の水溶性高分子の配合量は、全重量に対して、0.01質量%〜2.0質量%とすることが好ましく、0.05質量%〜0.5質量%とすることがより好ましい。配合量が0.01質量%未満では、磁性金属膜の表面粗さの低減作用や研磨後の洗浄性を向上させる作用は認められにくい。また配合量が2.0質量%を超えると、CMPによる研磨速度が低下する傾向がある。   The blending amount of the nonionic water-soluble polymer in the present invention is preferably 0.01% by mass to 2.0% by mass, and 0.05% by mass to 0.5% by mass with respect to the total weight. More preferably. If the blending amount is less than 0.01% by mass, it is difficult to recognize the effect of reducing the surface roughness of the magnetic metal film and the effect of improving the cleanability after polishing. On the other hand, if the blending amount exceeds 2.0 mass%, the polishing rate by CMP tends to decrease.

このような本発明の研磨材を、MRヘッドの素子形成工程での研磨、例えば再生ヘッドの下部シールド膜の平坦化に適用できる。すなわち、本発明の研磨方法は、上記磁性金属膜および絶縁材料膜複合材料用研磨材を使用して磁性金属膜および絶縁材料膜を含む複合膜を研磨する工程により、磁性金属膜および絶縁材料膜の一部を除去することを特徴とする。   Such an abrasive of the present invention can be applied to polishing in the element formation process of the MR head, for example, flattening of the lower shield film of the reproducing head. That is, the polishing method of the present invention comprises a step of polishing a composite film including a magnetic metal film and an insulating material film by using the magnetic metal film and the insulating material film composite material, and the magnetic metal film and the insulating material film are polished. It is characterized in that a part of is removed.

例えば、下部シールド膜用の磁性金属としては、磁気回路を形成するNiFe、コバルト・鉄・ニッケル系の合金、磁気回路に電気を流すCu配線などが、絶縁材料としては、絶縁材料であるアルミナなどの金属酸化物が挙げられる。複合膜はこれら材料の膜が混在している。表面を絶縁材料膜で覆われている磁性金属膜が露出するように、複合膜の絶縁材料膜と磁性金属膜をCMPにより研磨して、露出する絶縁材料膜と磁性金属膜とに段差がない、平坦で表面粗さの小さい表面を得られる。   For example, the magnetic metal for the lower shield film includes NiFe, a cobalt / iron / nickel alloy that forms a magnetic circuit, Cu wiring that conducts electricity to the magnetic circuit, and the insulating material includes alumina that is an insulating material. These metal oxides can be mentioned. The composite membrane is a mixture of these materials. The insulating material film and the magnetic metal film of the composite film are polished by CMP so that the magnetic metal film whose surface is covered with the insulating material film is exposed, and there is no step between the exposed insulating material film and the magnetic metal film. A flat surface with a small surface roughness can be obtained.

ここで、具体的な研磨方法は、被研磨面(複合膜)を有する基板を研磨定盤の研磨布(パッド)上に押圧した状態で研磨材を供給しながら研磨定盤と基板とを相対的に動かすことによって被研磨面を研磨する方法が挙げられる。他に、金属製または樹脂製のブラシを接触させる方法、研磨材を所定の圧力で吹きつける方法が挙げられる。   Here, a specific polishing method is such that the polishing surface plate and the substrate are relative to each other while supplying the abrasive material while pressing the substrate having the surface to be polished (composite film) onto the polishing cloth (pad) of the polishing surface plate. The method of grind | polishing a to-be-polished surface by moving regularly is mentioned. In addition, a method of bringing a metal or resin brush into contact and a method of spraying an abrasive with a predetermined pressure can be mentioned.

研磨する装置としては、例えば研磨布により研磨する場合、研磨される基板を保持できるホルダと、回転数が変更可能なモータ等に接続し、研磨布を貼り付けられる定盤とを有する一般的な研磨装置が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。研磨条件には制限はないが、定盤の回転速度は基板が飛び出さないように200rpm以下の低回転が好ましい。被研磨面を有する基板の研磨布への押し付け圧力(研磨圧力)が1〜100kPaであることが好ましく、CMP速度の被研磨面内均一性及びパターンの平坦性を満足するためには、5〜50kPaであることがより好ましい。研磨している間、研磨布には研磨材をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨材で覆われていることが好ましい。研磨終了後の基板は、流水中でよく洗浄後、スピンドライ等を用いて基板上に付着した水滴を払い落としてから乾燥させることが好ましい。研磨布の表面状態を常に同一にしてCMPを行うために、研磨の前に研磨布のコンディショニング工程を入れるのが好ましい。例えば、ダイヤモンド粒子のついたドレッサを用いて少なくとも水を含む液で研磨布のコンディショニングを行う。続いて本発明によるCMP研磨工程を実施し、さらに、基板洗浄工程を加えるのが好ましい。   As an apparatus for polishing, for example, when polishing with a polishing cloth, a general apparatus having a holder that can hold a substrate to be polished and a surface plate that is connected to a motor that can change the number of rotations and to which the polishing cloth is attached. A polishing apparatus can be used. As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably a low rotation of 200 rpm or less so that the substrate does not jump out. The pressing pressure of the substrate having the surface to be polished on the polishing cloth (polishing pressure) is preferably 1 to 100 kPa, and in order to satisfy the uniformity of the polishing surface within the CMP rate and the flatness of the pattern, 5 to More preferably, it is 50 kPa. During polishing, the abrasive is continuously supplied to the polishing cloth with a pump or the like. The supply amount is not limited, but it is preferable that the surface of the polishing pad is always covered with an abrasive. The substrate after polishing is preferably washed in running water and then dried after removing water droplets adhering to the substrate using spin drying or the like. In order to perform CMP with the surface state of the polishing cloth always the same, it is preferable to perform a conditioning process of the polishing cloth before polishing. For example, the polishing cloth is conditioned with a liquid containing at least water using a dresser with diamond particles. Subsequently, it is preferable to perform a CMP polishing process according to the present invention, and further add a substrate cleaning process.

磁性金属膜のパターンが露出した時点で研磨を終了してよいが、研磨終了時のより優れた平坦性を確保するために、さらに、オーバー研磨して磁性金属膜の一部を含む深さまで研磨しても良い。   Polishing may be finished when the pattern of the magnetic metal film is exposed, but in order to ensure better flatness at the end of polishing, further polishing is performed to a depth including a part of the magnetic metal film. You may do it.

研磨により得られる複合膜表面の、好ましい絶縁材料膜/磁性金属膜の膜間段差量は、100nm以下である。また、好ましい表面粗さはRaで、3nm以下である。   A preferable step height between the insulating material film / magnetic metal film on the surface of the composite film obtained by polishing is 100 nm or less. A preferable surface roughness is Ra, which is 3 nm or less.

本発明の研磨材は、上記のようなMRヘッドの複合材料膜の研磨だけでなく、半導体デバイスにおける金属配線層の形成工程等の複合材料膜を研磨するためにも使用することができる。   The abrasive of the present invention can be used not only for polishing the composite material film of the MR head as described above, but also for polishing the composite material film in a process of forming a metal wiring layer in a semiconductor device.

以下、実施例により本発明を説明する。本発明はこれらの実施例により制限されるものではない。   Hereinafter, the present invention will be described by way of examples. The present invention is not limited by these examples.

(実施例1)
〔磁性金属膜および絶縁材料膜複合材料用研磨材の作製方法〕
純度99.9%のα-アルミナ粉末を純水中に懸濁し、超音波分散を行った。その後、分級により粗大粒子を取り除いて平均粒径0.3μm、濃度10wt%のα-アルミナ懸濁液を作製した。このα-アルミナ懸濁液20質量部、1N硝酸15質量部、グリシン1.5質量部、水63.5質量部を加えて溶解して磁性金属膜および絶縁材料膜複合材料用研磨材とした。中和滴定等量の測定値は0.15mol/kg、pHは2.1であった。
Example 1
[Method of manufacturing abrasive for magnetic metal film and insulating material film composite material]
Α-alumina powder having a purity of 99.9% was suspended in pure water and subjected to ultrasonic dispersion. Thereafter, coarse particles were removed by classification to prepare an α-alumina suspension having an average particle size of 0.3 μm and a concentration of 10 wt%. 20 parts by mass of this α-alumina suspension, 15 parts by mass of 1N nitric acid, 1.5 parts by mass of glycine and 63.5 parts by mass of water were added and dissolved to obtain an abrasive for a magnetic metal film and an insulating material film composite material. . The measured value of the neutralization titration equivalent was 0.15 mol / kg, and the pH was 2.1.

上記研磨材を定盤に貼り付けたパッドに滴下しながら、下記に示す評価基板および研磨条件でCMPを行い、下記に示す評価を行った。   While dripping the above-mentioned abrasive on a pad attached to a surface plate, CMP was performed with the following evaluation substrate and polishing conditions, and the following evaluation was performed.

<評価基板>
基板1:アルチック基板上に厚さ3μmのアルミナ膜を形成したブランケット基板。
<Evaluation board>
Substrate 1: A blanket substrate in which an alumina film having a thickness of 3 μm is formed on an Altic substrate.

基板2:アルチック基板上に厚さ2μmのパーマロイ(80%Ni-20Fe)を形成したブランケット基板。   Substrate 2: A blanket substrate in which permalloy (80% Ni-20Fe) having a thickness of 2 μm is formed on an Altic substrate.

基板3:100μm×100μm、厚さ2μmのパーマロイ膜パターン上に厚さ3μmのアルミナ膜を形成したパターン形成基板。   Substrate 3: A pattern-formed substrate in which an alumina film having a thickness of 3 μm is formed on a permalloy film pattern having a thickness of 100 μm × 100 μm and a thickness of 2 μm.

<研磨条件>
研磨装置:定盤寸法600mmφ、ロータリータイプ
研磨パッド:独立気泡を持つ発泡ポリウレタン樹脂
研磨圧力:20kPa
基板と研磨定盤との相対速度:36m/min
研磨材流量:100ml/min
<評価項目および評価方法>
CMPによるアルミナ膜研磨速度:基板1のCMP前後での膜厚差を光学式膜厚測定装置で求めた。
<Polishing conditions>
Polishing device: Surface plate size 600 mmφ, Rotary type Polishing pad: Polyurethane resin with closed cells Polishing pressure: 20 kPa
Relative speed between substrate and polishing surface plate: 36 m / min
Abrasive flow rate: 100ml / min
<Evaluation items and evaluation methods>
Alumina film polishing rate by CMP: The difference in film thickness of the substrate 1 before and after CMP was determined by an optical film thickness measuring device.

CMPによるパーマロイ膜研磨速度:基板2のCMP前後でのシート抵抗変化から換算して求めた。   Permalloy film polishing rate by CMP: calculated from the change in sheet resistance of the substrate 2 before and after CMP.

アルミナ膜/パーマロイ膜間段差量:基板3のCMP研磨後のアルミナ膜/パーマロイ膜境界段差を触針式の段差計で評価した。   Step height between alumina film / permalloy film: The step difference between the alumina film / permalloy film after CMP of the substrate 3 was evaluated by a stylus type step gauge.

表面粗さ:基板3の研磨後のパーマロイ膜表面粗さをAFMで測定した。   Surface roughness: The surface roughness of the permalloy film after polishing the substrate 3 was measured by AFM.

評価の結果、アルミナ膜の研磨速度は480nm/min、パーマロイ膜の研磨速度は430nm/minとほぼ等しく、アルミナ膜/パーマロイ膜間段差量は90nm、表面粗さはRaで0.25nmであった。   As a result of the evaluation, the polishing rate of the alumina film was 480 nm / min, the polishing rate of the permalloy film was almost equal to 430 nm / min, the level difference between the alumina film and the permalloy film was 90 nm, and the surface roughness Ra was 0.25 nm. .

(実施例2)
非イオン性の水溶性高分子として分子量3万のポリビニルポロリドンを0.1質量部加えた以外は実施例1と同様に磁性金属膜および絶縁材料膜複合材料用研磨材を作製した。中和滴定等量の測定値は0.15mol/kg、pHは2.1であった。上記研磨材を使用して実施例1と同様にCMPを行い、評価を行った。
(Example 2)
A magnetic metal film and an insulating material film composite abrasive were prepared in the same manner as in Example 1 except that 0.1 part by mass of a polyvinyl poloridone having a molecular weight of 30,000 was added as a nonionic water-soluble polymer. The measured value of the neutralization titration equivalent was 0.15 mol / kg, and the pH was 2.1. CMP was performed in the same manner as in Example 1 using the above abrasive, and evaluation was performed.

評価の結果、アルミナ膜の研磨速度は470nm/min、パーマロイ膜の研磨速度は480nm/minとほぼ等しく、アルミナ膜/パーマロイ膜間段差量は40nm、表面粗さはRaで0.15nmであり、アルミナ膜/パーマロイ膜間段差量と表面粗さが向上した。   As a result of the evaluation, the polishing rate of the alumina film is 470 nm / min, the polishing rate of the permalloy film is almost equal to 480 nm / min, the step amount between the alumina film / permalloy film is 40 nm, the surface roughness is 0.15 nm in Ra, The level difference between the alumina film / permalloy film and the surface roughness were improved.

(比較例1)
1N硝酸を1.5質量部に減少し、水を77質量部に増加させた以外は実施例1と同様に磁性金属膜および絶縁材料膜複合材料用研磨材を作製した。中和滴定等量の測定値は0.015mol/kg、pHは3.4であった。上記研磨材を使用して実施例1と同様にCMPを行い、評価を行った。
(Comparative Example 1)
A magnetic metal film and an insulating material film composite abrasive were prepared in the same manner as in Example 1 except that 1N nitric acid was reduced to 1.5 parts by mass and water was increased to 77 parts by mass. The measured value of the neutralization titration equivalent was 0.015 mol / kg, and the pH was 3.4. CMP was performed in the same manner as in Example 1 using the above abrasive, and evaluation was performed.

評価の結果、アルミナ膜の研磨速度は70nm/min、パーマロイ膜の研磨速度は110nm/min、アルミナ膜/パーマロイ膜間段差量は110nm、表面粗さはRaで0.23nmであり、アルミナ膜、パーマロイ膜の研磨速度が低下した。

As a result of the evaluation, the polishing rate of the alumina film was 70 nm / min, the polishing rate of the permalloy film was 110 nm / min, the step difference between the alumina film / permalloy film was 110 nm, the surface roughness was Ra of 0.23 nm, the alumina film, The polishing rate of the permalloy film decreased.

Claims (6)

水、砥粒、アミノ酸および無機酸を含み、pHが1.5以上4以下、水酸化カリウムによる中和滴定等量が0.05mol/kg以上である磁性金属膜および絶縁材料膜複合材料用研磨材。   Polishing for magnetic metal film and insulating material film composite material containing water, abrasive grains, amino acid and inorganic acid, having a pH of 1.5 or more and 4 or less, and a neutralization titration equivalent of potassium hydroxide of 0.05 mol / kg or more Wood. 無機酸が硝酸である請求項1記載の磁性金属膜および絶縁材料膜複合材料用研磨材。   The magnetic metal film and insulating material film composite abrasive according to claim 1, wherein the inorganic acid is nitric acid. アミノ酸が第1酸解離定数(pK1)2以上3以下であるアミノ酸である請求項1または2記載の磁性金属膜および絶縁材料膜複合材料用研磨材。 The abrasive for magnetic metal film and insulating material film composite material according to claim 1 or 2, wherein the amino acid is an amino acid having a first acid dissociation constant (pK 1 ) of 2 or more and 3 or less. 砥粒がα-アルミナ、またはα-アルミナと他の砥粒の混合砥粒である請求項1から3のいずれか記載の磁性金属膜および絶縁材料膜複合材料用研磨材。   The abrasive for a magnetic metal film and an insulating material film composite material according to any one of claims 1 to 3, wherein the abrasive is α-alumina or a mixed abrasive of α-alumina and another abrasive. 非イオン性の水溶性高分子を含有する請求項1から4のいずれか記載の磁性金属膜および絶縁材料膜複合材料用研磨材。   The abrasive for magnetic metal film and insulating material film composite material according to any one of claims 1 to 4, comprising a nonionic water-soluble polymer. 請求請1から5のいずれか記載の磁性金属膜および絶縁材料膜複合材料用研磨材を使用して磁性金属膜および絶縁材料膜を含む複合膜を研磨する工程により、磁性金属膜および絶縁材料膜の一部を除去する研磨方法。

A magnetic metal film and an insulating material film obtained by polishing a composite film including the magnetic metal film and the insulating material film using the magnetic metal film and the insulating material film composite abrasive according to any one of claims 1 to 5 Polishing method to remove a part of the surface.

JP2005118731A 2005-04-15 2005-04-15 Magnetic metal film, polishing material for insulating material film composite material, and polishing method Pending JP2006302968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118731A JP2006302968A (en) 2005-04-15 2005-04-15 Magnetic metal film, polishing material for insulating material film composite material, and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005118731A JP2006302968A (en) 2005-04-15 2005-04-15 Magnetic metal film, polishing material for insulating material film composite material, and polishing method

Publications (1)

Publication Number Publication Date
JP2006302968A true JP2006302968A (en) 2006-11-02

Family

ID=37470951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118731A Pending JP2006302968A (en) 2005-04-15 2005-04-15 Magnetic metal film, polishing material for insulating material film composite material, and polishing method

Country Status (1)

Country Link
JP (1) JP2006302968A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7699901B2 (en) 2007-05-23 2010-04-20 Tdk Corporation Alumina-film-polishing composition and chemical mechanical polishing method using the same
WO2010092865A1 (en) * 2009-02-16 2010-08-19 日立化成工業株式会社 Abrading agent and abrading method
WO2010093011A1 (en) * 2009-02-16 2010-08-19 日立化成工業株式会社 Polishing agent for copper polishing and polishing method using same
JP2011511751A (en) * 2008-02-12 2011-04-14 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Ceria material and method for forming ceria material
WO2012008237A1 (en) * 2010-07-14 2012-01-19 日立化成工業株式会社 Polishing solution for copper polishing, and polishing method using same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7699901B2 (en) 2007-05-23 2010-04-20 Tdk Corporation Alumina-film-polishing composition and chemical mechanical polishing method using the same
JP2011511751A (en) * 2008-02-12 2011-04-14 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Ceria material and method for forming ceria material
US8845915B2 (en) 2009-02-16 2014-09-30 Hitachi Chemical Company, Ltd. Abrading agent and abrading method
KR101400585B1 (en) * 2009-02-16 2014-05-27 히타치가세이가부시끼가이샤 Polishing agent for copper polishing and polishing method using same
US8889555B2 (en) 2009-02-16 2014-11-18 Hitachi Chemical Co., Ltd. Polishing agent for copper polishing and polishing method using same
JP4930641B2 (en) * 2009-02-16 2012-05-16 日立化成工業株式会社 Abrasive for polishing copper and polishing method using the same
JP2012104835A (en) * 2009-02-16 2012-05-31 Hitachi Chem Co Ltd Polishing agent for polishing copper and polishing method using the same
CN102703027A (en) * 2009-02-16 2012-10-03 日立化成工业株式会社 Polishing agent for copper polishing and polishing method using same
JP2014033238A (en) * 2009-02-16 2014-02-20 Hitachi Chemical Co Ltd Polishing agent
WO2010093011A1 (en) * 2009-02-16 2010-08-19 日立化成工業株式会社 Polishing agent for copper polishing and polishing method using same
JP5516426B2 (en) * 2009-02-16 2014-06-11 日立化成株式会社 Abrasive and polishing method
US8859429B2 (en) 2009-02-16 2014-10-14 Hitachi Chemical Co., Ltd. Polishing agent for copper polishing and polishing method using same
WO2010092865A1 (en) * 2009-02-16 2010-08-19 日立化成工業株式会社 Abrading agent and abrading method
JP5516734B2 (en) * 2010-07-14 2014-06-11 日立化成株式会社 Polishing liquid for polishing copper and polishing method using the same
US8877644B2 (en) 2010-07-14 2014-11-04 Hitachi Chemical Company, Ltd. Polishing solution for copper polishing, and polishing method using same
WO2012008237A1 (en) * 2010-07-14 2012-01-19 日立化成工業株式会社 Polishing solution for copper polishing, and polishing method using same

Similar Documents

Publication Publication Date Title
CN101745852B (en) Glass substrate for magnetic disk and method for producing the same
US8062096B2 (en) Use of CMP for aluminum mirror and solar cell fabrication
KR100735787B1 (en) Method for Polishing a Memory or Rigid Disk with an Amino Acid-Containing Composition
GB2417034A (en) Polishing composition
JP5907081B2 (en) Method for producing synthetic quartz glass substrate
Lei et al. Preparation of silica/ceria nano composite abrasive and its CMP behavior on hard disk substrate
JP2006302968A (en) Magnetic metal film, polishing material for insulating material film composite material, and polishing method
JP2001260005A (en) Mixed polishing slurry
JP2009028814A (en) Sapphire substrate polishing method
CN104395039A (en) Polishing composition and fabrication method of substrate using same
CN102939643A (en) Composition and method for polishing bulk silicon
TW568813B (en) Polishing agent, method of producing this agent, and method of polishing
JP4635694B2 (en) Polishing material and polishing method for polishing a composite film including a magnetic metal film and an insulating material film
JP4214093B2 (en) Polishing liquid composition
JP2006315110A (en) Abrasive material, manufacturing method and polishing method
JPH11285961A (en) Polishing pad and polishing method
CN109913133B (en) Efficient high-quality chemical mechanical polishing solution for yttrium aluminum garnet crystals
JP4462593B2 (en) Polishing liquid composition
JP5391516B2 (en) Abrasive for composite film and polishing method
TWI692510B (en) Composition and method for polishing memory hard disks exhibiting reduced surface scratching
JP4090186B2 (en) Polishing method and polishing apparatus
TW562720B (en) Polishing molding and polishing surface plate using the same
JP2012000700A (en) Abrasive composition and method for polishing magnetic disk substrate
JP5803601B2 (en) Polishing slurry supply method and supply apparatus, and polishing apparatus
KR20000047697A (en) Molded body for polishing, surface plate for polishing and polishing method using the same