JP2007145093A - Vehicle height adjusting device - Google Patents

Vehicle height adjusting device Download PDF

Info

Publication number
JP2007145093A
JP2007145093A JP2005339265A JP2005339265A JP2007145093A JP 2007145093 A JP2007145093 A JP 2007145093A JP 2005339265 A JP2005339265 A JP 2005339265A JP 2005339265 A JP2005339265 A JP 2005339265A JP 2007145093 A JP2007145093 A JP 2007145093A
Authority
JP
Japan
Prior art keywords
vehicle height
fluid pressure
fluid
electromagnetic switching
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005339265A
Other languages
Japanese (ja)
Inventor
Takeshi Yamazaki
毅 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005339265A priority Critical patent/JP2007145093A/en
Publication of JP2007145093A publication Critical patent/JP2007145093A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To change a vehicle height in a short time, and prevent impact noises attendant on movement of working oil, and fluctuation of the vehicle height. <P>SOLUTION: Hydraulic cylinders 20a-20d are installed between wheel side members 11a-11d and vehicle body side members 12a-12d of a vehicle. The working oil is supplied to the hydraulic cylinders 20a-20d via oil paths L1a-L1d, so as to adjust the vehicle height. Accumulators 15a-15d are connected with the oil paths L1a-L1d via electromagnetic switch valves 16a-16d for switching a spring constant. The electromagnetic switch valves 16a-16d are constituted in a normally-open-type set to a closed state by energization, and is set to the closed state even under a non-energized condition under a condition that a differential pressure between the hydraulic pressure in the accumulators 15a-15d and the hydraulic pressure in the hydraulic cylinders 20a-20d is larger than a biasing force of springs built in the electromagnetic switch valves 16a-16d. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両の車輪側部材と車体側部材との間に設けられた流体圧シリンダに対する流体の給排により車高を変更する車高調整装置に関する。   The present invention relates to a vehicle height adjusting device that changes a vehicle height by supplying and discharging fluid to and from a fluid pressure cylinder provided between a wheel side member and a vehicle body side member of the vehicle.

従来から、車両の車輪側部材と車体側部材との間に設けられて流体の給排により車高を変更可能な流体圧シリンダと、流体圧シリンダに対し流体通路を介して流体の給排を制御する流体給排装置とを備えた車高調整装置はよく知られている。この車高調整装置においては、例えば下記特許文献1に示されているように、流体通路にアキュムレータを接続して、車体の上下動に対してばね力を付与するようにしている。流体通路とアキュムレータとの間に常開型の電磁切換え弁を介装させて、車高を低くする際には電磁切換え弁を閉じた状態で流体圧シリンダ内の流体を急速に排出することにより、車体を目標の低い位置まで短時間で低下させることを可能にしている。また、車高を高い位置まで上昇させる場合には、電磁切換え弁を閉じた状態で流体圧シリンダに流体を供給して車高を所定位置まで一旦上昇させた後に、電磁切換え弁を開いた状態で流体圧シリンダおよびアキュムレータに流体を供給して車高を目標の高い位置まで上昇させるか、最初から電磁切換え弁を開いた状態で流体圧シリンダおよびアキュムレータに流体を供給して車高を目標の高い位置まで上昇させるようにしている。
特開2005−88766号公報
Conventionally, a fluid pressure cylinder provided between a wheel side member and a vehicle body side member of a vehicle and capable of changing the vehicle height by supplying and discharging fluid, and supplying and discharging fluid to and from the fluid pressure cylinder via a fluid passage. A vehicle height adjusting device including a fluid supply / discharge device to be controlled is well known. In this vehicle height adjusting device, for example, as shown in Patent Document 1 below, an accumulator is connected to a fluid passage so as to apply a spring force to the vertical movement of the vehicle body. When a normally open type electromagnetic switching valve is interposed between the fluid passage and the accumulator, the fluid in the hydraulic cylinder is quickly discharged with the electromagnetic switching valve closed when the vehicle height is lowered. The vehicle body can be lowered to a target low position in a short time. In addition, when raising the vehicle height to a high position, supply the fluid to the fluid pressure cylinder with the electromagnetic switching valve closed to raise the vehicle height to a predetermined position and then open the electromagnetic switching valve. To supply fluid to the fluid pressure cylinder and accumulator and raise the vehicle height to the target high position, or supply the fluid to the fluid pressure cylinder and accumulator with the electromagnetic switching valve open from the beginning to achieve the vehicle height. I try to raise it to a higher position.
JP 2005-88766 A

しかし、上記従来の装置にあっては、車高を短時間で低下させた場合において、電磁切換え弁への通電を停止すると、電磁切換え弁が開いて、アキュムレータ内の流体が流体圧シリンダに移動し、この流体の移動が流体による衝撃音の発生、車高の変動をもたらすという問題がある。また、車高を上昇させる場合には、アキュムレータへ流体を再供給するか、流体圧シリンダおよびアキュムレータの両者へ同時に流体を供給する必要が生じ、車高を目標の高い位置まで上昇させるのに時間を要する。この車高の上昇時間を短縮するためには、大きな吐出量のポンプが必要となり、装置全体が大型化および重量増を免れることができないとともに、これに伴いその製造コストも高くなる。   However, in the above-described conventional apparatus, when the vehicle height is lowered in a short time and the energization to the electromagnetic switching valve is stopped, the electromagnetic switching valve opens and the fluid in the accumulator moves to the fluid pressure cylinder. However, there is a problem that the movement of the fluid causes the generation of impact sound due to the fluid and the fluctuation of the vehicle height. In addition, when raising the vehicle height, it is necessary to re-supply the fluid to the accumulator or supply the fluid to both the fluid pressure cylinder and the accumulator at the same time, and it takes time to raise the vehicle height to the target high position. Cost. In order to shorten the rising time of the vehicle height, a pump with a large discharge amount is required, and the entire apparatus cannot be increased in size and weight, and the manufacturing cost is increased accordingly.

本発明は、上記問題に対処するためになされたもので、その目的は、装置の大型化および重量増を招くことなく、車高を短時間で変更可能とするとともに、流体の移動に伴う衝撃音の発生、車高の変動なども未然に防止できるようにした車高調整装置を提供することにある。   The present invention has been made to cope with the above-described problems, and its object is to make it possible to change the vehicle height in a short time without causing an increase in the size and weight of the apparatus, and the impact caused by the movement of the fluid. It is an object of the present invention to provide a vehicle height adjusting device that can prevent the generation of sound and the fluctuation of the vehicle height.

上記目的を達成するために、本発明の特徴は、車両の車輪側部材と車体側部材との間に設けられて流体の給排により車高を変更可能な流体圧シリンダと、流体圧シリンダに対し流体通路を介して流体の給排を制御する流体給排装置と、流体通路に接続されたアキュムレータと、流体通路とアキュムレータとの間に介装された電磁切換え弁とを備えた車高調整装置において、電磁切換え弁を、通電により閉状態に設定される常開型で構成するとともに、アキュムレータ内の流体圧が流体圧シリンダ内の流体圧よりも高くかつそれらの圧力差が所定値よりも大きいことを条件に、非通電状態であっても閉状態に設定されるように構成したことにある。   In order to achieve the above object, the present invention is characterized in that a fluid pressure cylinder provided between a wheel side member and a vehicle body side member of a vehicle and capable of changing a vehicle height by supplying and discharging a fluid, and a fluid pressure cylinder Vehicle height adjustment comprising a fluid supply / discharge device that controls supply / discharge of fluid through the fluid passage, an accumulator connected to the fluid passage, and an electromagnetic switching valve interposed between the fluid passage and the accumulator In the apparatus, the electromagnetic switching valve is configured as a normally open type that is set to a closed state by energization, the fluid pressure in the accumulator is higher than the fluid pressure in the fluid pressure cylinder, and the pressure difference between them is higher than a predetermined value. On the condition that it is large, it is configured to be set to a closed state even in a non-energized state.

この場合、例えば、電磁切換え弁は、スプリングを有していて、流体圧シリンダ内の流体圧およびスプリングのばね力によって弁体を弁座に着座させる方向とは反対方向に付勢するとともに、アキュムレータ内の流体圧によって弁体を弁座に着座させる方向に付勢するように構成されるとよい。そして、弁体が弁座に着座した位置にあるときにおけるスプリングの付勢力をFとし、弁体が弁座に着座した際の弁体のシール面積をAとし、かつ車高を高い状態に設定したときにおける流体圧シリンダ内の流体圧から車高を低い状態に設定したときにおける流体圧シリンダ内の流体圧を減算した流体圧差をΔPoとすると、ΔPo・A>Fなる関係が成立するようにするとよい。   In this case, for example, the electromagnetic switching valve has a spring and urges the valve body in the direction opposite to the direction in which the valve body is seated on the valve seat by the fluid pressure in the fluid pressure cylinder and the spring force of the spring. It is good to be comprised so that a valve body may be urged | biased in the direction seated on a valve seat with the internal fluid pressure. The spring urging force when the valve body is seated on the valve seat is F, the seal area of the valve body when the valve body is seated on the valve seat is A, and the vehicle height is set high. If the fluid pressure difference obtained by subtracting the fluid pressure in the fluid pressure cylinder when the vehicle height is set to a low state from the fluid pressure in the fluid pressure cylinder is ΔPo, the relationship ΔPo · A> F is established. Good.

このように構成した車高調整装置を用いて実際に車高を高い位置から低い位置まで低下させる場合には、流体給排装置を制御して流体圧シリンダ内の流体を排出することにより車高を低下させる低下制御手段を設ける。そして、低下制御手段は、アキュムレータ内の流体圧から流体圧シリンダ内の流体圧を減算した流体圧差であって車高の低下に伴って変化する流体圧差をΔPxとすると、車高の低下開始から低下終了までの期間内の少なくともΔPx・A≦Fなる関係が成立する期間で、電磁切換え弁を通電制御するようにするとよい。なお、少なくともΔPx・A≦Fなる関係が成立する期間で電磁切換え弁を通電制御するとは、車高の低下開始から低下終了までの全ての期間で電磁切換え弁を通電制御することも含む意味である。   When the vehicle height is actually lowered from a high position to a low position using the vehicle height adjustment device configured as described above, the vehicle height is controlled by discharging the fluid in the fluid pressure cylinder by controlling the fluid supply / discharge device. A lowering control means for lowering is provided. Then, when the fluid pressure difference obtained by subtracting the fluid pressure in the fluid pressure cylinder from the fluid pressure in the accumulator and the fluid pressure difference that changes as the vehicle height decreases is ΔPx, the decrease control means starts from the decrease in vehicle height. The energization control of the electromagnetic switching valve is preferably performed in a period in which at least the relationship of ΔPx · A ≦ F is satisfied within the period until the end of the decrease. Note that the energization control of the electromagnetic switching valve at least during a period in which the relationship of ΔPx · A ≦ F is satisfied means that the energization control of the electromagnetic switching valve is performed during the entire period from the start to the end of the decrease in vehicle height. is there.

また、このように構成した車高調整装置を用いて実際に車高を低い位置から高い位置まで上昇させる場合には、流体給排装置を制御して流体圧シリンダに流体を供給することにより車高を上昇させる上昇制御手段を設ける。そして、上昇制御手段は、アキュムレータ内の流体圧から流体圧シリンダ内の流体圧を減算した流体圧差であって車高の上昇に伴って変化する流体圧差をΔPyとすると、車高の上昇開始から上昇終了までの期間内の少なくともΔPy・A≦Fなる関係が成立する期間で、電磁切換え弁を通電制御するようにするとよい。なお、少なくともΔPy・A≦Fなる関係が成立する期間で電磁切換え弁を通電制御するとは、車高の上昇開始から上昇終了までの全ての期間で電磁切換え弁を通電制御することも含む意味である。   Further, when the vehicle height adjustment device configured as described above is used to actually raise the vehicle height from a low position to a high position, the vehicle is controlled by supplying fluid to the fluid pressure cylinder by controlling the fluid supply / discharge device. A raising control means for raising the height is provided. Then, when the fluid pressure difference, which is the fluid pressure difference obtained by subtracting the fluid pressure in the fluid pressure cylinder from the fluid pressure in the accumulator and changes as the vehicle height rises, is ΔPy, the ascent control means The energization control of the electromagnetic switching valve is preferably performed in a period in which at least the relationship of ΔPy · A ≦ F is established within the period until the end of the rise. It should be noted that the energization control of the electromagnetic switching valve in a period in which at least the relationship of ΔPy · A ≦ F is satisfied includes the energization control of the electromagnetic switching valve in all the periods from the start to the end of the vehicle height. is there.

上記本発明によれば、車高を高い位置から目標の低い位置まで低下させる場合には、電磁切換え弁を通電によって閉じることにより、流体圧シリンダ内のみの流体を排出させるだけで済むので、車高を短時間で低下させることができる。そして、この車高を目標の低い位置まで低下させた後に、電磁切換え弁への通電を停止しても、アキュムレータ内の流体圧と流体圧シリンダ内の流体圧との圧力差により、電磁切換え弁を閉じた状態に保つことができる。したがって、電磁切換え弁の通電停止後も、アキュムレータ内の流体が流体圧シリンダに移動することはなく、流体の移動による衝撃音の発生、車高が変動を回避することができる。また、車高を低い位置から目標の高い位置まで上昇させる場合、前述のように、車高の低下制御後も電磁切換え弁を閉じた状態に保たれて、アキュムレータ内の流体は高圧に保たれているので、流体圧シリンダおよびアキュムレータの両者が車高を目標の高い状態に設定するために必要な流体量は少なくて済み、大きな吐出量のポンプを用意することなく、車高を目標の高い位置まで短時間で上昇させることができる。   According to the present invention, when the vehicle height is lowered from a high position to a low target position, it is only necessary to discharge the fluid only in the fluid pressure cylinder by closing the electromagnetic switching valve by energization. High can be reduced in a short time. Even if the electromagnetic switching valve is de-energized after the vehicle height has been lowered to the target low position, the electromagnetic switching valve is caused by the pressure difference between the fluid pressure in the accumulator and the fluid pressure in the fluid pressure cylinder. Can be kept closed. Therefore, even after energization of the electromagnetic switching valve is stopped, the fluid in the accumulator does not move to the fluid pressure cylinder, and it is possible to avoid the generation of impact sound and fluctuations in the vehicle height due to the movement of the fluid. Also, when raising the vehicle height from a low position to a target high position, as described above, the electromagnetic switching valve is kept closed even after the vehicle height reduction control, and the fluid in the accumulator is kept at a high pressure. Therefore, both the fluid pressure cylinder and the accumulator require a small amount of fluid to set the vehicle height to a target high state, and the vehicle height is set to a high target without preparing a large discharge pump. It can be raised to the position in a short time.

以下、本発明の一実施形態について図面を用いて説明する。図1は、本発明の車高調整装置を含む車両のサスペンション装置を示す概略図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a vehicle suspension apparatus including a vehicle height adjusting apparatus according to the present invention.

この車両のサスペンション装置は、前後左右輪Wfl,Wfr,Wrl,Wrrを保持する車輪側部材(例えば、ロアアーム)11a〜11dと、車体と一体変位する車体側部材12a〜12dとの間に、流体圧シリンダ20a〜20dがそれぞれ設けられている。流体圧シリンダ20a〜20dは、車体側部材12a〜12dに上端部を固定した円筒状のハウジング21a〜21dをそれぞれ備えている。ハウジング21a〜21d内には、軸線方向に液密的に摺動するピストン22a〜22dがそれぞれ収容されている。ピストン22a〜22dは、ハウジング21a〜21d内を上油室23a〜23dおよび下油室24a〜24dにそれぞれ区画している。ピストン22a〜22dには、上油室23a〜23dおよび下油室24a〜24dを連通させるオリフィス25a〜25dが設けられている。   This vehicle suspension apparatus includes a fluid between a wheel side member (for example, a lower arm) 11a to 11d that holds front and rear, left and right wheels Wfl, Wfr, Wrl, and Wrr, and a vehicle body side member 12a to 12d that is integrally displaced with the vehicle body. Pressure cylinders 20a to 20d are respectively provided. The fluid pressure cylinders 20a to 20d are respectively provided with cylindrical housings 21a to 21d whose upper ends are fixed to the vehicle body side members 12a to 12d. In the housings 21a to 21d, pistons 22a to 22d that slide in a liquid-tight manner in the axial direction are accommodated, respectively. The pistons 22a to 22d partition the housings 21a to 21d into upper oil chambers 23a to 23d and lower oil chambers 24a to 24d, respectively. The pistons 22a to 22d are provided with orifices 25a to 25d that allow the upper oil chambers 23a to 23d and the lower oil chambers 24a to 24d to communicate with each other.

ピストン22a〜22dには、ピストンロッド26a〜26dの上端部がそれぞれ固定されている。ピストンロッド26a〜26dは、それらの下部をハウジング21a〜21dから進退可能にそれぞれ突出させており、それらの下端部は車輪側部材11a〜11dに接続されている。ハウジング21a〜21dの外周面と車体側部材12a〜12dとの間には図示しないコイルスプリングが設けられており、流体圧シリンダ20a〜20dは、コイルスプリングと共に車輪側部材11a〜11dに対して車体を上下に振動可能に支持する。この車体の上下方向の振動の際には、オリフィス25a〜25dを介した作動油の上下油室23a〜23d,24a〜24d間の移動によって減衰力が付与される。   Upper ends of piston rods 26a to 26d are fixed to the pistons 22a to 22d, respectively. The piston rods 26a to 26d have their lower portions protruding from the housings 21a to 21d so as to be able to advance and retreat, and their lower ends are connected to the wheel side members 11a to 11d. A coil spring (not shown) is provided between the outer peripheral surfaces of the housings 21a to 21d and the vehicle body side members 12a to 12d, and the fluid pressure cylinders 20a to 20d together with the coil springs have a vehicle body with respect to the wheel side members 11a to 11d. Is supported so that it can vibrate up and down. In the vertical vibration of the vehicle body, a damping force is applied by the movement of the hydraulic oil between the upper and lower oil chambers 23a to 23d and 24a to 24d through the orifices 25a to 25d.

流体圧シリンダ20a〜20dの上油室23a〜23dには、可変オリフィス13a〜13dを介して油路L1a〜L1dの各一端がそれぞれ接続されている。可変オリフィス13a〜13dは、電気的に制御されて作動油の通路面積をそれぞれ変更する。油路L1a〜L1dには、車体の上下動に対してばね作用をもたらすアキュムレータ14a〜14dおよびアキュムレータ15a〜15dがそれぞれ接続されている。アキュムレータ14a〜14d,15a〜15dは、ハウジングおよびハウジング内を仕切る仕切り部材を有し、各一方の室が油路L1a〜L1dにそれぞれ連通するとともに、各他方の室に弾性体を収容してなるもので、いずれもばね機能を備えている。アキュムレータ14a〜14d,15a〜15dとして、ベローズタイプ、ブラダタイプおよびピストンタイプのいずれを採用してもよい。なお、アキュムレータ15a〜15dのばね定数は、アキュムレータ14a〜14dのばね定数よりも大きく設定されている。   One ends of oil passages L1a to L1d are connected to the upper oil chambers 23a to 23d of the fluid pressure cylinders 20a to 20d via variable orifices 13a to 13d, respectively. The variable orifices 13a to 13d are electrically controlled to change the passage area of the hydraulic oil. The oil passages L1a to L1d are connected to accumulators 14a to 14d and accumulators 15a to 15d, respectively, which provide a spring action with respect to the vertical movement of the vehicle body. The accumulators 14a to 14d and 15a to 15d have a housing and a partition member for partitioning the inside of the housing. Each chamber communicates with the oil passages L1a to L1d, and an elastic body is accommodated in each other chamber. They all have a spring function. As the accumulators 14a to 14d and 15a to 15d, any of a bellows type, a bladder type, and a piston type may be adopted. The spring constants of the accumulators 15a to 15d are set larger than the spring constants of the accumulators 14a to 14d.

アキュムレータ15a〜15dと油路L1a〜L1dとの間には、ばね定数切換え用の電磁切換え弁16a〜16dが介装されている。電磁切換え弁16a〜16dは、図2に詳細に示すように、内部に段付きの円柱状空間31aを形成したハウジング31を備えている。ハウジング31には、円柱状空間31aに先端部を侵入させたスリーブ32が固定されている。円柱状空間31aには、スリーブ32の内周面上に後部を侵入させて固定した円筒状の支持ロッド33が侵入して固定されている。支持ロッド33の前部分には、円筒状の弁座部材34が組み付け固定されている。支持ロッド33の内部空間には、弁座部材34の弁座部34aに対向するように弁体35が組み込まれている。弁体35は、支持ロッド33内に軸線方向に摺動可能に組み込まれた駆動ロッド36の先端部に固定されている。   Between the accumulators 15a to 15d and the oil passages L1a to L1d, electromagnetic switching valves 16a to 16d for switching the spring constant are interposed. As shown in detail in FIG. 2, the electromagnetic switching valves 16 a to 16 d include a housing 31 in which a stepped columnar space 31 a is formed. A sleeve 32 is fixed to the housing 31 with a tip portion entering the cylindrical space 31a. A cylindrical support rod 33, which is fixed by allowing the rear portion to enter the cylindrical space 31 a, enters the inner circumferential surface of the sleeve 32 and is fixed. A cylindrical valve seat member 34 is assembled and fixed to the front portion of the support rod 33. A valve body 35 is incorporated in the internal space of the support rod 33 so as to face the valve seat portion 34 a of the valve seat member 34. The valve body 35 is fixed to a distal end portion of a drive rod 36 that is slidably incorporated in the support rod 33 in the axial direction.

駆動ロッド36の先端部と弁座部材34との間には、コイル状のスプリング37が組み付けられている。スプリング37は、駆動ロッド36および弁体35を後方(図示右方)に付勢している。駆動ロッド36の後端部には、スリーブ32内を軸線方向に変位可能なプラジャ(可動子)38が固定されている。このプランジャ38は、スリーブ32の外側にて巻き回されたコイル39の通電によって前方(図示左方)へ吸引されて、駆動ロッド36および弁体35を前方(図示左方)へ付勢する。円筒状空間31aの弁座部材34への通路および弁座部材34内の通路は、ハウジング31に設けた油路31bを介して油路L1a〜L1dすなわち流体圧シリンダ20a〜20d側に連通している。支持ロッド33内の弁座部34aに対向する通路(弁体35側の通路)は、支持ロッド33の側壁に貫通して設けた油路33aおよびハウジング31に設けた油路31cを介してアキュムレータ15a〜15dに連通している。なお、スリーブ32内は、支持ロッド33の内周面と駆動ロッド36の外周面との間を介して、支持ロッド33内の弁座部34aに対向する通路(弁体35側の通路)に連通している。   A coiled spring 37 is assembled between the tip of the drive rod 36 and the valve seat member 34. The spring 37 urges the drive rod 36 and the valve body 35 rearward (rightward in the drawing). A pusher (movable element) 38 that can be displaced in the axial direction in the sleeve 32 is fixed to the rear end portion of the drive rod 36. The plunger 38 is attracted forward (leftward in the figure) by energization of the coil 39 wound around the outside of the sleeve 32, and urges the drive rod 36 and the valve body 35 forward (leftward in the figure). The passage to the valve seat member 34 in the cylindrical space 31a and the passage in the valve seat member 34 communicate with the oil passages L1a to L1d, that is, the fluid pressure cylinders 20a to 20d via the oil passage 31b provided in the housing 31. Yes. The passage (passage on the valve element 35 side) facing the valve seat 34 a in the support rod 33 is an accumulator through an oil passage 33 a provided through the side wall of the support rod 33 and an oil passage 31 c provided in the housing 31. It communicates with 15a-15d. The sleeve 32 has a passage (passage on the valve element 35 side) facing the valve seat 34 a in the support rod 33 through the space between the inner peripheral surface of the support rod 33 and the outer peripheral surface of the drive rod 36. Communicate.

このように構成した電磁切換え弁16a〜16dは、他の力が作用しても、コイル39への通電によって大きな電磁力で駆動ロッド36および弁体35が図2の左方向に必ず変位し、弁体35が弁座部34aに着座して、油路31b,31cを必ず閉じる(図3(B)参照)。一方、コイル39への通電を停止した状態では、油路31cの油圧から油路31bの油圧を減算した差圧に起因した力がスプリング37の付勢力より大きくならない限り、駆動ロッド36および弁体35がスプリング37の付勢力によって図2の右方向に変位し、弁体35が弁座部34aに着座しない(図3(A)参照)。しかし、前記差圧に起因した力がスプリング37の付勢力より大きくなると、コイル39への非通電状態であっても、前記差圧がスプリング37の付勢力に打ち勝って、弁体35が弁座部34aに着座する(図3(C)参照)。これにより、電磁切換え弁16a〜16dは、通電により閉状態に設定される常開型の電磁切換え弁として機能するとともに、アキュムレータ15a〜15d内の油圧が流体圧シリンダ20a〜20d内の油圧よりも高く、かつそれらの各圧力差が所定値よりも大きいことを条件に、非通電状態であっても閉状態に設定されるように機能する。   In the electromagnetic switching valves 16a to 16d configured as described above, even when other forces are applied, the drive rod 36 and the valve element 35 are always displaced in the left direction in FIG. The valve body 35 is seated on the valve seat portion 34a and the oil passages 31b and 31c are always closed (see FIG. 3B). On the other hand, in the state where the power supply to the coil 39 is stopped, unless the force resulting from the differential pressure obtained by subtracting the oil pressure of the oil passage 31b from the oil pressure of the oil passage 31c is larger than the urging force of the spring 37, the drive rod 36 and the valve body 35 is displaced rightward in FIG. 2 by the urging force of the spring 37, and the valve body 35 is not seated on the valve seat portion 34a (see FIG. 3A). However, if the force resulting from the differential pressure is greater than the biasing force of the spring 37, the differential pressure overcomes the biasing force of the spring 37 even when the coil 39 is not energized, and the valve body 35 It sits on the part 34a (see FIG. 3C). Thus, the electromagnetic switching valves 16a to 16d function as normally open electromagnetic switching valves that are set to a closed state by energization, and the hydraulic pressure in the accumulators 15a to 15d is higher than the hydraulic pressure in the fluid pressure cylinders 20a to 20d. It functions to be set to a closed state even in a non-energized state on condition that the pressure difference is high and each pressure difference is larger than a predetermined value.

より具体的には、電磁切換え弁16a〜16dは、油路31bの油圧およびスプリング37のばね力によって弁体35を弁座部34aに着座させる方向とは反対方向に付勢するとともに、油路31cの油圧によって弁体35を弁座部34aに着座させ方向に付勢するように構成されている。したがって、コイル39への通電を停止した状態では、前記スプリング37のばね力と、油路31b,31cの油圧力のバランスにおいて、電磁切換え弁16a〜16dの開閉状態が決定される。そして、この電磁切換え弁16a〜16dにおいては、弁体35が弁座部34aに着座した位置にあるときにおけるスプリング37の付勢力をFとし、弁体35が弁座部34aに着座した際の弁体35のシール面積をAとし、かつ車高を高い状態に設定したときにおける流体圧シリンダ20a〜20d内の油圧P2から車高を低い状態に設定したときにおける流体圧シリンダ20a〜20d内の油圧P1を減算した油圧差をΔPoとすると、ΔPo・A>Fなる関係が成立するように設定されている(図5参照)。なお、詳しくは後述するように、このサスペンション装置においては、流体圧シリンダ20a〜20dへの作動油の給排により車高を上下させるもので、流体圧シリンダ20a〜20dへ作動油が供給されて上下油室23a〜23d,24a〜24d内の油圧が高くなる状態で車高が高く設定され、流体圧シリンダ20a〜20d内の作動油が排出されて上下油室23a〜23d,24a〜24d内の油圧が低くなる状態で車高が低く設定される。   More specifically, the electromagnetic switching valves 16a to 16d urge the valve body 35 in the direction opposite to the direction in which the valve body 35 is seated on the valve seat portion 34a by the oil pressure of the oil passage 31b and the spring force of the spring 37, and the oil passage The valve body 35 is seated on the valve seat 34a by the hydraulic pressure 31c and is urged in the direction. Therefore, when the energization to the coil 39 is stopped, the open / close states of the electromagnetic switching valves 16a to 16d are determined by the balance between the spring force of the spring 37 and the oil pressure of the oil passages 31b and 31c. In the electromagnetic switching valves 16a to 16d, the urging force of the spring 37 when the valve body 35 is in the position seated on the valve seat portion 34a is F, and the valve body 35 is seated on the valve seat portion 34a. In the fluid pressure cylinders 20a to 20d when the vehicle height is set to a low state from the oil pressure P2 in the fluid pressure cylinders 20a to 20d when the seal area of the valve body 35 is A and the vehicle height is set to a high state. If the hydraulic pressure difference obtained by subtracting the hydraulic pressure P1 is ΔPo, the relationship ΔPo · A> F is established (see FIG. 5). As will be described in detail later, in this suspension device, the vehicle height is raised and lowered by supplying and discharging hydraulic oil to and from the fluid pressure cylinders 20a to 20d, and the hydraulic oil is supplied to the fluid pressure cylinders 20a to 20d. The vehicle height is set high with the hydraulic pressure in the upper and lower oil chambers 23a to 23d and 24a to 24d being increased, the hydraulic oil in the fluid pressure cylinders 20a to 20d is discharged, and the upper and lower oil chambers 23a to 23d and 24a to 24d are discharged. The vehicle height is set low while the hydraulic pressure of the vehicle is low.

流体圧シリンダ20a〜20dは、油路L1a〜L1dを介してセンタシリンダ17に接続されている。センタシリンダ17は、中央部を大径に形成するとともにその両側部を小径に形成した段付き円筒状のハウジング17aを備えている。ハウジング17a内には、大径の第1ピストン17bと、連結ロッド17c,17dを介して第1ピストン17bの軸線方向両側位置にて一体的に連結された小径の第2および第3ピストン17e,17fが液密的かつ摺動可能に収容されている。   The fluid pressure cylinders 20a to 20d are connected to the center cylinder 17 via oil passages L1a to L1d. The center cylinder 17 includes a stepped cylindrical housing 17a having a central portion with a large diameter and both side portions with a small diameter. Inside the housing 17a, a large-diameter first piston 17b and small-diameter second and third pistons 17e integrally connected at both axial positions of the first piston 17b via connecting rods 17c and 17d, 17f is accommodated in a liquid-tight and slidable manner.

このセンタシリンダ17の機能について簡単に説明しておく。車体にピッチングが発生すると、左右前輪Wfl,Wfrの流体圧シリンダ20a,20b内の油圧と、左右後輪Wrl,Wrrの流体圧シリンダ20c,20d内の油圧との間に差が生じる。この場合、センタシリンダ17の第2および第3ピストン17e,17fの各外側の油室にそれぞれ連通する流体圧シリンダ20a,20b内の両油圧は等しく、センタシリンダ17の第1ピストン17bの両側の油室にそれぞれ連通する流体圧シリンダ20c,20d内の両油圧も等しくなる。したがって、第1〜第3ピストン17b,17e,17fは変位することなく、流体圧シリンダ20a〜20dとセンタシリンダ17との間の作動油の移動はない。その結果、流体圧シリンダ20a〜20dはそれぞれ独立して動作して大きな減衰力を発生するので、車体のピッチングが効果的に抑制される。   The function of the center cylinder 17 will be briefly described. When pitching occurs in the vehicle body, there is a difference between the hydraulic pressure in the fluid pressure cylinders 20a and 20b of the left and right front wheels Wfl and Wfr and the hydraulic pressure in the fluid pressure cylinders 20c and 20d of the left and right rear wheels Wrl and Wrr. In this case, both hydraulic pressures in the fluid pressure cylinders 20a and 20b communicating with the respective oil chambers on the outer sides of the second and third pistons 17e and 17f of the center cylinder 17 are equal, and both sides of the first piston 17b of the center cylinder 17 are the same. Both hydraulic pressures in the fluid pressure cylinders 20c and 20d communicating with the oil chambers are also equal. Therefore, the first to third pistons 17b, 17e, and 17f are not displaced, and there is no movement of the hydraulic oil between the fluid pressure cylinders 20a to 20d and the center cylinder 17. As a result, the fluid pressure cylinders 20a to 20d operate independently and generate a large damping force, so that the pitching of the vehicle body is effectively suppressed.

また、車体にローリングが発生すると、左前輪Wflおよび左後輪Wrlの両流体圧シリンダ20a,20c内の油圧の和と、右前輪Wfrおよび右後輪Wrrの流体圧シリンダ20b,20d内の油圧の和との間に差が生じる。この場合、センタシリンダ17の第2ピストン17eの外側の油室に連通する流体圧シリンダ20a内の油圧と第1および第3ピストン17b,17f間の油室に連通する流体圧シリンダ20c内の油圧との和と、第3ピストン17fの外側の油室に連通する流体圧シリンダ20b内の油圧と第1および第2ピストン17b,17e間の油室に連通する流体圧シリンダ20d内の油圧との和とは等しくなる。したがって、第1〜第3ピストン17b,17e,17fは変位することなく、流体圧シリンダ20a〜20dとセンタシリンダ17との間の作動油の移動はない。その結果、流体圧シリンダ20a〜20dはそれぞれ独立して動作して大きな減衰力を発生するので、車体のローリングが効果的に抑制される。   When rolling occurs in the vehicle body, the sum of the hydraulic pressures in the fluid pressure cylinders 20a and 20c for the left front wheel Wfl and the left rear wheel Wrl and the hydraulic pressures in the fluid pressure cylinders 20b and 20d for the right front wheel Wfr and the right rear wheel Wrr. A difference arises from the sum of In this case, the hydraulic pressure in the fluid pressure cylinder 20a communicating with the oil chamber outside the second piston 17e of the center cylinder 17 and the hydraulic pressure within the fluid pressure cylinder 20c communicating with the oil chamber between the first and third pistons 17b and 17f. And the hydraulic pressure in the fluid pressure cylinder 20b communicating with the oil chamber outside the third piston 17f and the hydraulic pressure in the fluid pressure cylinder 20d communicating with the oil chamber between the first and second pistons 17b and 17e. The sum is equal. Therefore, the first to third pistons 17b, 17e, and 17f are not displaced, and there is no movement of the hydraulic oil between the fluid pressure cylinders 20a to 20d and the center cylinder 17. As a result, the fluid pressure cylinders 20a to 20d operate independently and generate a large damping force, so that rolling of the vehicle body is effectively suppressed.

一方、左右前後輪Wfl,Wfr,Wrl,Wrrのうちの一輪のみ、例えば左前輪Wflが道路上の隆起に乗り上げると、流体圧シリンダ20aの油圧が急激に上昇する。この場合、他の流体圧シリンダ20b〜20d内の油圧は以前のままに保たれているので、前記流体圧シリンダ20aの油圧が上昇に伴って、センタシリンダ17の第2ピストン17eの外側の油室内の油圧のみが上昇し、第1〜第3ピストン17b,17e,17fは図示右方向に変位する。したがって、第2ピストン17eの外側の油室の体積、ならびに第1および第2ピストン17b,17e間の油室の体積が増加するとともに、第1および第3ピストン17b,17f間の油室、ならびに第3ピストン17fの外側の油室の体積が減少する。このことは、流体圧シリンダ20a,20d内の作動油が流体圧シリンダ20b,20cに流れ込んだことと等価であり、これにより、左前輪Wflが道路上の隆起に乗り上げたことによる車体への衝撃が良好に緩和される。   On the other hand, when only one of the left and right front and rear wheels Wfl, Wfr, Wrl, Wrr, for example, the left front wheel Wfl rides on a bump on the road, the hydraulic pressure of the fluid pressure cylinder 20a rapidly increases. In this case, since the hydraulic pressure in the other fluid pressure cylinders 20b to 20d is maintained as before, the oil pressure outside the second piston 17e of the center cylinder 17 increases as the hydraulic pressure of the fluid pressure cylinder 20a increases. Only the indoor hydraulic pressure rises, and the first to third pistons 17b, 17e, and 17f are displaced rightward in the drawing. Accordingly, the volume of the oil chamber outside the second piston 17e and the volume of the oil chamber between the first and second pistons 17b and 17e increase, and the oil chamber between the first and third pistons 17b and 17f, and The volume of the oil chamber outside the third piston 17f decreases. This is equivalent to the hydraulic oil in the fluid pressure cylinders 20a and 20d flowing into the fluid pressure cylinders 20b and 20c. As a result, the impact on the vehicle body caused by the left front wheel Wfl riding on the bump on the road. Is relaxed well.

なお、他の輪が隆起に乗り上げた場合も、センタシリンダ17の前記と同様な作用により車体への衝撃が緩和される。さらに、左右前後輪Wfl,Wfr,Wrl,Wrrのうちの一輪が前記とは逆に道路上の窪みに落ち込んだ場合には、該当する車輪と対角位置の車輪の油圧シリンダ内に他の油圧シリンダが作動油が流入することになり、この場合も、道路上の窪みに落ち込んだ場合による車体への衝撃が良好に緩和される。このようなセンタシリンダ17の機能は本発明に直性関係しないので、これ以上を説明を省略する。   Even when other wheels ride on the bumps, the impact on the vehicle body is alleviated by the same action of the center cylinder 17 as described above. Further, when one of the left and right front and rear wheels Wfl, Wfr, Wrl, Wrr falls into a depression on the road contrary to the above, another hydraulic pressure is placed in the hydraulic cylinder of the wheel at the diagonal position. The hydraulic oil flows into the cylinder, and in this case as well, the impact on the vehicle body when it falls into the depression on the road is well mitigated. Since the function of the center cylinder 17 is not directly related to the present invention, the description thereof is omitted.

この車両のサスペンション装置は、車高を調整するために、流体圧シリンダ20a〜20dに対して、流路L1a〜L1dを介して作動油の給排を制御する流体給排装置を備えている。流体給排装置は、詳しくは後述するように、車高を上昇させる際に、流体圧シリンダ20a〜20dに作動油を供給するためのポンプ41を備えている。ポンプ41は、電動モータ42によって駆動されて、リザーバ43内の作動油を汲み上げ、逆止弁44を介して油路L2に作動油を吐出する。油路L2には、消音用のアキュムレータ45が接続されるとともに、電磁切換え弁46を介して蓄圧用のアキュムレータ47も接続されている。電磁切換え弁46は、通電により開状態に設定される常閉型である。油路L2とリザーバ43との間には、通電により開状態に設定される常閉型の流出制御用の電磁切換え弁48が介装されている。この電磁切換え弁48は、詳しくは後述するように、車高を低下させる際に、流体圧シリンダ20a〜20d内の作動油を排出するためのものである。   This vehicle suspension device includes a fluid supply / discharge device that controls supply and discharge of hydraulic fluid to the fluid pressure cylinders 20a to 20d via the flow paths L1a to L1d in order to adjust the vehicle height. As will be described in detail later, the fluid supply / discharge device includes a pump 41 for supplying hydraulic oil to the fluid pressure cylinders 20a to 20d when raising the vehicle height. The pump 41 is driven by the electric motor 42 to pump up the hydraulic oil in the reservoir 43 and discharge the hydraulic oil to the oil passage L <b> 2 via the check valve 44. An accumulator 45 for silencing is connected to the oil passage L2, and an accumulator 47 for accumulating pressure is also connected via an electromagnetic switching valve 46. The electromagnetic switching valve 46 is a normally closed type that is set to an open state by energization. Between the oil passage L2 and the reservoir 43, a normally closed type outflow control electromagnetic switching valve 48 which is set in an open state by energization is interposed. As will be described in detail later, the electromagnetic switching valve 48 is for discharging hydraulic oil in the fluid pressure cylinders 20a to 20d when the vehicle height is lowered.

油路L2は、車高制御用の電磁切換え弁51a〜51dを介装した油路L3a〜L3dを介して、油路L1a〜L1dにそれぞれ連通している。電磁切換え弁51a〜51dは、通電により開状態に設定される常閉型である。油路L3a,L3b間には、油路L1a,L1b側にて、通電により開状態に設定される常閉型の電磁切換え弁52aが接続されている。油路L3c,L3c間には、油路L1c,L1d側にて、通電により開状態に設定される常閉型の電磁切換え弁52bが接続されている。これらの電磁切換え弁52a,52bは、電磁切換え弁16a〜16dが閉状態から開状態に切換えられる際に通電制御されて、前記切換えに伴う作動油の脈動を抑制するためのものである。   The oil passage L2 communicates with the oil passages L1a to L1d via oil passages L3a to L3d having electromagnetic switching valves 51a to 51d for controlling the vehicle height. The electromagnetic switching valves 51a to 51d are normally closed types that are set to an open state by energization. Between the oil passages L3a and L3b, a normally closed electromagnetic switching valve 52a which is set to an open state by energization is connected on the oil passages L1a and L1b side. Between the oil passages L3c and L3c, a normally closed electromagnetic switching valve 52b that is set to an open state by energization is connected on the oil passages L1c and L1d side. These electromagnetic switching valves 52a and 52b are for energization control when the electromagnetic switching valves 16a to 16d are switched from the closed state to the open state to suppress the pulsation of the hydraulic oil accompanying the switching.

次に、上述した各種電気部品を制御する電気制御装置について説明する。電気制御装置は、各種油路に設けられて油圧を検出する複数の圧力センサPを備えている。圧力センサPによって検出された圧力は電子制御ユニット(以下、ECUという)60に供給され、ECU60は検出圧力に応じて各種制御を行う。ただし、この検出圧力に基づく制御は本発明に直接関係しないので、詳しい説明を省略する。また、車輪側部材11a〜11dと車体側部材12a〜12dの各間には車高センサ61a〜61dがそれぞれ組み付けられ、車高センサ61a〜61dは左右前後輪Wfl,Wfr,Wrl,Wrrの各位置における車高Lを検出してECU60に出力する。   Next, an electric control device that controls the various electric components described above will be described. The electric control device includes a plurality of pressure sensors P that are provided in various oil passages and detect oil pressure. The pressure detected by the pressure sensor P is supplied to an electronic control unit (hereinafter referred to as ECU) 60, and the ECU 60 performs various controls according to the detected pressure. However, since the control based on the detected pressure is not directly related to the present invention, detailed description thereof is omitted. Further, vehicle height sensors 61a to 61d are assembled between the wheel side members 11a to 11d and the vehicle body side members 12a to 12d, respectively. The vehicle height L at the position is detected and output to the ECU 60.

ECU60は、図4の車高制御プログラムを含む種々のプログラムを実行することにより、各種電磁切換え弁、可変オリフィス13a〜13dおよび電動モータ42の作動を制御する。このECU60には、車高モードスイッチ62、車高調整スイッチ63および各種センサ64が接続されている。車高モードスイッチ62は、車室内に設けられて運転者によって操作されるもので、車高の変更を自動的に行うオートモードとマニアル操作によって行うマニアルモードとを切換えるためのものである。車高調整スイッチ63は、車室内に設けられて運転者によって操作されるもので、前記マニアルモードの選択時に車高の高低の切換えを指示するためのものである。各種センサ64には、車両の状態を検出するもので、車速センサ、シフト位置検出センサ、パーキングブレーキセンサ、ヨーレートセンサ、横加速度センサなどからなる。   The ECU 60 controls various electromagnetic switching valves, variable orifices 13a to 13d and the operation of the electric motor 42 by executing various programs including the vehicle height control program of FIG. A vehicle height mode switch 62, a vehicle height adjustment switch 63, and various sensors 64 are connected to the ECU 60. The vehicle height mode switch 62 is provided in the passenger compartment and is operated by the driver, and is used for switching between an automatic mode in which the vehicle height is automatically changed and a manual mode in which manual operation is performed. The vehicle height adjustment switch 63 is provided in the passenger compartment and is operated by the driver, and is used to instruct switching of the vehicle height when the manual mode is selected. The various sensors 64 detect the state of the vehicle and include a vehicle speed sensor, a shift position detection sensor, a parking brake sensor, a yaw rate sensor, a lateral acceleration sensor, and the like.

上記のように構成した実施形態の動作を説明する。イグニッションスイッチの投入により、ECU60は、図4の車高制御プログラムを所定の短時間ごとに繰り返し実行する。この車高制御プログラムの実行はステップS10にて開始され、ECU60は、ステップS11,S12て、車高のダウン要求およびアップ要求があったかをそれぞれ判定する。例えば、車高モードスイッチ62によってマニアルモードが選択されている状態で、車高調整スイッチ63によって車高を低くする指示がなされた場合に、ダウン要求ありと判定される。また、車高モードスイッチ62によってオートモードが選択されている状態で、車両が停止され、その後に、パーキングブレーキが操作され、またはシフトレバーがパーキング位置に切換えられた場合にも、ダウン要求ありと判定される。これは、乗員が車両に乗降し易くするためである。一方、車高モードスイッチ62によってマニアルモードが選択されている状態で、車高調整スイッチ63によって車高を高くする指示がなされた場合に、アップ要求ありと判定される。また、車高モードスイッチ62によってオートモードが選択されている状態で、イグニッションスイッチの投入後に、シフトレバーがドライブ位置に切換えられた場合にも、アップ要求ありと判定される。これは、前記乗員の乗降のために低くした車高を高い位置に戻すためである。   The operation of the embodiment configured as described above will be described. By turning on the ignition switch, the ECU 60 repeatedly executes the vehicle height control program shown in FIG. 4 every predetermined short time. The execution of the vehicle height control program is started in step S10, and the ECU 60 determines whether there is a vehicle height down request or an up request in steps S11 and S12, respectively. For example, in the state where the manual mode is selected by the vehicle height mode switch 62, when an instruction to lower the vehicle height is issued by the vehicle height adjustment switch 63, it is determined that there is a down request. Further, when the vehicle is stopped with the auto mode selected by the vehicle height mode switch 62 and then the parking brake is operated or the shift lever is switched to the parking position, there is a down request. Determined. This is to make it easier for the passenger to get on and off the vehicle. On the other hand, when an instruction to increase the vehicle height is given by the vehicle height adjustment switch 63 while the manual mode is selected by the vehicle height mode switch 62, it is determined that there is an up request. In addition, when the auto mode is selected by the vehicle height mode switch 62 and the shift lever is switched to the drive position after turning on the ignition switch, it is determined that there is an up request. This is to return the vehicle height lowered for getting on and off the occupant to a higher position.

ステップS11,S12にて、共に「No」すなわち車高のダウン要求もアップ要求も判定されない場合には、ステップS23にてこの車高制御プログラムの実行を終了する。ステップS11にて、「Yes」すなわち車高のダウン要求ありと判定されると、ECU60は、ステップS13にて、ばね定数切換え用の電磁切換え弁16a〜16dに通電して、電磁切換え弁16a〜16dを閉状態に設定する。すなわち、図3(B)に示すように、コイル39への通電によりプランジャ38は左方に付勢され、弁体35が駆動ロッド36と共に左方に変位して、弁座部34aに着座する。その結果、電磁切換え弁16a〜16dは閉状態に設定される。次に、ステップS14にて、前記電磁切換え弁16a〜16dへの通電開始から所定の短時間が経過した後、車高制御用の電磁切換え弁51a〜51dおよび流出制御用の電磁切換え弁48に通電して、電磁切換え弁51a〜51d,48を開状態に設定する。これにより、流体圧シリンダ20a〜20d内の作動油が、油路L1a〜L1d,L3a〜L3d,L2を介してリザーバ43に排出される。その結果、図5に示すように、左右前後輪Wfl,Wfr,Wrl,Wrrの各位置における車高Lが徐々に低くなり、流体圧シリンダ20a〜20d内の油圧も徐々に低くなる。   If it is determined in steps S11 and S12 that both "No", that is, neither a vehicle height down request nor a vehicle up request is determined, the vehicle height control program is terminated in step S23. If it is determined in step S11 that "Yes", that is, there is a request for lowering the vehicle height, the ECU 60 energizes the electromagnetic switching valves 16a to 16d for switching the spring constant in step S13, and the electromagnetic switching valves 16a to 16d. 16d is set to the closed state. That is, as shown in FIG. 3B, when the coil 39 is energized, the plunger 38 is urged to the left, and the valve body 35 is displaced to the left together with the drive rod 36 and is seated on the valve seat 34a. . As a result, the electromagnetic switching valves 16a to 16d are set in a closed state. Next, in step S14, after a predetermined short time has passed since the energization start of the electromagnetic switching valves 16a to 16d, the vehicle height control electromagnetic switching valves 51a to 51d and the outflow control electromagnetic switching valve 48 are switched to. Energization is performed, and the electromagnetic switching valves 51a to 51d and 48 are set to an open state. As a result, the hydraulic oil in the fluid pressure cylinders 20a to 20d is discharged to the reservoir 43 via the oil passages L1a to L1d, L3a to L3d, and L2. As a result, as shown in FIG. 5, the vehicle height L at the positions of the left and right front and rear wheels Wfl, Wfr, Wrl, Wrr gradually decreases, and the hydraulic pressure in the fluid pressure cylinders 20a to 20d also gradually decreases.

前記ステップS14の処理後、ECU60は、車高センサ61a〜61dによって検出された各車高Lを入力して、左右前後輪Wfl,Wfr,Wrl,Wrrの各位置における各車高Lが目標の低い車高値に等しくなったかを判定する。左右前後輪Wfl,Wfr,Wrl,Wrrの各位置における各車高Lが目標の低い車高値に等しくなるまで、電磁切換え弁51a〜51d,48は開状態に維持されるとともに、電磁切換え弁16a〜16dは閉状態に維持される。そして、左右前後輪Wfl,Wfr,Wrl,Wrrの各位置における各車高Lが目標の低い車高値に等しくなると、ECU60は、ステップS15にて「Yes」と判定して、ステップS16,S17の処理を実行する。   After the processing of step S14, the ECU 60 inputs the vehicle heights L detected by the vehicle height sensors 61a to 61d, and the vehicle heights L at the left and right front and rear wheels Wfl, Wfr, Wrl, Wrr are targeted. Judge whether it became equal to a low vehicle height value. The electromagnetic switching valves 51a to 51d, 48 are kept open and the electromagnetic switching valve 16a until each vehicle height L at each position of the left and right front and rear wheels Wfl, Wfr, Wrl, Wrr is equal to a target low vehicle height value. ˜16d is kept closed. When the vehicle heights L at the positions of the left and right front and rear wheels Wfl, Wfr, Wrl, Wrr are equal to the target low vehicle height value, the ECU 60 determines “Yes” in step S15, and in steps S16, S17. Execute the process.

ステップS16においては、車高制御用の電磁切換え弁51a〜51dおよび流出制御用の電磁切換え弁48に対する通電を解除して、電磁切換え弁51a〜51d,48を閉状態に設定する。これにより、流体圧シリンダ20a〜20d内の作動油のリザーバ43に対する排出が停止し、左右前後輪Wfl,Wfr,Wrl,Wrrの各位置における車高の低下が停止する。ステップS17においては、前記電磁切換え弁51a〜51d,48の通電停止から所定の短時間が経過した後、ばね定数切換え用の電磁切換え弁16a〜16dに対する通電を解除する。この場合、図5に示すように、アキュムレータ15a〜15d内の油圧は車高が高い状態に設定したときにおける流体圧シリンダ20a〜20d内の油圧P2に保たれている。一方、流体圧シリンダ20a〜20d内の油圧は、車高を低い状態に設定した油圧P1である。そして、これらの油圧差ΔPo(=P2−P1)による力は、スプリング37のばね力Fよりも大きいので、電磁切換え弁16a〜16dは通電解除後も、閉状態に維持される(図3(C)参照)。その結果、アキュムレータ15a〜15d内の油圧は、高い油圧P2に維持され続ける。   In step S16, the energization to the vehicle height control electromagnetic switching valves 51a to 51d and the outflow control electromagnetic switching valve 48 is released, and the electromagnetic switching valves 51a to 51d, 48 are set to a closed state. As a result, the discharge of the hydraulic oil in the fluid pressure cylinders 20a to 20d to the reservoir 43 is stopped, and the decrease in vehicle height at each of the left and right front and rear wheels Wfl, Wfr, Wrl, Wrr is stopped. In step S17, the energization of the electromagnetic switching valves 16a to 16d for switching the spring constant is canceled after a predetermined short time has elapsed since the energization stop of the electromagnetic switching valves 51a to 51d and 48. In this case, as shown in FIG. 5, the hydraulic pressures in the accumulators 15a to 15d are maintained at the hydraulic pressure P2 in the fluid pressure cylinders 20a to 20d when the vehicle height is set high. On the other hand, the hydraulic pressure in the fluid pressure cylinders 20a to 20d is a hydraulic pressure P1 set to a low vehicle height. Since the force due to the hydraulic pressure difference ΔPo (= P2−P1) is larger than the spring force F of the spring 37, the electromagnetic switching valves 16a to 16d are maintained in the closed state even after the energization is released (FIG. 3 ( C)). As a result, the hydraulic pressure in the accumulators 15a to 15d continues to be maintained at a high hydraulic pressure P2.

なお、前記ステップS15〜S17の処理は、左右前後輪Wfl,Wfr,Wrl,Wrrごとに行われるもので、一つの車輪位置の車高が目標の低い車高に達した際には、車高制御用の電磁切換え弁51a〜51dおよびばね定数切換え用の電磁切換え弁16a〜16dのうちの前記一つの車輪に対応した各一つの電磁切換え弁の通電が停止制御される。そして、全ての車輪位置の車高が目標の低い車高に達した際に、流出制御用の電磁切換え弁48の通電が停止制御される。   The processing in steps S15 to S17 is performed for each of the left and right front and rear wheels Wfl, Wfr, Wrl, Wrr. When the vehicle height at one wheel position reaches a target vehicle height, the vehicle height The energization of each one of the electromagnetic switching valves 51a to 51d for control and the electromagnetic switching valves 16a to 16d for switching the spring constant corresponding to the one wheel is stopped. When the vehicle heights at all the wheel positions reach the target vehicle height, the energization of the electromagnetic switching valve 48 for outflow control is controlled to stop.

このように車高を高い位置から目標の低い位置まで低下させる場合には、電磁切換え弁16a〜16dを通電によって閉じることにより、流体圧シリンダ20a〜20d内のみの作動油を排出させるだけで済むので、車高を短時間で低下させることができる。そして、この車高を目標の低い位置まで低下させた後に、電磁切換え弁16a〜16dへの通電を停止しても、アキュムレータ15a〜15d内の油圧と流体圧シリンダ20a〜20d内の油圧との油圧差により、電磁切換え弁16a〜16dを閉じた状態に保つことができる。したがって、電磁切換え弁16a〜16dの通電停止後も、アキュムレータ15a〜15d内の作動油が流体圧シリンダ20a〜20dに移動することはなく、作動油の移動による衝撃音の発生、車高が変動を回避することができる。   Thus, when lowering the vehicle height from a high position to a target low position, it is only necessary to discharge the hydraulic oil only in the fluid pressure cylinders 20a to 20d by closing the electromagnetic switching valves 16a to 16d by energization. Therefore, the vehicle height can be reduced in a short time. And even if energization to electromagnetic switching valves 16a-16d is stopped after this vehicle height is lowered to a target low position, the hydraulic pressure in accumulators 15a-15d and the hydraulic pressure in fluid pressure cylinders 20a-20d are reduced. Due to the hydraulic pressure difference, the electromagnetic switching valves 16a to 16d can be kept closed. Accordingly, even after the energization of the electromagnetic switching valves 16a to 16d is stopped, the hydraulic oil in the accumulators 15a to 15d does not move to the fluid pressure cylinders 20a to 20d, impact noise is generated due to the movement of the hydraulic oil, and the vehicle height fluctuates. Can be avoided.

次に、車高を低い状態から高い状態に切換える場合について説明する。前述のような車高のアップの要求があると、ECU60は、ステップS12にて「Yes」と判定して、ステップS18にて、前記ステップS13の処理と同様に、ばね定数切換え用の電磁切換え弁16a〜16dに通電して、電磁切換え弁16a〜16dを閉状態に設定する。次に、ステップS19にて、電磁切換え弁16a〜16dの通電開始から所定の短時間が経過した後に、車高制御用の電磁切換え弁51a〜51dを通電により開状態に設定するとともに、電動モータ42を作動させることによりポンプ41の作動を開始させる。これにより、ポンプ41から吐出された作動油が、油路L2,L3a〜L3d,L1a〜L1dを介して流体圧シリンダ20a〜20dに供給される。その結果、図5に示すように、左右前後輪Wfl,Wfr,Wrl,Wrrの各位置における車高Lが徐々に高くなり、流体圧シリンダ20a〜20d内の油圧も徐々に高くなる。   Next, a case where the vehicle height is switched from a low state to a high state will be described. When there is a request for increasing the vehicle height as described above, the ECU 60 determines “Yes” in step S12, and in step S18, similarly to the processing in step S13, electromagnetic switching for switching the spring constant is performed. The valves 16a to 16d are energized to set the electromagnetic switching valves 16a to 16d in a closed state. Next, in step S19, after a predetermined short period of time has elapsed from the start of energization of the electromagnetic switching valves 16a to 16d, the electromagnetic switching valves 51a to 51d for vehicle height control are set to an open state by energization, and the electric motor The operation of the pump 41 is started by operating 42. As a result, the hydraulic oil discharged from the pump 41 is supplied to the fluid pressure cylinders 20a to 20d via the oil passages L2, L3a to L3d, and L1a to L1d. As a result, as shown in FIG. 5, the vehicle height L at each of the left and right front and rear wheels Wfl, Wfr, Wrl, Wrr gradually increases, and the hydraulic pressure in the fluid pressure cylinders 20a to 20d also gradually increases.

前記ステップS19の処理後、ECU60は、車高センサ61a〜61dによって検出された各車高Lを入力して、左右前後輪Wfl,Wfr,Wrl,Wrrの各位置における各車高Lが目標の高い車高値に等しくなったかを判定する。左右前後輪Wfl,Wfr,Wrl,Wrrの各位置における各車高Lが目標の高い車高値に等しくなるまで、電磁切換え弁51a〜51dは開状態に維持され、ポンプ41は作動状態に維持され、かつ電磁切換え弁16a〜16dは閉状態に維持される。そして、左右前後輪Wfl,Wfr,Wrl,Wrrの各位置における各車高Lが目標の高い車高値に等しくなると、ECU60は、ステップS20にて「Yes」と判定して、ステップS21,S22の処理を実行する。   After the process of step S19, the ECU 60 inputs the vehicle heights L detected by the vehicle height sensors 61a to 61d, and the vehicle heights L at the left and right front and rear wheels Wfl, Wfr, Wrl, Wrr are targeted. It is determined whether the vehicle height value is equal. The electromagnetic switching valves 51a to 51d are maintained in an open state and the pump 41 is maintained in an operating state until each vehicle height L at each position of the left and right front and rear wheels Wfl, Wfr, Wrl, Wrr is equal to a target high vehicle height value. The electromagnetic switching valves 16a to 16d are maintained in the closed state. When the vehicle height L at each position of the left and right front and rear wheels Wfl, Wfr, Wrl, Wrr becomes equal to the target high vehicle height value, the ECU 60 determines “Yes” in step S20, and in steps S21, S22. Execute the process.

ステップS21においては、車高制御用の電磁切換え弁51a〜51dに対する通電を解除して、電磁切換え弁51a〜51dを閉状態に設定する。また、電動モータ42に対する作動制御を停止することにより、ポンプ41の作動油の吐出動作を停止する。その結果、流体圧シリンダ20a〜20dに対する作動油の供給が停止し、左右前後輪Wfl,Wfr,Wrl,Wrrの各位置における車高の上昇が停止する。ステップS22においては、前記電磁切換え弁51a〜51dを閉状態に設定およびポンプ41の作動停止から所定の短時間が経過した後に、ばね定数切換え用の電磁切換え弁16a〜16dに対する通電を解除する。この場合、図5に示すように、アキュムレータ15a〜15d内の油圧は流体圧シリンダ20a〜20d内の油圧P2に等しく、これらの油圧差はないので、スプリング37のばね力Fにより電磁切換え弁16a〜16dは開状態に切換えられる(図3(A)参照)。これにより、流体圧シリンダ20a〜20dとアキュムレータ15a〜15dとが可変オリフィス13a〜13dを介して連通し、車体の上下動に対してアキュムレータ15a〜15dによるばね力が作用するようになる。   In step S21, the energization of the vehicle height control electromagnetic switching valves 51a to 51d is released, and the electromagnetic switching valves 51a to 51d are set in a closed state. Further, the operation of discharging the hydraulic oil from the pump 41 is stopped by stopping the operation control for the electric motor 42. As a result, the supply of hydraulic oil to the fluid pressure cylinders 20a to 20d is stopped, and the increase in vehicle height at each of the left and right front and rear wheels Wfl, Wfr, Wrl, and Wrr is stopped. In step S22, energization of the electromagnetic switching valves 16a to 16d for switching the spring constant is canceled after the electromagnetic switching valves 51a to 51d are set in a closed state and a predetermined short time has elapsed since the pump 41 was stopped. In this case, as shown in FIG. 5, the hydraulic pressures in the accumulators 15a to 15d are equal to the hydraulic pressure P2 in the fluid pressure cylinders 20a to 20d, and there is no difference between these hydraulic pressures. ˜16d are switched to the open state (see FIG. 3A). As a result, the fluid pressure cylinders 20a to 20d and the accumulators 15a to 15d communicate with each other via the variable orifices 13a to 13d, and the spring force by the accumulators 15a to 15d acts on the vertical movement of the vehicle body.

なお、前記ステップS20〜S22の処理も、左右前後輪Wfl,Wfr,Wrl,Wrrごとに行われるもので、一つの車輪位置の車高が目標の高い車高に達した際には、車高制御用の電磁切換え弁51a〜51dおよびばね定数切換え用の電磁切換え弁16a〜16dのうちの前記一つの車輪に対応した各一つの電磁切換え弁の通電が停止制御される。そして、全ての車輪位置の車高が目標の低い車高に達した際に、電動モータ42の作動停止制御により、ポンプ41の作動油の吐出動作も停止する。   The processing in steps S20 to S22 is also performed for each of the left and right front and rear wheels Wfl, Wfr, Wrl, Wrr. When the vehicle height at one wheel position reaches a target vehicle height, the vehicle height The energization of each one of the electromagnetic switching valves 51a to 51d for control and the electromagnetic switching valves 16a to 16d for switching the spring constant corresponding to the one wheel is stopped. And when the vehicle height of all the wheel positions reaches the vehicle height with a low target, the discharge operation of the hydraulic oil of the pump 41 is also stopped by the operation stop control of the electric motor 42.

このように、車高を低い位置から目標の高い位置まで上昇させる場合、前述のように、ばね定数切換え用の電磁切換え弁16a〜16dは低下制御後も閉じた状態に保たれているために、アキュムレータ15a〜15d内の作動油は高圧に保たれているので、流体圧シリンダ20a〜20dおよびアキュムレータ15a〜15dの両者が車高を目標の高い状態に設定するために必要な作動油量は少なくて済み、ポンプ41として大きな吐出量のものを用意することなく、車高を目標の高い位置まで短時間で上昇させることができる。   Thus, when raising the vehicle height from a low position to a target high position, as described above, the electromagnetic switching valves 16a to 16d for switching the spring constant are kept closed even after the lowering control. Since the hydraulic oil in the accumulators 15a to 15d is kept at a high pressure, the amount of hydraulic oil necessary for both the fluid pressure cylinders 20a to 20d and the accumulators 15a to 15d to set the vehicle height to a target high state is The vehicle height can be raised to a target high position in a short time without preparing a pump 41 having a large discharge amount.

さらに、本発明は上記実施形態に限定されることなく、本発明の範囲内において種々の変形例を採用することができる。   Furthermore, the present invention is not limited to the above-described embodiment, and various modifications can be employed within the scope of the present invention.

例えば、車高を低下および上昇させる場合に、車高制御用の電磁切換え弁51a〜51dの通電開始よりもばね定数切換え用の電磁切換え弁16a〜16の通電開始を早くするとともに、電磁切換え弁51a〜51dの通電停止よりも電磁切換え弁16a〜16dの通電停止を遅くした。しかし、電磁切換え弁16a〜16dの通電を停止しても、アキュムレータ15a〜15d内の油圧から流体圧シリンダ20a〜20d内の油圧を減算した油圧差による力がスプリング37のばね力(付勢力)Fよりも大きい限り、電磁切換え弁16a〜16dは閉状態に保たれる。   For example, when the vehicle height is lowered and raised, the energization start of the spring constant switching electromagnetic switching valves 16a-16 is made earlier than the energization start of the vehicle height control electromagnetic switching valves 51a-51d, and the electromagnetic switching valve The energization stop of the electromagnetic switching valves 16a to 16d was made slower than the energization stop of 51a to 51d. However, even when the energization of the electromagnetic switching valves 16a to 16d is stopped, the force due to the oil pressure difference obtained by subtracting the oil pressure in the fluid pressure cylinders 20a to 20d from the oil pressure in the accumulators 15a to 15d is the spring force (biasing force) of the spring 37. As long as it is larger than F, the electromagnetic switching valves 16a to 16d are kept closed.

したがって、車高の低下時におけるアキュムレータ15a〜15d内の油圧から流体圧シリンダ20a〜20d内の油圧を減算した油圧差をΔPxとすると、車高の低下開始から低下終了までの期間内の少なくともΔPx・A≦Fなる関係が成立する期間で、電磁切換え弁16a〜16dを通電制御すればよい(図5参照)。また、車高上昇時におけるアキュムレータ15a〜15d内の油圧から流体圧シリンダ20a〜20d内の油圧を減算した油圧差をΔPyとすると、車高の上昇開始から上昇終了までの期間内の少なくともΔPy・A≦Fなる関係が成立する期間で、電磁切換え弁16a〜16dを通電制御すればよい(図5参照)。なお、Aは弁体35のシール面積である。   Therefore, if a hydraulic pressure difference obtained by subtracting the hydraulic pressure in the fluid pressure cylinders 20a to 20d from the hydraulic pressure in the accumulators 15a to 15d when the vehicle height decreases is ΔPx, at least ΔPx in the period from the start of the decrease in the vehicle height to the end of the decrease. The energization control of the electromagnetic switching valves 16a to 16d may be performed in a period in which the relationship of A ≦ F is established (see FIG. 5). Further, if a hydraulic pressure difference obtained by subtracting the hydraulic pressure in the fluid pressure cylinders 20a to 20d from the hydraulic pressure in the accumulators 15a to 15d when the vehicle height is increased is ΔPy, at least ΔPy · The electromagnetic switching valves 16a to 16d may be energized and controlled while the relationship A ≦ F is satisfied (see FIG. 5). A is the sealing area of the valve body 35.

本発明の一実施形態に係る車高調整装置を含む車両のサスペンション装置の概略図である。1 is a schematic view of a vehicle suspension device including a vehicle height adjusting device according to an embodiment of the present invention. 図1のばね定数切換え用の電磁切換え弁を示す縦断面図である。It is a longitudinal cross-sectional view which shows the electromagnetic switching valve for spring constant switching of FIG. (A)〜(C)は、前記電磁切換え弁の作動を説明するための概略断面図である。(A)-(C) are schematic sectional drawings for demonstrating the action | operation of the said electromagnetic switching valve. 図1の電子制御ユニットによって実行される車高制御プログラムを示すフローチャートである。It is a flowchart which shows the vehicle height control program performed by the electronic control unit of FIG. 図1の車高調整装置の作動を説明するためのタイムチャートである。It is a time chart for demonstrating the action | operation of the vehicle height adjustment apparatus of FIG.

符号の説明Explanation of symbols

11a〜11d…車輪側部材、12a〜12d…車体側部材、14a〜14d,15a〜15d…アキュムレータ、16a〜16d,48,51a〜51d…電磁切換え弁、20a〜20d…流体圧シリンダ、61a〜61d…車高センサ、17…センタシリンダ、41…ポンプ、42…電動モータ、60…電子制御ユニット(ECU)、Wfl,Wfr,Wrl,Wrr…左右前後輪
11a to 11d: Wheel side member, 12a to 12d ... Car body side member, 14a to 14d, 15a to 15d ... Accumulator, 16a to 16d, 48, 51a to 51d ... Electromagnetic switching valve, 20a to 20d ... Fluid pressure cylinder, 61a to 61d ... Vehicle height sensor, 17 ... Center cylinder, 41 ... Pump, 42 ... Electric motor, 60 ... Electronic control unit (ECU), Wfl, Wfr, Wrl, Wrr ... Left and right front and rear wheels

Claims (4)

車両の車輪側部材と車体側部材との間に設けられて流体の給排により車高を変更可能な流体圧シリンダと、
前記流体圧シリンダに対し流体通路を介して流体の給排を制御する流体給排装置と、
前記流体通路に接続されたアキュムレータと、
前記流体通路と前記アキュムレータとの間に介装された電磁切換え弁とを備えた車高調整装置において、
前記電磁切換え弁を、通電により閉状態に設定される常開型で構成するとともに、前記アキュムレータ内の流体圧が前記流体圧シリンダ内の流体圧よりも高くかつそれらの圧力差が所定値よりも大きいことを条件に、非通電状態であっても閉状態に設定されるように構成したことを特徴とする車高調整装置。
A fluid pressure cylinder provided between a wheel side member and a vehicle body side member of the vehicle and capable of changing a vehicle height by supplying and discharging fluid;
A fluid supply / discharge device that controls supply / discharge of fluid to / from the fluid pressure cylinder via a fluid passage;
An accumulator connected to the fluid passage;
In a vehicle height adjusting device comprising an electromagnetic switching valve interposed between the fluid passage and the accumulator,
The electromagnetic switching valve is configured as a normally open type that is set to a closed state by energization, and the fluid pressure in the accumulator is higher than the fluid pressure in the fluid pressure cylinder, and the pressure difference thereof is greater than a predetermined value. A vehicle height adjusting device configured to be set to a closed state even in a non-energized condition on the condition that it is large.
請求項1に記載した車高調整装置において、
前記電磁切換え弁は、スプリングを有していて、前記流体圧シリンダ内の流体圧および前記スプリングのばね力によって弁体を弁座に着座させる方向とは反対方向に付勢するとともに、前記アキュムレータ内の流体圧によって前記弁体を前記弁座に着座させる方向に付勢するように構成されており、
前記弁体が前記弁座に着座した位置にあるときにおける前記スプリングの付勢力をFとし、前記弁体が前記弁座に着座した際の同弁体のシール面積をAとし、かつ車高を高い状態に設定したときにおける前記流体圧シリンダ内の流体圧から車高を低い状態に設定したときにおける前記流体圧シリンダ内の流体圧を減算した流体圧差をΔPoとすると、ΔPo・A>Fなる関係が成立するようにした車高調整装置。
In the vehicle height adjustment device according to claim 1,
The electromagnetic switching valve has a spring and urges the valve body in a direction opposite to the direction in which the valve body is seated on the valve seat by the fluid pressure in the fluid pressure cylinder and the spring force of the spring. The valve body is configured to be biased in the direction in which the valve body is seated on the valve seat by the fluid pressure of
The biasing force of the spring when the valve body is in the position seated on the valve seat is F, the seal area of the valve body when the valve body is seated on the valve seat is A, and the vehicle height is If a fluid pressure difference obtained by subtracting the fluid pressure in the fluid pressure cylinder when the vehicle height is set to a low state from the fluid pressure in the fluid pressure cylinder when set to a high state is ΔPo, ΔPo · A> F A vehicle height adjustment device that allows the relationship to be established.
請求項2に記載した車高調整装置において、さらに、
前記流体給排装置を制御して前記流体圧シリンダ内の流体を排出することにより車高を低下させ、かつ前記アキュムレータ内の流体圧から前記流体圧シリンダ内の流体圧を減算した流体圧差であって車高の低下に伴って変化する流体圧差をΔPxとすると、車高の低下開始から低下終了までの期間内の少なくともΔPx・A≦Fなる関係が成立する期間で、前記電磁切換え弁を通電制御する低下制御手段を設けた車高調整装置。
The vehicle height adjusting device according to claim 2, further comprising:
This is a fluid pressure difference obtained by controlling the fluid supply / discharge device to lower the vehicle height by discharging the fluid in the fluid pressure cylinder and subtracting the fluid pressure in the fluid pressure cylinder from the fluid pressure in the accumulator. If the fluid pressure difference that changes as the vehicle height decreases is ΔPx, the electromagnetic switching valve is energized at least during the period from the start to the end of the vehicle height until the end of the decrease. A vehicle height adjusting device provided with a lowering control means for controlling.
請求項2または3に記載した車高調整装置において、さらに、
前記流体給排装置を制御して前記流体圧シリンダに流体を供給することにより車高を上昇させ、かつ前記アキュムレータ内の流体圧から前記流体圧シリンダ内の流体圧を減算した流体圧差であって車高の上昇に伴って変化する流体圧差をΔPyとすると、車高の上昇開始から上昇終了までの期間内の少なくともΔPy・A≦Fなる関係が成立する期間で、前記電磁切換え弁を通電制御する上昇制御手段を設けた車高調整装置。
The vehicle height adjusting device according to claim 2, further comprising:
A fluid pressure difference obtained by controlling the fluid supply / discharge device to raise the vehicle height by supplying fluid to the fluid pressure cylinder and subtracting the fluid pressure in the fluid pressure cylinder from the fluid pressure in the accumulator. When the fluid pressure difference that changes as the vehicle height increases is ΔPy, the electromagnetic switching valve is energized and controlled at least during the period from the start of the vehicle height increase to the end of the vehicle height, where ΔPy · A ≦ F. A vehicle height adjusting device provided with a rising control means.
JP2005339265A 2005-11-24 2005-11-24 Vehicle height adjusting device Withdrawn JP2007145093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005339265A JP2007145093A (en) 2005-11-24 2005-11-24 Vehicle height adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339265A JP2007145093A (en) 2005-11-24 2005-11-24 Vehicle height adjusting device

Publications (1)

Publication Number Publication Date
JP2007145093A true JP2007145093A (en) 2007-06-14

Family

ID=38207024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339265A Withdrawn JP2007145093A (en) 2005-11-24 2005-11-24 Vehicle height adjusting device

Country Status (1)

Country Link
JP (1) JP2007145093A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145121A (en) * 2005-11-25 2007-06-14 Toyota Motor Corp Vehicle having rear-wheel cross coupling type shock absorber system
CN101618669B (en) * 2008-06-30 2010-12-08 徐州重型机械有限公司 Multi-axle vehicle hydro-pneumatic suspension system and crane
CN101633300B (en) * 2008-07-25 2011-11-30 湖南易通莲花汽车悬架股份有限公司 Control system for automatic-control of vehicle body static load height and selective control of running height
WO2011157094A1 (en) * 2010-06-13 2011-12-22 长沙中联重工科技发展股份有限公司 Vehicle body inclination-angle regulating uint, hydropneumatic suspension mechanism and mobile crane
CN107407294A (en) * 2015-02-26 2017-11-28 悬挂系统股份有限公司 Hydraulic machinery suspension for vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145121A (en) * 2005-11-25 2007-06-14 Toyota Motor Corp Vehicle having rear-wheel cross coupling type shock absorber system
JP4552838B2 (en) * 2005-11-25 2010-09-29 トヨタ自動車株式会社 Vehicle equipped with a rear wheel cross-linked shock absorber system
CN101618669B (en) * 2008-06-30 2010-12-08 徐州重型机械有限公司 Multi-axle vehicle hydro-pneumatic suspension system and crane
CN101633300B (en) * 2008-07-25 2011-11-30 湖南易通莲花汽车悬架股份有限公司 Control system for automatic-control of vehicle body static load height and selective control of running height
WO2011157094A1 (en) * 2010-06-13 2011-12-22 长沙中联重工科技发展股份有限公司 Vehicle body inclination-angle regulating uint, hydropneumatic suspension mechanism and mobile crane
CN107407294A (en) * 2015-02-26 2017-11-28 悬挂系统股份有限公司 Hydraulic machinery suspension for vehicle
CN107407294B (en) * 2015-02-26 2018-08-31 悬挂系统股份有限公司 Hydraulic machinery suspension for vehicle

Similar Documents

Publication Publication Date Title
JP6388701B2 (en) Suspension control device
EP1818890B1 (en) Vehicle safety control apparatus for avoiding collision
US9115781B2 (en) Device for springing a mass, and method for adjusting and/or operating a fluid spring
JP2509257B2 (en) Active suspension device
KR20120114349A (en) Suspension device
JP2007145093A (en) Vehicle height adjusting device
US11077733B2 (en) Dynamic load transfer by switchable air volume suspension
JP4737041B2 (en) solenoid valve
JP4442556B2 (en) Vehicle height adjusting device and hydraulic pressure source control device
JP4715380B2 (en) Suspension device
KR20180054803A (en) Vibration damper, method of operating vibration damper, control device, and vehicle
JP6551296B2 (en) Suspension system
JP4329681B2 (en) Suspension device
JP2008037395A (en) Automobile with back door
JP2008014397A (en) Solenoid valve
JP2015105007A (en) Vehicle height adjustment device
JP2009113571A (en) Vehicle height adjustment device
JP2009234397A (en) Vehicle height adjustment device
JP4784419B2 (en) Anomaly detection device
JP2019073228A (en) Suspension system
JP2007161179A (en) Vehicle height adjusting device
JP4534960B2 (en) Suspension device
WO2019189113A1 (en) Brake device for vehicle
JP4380554B2 (en) Vehicle height adjustment device
JP4449887B2 (en) Suspension device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A761 Written withdrawal of application

Effective date: 20081224

Free format text: JAPANESE INTERMEDIATE CODE: A761