JP2007144866A - Method and device for humidity-conditioning/drying wood - Google Patents

Method and device for humidity-conditioning/drying wood Download PDF

Info

Publication number
JP2007144866A
JP2007144866A JP2005344128A JP2005344128A JP2007144866A JP 2007144866 A JP2007144866 A JP 2007144866A JP 2005344128 A JP2005344128 A JP 2005344128A JP 2005344128 A JP2005344128 A JP 2005344128A JP 2007144866 A JP2007144866 A JP 2007144866A
Authority
JP
Japan
Prior art keywords
wood
temperature
drying
moisture content
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005344128A
Other languages
Japanese (ja)
Inventor
Yutaka Shiba
豊 柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINSHIBA SETSUBI KK
Original Assignee
SHINSHIBA SETSUBI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINSHIBA SETSUBI KK filed Critical SHINSHIBA SETSUBI KK
Priority to JP2005344128A priority Critical patent/JP2007144866A/en
Publication of JP2007144866A publication Critical patent/JP2007144866A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for drying wood which can prevent the internal crack and deformation of wood and curtail a drying time. <P>SOLUTION: The method includes the first process in which the wood is heated by increasing the temperature of a drying chamber 1 close to 100°C by high temperature steam to make the core part of the wood be heated enough by being kept for a prescribed time, the second process in which the wood is heated at a dry bulb temperature of 110-130°C and at a wet bulb temperature close to 100°C and kept for a prescribed time, the third process in which the heating is stopped before the wood is heated to a prescribed temperature or for a prescribed time, or the wood is dried to have a prescribed water content, and while the temperature is decreased, the water content of the wood is adjusted to dewater the wood, and the fourth process in which the second and third processes are repeated until the average water content of the inside of the wood or the inter-wood is a desired water content. Preferably, the fifth process in which the inside of the drying chamber 1 is kept at a dry bulb temperature of 65-100°C preferably at 80°C and at a wet bulb temperature of 63-98°C preferably at 78°C for a prescribed time, and moisture conditioning is carried out until a water content inclination toward the core part of the wood and the water content of the inter-wood are made approximately uniform is added after the fourth process. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、柱、土台、梁、桁等の建築構造材に使用される木材、特には針葉樹や広葉樹の芯持ち角材や梁桁材等、乾燥中に木材から流出した樹脂成分の付着によって変色しやすい木材の調湿乾燥方法及びその装置に関する。   The present invention is easily discolored due to adhesion of resin components that have flowed out of the wood during drying, such as wood used for building structural materials such as pillars, foundations, beams, girders, especially coniferous and hardwood cored squares and beam girders. The present invention relates to a method and an apparatus for conditioning and drying wood.

建築構造材として用いられる木材は、伐採後、時間をかけて十分乾燥したものを用いる必要があるが、乾燥期間を短縮するため、木材乾燥装置を用いて高温乾燥させている。
しかしながら、高いランニングコスト(電力、燃料)、低い歩留り(乾燥によるわれ、曲り等の発生)、生産性の低さ(乾燥時間が非常に長い)等により、柱材等は表層部10〜20mm程度を含水率20〜25重量%、芯部を35〜50重量%程度の乾燥で、乾燥材として市場に出荷されていたが、このような高温乾燥には、自然乾燥に比べて、木材の外観上の割れ、曲がり等が発生しやすく歩留まりが低いという難点があった。
近年、これらに対する対策の結果、高温乾燥技術が進歩し、特許文献1で示すような木材乾燥機を使用して木材を乾燥させ、日数はかかるものの芯持ち角材や梁桁材が表面割れすることなく、歩留まりの高い乾燥ができるようになってきた。
The wood used as a building structural material needs to be sufficiently dried over a period of time after felling. However, in order to shorten the drying period, the wood is dried at a high temperature using a wood drying apparatus.
However, due to high running costs (electric power, fuel), low yield (occurrence of cracking and bending due to drying), low productivity (drying time is very long), etc., the column material is about 10 to 20 mm in the surface layer portion. Has been shipped to the market as a desiccant with a moisture content of 20 to 25% by weight and a core part of about 35 to 50% by weight. There was a problem that the yield was low because cracks and bends were easily generated.
In recent years, as a result of countermeasures against these, high-temperature drying technology has progressed, and wood is dried using a wood dryer as shown in Patent Document 1, and although it takes days, cored squares and beam girders are not cracked on the surface, It has become possible to dry with high yield.

上記した従来の高温乾燥技術の一般的な乾燥工程は、以下の通りである。
第1工程(昇温昇湿工程);木材を乾燥室内に搬入し、木材内部(以下、材内と略称する)の芯部が、96〜98℃の温度に到達するまで、10〜24時間、高温蒸気による蒸射を行い、加熱する。
第2工程(高温加熱工程);乾燥室内を、加熱ヒータで加熱して乾球温度を120℃程度に上げ、同時に蒸気の一部を室外に排出(強制排湿)して木材の割れを防ぎつつ、木材表面を高温状態として乾燥する。この状態をほぼ24時間維持する。
第3工程(高温脱水工程);乾燥室内の温度を5〜15℃刻みでステップ状に下げ、各温度で10〜24時間保持する。この間、蒸気の一部を室外に排出し、木材が所望の含水率、例えば、含水率15%になるまで乾燥する。
第4工程(自然冷却工程);所望の含水率に下がった時点で、加熱、加湿を停止して自然冷却を行い、木材の温度(以下、材温という)が充分に下がった時点で乾燥室から木材を搬出する。
通常、4寸角の杉芯持ち角材の場合で、乾燥室内への木材の搬入から搬出までに7〜9日間を要する。
特公平4−68550号
The general drying process of the conventional high-temperature drying technique described above is as follows.
1st process (temperature rising / humidifying process): wood is carried into the drying chamber, and 10 to 24 hours until the core inside the wood (hereinafter abbreviated as “inside of the material”) reaches a temperature of 96 to 98 ° C. Steam with high temperature steam and heat.
Second step (high-temperature heating step): Heating the drying chamber with a heater to raise the dry bulb temperature to about 120 ° C, and at the same time, exhausting part of the steam to the outside (forced dehumidification) to prevent cracking of the wood Meanwhile, the wood surface is dried at a high temperature. This state is maintained for approximately 24 hours.
Third step (high-temperature dehydration step): The temperature in the drying chamber is lowered in steps of 5 to 15 ° C. and held at each temperature for 10 to 24 hours. During this time, a part of the steam is discharged to the outside and dried until the wood has a desired moisture content, for example, a moisture content of 15%.
Fourth step (natural cooling step): When the moisture content falls to the desired level, heating and humidification are stopped and natural cooling is performed, and when the temperature of the wood (hereinafter referred to as the material temperature) is sufficiently lowered, the drying chamber Remove wood from
Usually, in the case of a 4 inch square cedar core, it takes 7 to 9 days from carrying wood into the drying chamber.
Japanese Patent Publication No. 4-68550

しかし、前記した従来の高温乾燥処理によって乾燥木材の表面割れは無くなったものの、木材の内部割れ、変形等による加工性や強度低下の問題、さらに、乾燥中に木材表面に生ずる変色による外観上の問題は、依然として解消されていない。
近年、建築に携わる人の建築用材に対する工務習熟度が以前に比べて低下しており、殆どプレカット材を組むだけになっている。また、プレカット加工を行う場合、乾燥した木材が変形していると加工機にかけるのが困難となり、乾燥後の加工歩留りを著しく低下させるため、事業者のなやみの種となっていた。
また、木材の内部に割れがあると、その割れが木材乾燥後のプレカットにより加工断面に出現して、継手部分の強度を著しく低下させるほか、加工断面に現れない木材の中央部において強度低下をもたらす。
また、木材の外観は、製材された生材時の色合いが好まれる傾向が残っているため、変色した高温乾燥材が敬遠される一因となっている。
However, although the surface cracking of the dry wood has been eliminated by the conventional high-temperature drying treatment described above, there are problems of workability and strength reduction due to internal cracks, deformation, etc. of the wood, and further on the appearance due to discoloration that occurs on the wood surface during drying The problem is still not solved.
In recent years, the level of proficiency with construction materials for construction personnel has been lower than before, and almost only precut materials are assembled. In addition, when pre-cut processing is performed, it is difficult for the machine to be applied to a processing machine if the dried wood is deformed, and the processing yield after drying is significantly reduced.
In addition, if there are cracks in the wood, the cracks appear in the machined cross section due to precutting after drying the wood, significantly reducing the strength of the joints, and reducing the strength in the center of the wood that does not appear in the machined cross section. Bring.
In addition, the appearance of wood remains one of the reasons why the discolored high-temperature desiccant is avoided because there remains a tendency to favor the tint of the raw lumber.

したがって、本発明の課題は、従来の高温乾燥技術では避けられなかった木材の内部割れ、変形、さらには木材表面の変色を防止し、かつ従来の高温乾燥方法に比べて、乾燥時間の短縮が図れ、さらに、材内の水分傾斜が極めて小さく、乾燥中及びその後の寸法安定性に優れた乾燥材が得られる木材の調湿乾燥方法及びその装置を提供することにある。   Therefore, the object of the present invention is to prevent internal cracking and deformation of wood, and further discoloration of the wood surface, which are inevitable with conventional high-temperature drying technology, and shorten the drying time compared with conventional high-temperature drying methods. Furthermore, it is an object of the present invention to provide a moisture conditioning drying method and apparatus for wood that can provide a drying material having a very small moisture gradient in the material and excellent in dimensional stability during and after drying.

本発明の木材の調湿乾燥方法は、乾燥室内に複数の木材を搬入して加熱乾燥する木材の調湿乾燥方法であって、乾燥室内の乾球温度及び湿球温度(以下、乾湿温という)を高温の蒸気で100℃近くに上げて木材を加熱し、所定時間保持して木材の芯部まで該温度になじませる第1の工程(昇温昇湿工程)、乾球温度110〜130℃、湿球温度100℃近傍に加熱して所定時間保持する第2の工程(高温加熱工程)、所定温度まで又は所定時間もしくは木材が所定の含水率になるまで加熱を停止し、温度降下中、材内の水分を調湿(湿度調整)して脱水する第3の工程(調湿脱水工程)、材内の平均含水率又は木材間の平均含水率が所望の含水率になるまで前記第2、第3の工程を繰り返す第4の工程(繰返し調湿脱水工程)を有することを特徴としている。   The wood moisture conditioning drying method of the present invention is a wood humidity conditioning drying method in which a plurality of woods are carried into a drying chamber and dried by heating, and the dry bulb temperature and wet bulb temperature in the drying chamber (hereinafter referred to as wet and dry temperature). ) Is heated to about 100 ° C. with high-temperature steam, the wood is heated, held for a predetermined time, and adjusted to the temperature up to the wood core, the dry bulb temperature 110-130 2nd step (high temperature heating step) of heating and maintaining wet bulb temperature in the vicinity of 100 ° C. for a predetermined time, heating is stopped until the predetermined temperature or predetermined time or until the wood has a predetermined moisture content, and the temperature is decreasing , A third step (humidity control dehydration step) of dehumidifying the moisture in the material by adjusting the humidity (humidity adjustment), until the average moisture content in the material or the average moisture content between the woods reaches a desired moisture content. 2. Having a fourth step (repeated humidity conditioning dehydration step) that repeats the third step It is characterized.

また、本発明の木材の調湿乾燥方法は、前記第4の工程の後に、乾燥室内を乾球温度65〜100℃好ましくは80℃、湿球温度63〜98℃好ましくは78℃で所定時間保持し、各木材の芯部へ向けての水分傾斜及び木材間の含水率がほぼ均一化されるまで調湿を行う第5の工程(水分均一化工程)を付加するのが望ましい。
さらに、前記第5の工程の後に、加熱及び加湿を停止し、室内の循環送風ファン及び湿度の高い雰囲気を徐々に排出し低湿の外気を導入する給排気ファンの風量を抑えて稼動し、室内結露の滴下を防止しながら木材の温度を低下させるのが望ましい。
In the method for conditioning and drying wood according to the present invention, after the fourth step, the drying chamber has a dry bulb temperature of 65 to 100 ° C, preferably 80 ° C, and a wet bulb temperature of 63 to 98 ° C, preferably 78 ° C for a predetermined time. It is desirable to add a fifth step (moisture homogenization step) for holding and adjusting the humidity until the moisture gradient toward the core of each wood and the moisture content between the woods are almost uniform.
Further, after the fifth step, the heating and humidification are stopped, the indoor circulation fan and the high-humidity atmosphere are gradually exhausted, and the air supply / exhaust fan that introduces low-humidity outside air is suppressed to operate. It is desirable to reduce the temperature of the wood while preventing condensation from dripping.

さらに、本発明の木材の調湿乾燥方法において、第1の工程における加熱手段が高温蒸気又は高温蒸気と加熱ヒータであり、第2以降の工程における加熱手段がヒータ、加湿手段が湯気発生装置で発生させた常圧の湯気で行うのが望ましい。
なお、第3の工程における調湿脱水は、温度降下とともに乾湿温差が予め設定した数値となるように、発生させる湯気の量を調節して行うのが望ましい。なお、この乾湿温差は、一定値ではなく乾球温度の降下につれて、乾湿温差が小さくなるように調湿(湿度調整)するのが望ましい。
Furthermore, in the method for conditioning and drying wood according to the present invention, the heating means in the first step is high-temperature steam or high-temperature steam and a heater, the heating means in the second and subsequent steps is a heater, and the humidifying means is a steam generator. It is desirable to carry out with the generated normal pressure steam.
In addition, it is desirable that the humidity adjustment and dehydration in the third step is performed by adjusting the amount of steam to be generated so that the temperature difference between the drying and drying becomes a preset numerical value. In addition, it is desirable to adjust the humidity (humidity adjustment) so that the dry / wet temperature difference is not a constant value but decreases as the dry bulb temperature decreases.

本発明の木材の調湿乾燥方法に使用する木材の調湿乾燥装置は、乾燥室内に高温蒸気を供給する手段、加熱ヒータで加熱する手段及びタンク内の水中に高温蒸気を導き常圧の湯気を発生させる湯気発生装置を有し、木材に取付けた材温センサー及び含水率センサーとこれらのセンサーに接続され木材の含水率を表示する含水率測定装置、並びに木材の調湿脱水乾燥を予め設定されたプログラムに従って制御する、制御装置を備えていることを特徴としている。   The humidity control and drying apparatus for wood used in the method for humidity conditioning and drying of wood according to the present invention comprises means for supplying high-temperature steam into a drying chamber, means for heating with a heater, and steam at normal pressure that introduces high-temperature steam into the water in the tank. Has a moisture generation device that generates water, a material temperature sensor and moisture content sensor attached to the wood, a moisture content measuring device connected to these sensors to display the moisture content of the wood, and humidity conditioning dehydration drying of the wood are preset It is characterized by having a control device that performs control according to a programmed program.

本発明の木材の調湿乾燥方法によれば、従来の高温乾燥方法による乾燥木材に見られた木材の内部割れ、捩れ、曲り、反り等の変形及び木材表面の変色が殆どなくなると共に、材内の水分傾斜が非常に少ない。従来法のものに比べて収縮率も小さく、乾燥中および乾燥後の木材の寸法安定性が非常に高い高品質な乾燥木材が得られる。さらに、従来の乾燥木材よりも、乾燥木材間の含水率にばらつきが無く、かつ乾燥時間も短縮できる。   According to the moisture conditioning and drying method of wood of the present invention, there is almost no deformation such as internal cracking, twisting, bending, warping and discoloration of the wood surface seen in the dry wood by the conventional high temperature drying method, There is very little moisture gradient. Compared with the conventional method, the shrinkage rate is small, and high quality dry wood is obtained in which the dimensional stability of the wood during and after drying is very high. Furthermore, the moisture content between the dry woods is more uniform than the conventional dry woods, and the drying time can be shortened.

以下、本発明の一実施の形態を添付図面に基づき説明する。
図1は、本発明の木材の調湿乾燥方法に使用される乾燥装置の一例を示す概略断面図である。
この木材の調湿乾燥装置は、図1に示すように、縦断面構造が直方体形で、木材の強制乾燥は、乾燥室1の入口より、木材2を積載した台車3を搬入して行われる。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic cross-sectional view showing an example of a drying apparatus used in the humidity control drying method for wood according to the present invention.
As shown in FIG. 1, this wood humidity conditioning drying apparatus has a rectangular parallelepiped structure, and the forced drying of wood is performed by carrying a cart 3 loaded with wood 2 from the entrance of the drying chamber 1. .

乾燥室1は、通常、上部に室温を上げる加熱ヒータ4からなる加熱装置と、乾燥室内の湿度を上げるために乾燥室の外に設けられたボイラーとそこから供給される高温蒸気を室内に噴射するためのスチームパイプ5とからなる加湿装置と、乾燥室内の空気を循環させる循環送風ファン6を有する循環装置とを備え、内壁に沿って、室外に設けられた給気・排気ファンに連通した管路7からなる給排気装置が設けられ、さらに、左右側壁に沿って設けられたタンク8と、このタンク8内の水中に、高温蒸気を供給するための管体9が配設された湯気発生装置を備え、底部には、乾燥によって木材から流出する樹脂液等を受け室外に排出するための水槽10が設けられている。   The drying chamber 1 usually injects a heating device composed of a heater 4 that raises the room temperature at the top, a boiler provided outside the drying chamber in order to increase the humidity in the drying chamber, and high-temperature steam supplied therefrom. And a circulation device having a circulation fan 6 for circulating the air in the drying chamber, and communicated with an air supply / exhaust fan provided outside the room along the inner wall. Steam is provided with an air supply / exhaust device comprising a pipe 7, and further, a tank 8 provided along the left and right side walls, and a pipe body 9 for supplying high-temperature steam to the water in the tank 8. A water tank 10 is provided at the bottom for receiving a resin liquid or the like flowing out from the wood by drying and discharging it out of the room.

前記した湯気発生装置は、乾燥室1の外部に設けられた高温蒸気発生機(図示せず)から延びるパイプ(図示せず)に管体9が連結されており、高温蒸気発生機から送出された高温蒸気が、管体9を経てタンク8内に導かれ、管体9に間隔をあけて設けられた小孔よりタンク8内の水中に噴出し、タンクの天板に設けられた小孔から常圧の湯気となって乾燥室1内に噴出するようになっている。
木材2は、台車3上に、桟木等を介して隙間をあけて積載され、乾燥室1に搬入された後、密閉された乾燥室内で、所望の温度・湿度に制御された雰囲気下で高温乾燥される。昇温時には、乾燥室内は、強力な循環送風ファン6で、室内雰囲気が循環するようになっている。
In the steam generator described above, the pipe body 9 is connected to a pipe (not shown) extending from a high-temperature steam generator (not shown) provided outside the drying chamber 1, and is sent out from the high-temperature steam generator. The high-temperature steam is introduced into the tank 8 through the tube body 9, and is ejected into the water in the tank 8 through a small hole provided at an interval in the tube body 9, so that the small hole provided in the top plate of the tank. Then, the steam is discharged into the drying chamber 1 as normal pressure steam.
The timber 2 is loaded on the carriage 3 with a gap through a pier, etc., and after being carried into the drying chamber 1, the timber 2 is heated in a sealed drying chamber at a high temperature in an atmosphere controlled to a desired temperature and humidity. Dried. When the temperature rises, the room atmosphere is circulated in the drying chamber by a powerful circulating fan 6.

乾燥室内に搬入された木材は、加熱により表層部の水分が木目に沿って移動し、木材の両端面 (木口)から脱水される。同時に表層部の水分の減少によって材内への熱伝導は悪化し、かつ内部に水分が残留した状態で留まっているため、内部を100℃以上に加熱することは極めて困難である。従って、高温乾燥を長時間続けても所望の含水率まで下げるのに極めて長時間を要する。また、このようにして乾燥された木材は、材内の水分傾斜及び収縮率が大きい。   When the wood is brought into the drying chamber, the moisture in the surface layer moves along the grain when heated, and is dehydrated from both ends (wood ends) of the wood. At the same time, the heat conduction into the material deteriorates due to the reduction of the moisture in the surface layer portion, and the moisture remains in the interior, so it is extremely difficult to heat the interior to 100 ° C. or higher. Therefore, even if high temperature drying is continued for a long time, it takes a very long time to lower the desired moisture content. Further, the wood thus dried has a large moisture gradient and shrinkage rate in the material.

本発明においては、所定時間、高温で加熱・乾燥した後、加熱を停止して調湿する。すなわち、加熱停止して降温中の乾湿温差を小さくすることで、内部の水分が木目に沿って移動し排出され、材内の水分傾斜は小さくなる。再度、高温加熱・乾燥して表層部の水分を排出して水分傾斜を生じさせた後、加熱停止・調湿を繰り返すことで、木材の芯部まで速やかに水分を移動させ排出させることができ、従来に比べて乾燥時間を大幅に短縮することができる。   In the present invention, after heating and drying at a high temperature for a predetermined time, the heating is stopped and the humidity is adjusted. That is, by stopping heating and reducing the temperature difference between the wet and dry temperatures, the internal moisture moves along the grain and is discharged, and the moisture gradient in the material is reduced. Again, after heating and drying at high temperature to drain the moisture in the surface layer and causing a moisture gradient, the moisture can be quickly moved to the core of the wood and discharged by repeating heating stop and humidity control. The drying time can be greatly shortened compared to the conventional case.

本発明の調湿乾燥方法では、乾燥室内の標準となる1乃至複数の木材に深さを変えて材温センサーと含水率センサーを取付けて含水率測定装置及び制御装置に接続し、これによって、特に、第3の調湿脱水工程において、材内の水分を制御装置(コントローラー)により自動的に調湿脱水を行うものである。なお、含水率測定装置には、得られた含水率を材内の温度及び湿度と共に表示させるのが望ましい。同時に乾湿温差も求め、これに基づいて湯気の発生量を調節することで調湿が行われる。この調湿は、室内の湿度を調節するように予め設定されたプログラムに従って制御装置により行われる。
このように、乾球温度が降下するにつれて乾湿温差が小さくなるように、湿球温度を 湯気の発生量で調節することで、材内の水分の表層への移動を調節することができ、材内の含水率を制御することができる。また、加熱停止して調湿し脱水するため、極めて省エネ効果が大きく、ランニングコストを従来より大幅に削減することができる。
In the humidity control drying method of the present invention, the depth is changed to one or a plurality of timbers that are standard in the drying chamber, and the material temperature sensor and the moisture content sensor are attached and connected to the moisture content measuring device and the control device. In particular, in the third humidity control and dehydration step, moisture in the material is automatically controlled and dehydrated by a control device (controller). In addition, it is desirable for the moisture content measuring device to display the obtained moisture content together with the temperature and humidity in the material. At the same time, the temperature difference between the wet and dry conditions is obtained, and the humidity is adjusted by adjusting the amount of steam generated based on this difference. This humidity adjustment is performed by the control device in accordance with a program set in advance so as to adjust the humidity in the room.
In this way, by adjusting the wet bulb temperature with the amount of steam generated so that the dry / wet temperature difference decreases as the dry bulb temperature decreases, the movement of moisture in the material to the surface layer can be adjusted, and the material The moisture content inside can be controlled. Further, since the heating is stopped, the humidity is adjusted and dehydrated, the energy saving effect is extremely large, and the running cost can be greatly reduced as compared with the prior art.

以下、図1に示す乾燥装置を使用して、本発明の木材の調湿乾燥方法による木材の脱水乾燥工程を、前記した従来の乾燥方法の脱水乾燥工程と比較しつつ、順を追って説明する。
なお、本発明の木材の調湿乾燥方法により乾燥させる材内の目標含水率を、この例においては15重量%とする。
第1の工程(昇温昇湿工程);
乾燥させる木材2を積載した台車3を乾燥室1に搬入した後、乾燥室1内を密封し、乾燥室内の乾湿温を100℃近く、好ましくは96〜98℃に上げて木材を加熱する。この状態を所定時間、木材の芯部がその温度に到達するまで続ける。
乾燥室内の昇温は、主にスチームパイプ5から高温蒸気を噴射(蒸射)して供給するが、加熱ヒータ4を併用して行ってもよい。これにより乾湿温が共に上がる。
Hereinafter, using the drying apparatus shown in FIG. 1, the dehydration drying process of the wood according to the moisture conditioning and drying method of the present invention will be described step by step while comparing with the dehydration drying process of the conventional drying method described above. .
In addition, the target moisture content in the material dried by the humidity control drying method of the present invention is set to 15% by weight in this example.
1st process (temperature rising / humidification process);
After the cart 3 loaded with the wood 2 to be dried is carried into the drying chamber 1, the inside of the drying chamber 1 is sealed, and the wood is heated by raising the wet and dry temperature in the drying chamber to near 100 ° C., preferably 96 to 98 ° C. This state is continued for a predetermined time until the core of the wood reaches that temperature.
The temperature rise in the drying chamber is mainly supplied by spraying (steaming) high-temperature steam from the steam pipe 5, but may be performed using the heater 4 in combination. This increases the wet and dry temperatures.

上記所定時間は、乾燥室内の温度は蒸射によって1〜2時間で上がるが、木材中心部の温度が設定値の温度にほぼ到達する時間を基準とするため、木材の材質、太さ等によっても異なるが、木材の芯部に向けて厚さ10mmに対して1時間を目安として設定され、通常の角柱材、例えば4,5寸角であれば概ね5〜7時間でよい。
本発明の第1の工程は、従来の第1工程とほぼ同じであるが、所定時間保持して木材中心部の温度が前記所定温度に到達した後、予め設定されたプログラムに従って自動的に次の工程に移行する。
The above-mentioned predetermined time is that the temperature in the drying chamber rises by 1 to 2 hours due to spraying, but since it is based on the time when the temperature at the center of the wood almost reaches the set temperature, depending on the material, thickness, etc. of the wood Although it is different, it is set with 1 hour as a guide for a thickness of 10 mm toward the core of the wood, and it may be about 5 to 7 hours if it is a normal prismatic material, for example, 4 or 5 inch square.
The first step of the present invention is almost the same as the conventional first step. However, after the temperature of the center of the wood reaches the predetermined temperature after being held for a predetermined time, the first step is automatically performed according to a preset program. Shift to the process.

第2の工程(高温加熱工程);
第1の工程後、蒸射を停止し、乾燥室内を所定時間、加熱ヒータで加熱して乾球温度120〜130℃に上げ、水中に高温の蒸気を導き発生する湯気で湿球温度100℃近傍に保持する。前記所定時間は、乾燥させる木材及び厚みにもよるが、概ね10〜24時間とするのが望ましい。
前記した従来の第2の工程と本発明の第2の工程とは、同じ高温加熱処理であっても湿球温度が相違している。従来の第2の工程では、乾燥効率を上げるために乾燥室内の蒸気を強制排出している。そのため、これによって室外に持ち出されるエネルギー損失は大きい。
Second step (high temperature heating step);
After the first step, the vaporization is stopped, the inside of the drying chamber is heated with a heater for a predetermined time to raise the dry bulb temperature to 120 to 130 ° C., and the wet bulb temperature is 100 ° C. with steam generated by introducing high-temperature steam into the water. Keep in the vicinity. The predetermined time is preferably approximately 10 to 24 hours, although it depends on the wood to be dried and the thickness.
The above-described conventional second step and the second step of the present invention have different wet bulb temperatures even in the same high-temperature heat treatment. In the second conventional process, the steam in the drying chamber is forcibly discharged to increase the drying efficiency. Therefore, the energy loss taken out by this is large.

これに対して、本発明の第2の工程では、乾燥室内の湿球温度を100℃近傍、即ち約98〜100℃に維持するために、従来法のような強制排出は行わず、逆に前記湿度を維持できない場合には常圧の湯気で加湿を行う。
この加湿は、従来法のようにスチームパイプ5からの蒸射で行うと、木材の表面を汚し、変色させるおそれがあるため、前記した湯気発生装置を使用し、タンク内の水中に配設した管体9に高温の蒸気を導き発生させた湯気で加湿するのが好ましい。
On the other hand, in the second step of the present invention, in order to maintain the wet bulb temperature in the drying chamber at around 100 ° C., that is, about 98-100 ° C., the forced discharge as in the conventional method is not performed. When the humidity cannot be maintained, humidification is performed with steam at normal pressure.
If this humidification is carried out by steaming from the steam pipe 5 as in the conventional method, the surface of the wood may be soiled and discolored. Therefore, the steam generator is used and is disposed in the water in the tank. It is preferable to humidify the steam generated by introducing high-temperature steam into the tube body 9.

第3の工程(調湿脱水工程);
第2の工程で高温加熱処理した後、一旦、乾燥室内の加熱を所定時間まで又は所定温度もしくは木材が所定含水率に達するまで停止する(以下、所定時間の停止で代表する)。このとき循環送風ファン6も停止させるか、あるいは、循環送風ファン6をインバーターにて低速運転し、極小風量(微風)にて運転してもよい。
第2の工程で乾球温度を130℃に設定した場合、第3の工程に移行する時点での乾球温度は130℃、湿球温度は99.5〜100℃になっているが、加熱と加湿を停止すると、乾球温度は湿球温度より早く下がり、乾球温度100℃前後では、湿球温度は98.0〜98.5℃前後になり、当初30℃あった乾湿温差が2℃差程度まで近づく。その後さらに乾湿温は下がって行くがその間、第3の工程を終える所定時間になったとき、乾湿温差ができるだけ小さくなっているように、乾湿温差に応じて適宜湯気を発生させて調湿する。これにより調湿効果が発生し、材内の水分傾斜が緩和し、内部応力の減少及び含水率のむらを減少させる他に、木材の内部割れの防止、更に木材の変形防止が図られる。前記所定時間は、概ね10〜24時間である。
3rd process (humidity control dehydration process);
After the high-temperature heat treatment in the second step, heating in the drying chamber is temporarily stopped for a predetermined time or until the predetermined temperature or the wood reaches a predetermined moisture content (hereinafter, represented by the stop of the predetermined time). At this time, the circulating air fan 6 may also be stopped, or the circulating air fan 6 may be operated at a low speed with an inverter and operated with a minimal air volume (slight wind).
When the dry bulb temperature is set to 130 ° C. in the second step, the dry bulb temperature at the time of shifting to the third step is 130 ° C. and the wet bulb temperature is 99.5 to 100 ° C. When the humidification is stopped, the dry bulb temperature falls earlier than the wet bulb temperature, and when the dry bulb temperature is around 100 ° C., the wet bulb temperature becomes around 98.0 to 98.5 ° C. It approaches to the difference of ℃. Thereafter, the wet and dry temperature further decreases, but during that time, when the predetermined time for finishing the third step is reached, the humidity is adjusted by appropriately generating steam according to the dry and wet temperature difference so that the dry and wet temperature difference is as small as possible. As a result, a humidity control effect is generated, the moisture gradient in the material is relaxed, the internal stress is reduced, and the unevenness of the moisture content is reduced. The predetermined time is approximately 10 to 24 hours.

このように第3の工程では、第2の工程において木材表層部の乾燥により生じた木材芯部に向けての水分傾斜を、乾湿温差を調節することで芯部の水分を木材表面へ移動させることができる。なお、調湿は、センサーから得たリアルタイムの乾湿温データを制御装置で演算処理して乾湿温差を求め、この値が設定値あるいはゼロに漸近化するように、設定値より大きい場合には、湯気発生装置に信号を出力して加湿し、設定値より小さい場合には、給排気ファンに信号を出力して排出することで行われる。
芯部の含水率の高い木材ほど表面への水分の移動量が大きいため、木材間の水分のバラツキが収束する傾向にあるためである。このように材内の水分傾斜を緩和し、これにより含水率のむらを減少させ、材内の応力を減少させることができる。
この調湿脱水工程を経た木材は、当初100%〜140%もあった含水率が、内部割れを生じさせずに平均で一挙に50〜70%前後まで下がる。
In this way, in the third step, the moisture gradient toward the wood core caused by drying of the wood surface layer in the second step is moved to the wood surface by adjusting the temperature difference between the wet and dry temperatures. be able to. In addition, the humidity adjustment is a real-time dry / wet temperature data obtained from the sensor, which is processed by the control device to obtain the dry / wet temperature difference, and when this value is asymptotic to the set value or zero, A signal is output to the steam generator to humidify, and if it is smaller than the set value, the signal is output to the supply / exhaust fan and discharged.
This is because the wood having a higher moisture content in the core portion has a larger amount of moisture transferred to the surface, and thus the variation in moisture between the woods tends to converge. Thus, the moisture gradient in the material can be relaxed, thereby reducing the unevenness of the moisture content and reducing the stress in the material.
The moisture content of the wood that has undergone this moisture conditioning and dehydration process is reduced to an average of about 50 to 70% on average without causing internal cracks, which was initially 100% to 140%.

第4の工程(繰返し調湿脱水工程);
前記第2の工程及び第3の工程を、木材の平均含水率が15±2〜3%になるまで繰り返して行う。
この工程では、先の第2の工程と同様に、再度、乾燥室1内をヒーターで加熱し乾球温度で110〜130℃、例えば130℃に昇温して10〜15時間保持する。この間、加湿して湿球温度を99.5〜100℃に保持する。これによって再度、表層部の乾燥が行われる。
次いで、先の第3の工程と同様、10〜24時間、加熱を停止して調湿し乾湿温差を小さくすることで、芯部の水分が表面に向けて移動し、材内の水分傾斜が小さくなり、内部応力が緩和される。このとき、加熱及び循環送風ファン等を全て停止して、あるいは加熱のみを停止し、循環送風ファンはインバーターにて低速の極小風量にて運転する。
4th process (repeated humidity control dehydration process);
The second step and the third step are repeated until the average moisture content of the wood is 15 ± 2 to 3%.
In this step, as in the previous second step, the inside of the drying chamber 1 is again heated with a heater, heated to a dry bulb temperature of 110 to 130 ° C., for example, 130 ° C., and held for 10 to 15 hours. During this time, the wet bulb temperature is maintained at 99.5 to 100 ° C. by humidification. As a result, the surface layer is dried again.
Next, as in the previous third step, by stopping heating for 10 to 24 hours and adjusting the humidity to reduce the temperature difference between the wet and dry, the moisture in the core moves toward the surface, and the moisture gradient in the material is reduced. It becomes smaller and internal stress is relieved. At this time, all of the heating and the circulation fan are stopped or only the heating is stopped, and the circulation fan is operated by the inverter at a low speed and a small air volume.

この工程を終えると、先の第3の工程終了時点で50〜70%程度になっていた木材の含水率はさらに下がり、30〜50%程度になっている。この第2、第3の工程を繰り返すことにより含水率は次第に下がっていく。
この第4の工程においては、先の工程で水分傾斜が大幅に軽減されているため、水分の除去がより容易に行われ、従来の高温乾燥に比べても、所要時間は従来の50〜60%程度で済み、同一容積の乾燥機に比べ格段に生産性が高い。また、乾燥による木材の収縮量は、脱水が主に加熱を停止して降温しながらの調湿工程を繰り返すことによって行われるため、木材の内部組織を傷めず、従来の高温乾燥の場合の約50〜60%程度でおさまる。
When this step is finished, the moisture content of the wood, which has been about 50 to 70% at the end of the previous third step, further decreases to about 30 to 50%. By repeating the second and third steps, the water content gradually decreases.
In this fourth step, the water gradient is greatly reduced in the previous step, so that the water can be removed more easily, and the required time is 50-60 compared with the conventional high temperature drying. The productivity is much higher than a dryer with the same volume. In addition, the amount of shrinkage of wood due to drying is performed by repeating dehumidification mainly by stopping the heating and lowering the temperature, so that the internal structure of the wood is not damaged and is about the same as in the case of conventional high-temperature drying. It settles at about 50-60%.

この第4の工程で再度行われる前記第2の工程は、最初の第2,3の工程でかなり脱水されているため、木材の表面含水率はかなり下がっている。そのため、乾燥室内の湿球温度を目標値の99〜100℃近傍に維持できないことが多い。そのため、先の第2の工程と同様に、乾燥室内に備えた湯気発生装置から湯気を噴出させて、加湿し目標値の維持を行うようにすると良い。
なお、第1の工程で昇温昇湿に使用した高温蒸気の蒸射によって加湿すると、木材表面の変色度合いが非常に強くなる。これに対して湯気による加湿は、木材の変色防止に極めて有効であり、かつ木材の割れ防止にも効果的である。
Since the second step performed again in the fourth step is considerably dehydrated in the first and second steps, the surface moisture content of the wood is considerably lowered. For this reason, the wet bulb temperature in the drying chamber cannot often be maintained near the target value of 99 to 100 ° C. Therefore, similarly to the second step, it is preferable that steam is jetted from the steam generator provided in the drying chamber to humidify and maintain the target value.
In addition, when it humidifies by the vaporization of the high temperature steam used for temperature rising / humidification in the 1st process, the discoloration degree of the wood surface will become very strong. On the other hand, humidification with steam is extremely effective in preventing discoloration of wood and is also effective in preventing cracking of wood.

前記した第2、第3の工程を繰り返す回数は、木材の種類、目標とする含水率等によっても異なるが、例えば、5寸角の芯持ち角材で所望の含水率が15%であれば、概ね3〜4回で低下する。
この第4の工程を経ると、従来の高温乾燥で見られる乾燥木材の内部割れを発生させることなく、乾燥木材の平均含水率を所望の含水率、例えば15%まで下げることができる。
The number of times the second and third steps described above are repeated depends on the type of wood, the target moisture content, and the like, but for example, if the desired moisture content is 15% with a 5 inch square core, Decreasing approximately 3 to 4 times.
Through this fourth step, the average moisture content of the dried wood can be lowered to a desired moisture content, for example, 15%, without causing internal cracking of the dried wood that is observed in conventional high-temperature drying.

第5の工程(水分均一化工程);
この第5の工程は、前記した第1〜第4の工程を経て、センサーでモニターした木材の平均含水率が15%に下がったところで、各木材の芯部へ向けての水分傾斜及び乾燥木材間の含水率の均一化を図り、含水率にバラツキのない高品質な乾燥木材を提供するため
に行う工程である
この第5の工程では、センサーを取り付けた木材の全ての含水率が15%±3%になるまで、乾燥室内の乾球温度を65〜100℃、例えば80℃、湿球温度を63〜98℃、例えば78℃に設定し、この状態を所定時間(10〜20時間)維持する。これによって含水率の高いものも、低いものも15%±3%に収斂する。なお、乾湿温差を2〜3℃に維持することが重要であり、材内又は木材間の水分傾斜が均一化されるまで行う。前記第4の工程を経た時点で、全ての含水率が15%±3%に入っていれば、この第5の工程は省略しても良い。
この第5の工程でも、乾燥室内の加湿は、木材表面の汚れ、変色を防止するため、湯気発生装置を使用し常圧の湯気で行う。
5th process (moisture equalization process);
In the fifth step, when the average moisture content of the wood monitored by the sensor has decreased to 15% through the first to fourth steps described above, moisture gradient toward the core of each wood and dry wood In this fifth step, the moisture content of the wood to which the sensor is attached is 15%. This is a process that is performed in order to provide uniform moisture content and provide high quality dry wood with no variation in moisture content. Until the temperature reaches ± 3%, the dry bulb temperature in the drying chamber is set to 65 to 100 ° C., for example, 80 ° C., and the wet bulb temperature is set to 63 to 98 ° C., for example, 78 ° C., and this state is maintained for a predetermined time (10 to 20 hours). maintain. As a result, both high and low moisture contents converge to 15% ± 3%. In addition, it is important to maintain a dry-wet temperature difference at 2-3 degreeC, and it carries out until the moisture gradient in a material or between timbers is equalized. If all the water content is within 15% ± 3% after the fourth step, the fifth step may be omitted.
Even in the fifth step, humidification in the drying chamber is performed with steam at normal pressure using a steam generator in order to prevent soiling and discoloration of the wood surface.

以上の工程を経て木材の含水率が目標値に達した時点で、制御装置により加熱、加湿、送風等の全ての運転を停止して自然冷却を行い材温が充分に下がった時点で、乾燥室から木材を搬出する。
なお、材寸の大きなものは温度降下中にも水分蒸発があり、室内結露を生じ滴下して木材にしみの発生することがある。これを防ぐために、自動排湿冷却工程を採用しても良い。これは必要に応じてオプションで行う工程であり、特に温度降下に時間を要する大断面材に有効である。
When the moisture content of the wood reaches the target value through the above steps, the controller stops all operations such as heating, humidification, air blowing, etc., natural cooling is performed, and the material temperature is sufficiently lowered. Remove wood from the room.
In addition, when the material size is large, moisture evaporates even during a temperature drop, and indoor condensation may occur and dripping may cause stains on the wood. In order to prevent this, an automatic exhaust cooling process may be employed. This is an optional process as necessary, and is particularly effective for large cross-section materials that require time for temperature drop.

この自動排湿冷却工程では、前記した第1〜第4若しくは第1〜第5の工程を経た後、乾燥室内の加熱、加湿を停止し、室内の循環送風ファン6及び給排気ファンをインバータ調整により稼動する。給排気ファンは、急激な温度や湿度の低下を防ぎ、材内に応力が発生せず、かつ品傷みがないように、室内雰囲気が3〜5分間程度で入れ替わる程度に風量を抑えて稼動する。このとき、外気を熱交換器を介して昇温させた低湿の外気を乾燥室内に導入するのと同時に、室内の湿度の高い雰囲気を室外に排出する。これにより、木材を急激に冷却することなく、排湿が可能となり、温度降下中、木材からの水分蒸発による室内結露を防ぎ、室内結露が滴下して木材にしみが発生することを防ぎながら、材温を低下させることが可能となる。   In this automatic exhaust cooling process, after the first to fourth or first to fifth steps described above, heating and humidification in the drying chamber are stopped, and the circulation fan 6 and the supply / exhaust fan in the chamber are adjusted by an inverter. It operates by. The supply / exhaust fan operates with a reduced air volume so that the room atmosphere can be replaced in about 3 to 5 minutes to prevent sudden temperature and humidity drops, no stress is generated in the material, and there is no product damage. . At this time, the low-humidity outside air whose temperature has been raised through the heat exchanger is introduced into the drying chamber, and at the same time, the indoor high-humidity atmosphere is discharged to the outside. As a result, moisture can be exhausted without rapidly cooling the wood, preventing indoor condensation due to moisture evaporation from the wood during the temperature drop, while preventing indoor condensation from dripping and causing stains on the wood, It is possible to reduce the material temperature.

本発明の調湿乾燥装置は、乾燥室内に高温蒸気を供給する手段、乾燥室内をヒータで加熱する手段、タンク内の水中に高温蒸気を導き湯気(常圧飽和水蒸気)を発生させる湯気発生装置、木材に取付けた材温センサー及び含水率センサーと、これらのセンサーに接続され木材の含水率を表示する含水率測定装置、並びに前記した第1〜第5の工程を予め設定されたプログラムに従って制御する制御装置を備えており、これにより、木材乾燥に要する時間の短縮と無人化が実現できる。   The humidity control drying apparatus of the present invention includes a means for supplying high-temperature steam into a drying chamber, a means for heating the drying chamber with a heater, and a steam generator for directing high-temperature steam into water in a tank to generate steam (atmospheric pressure saturated steam). , A material temperature sensor and a moisture content sensor attached to wood, a moisture content measuring device connected to these sensors and displaying the moisture content of wood, and the first to fifth steps described above are controlled in accordance with a preset program Therefore, the time required for drying the wood can be reduced and the unmanned operation can be realized.

初期の昇温昇湿工程では、速やかに木材の芯部まで所定温度に昇温する必要があるため、ボイラからの生蒸気を室内に直接蒸射噴霧し、ときには加熱ヒータを併用して加熱が行われるが、第2の工程以降においては、湯気発生装置を用いて、すなわち乾燥室内の側壁に沿って設けられたタンク内の水中に高温蒸気を導き発生させた常圧の湯気で室内の加湿が行われる。これは、ボイラからの生蒸気を直接蒸射すると、木材の変色が非常に強く現れるのを防止するためであり、かつ生蒸気で加湿すると、加湿(湿球温度の上昇)だけでなく、その保有熱量が大きいため乾球温度も共に上昇する。特に、乾燥室の断熱性能が高いほど顕著である。これに対して湯気は、生蒸気に比べて非常に保有熱量が低いため、乾球温度を上昇させることなく加湿することができ、乾湿温差の設定が容易である。   In the initial temperature rising / humidification process, it is necessary to quickly raise the temperature to the core of the wood to a predetermined temperature. However, in the second and subsequent steps, the steam generation apparatus is used, that is, humidification of the room with normal pressure steam generated by introducing high-temperature steam into the water in the tank provided along the side wall of the drying chamber. Is done. This is to prevent the discoloration of the wood from appearing very strongly when directly steaming live steam from the boiler, and humidifying with live steam not only humidifies (increases the wet bulb temperature), but also The dry-bulb temperature also rises due to the large amount of heat retained. In particular, the higher the heat insulation performance of the drying chamber, the more prominent. On the other hand, steam has a much lower amount of heat compared to live steam, so it can be humidified without increasing the dry bulb temperature, and the setting of the dry / wet temperature difference is easy.

含水率測定装置には、材温センサー及び含水率センサーが接続され、さらに、含水率測定装置を経由して制御装置に接続されている。これらのデータは、自動記録及び表示することで木材の状態を常時監視することができ、さらに自動制御用のリアルタイムデータとしても利用される。上記センサーは、例えば、含水率センサーを木材長手方向のほぼ中間位置に、深さの異なる下穴を開けて挿入し、耐熱コーキングで目止めを行ってセットされる。
なお、含水率測定装置には、温度補正機能が組み込まれ、各温度で測定された含水率を常温での含水率として補正して表示することができる。
A material temperature sensor and a moisture content sensor are connected to the moisture content measuring device, and further connected to the control device via the moisture content measuring device. By automatically recording and displaying these data, it is possible to constantly monitor the state of the wood, and it is also used as real-time data for automatic control. The sensor is set, for example, by inserting a moisture content sensor at a substantially intermediate position in the longitudinal direction of the wood with a prepared hole having a different depth and sealing with heat-resistant caulking.
In addition, the moisture content measuring apparatus incorporates a temperature correction function, and the moisture content measured at each temperature can be corrected and displayed as the moisture content at normal temperature.

この制御装置には、予め設定されたプログラムが組み込まれ、各工程への移行のタイミングが制御される。これには、含水率測定装置や木材に取り付けた各センサーからのリアルタイムデータに基づいて、様々な移行条件を設定することが可能である。
例えば、[平均含水率が15%]、あるいは[平均含水率が15%でかつ最高含水率が18%以下]、もしくは[全含水率が17%以下]等、移行条件を様々に設定することができる。
さらに、これらの条件に時間や材温を付加することもできる。例えば、[平均含水率が15%に到達後、4時間その状態を保持する]、あるいは[平均含水率が15%でかつ最高含水率が18%以下、かつ材温が104℃に到達後、さらに6時間その状態を保持する]等、複数条件を組み合わせて設定することもできる。このように一連の工程を全自動で行うことができる。
A preset program is incorporated in this control device, and the timing of transition to each process is controlled. For this, various transition conditions can be set based on real time data from the moisture content measuring device and each sensor attached to the wood.
For example, various transition conditions may be set such as [average moisture content is 15%], [average moisture content is 15% and maximum moisture content is 18% or less], or [total moisture content is 17% or less]. Can do.
Furthermore, time and material temperature can be added to these conditions. For example, [the state is maintained for 4 hours after the average moisture content reaches 15%], or [the average moisture content is 15% and the maximum moisture content is 18% or less, and the material temperature reaches 104 ° C., It is also possible to set a combination of a plurality of conditions, such as holding the state for 6 hours. In this way, a series of steps can be performed fully automatically.

本発明の調湿乾燥方法及び装置を使用して生材、例えば、初期含水率100〜150%以上の4寸角材を含水率15%まで乾燥する場合、従来の高温乾燥法では7〜9日間要していたのが、ほぼ半分の3.5日で乾燥することができる。このため省エネ性能に優れ、総ランニングコストは、従来法のほぼ1/2程度以下である。
次に本発明の一例を下記の実施例に基づいて詳細に説明するが、本発明はこれに限定されず、様々な態様が可能である。
When a raw material, for example, a 4 inch square material having an initial moisture content of 100 to 150% or more is dried to a moisture content of 15% using the humidity control drying method and apparatus of the present invention, the conventional high temperature drying method takes 7 to 9 days. What was needed was that it could be dried in almost half of the 3.5 days. For this reason, it is excellent in energy saving performance, and the total running cost is about half or less of the conventional method.
Next, an example of the present invention will be described in detail based on the following examples. However, the present invention is not limited to this, and various modes are possible.

132mm×132mm×3mの杉芯持角柱材を500本用意し、乾燥室への搬入前にこれらの柱材の含水率を測ったところ、含水率はほぼ110〜160%であった。これらの木材を木材間の風通しが良くなるように桟木を挟んで台車上に積載し、図1に示す乾燥室内へ搬入した。
このうちの適宜選択した6本の木材に、木材の木口から長手方向1.5mの位置にそれぞれ深さを変えて下穴を開け、12点式含水率計の含水率センサー6点1組を2組、この下穴に挿入し、耐熱コーキングで目止を行った。同様に、材温センサー6点1組を2組、深さを変えて開けた下穴の個所に挿入し耐熱コーキングで目止を行った。下穴は、木材の表面から材芯に向けて、深さ30mm、60mmの穴を、間隔をあけて穿孔し、それぞれ深さの底部にセンサーを設置した。これらのセンサーは、乾燥室外の操作室に設けた含水率計及び制御装置に接続し、数値及びグラフを表示し、かつ自動記録し、常時監視できるようにした。センサーケーブルには、非常に耐熱耐湿性の高いテフロン(登録商標)製コードを、また素線には無酸素銅銀メッキ線を採用した。
When 500 pieces of 132 mm × 132 mm × 3 m cedar core-supported rectangular pillar materials were prepared and the moisture content of these pillar materials was measured before being brought into the drying chamber, the moisture content was approximately 110 to 160%. These timbers were loaded on a carriage with a piercing between them so that the ventilation between the timbers was improved, and carried into the drying chamber shown in FIG.
Of these, six appropriately selected timbers were drilled at different depths at a position 1.5 m in the longitudinal direction from the mouth of the timber, and a set of 6 moisture content sensors for a 12-point moisture meter. Two sets were inserted into the pilot holes and sealed with heat-resistant caulking. Similarly, two sets of 6 temperature sensors were inserted into the holes of the pilot holes opened at different depths, and the temperature was measured with heat-resistant caulking. The pilot holes were drilled at intervals of 30 mm and 60 mm deep from the surface of the wood to the core, and sensors were installed at the bottom of each depth. These sensors were connected to a moisture content meter and a control device provided in the operation room outside the drying room, so that numerical values and graphs were displayed and automatically recorded so that they could be monitored constantly. The sensor cable is a Teflon (registered trademark) cord with extremely high heat and humidity resistance, and the element wire is an oxygen-free copper-silver plated wire.

その後、木材乾燥室の搬入口の扉を閉めて、乾燥室内を密封し乾燥運転を開始した。
第1の工程(昇温昇湿工程);
先ず、乾燥室内の乾湿温を、いずれも設定温度の98℃まで上昇させた。上昇に要した時間は2時間である。98℃の設定温度に到達後、その状態で6時間保持し、木材の芯部まで設定温度に馴染ませた。
Thereafter, the door of the wood drying chamber was closed, the drying chamber was sealed, and the drying operation was started.
1st process (temperature rising / humidification process);
First, the wet and dry temperature in the drying chamber was raised to the set temperature of 98 ° C. It took 2 hours to climb. After reaching the set temperature of 98 ° C., it was kept in that state for 6 hours, and the wood core was adjusted to the set temperature.

第2の工程(高温加熱工程);
第1の工程後、ヒーターで加熱して乾燥室内の乾球温度を130℃まで昇温させ、15時間保持して高温乾燥処理を行った。その際、乾湿温差がほぼ30℃となるように、湯気発生装置で湯気を発生させて調節し、乾燥室内の湿球温度を99.5〜100℃に保持した。
Second step (high temperature heating step);
After the 1st process, it heated with the heater, the dry-bulb temperature in a drying chamber was heated up to 130 degreeC, and it hold | maintained for 15 hours and performed the high temperature drying process. At that time, steam was generated and adjusted by a steam generator so that the temperature difference between the wet and dry temperatures was approximately 30 ° C., and the wet bulb temperature in the drying chamber was maintained at 99.5 to 100 ° C.

第3の工程(調湿脱水工程);
次いで、加熱、加湿、室内送風ファンを停止し、若しくは室内送風ファンのみを極小風量(微風)にて稼動した。温度降下中、含水率、乾湿温をそれぞれリアルタイムでモニターし、乾湿温差が次第に小さくなるように湯気発生装置で発生させた湯気で調節した。加熱停止後、10時間経過したところで、乾球温度82℃、湿球温度80℃で乾湿温差は2℃となり、木材は平均含水率で60%となっていた。このとき、評価用サンプルを乾燥室内から取り出して切断し、確認したところ、調湿効果により材内の水分傾斜は緩和され、内部応力の減少効果により、内部割れや変形は認められなかった。
3rd process (humidity control dehydration process);
Subsequently, heating, humidification, and the indoor air blowing fan were stopped, or only the indoor air blowing fan was operated with a minimal air volume (slight wind). During the temperature drop, the water content and the wet / dry temperature were monitored in real time, and the temperature was adjusted with the steam generated by the steam generator so that the difference between the wet and dry temperatures gradually decreased. When 10 hours had passed after the heating was stopped, the dry-wet temperature difference was 2 ° C. at a dry bulb temperature of 82 ° C. and a wet bulb temperature of 80 ° C., and the wood had an average moisture content of 60%. At this time, the sample for evaluation was taken out from the drying chamber, cut, and confirmed. As a result, the moisture gradient in the material was alleviated due to the humidity control effect, and no internal cracking or deformation was observed due to the effect of reducing internal stress.

第4の工程(繰返し調湿脱水工程);
再度、2回目の上記第2工程および第3工程を行うことで、木材の平均含水率は40%となった。3回目では平均含水率25%、4回目では平均含水率15%となった。ここでこの第4の工程を終え、次の水分均一化工程に移行した。
4th process (repeated humidity control dehydration process);
By performing the second step and the third step for the second time again, the average moisture content of the wood was 40%. In the third time, the average water content was 25%, and in the fourth time, the average water content was 15%. Here, the fourth step was finished, and the process proceeds to the next water homogenization step.

第5の工程(水分均一化工程);
センサーでモニターしている全ての含水率が15%±3%になるまで、乾球温度を80℃、湿球温度を78℃に維持した。これには約15時間を要した。
これにより、水分傾斜の緩和による応力の除去と、含水率の平均化がなされた乾燥材が得られたこととなる。なお、本工程においても、変色防止のために、湿球温度の維持を湯気で行った。
5th process (moisture equalization process);
The dry bulb temperature was maintained at 80 ° C. and the wet bulb temperature at 78 ° C. until all the water content monitored by the sensor was 15% ± 3%. This took about 15 hours.
As a result, a desiccant is obtained in which the stress is removed by relaxation of the moisture gradient and the moisture content is averaged. In this process, the wet bulb temperature was maintained with steam to prevent discoloration.

第6の工程(自動排湿冷却工程);
含水率が15%±3%になったところで、乾燥室内の加熱、加湿を停止し、室内の循環送風ファン、及び湿度の高い雰囲気を徐々に排出し低湿の外気を導入する給排気ファンをインバータ調整により稼動した。これにより、温度降下中、木材からの水分蒸発による室内結露を防ぎ、室内結露が滴下して木材にしみが発生することを防ぎながら、材温を低下させた。十分に温度が下がった時点で乾燥室から木材を搬出した。
なお、各工程での乾湿温、乾湿温差、工程間の移行のタイミング等は、予め設定されたプログラムに従って、各センサーからのリアルタイムデータに基づいて制御装置により自動的に制御された。
6th process (automatic dehumidification cooling process);
When the moisture content reaches 15% ± 3%, the heating and humidification in the drying chamber is stopped, and the circulation fan in the room and the air supply / exhaust fan that gradually exhausts the high-humidity atmosphere and introduces low-humidity outside air Operated by adjustment. As a result, during the temperature drop, indoor condensation due to moisture evaporation from the wood was prevented, and the material temperature was lowered while preventing indoor condensation from dripping and causing stains on the wood. When the temperature dropped sufficiently, the wood was taken out of the drying room.
In addition, the wet and dry temperature in each process, the dry and wet temperature difference, the timing of transition between processes, etc. were automatically controlled by the control device based on the real-time data from each sensor according to a preset program.

本発明の木材の調湿乾燥方法及びその装置によれば、木材乾燥のみならず、高温蒸気を使用した湿球温度の安定した確実な制御を必要とするあらゆる分野の調湿装置として使用できるので、その産業上の利用価値は大きい。   According to the humidity control drying method and apparatus for wood of the present invention, it can be used not only for drying wood but also as a humidity control apparatus for all fields that require stable and reliable control of wet bulb temperature using high-temperature steam. , Its industrial utility value is great.

本発明の木材の調湿乾燥方法に使用される乾燥装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the drying apparatus used for the humidity control drying method of the wood of this invention.

符号の説明Explanation of symbols

1 乾燥室、
2 木材、
3 台車、
4 加熱ヒータ、
5 スチームパイプ、
6 循環送風ファン、
7 管路、
8 タンク、
9 管体、
10 水槽。
1 Drying room,
2 wood,
3 carts,
4 heaters,
5 Steam pipe,
6 Circulating fan,
7 pipelines,
8 tanks,
9 tube,
10 Aquarium.

Claims (5)

乾燥室内に複数の木材を搬入して加熱乾燥する木材の調湿乾燥方法であって、乾燥室内の乾球温度及び湿球温度を高温の蒸気で100℃近くに上げて木材を加熱し、所定時間保持して木材の芯部まで該温度になじませる第1の工程、乾球温度110〜130℃、湿球温度100℃近傍に加熱して所定時間保持する第2の工程、所定温度まで又は所定時間もしくは木材が所定の含水率になるまで加熱を停止し、温度降下中、材内の水分を調湿して脱水する第3の工程、木材内部の平均含水率又は木材間の平均含水率が所望の含水率になるまで前記第2、第3の工程を繰り返す第4の工程を有することを特徴とする木材の調湿乾燥方法。 A humidity control drying method for wood in which a plurality of pieces of wood are carried into a drying chamber and dried by heating, and the wood is heated by raising the dry bulb temperature and wet bulb temperature in the drying chamber to near 100 ° C. with high-temperature steam. The first step of holding for a period of time and adjusting to the temperature of the wood core, the second step of heating to a dry bulb temperature of 110 to 130 ° C. and a wet bulb temperature of around 100 ° C. and holding it for a predetermined time, up to a predetermined temperature or Heating is stopped for a predetermined time or until the wood has a predetermined moisture content, and the third step of conditioning and dehydrating the moisture in the wood during the temperature drop, the average moisture content inside the wood or the average moisture content between the woods A method for conditioning and drying wood, comprising a fourth step of repeating the second and third steps until the water content becomes a desired moisture content. 前記第4の工程の後に、乾燥室内を乾球温度65〜100℃、湿球温度63〜98℃で所定時間保持し、木材の芯部へ向けての水分傾斜及び木材間の含水率がほぼ均一化されるまで調湿を行う第5の工程を有する請求項1に記載の木材の調湿乾燥方法。 After the fourth step, the drying chamber is kept at a dry bulb temperature of 65 to 100 ° C. and a wet bulb temperature of 63 to 98 ° C. for a predetermined time, and the moisture gradient toward the core of the wood and the moisture content between the woods are almost equal. The method for conditioning and drying wood according to claim 1, further comprising a fifth step of performing humidity conditioning until the material is uniformized. 前記第5の工程の後に、加熱及び加湿を停止し、室内の循環送風ファン及び湿度の高い雰囲気を徐々に排出し低湿の外気を導入する給排気ファンの風量を抑えて稼動し、室内結露の滴下を防止しながら木材の温度を低下させる請求項2に記載の木材の調湿乾燥方法。 After the fifth step, the heating and humidification is stopped, the indoor circulation fan and the high-humidity atmosphere are gradually exhausted, and the air supply / exhaust fan that introduces low-humidity outside air is operated while suppressing the air volume. The method for conditioning and drying wood according to claim 2, wherein the temperature of the wood is lowered while preventing dripping. 第1の工程における加熱手段が高温蒸気又は高温蒸気と加熱ヒータであり、第2以降の工程における加熱手段がヒータ、加湿手段が湯気発生装置で発生させた常圧の湯気である請求項1また請求項2に記載の木材の調湿乾燥方法。 The heating means in the first step is high-temperature steam or high-temperature steam and a heater, the heating means in the second and subsequent steps is a heater, and the humidifying means is steam at normal pressure generated by a steam generator. The method for conditioning and drying wood according to claim 2. 乾燥室内に高温蒸気を供給する手段、加熱ヒータで加熱する手段及びタンク内の水中に高温蒸気を導き常圧の湯気を発生させる湯気発生装置を有し、木材に取付けた材温センサー及び含水率センサーとこれらのセンサーに接続され木材の含水率を表示する含水率測定装置、並びに木材の調湿脱水乾燥を予め設定されたプログラムに従って制御する、制御装置を備えていることを特徴とする木材の調湿乾燥装置。
A means for supplying high-temperature steam into the drying chamber, a means for heating with a heater, and a steam generator for directing high-temperature steam into the water in the tank to generate normal-pressure steam, a material temperature sensor and moisture content attached to wood A moisture content measuring device connected to these sensors and displaying the moisture content of the wood, and a control device for controlling the moisture conditioning and dehydration drying of the wood according to a preset program. Humidity conditioning dryer.
JP2005344128A 2005-11-29 2005-11-29 Method and device for humidity-conditioning/drying wood Pending JP2007144866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005344128A JP2007144866A (en) 2005-11-29 2005-11-29 Method and device for humidity-conditioning/drying wood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005344128A JP2007144866A (en) 2005-11-29 2005-11-29 Method and device for humidity-conditioning/drying wood

Publications (1)

Publication Number Publication Date
JP2007144866A true JP2007144866A (en) 2007-06-14

Family

ID=38206841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344128A Pending JP2007144866A (en) 2005-11-29 2005-11-29 Method and device for humidity-conditioning/drying wood

Country Status (1)

Country Link
JP (1) JP2007144866A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146807A1 (en) 2007-05-31 2008-12-04 Nec Corporation Ontology processing device, ontology processing method, and ontology processing program
JP2009085542A (en) * 2007-10-01 2009-04-23 Senju Oishi Wood drying method
CN101655307A (en) * 2009-09-22 2010-02-24 北京林业大学 Method for drying wood by solar predrying, dehumidifying and conventional multisection combination
JP2010105368A (en) * 2008-10-31 2010-05-13 Kawai Musical Instr Mfg Co Ltd Apparatus for producing soundboard
JP2011117690A (en) * 2009-12-04 2011-06-16 Canon Electronics Inc Fluid heating device and disposal device
CN104515364A (en) * 2013-12-25 2015-04-15 柳州林道轻型木结构制造有限公司 China fir drying method
CN107696213A (en) * 2017-10-26 2018-02-16 浙江国振家具有限公司 A kind of method of timber high temperature drying processing
CN112378170A (en) * 2020-10-27 2021-02-19 北京林业大学 Small-diameter wood solid wood utilization method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002137210A (en) * 2000-11-07 2002-05-14 Yamamoto Vinita Co Ltd Method and apparatus for drying lumber
JP2003080504A (en) * 2000-02-04 2003-03-19 Mokuzai Kanso Teicostka Gijutsu Kenkyu Kumiai Method and apparatus for drying lumber
JP2005047100A (en) * 2003-07-31 2005-02-24 Taiyoo Seisakusho:Kk Wood drying method and wood drying apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080504A (en) * 2000-02-04 2003-03-19 Mokuzai Kanso Teicostka Gijutsu Kenkyu Kumiai Method and apparatus for drying lumber
JP2002137210A (en) * 2000-11-07 2002-05-14 Yamamoto Vinita Co Ltd Method and apparatus for drying lumber
JP2005047100A (en) * 2003-07-31 2005-02-24 Taiyoo Seisakusho:Kk Wood drying method and wood drying apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146807A1 (en) 2007-05-31 2008-12-04 Nec Corporation Ontology processing device, ontology processing method, and ontology processing program
JP2009085542A (en) * 2007-10-01 2009-04-23 Senju Oishi Wood drying method
JP2010105368A (en) * 2008-10-31 2010-05-13 Kawai Musical Instr Mfg Co Ltd Apparatus for producing soundboard
CN101655307A (en) * 2009-09-22 2010-02-24 北京林业大学 Method for drying wood by solar predrying, dehumidifying and conventional multisection combination
JP2011117690A (en) * 2009-12-04 2011-06-16 Canon Electronics Inc Fluid heating device and disposal device
CN104515364A (en) * 2013-12-25 2015-04-15 柳州林道轻型木结构制造有限公司 China fir drying method
CN104515364B (en) * 2013-12-25 2017-02-08 柳州林道轻型木结构制造有限公司 China fir drying method
CN107696213A (en) * 2017-10-26 2018-02-16 浙江国振家具有限公司 A kind of method of timber high temperature drying processing
CN107696213B (en) * 2017-10-26 2019-08-30 浙江国振家具有限公司 A kind of method of timber high temperature drying processing
CN112378170A (en) * 2020-10-27 2021-02-19 北京林业大学 Small-diameter wood solid wood utilization method
CN112378170B (en) * 2020-10-27 2022-06-21 北京林业大学 Small-diameter wood solid wood utilization method

Similar Documents

Publication Publication Date Title
JP2007144866A (en) Method and device for humidity-conditioning/drying wood
CN109405441B (en) Wood drying method
JP2002086407A (en) Method for artificially drying lumber and apparatus for drying lumber
JP5102906B2 (en) Wood drying method
KR101434468B1 (en) Vacuum drying apparatus for domestically produced wood
US4182048A (en) Method of drying lumber
JP2001287206A (en) Method and apparatus for drying lumber
CN104964527B (en) Lumber kiln
CN105773766A (en) Wood drying and thermal modification combined treatment method and device
KR101471471B1 (en) Apparatus for drying and high heat-treating wood
JP2008106959A (en) Wood drying apparatus and wood drying method
CN111438780A (en) Wood superheated steam drying and heat treatment integrated device and use method
CN203203342U (en) Plate drying device
CN108775774A (en) A kind of spun gold nanmu hard wood which has long been buried in earth microwave-convective drying method
CN106871594A (en) A kind of timber active drying equipment
KR20170131902A (en) Apparatus for drying and high heat-treating wood
JP4362325B2 (en) Wood drying method and drying apparatus
CN206056216U (en) A kind of timber wind heat drying unit of heat recovery
JP3912385B2 (en) Wood drying equipment
JP5900793B2 (en) Wood drying method and wood drying apparatus
CN105157355B (en) Double-station type high frequency vacuum dryer and its implementation
RU2255276C2 (en) Method of drying wood
JP2007022077A (en) Lumber-drying method
JPH09133462A (en) Lumber drying method and device
JPH06257946A (en) Method and device for drying timber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110302