JP2007144509A - Method of controlling arc start for two-electrode arc welding - Google Patents

Method of controlling arc start for two-electrode arc welding Download PDF

Info

Publication number
JP2007144509A
JP2007144509A JP2006092865A JP2006092865A JP2007144509A JP 2007144509 A JP2007144509 A JP 2007144509A JP 2006092865 A JP2006092865 A JP 2006092865A JP 2006092865 A JP2006092865 A JP 2006092865A JP 2007144509 A JP2007144509 A JP 2007144509A
Authority
JP
Japan
Prior art keywords
arc
consumable electrode
welding
base material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006092865A
Other languages
Japanese (ja)
Other versions
JP4875393B2 (en
Inventor
Toshio Oonawa
登史男 大縄
Tomoyuki Kamiyama
智之 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2006092865A priority Critical patent/JP4875393B2/en
Publication of JP2007144509A publication Critical patent/JP2007144509A/en
Application granted granted Critical
Publication of JP4875393B2 publication Critical patent/JP4875393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize an arc start being free from spatters without applying high-frequency high voltage discharge in two-electrode arc welding, in which a consumable electrode arc and a non-consumable electrode arc are generated with a consumable electrode 1a and a non-consumable electrode 1b provided in one shielding gas nozzle 5 on the tip of a welding torch. <P>SOLUTION: In a method for controlling the arc start in two-electrode arc welding, the consumable electrode is fed forward to a base material, and when the consumable electrode touches the base material, it is fed backward. When the consumable electrode gets away from the base material, an initial arc with a small current value is generated. While the initial arc is retained, the backward feeding of the consumable electrode is continued during a prescribed period Td so that the arc length is increased. The period Td has passed over, the consumable electrode is again fed forward at a normal feeding speed and arcing is shifted to a normal arc with a large current value. The normal arc makes the space between the non-consumable electrode and the base material full of a plasma atmosphere so as to generate the non-consumable electrode arc. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、消耗電極及び非消耗電極を溶接トーチ先端の1つのシールドガスノズル内に設け、消耗電極アーク及び非消耗電極アークを発生させて溶接する2電極アーク溶接においてアークスタート性を向上させるための2電極アーク溶接のアークスタート制御方法に関するものである。   The present invention provides a consumable electrode and a non-consumable electrode in one shield gas nozzle at the tip of a welding torch to improve arc start performance in two-electrode arc welding in which a consumable electrode arc and a non-consumable electrode arc are generated and welded. The present invention relates to an arc start control method for two-electrode arc welding.

[従来技術1]
図7は、消耗電極及び非消耗電極を溶接トーチ先端の1つのシールドガスノズル内に設け消耗電極アーク及び非消耗電極アークを発生させて行う2電極アーク溶接のための溶接装置の構成図である。溶接トーチの先端に取り付けられた1つのシールドガスノズル5内に、消耗電極(溶接ワイヤ)1a及び非消耗電極(タングステン電極等)1bが互いに絶縁されて設けられている。この消耗電極1aと母材2との間にはミグ溶接等の消耗電極アーク3aが発生し、非消耗電極1bと母材2との間にはティグ溶接等の非消耗電極アーク3bが発生して溶接が行われる。
[Prior art 1]
FIG. 7 is a configuration diagram of a welding apparatus for two-electrode arc welding in which a consumable electrode and a non-consumable electrode are provided in one shield gas nozzle at the tip of the welding torch to generate a consumable electrode arc and a non-consumable electrode arc. A consumable electrode (welding wire) 1a and a non-consumable electrode (tungsten electrode or the like) 1b are insulated from each other in one shield gas nozzle 5 attached to the tip of the welding torch. A consumable electrode arc 3a such as MIG welding is generated between the consumable electrode 1a and the base material 2, and a non-consumable electrode arc 3b such as TIG welding is generated between the non-consumable electrode 1b and the base material 2. Welding is performed.

電圧設定回路VRは、予め定めた電圧設定信号Vrを出力する。消耗電極アーク溶接電源PSMは、この電圧設定信号Vrに基づいて定電圧制御を行い給電チップ4aと母材2との間に消耗電極アーク溶接電圧Vwaを出力し消耗電極アーク溶接電流Iwaが通電すると共に、ワイヤ送給モータMの回転を制御するための送給制御信号Fcを出力する。消耗電極1aは、ワイヤ送給モータMに結合された送給ロール6の回転によって予め定めた送給速度Fwで送給されると共に、上記の給電チップ4aから給電される。上記の消耗電極アーク溶接電圧Vwaは、消耗電極1aがプラス極性EPとなる。   The voltage setting circuit VR outputs a predetermined voltage setting signal Vr. The consumable electrode arc welding power source PSM performs constant voltage control based on the voltage setting signal Vr, outputs the consumable electrode arc welding voltage Vwa between the power feed tip 4a and the base material 2, and the consumable electrode arc welding current Iwa is energized. At the same time, a feed control signal Fc for controlling the rotation of the wire feed motor M is output. The consumable electrode 1a is fed at a predetermined feeding speed Fw by the rotation of the feeding roll 6 coupled to the wire feeding motor M, and is fed from the feeding chip 4a. In the above consumable electrode arc welding voltage Vwa, the consumable electrode 1a has a positive polarity EP.

非消耗電極アーク溶接電源PSTは、コレット4bと母材2との間に非消耗電極アーク溶接電圧Vwbを印加し非消耗電極アーク溶接電流Iwbが通電する。非消耗電極1bは、上記のコレット4bから給電される。上記の非消耗電極アーク溶接電圧Vwbは、非消耗電極1bがマイナス極性ENとなる。   The non-consumable electrode arc welding power source PST applies a non-consumable electrode arc welding voltage Vwb between the collet 4b and the base material 2 and energizes the non-consumable electrode arc welding current Iwb. The non-consumable electrode 1b is supplied with power from the collet 4b. In the non-consumable electrode arc welding voltage Vwb, the non-consumable electrode 1b has a negative polarity EN.

溶接開始回路STは、溶接を開始するときにHighレベルに変化する溶接開始信号Stを出力する。上記の消耗電極アーク溶接電源PSM及び非消耗電極アーク溶接電源PSTは、この溶接開始信号Stを入力として出力を開始する。同図は、2台の溶接電源を使用する場合であるが、1台の溶接電源のみで行うこともできる。この場合は、溶接電源から交流電圧を出力し、交流電圧がプラス出力のときは消耗電極1aに印加し、マイナス出力のときは非消耗電極1bに印加するようにする。(上述した従来技術1については特許文献1〜3を参照)   The welding start circuit ST outputs a welding start signal St that changes to a high level when welding is started. The consumable electrode arc welding power source PSM and the non-consumable electrode arc welding power source PST start outputting with the welding start signal St as an input. Although the figure shows a case where two welding power sources are used, it can also be performed using only one welding power source. In this case, an AC voltage is output from the welding power source, applied to the consumable electrode 1a when the AC voltage is a positive output, and applied to the non-consumable electrode 1b when the AC voltage is a negative output. (See Patent Documents 1 to 3 for the above-described prior art 1)

[従来技術2]
図8は、プラズマアーク溶接用の非消耗電極を中空にして消耗電極を通して消耗電極アーク及び非消耗電極アークを発生させるプラズマミグ溶接を行うための溶接装置の構成図である。一般的なプラズマアーク溶接トーチと同様に、プラズマノズル7内に非消耗電極(タングステン電極)1bが設けられて、母材2との間にプラズマアーク(非消耗電極アーク)3bが発生する。上記のプラズマノズル7の外側にシールドガスノズル5が設けられている。上記の非消耗電極1bは軸方向に中空になっており、消耗電極(溶接ワイヤ)1aが絶縁されてこの中空内を送給されて、母材2との間に消耗電極アーク3aが発生する。
[Prior Art 2]
FIG. 8 is a configuration diagram of a welding apparatus for performing plasma MIG welding in which a non-consumable electrode for plasma arc welding is hollow and a consumable electrode arc and a non-consumable electrode arc are generated through the consumable electrode. Similar to a general plasma arc welding torch, a non-consumable electrode (tungsten electrode) 1 b is provided in the plasma nozzle 7, and a plasma arc (non-consumable electrode arc) 3 b is generated between the base material 2. A shield gas nozzle 5 is provided outside the plasma nozzle 7. The non-consumable electrode 1b is hollow in the axial direction, and a consumable electrode (welding wire) 1a is insulated and fed through the hollow, and a consumable electrode arc 3a is generated between the base material 2 and the non-consumable electrode 1b. .

電圧設定回路VRは、予め定めた電圧設定信号Vrを出力する。消耗電極アーク溶接電源PSMは、この電圧設定信号Vrに基づいて定電圧制御を行い消耗電極1aと母材2との間に消耗電極アーク溶接電圧Vwaを印加し消耗電極アーク溶接電流Iwaが通電すると共に、ワイヤ送給モータMの回転を制御するための送給制御信号Fcを出力する。消耗電極1aは、ワイヤ送給モータMに結合された送給ロール6の回転によって予め定めた送給速度Fwで送給される。上記の消耗電極アーク溶接電圧Vwaは、消耗電極1aがプラス極性EPとなる。   The voltage setting circuit VR outputs a predetermined voltage setting signal Vr. The consumable electrode arc welding power source PSM performs constant voltage control based on the voltage setting signal Vr, applies the consumable electrode arc welding voltage Vwa between the consumable electrode 1a and the base material 2, and the consumable electrode arc welding current Iwa is energized. At the same time, a feed control signal Fc for controlling the rotation of the wire feed motor M is output. The consumable electrode 1a is fed at a predetermined feeding speed Fw by the rotation of the feeding roll 6 coupled to the wire feeding motor M. In the above consumable electrode arc welding voltage Vwa, the consumable electrode 1a has a positive polarity EP.

プラズマアーク(非消耗電極アーク)溶接電源PSPは、コレット4bと母材2との間にプラズマアーク(非消耗電極アーク)溶接電圧Vwbを印加しプラズマアーク(非消耗電極アーク)溶接電流Iwbが通電する。非消耗電極1bは、上記のコレット4bから給電される。上記のプラズマアーク(非消耗電極アーク)溶接電圧Vwbは、非消耗電極1bがマイナス極性ENとなる。   The plasma arc (non-consumable electrode arc) welding power source PSP applies a plasma arc (non-consumable electrode arc) welding voltage Vwb between the collet 4b and the base material 2, and a plasma arc (non-consumable electrode arc) welding current Iwb is energized. To do. The non-consumable electrode 1b is supplied with power from the collet 4b. In the plasma arc (non-consumable electrode arc) welding voltage Vwb, the non-consumable electrode 1b has a negative polarity EN.

溶接開始回路STは、溶接を開始するときにHighレベルに変化する溶接開始信号Stを出力する。上記の消耗電極アーク溶接電源PSM及びプラズマアーク(非消耗電極アーク)溶接電源PSPは、この溶接開始信号Stを入力として出力を開始する。(上述した従来技術2については特許文献4を参照)   The welding start circuit ST outputs a welding start signal St that changes to a high level when welding is started. The consumable electrode arc welding power source PSM and the plasma arc (non-consumable electrode arc) welding power source PSP start output with the welding start signal St as an input. (Refer to Patent Document 4 for the above-described prior art 2)

特開昭63−101082号公報JP 63-101082 A 特開昭57−22877号公報JP 57-22877 A 特開昭56−105870号公報JP-A-56-105870 特開昭63−168283号公報JP 63-168283 A

図9は、上述した従来技術1及び2の2電極アーク溶接におけるアークスタート時のタイミングチャートである。同図(A)は溶接開始信号Stの、同図(B)は消耗電極の送給速度Fwの、同図(C)は消耗電極アーク溶接電圧Vwaの、同図(D)は消耗電極アーク溶接電流Iwaの、同図(E)は非消耗電極アーク溶接電圧Vwbの、同図(F)は非消耗電極アーク溶接電流Iwbの時間変化を示し、同図(G1)〜(G3)はアーク発生部の模式図である。以下、同図を参照して説明する。   FIG. 9 is a timing chart at the time of arc start in the two-electrode arc welding of the prior arts 1 and 2 described above. FIG. 4A shows the welding start signal St, FIG. 4B shows the consumable electrode feed speed Fw, FIG. 3C shows the consumable electrode arc welding voltage Vwa, and FIG. 4D shows the consumable electrode arc. (E) of welding current Iwa shows time change of non-consumable electrode arc welding voltage Vwb, (F) shows time change of non-consumable electrode arc welding current Iwb, and (G1) to (G3) of FIG. It is a schematic diagram of a generation | occurrence | production part. Hereinafter, a description will be given with reference to FIG.

時刻t1において、同図(A)に示すように、溶接開始信号StがHighレベルになると、同図(B)に示すように、消耗電極1aが非常に遅い速度のスローダウン速度で送給されると共に、同図(C)に示すように、無負荷電圧が印加する。同時に、同図(E)に示すように、非消耗電極1bと母材2との間に無負荷電圧が印加すると共に、非消耗電極・母材間にアークを発生させるための高周波放電高電圧(数MHz数kV)が印加される。   At time t1, as shown in FIG. 6A, when the welding start signal St becomes High level, the consumable electrode 1a is fed at a very slow slow-down speed as shown in FIG. At the same time, no-load voltage is applied as shown in FIG. At the same time, as shown in FIG. 5E, a high-frequency discharge high voltage is applied to apply an unloaded voltage between the non-consumable electrode 1b and the base material 2 and to generate an arc between the non-consumable electrode and the base material. (Several MHz several kV) is applied.

時刻t2において、消耗電極1aがスローダウン送給によって母材2と接触すると、同図(C)に示すように、消耗電極アーク溶接電圧Vwaは数Vの短絡電圧値に変化し、同図(D)に示すように、消耗電極アーク溶接電流Iwaが通電する。これに応動して、同図(B)に示すように、送給速度Fwは定常送給速度へと速くなる。時刻t3において、時刻t2〜t3の短絡期間中の通電によるジュール熱によって消耗電極1aが加熱されて折れ曲がり溶断して大量のスパッタ8を飛散しつつアークが発生する。アークが発生すると、同図(C)に示すように、短絡電圧から上記の電圧設定信号Vrの値に定電圧制御されたアーク電圧に上昇する。その後時刻t4において、同図(G2)に示すように、上記の高周波放電高電圧の印加によって非消耗電極アークが発生し、同図(F)に示すように、非消耗電極アーク溶接電流Iwbが通電し、同図(E)に示すように、無負荷電圧からアーク電圧に低下する。この時刻t4の時点では、消耗電極アークのアーク長はまだ短い状態であり、スパッタ8の発生も継続している過渡状態である。時刻t4から少し時間が経過すると、同図(G3)に示すように、消耗電極アークのアーク長も長くなり安定した定常状態となる。   At time t2, when the consumable electrode 1a contacts the base material 2 by slow-down feeding, the consumable electrode arc welding voltage Vwa changes to a short-circuit voltage value of several V as shown in FIG. As shown in D), the consumable electrode arc welding current Iwa is energized. In response to this, the feeding speed Fw increases to the steady feeding speed as shown in FIG. At the time t3, the consumable electrode 1a is heated by the Joule heat generated by energization during the short-circuit period from the time t2 to the time t3, is bent and melted, and an arc is generated while a large amount of spatter 8 is scattered. When the arc is generated, as shown in FIG. 5C, the arc voltage is increased from the short-circuit voltage to the arc voltage controlled at the constant voltage to the value of the voltage setting signal Vr. Thereafter, at time t4, as shown in FIG. 4G2, a non-consumable electrode arc is generated by the application of the high-frequency discharge high voltage, and as shown in FIG. When energized, the voltage drops from the no-load voltage to the arc voltage as shown in FIG. At the time t4, the arc length of the consumable electrode arc is still short, and is a transient state in which the generation of the sputter 8 continues. When a little time elapses from time t4, the arc length of the consumable electrode arc becomes longer and becomes a stable steady state as shown in FIG.

上述した2電極アーク溶接のアークスタートにおいて、下記2つの問題があった。まず第1の問題は、非消耗電極アークを発生させるために高周波放電高電圧を使用していることである。この高周波放電高電圧が印加されると、非常に強い電磁波ノイズが発生する。このために、溶接電源、溶接ロボット、ワーク搬送機器、各種センサ等の電子機器に対して厳重なノイズ対策を施す必要がある。この結果、設備を構築するのに時間がかかり、かつ、コスト高となるという問題があった。この高周波放電高電圧を印加する代わりにパルス状直流高電圧(数kV)を印加する方法もあるが、溶接条件によってはアークスタート性が悪くなるという問題があった.   The arc start of the above-described two-electrode arc welding has the following two problems. The first problem is that a high frequency discharge high voltage is used to generate a non-consumable electrode arc. When this high frequency discharge high voltage is applied, a very strong electromagnetic noise is generated. For this reason, it is necessary to take strict noise countermeasures for electronic devices such as a welding power source, a welding robot, a workpiece transfer device, and various sensors. As a result, there is a problem that it takes time to construct the equipment and the cost is high. There is also a method of applying a pulsed DC high voltage (several kV) instead of applying this high frequency discharge high voltage, but there is a problem that the arc start property is deteriorated depending on welding conditions.

第2の問題は、消耗電極アークの発生時に大量のスパッタが飛散するために溶接品質が悪くなることであった。これは、消耗電極を母材と短絡させて大電流を通電しジュール熱で溶断させてアークスタートさせるために、原理上避けがたい問題であった。さらに、消耗電極アークが非消耗電極アークよりも先に発生すると、上述したスパッタの発生によって非消耗電極が汚染され、非消耗電極のアークスタート性及び溶接品質が悪くなる場合もあった。   The second problem is that welding quality deteriorates because a large amount of spatter is scattered when a consumable electrode arc is generated. This is an unavoidable problem in principle because the consumable electrode is short-circuited with the base material, a large current is applied, and the arc is started by fusing with Joule heat. Furthermore, if the consumable electrode arc is generated before the non-consumable electrode arc, the non-consumable electrode is contaminated by the occurrence of the above-described sputtering, and the arc start property and welding quality of the non-consumable electrode may be deteriorated.

そこで、本発明では、上述した問題を解決することができる2電極アーク溶接のアークスタート制御方法を提供する。   Therefore, the present invention provides an arc start control method for two-electrode arc welding that can solve the above-described problems.

上述した課題を解決するために、第1の発明は、消耗電極及び非消耗電極を溶接トーチ先端の1つのシールドガスノズル内に設け消耗電極アーク及び非消耗電極アークを発生させて溶接する2電極アーク溶接のアークスタート制御方法において、
溶接開始に際し、消耗電極・母材間及び非消耗電極・母材間に電圧を印加し、消耗電極を母材へ前進送給し母材と接触すると母材から後退送給し、この後退送給によって消耗電極が母材から離れると小電流値の初期アークを発生させ、この初期アークを維持しながら前記後退送給を所定期間だけ継続してアーク長を高くし、この所定期間が経過すると消耗電極を定常送給速度で再前進送給すると共に定常電圧設定値に基づいて消耗電極・母材間の溶接電圧を定電圧制御して前記初期アークから大電流値の定常アークに移行させ、この消耗電極アークによって非消耗電極と母材との間の空間にプラズマ雰囲気を充満させて非消耗電極アークを発生させ、消耗電極アーク及び非消耗電極アークをアークスタートさせることを特徴とする2電極アーク溶接のアークスタート制御方法である。
In order to solve the above-mentioned problems, the first invention is a two-electrode arc in which a consumable electrode and a non-consumable electrode are provided in one shield gas nozzle at the tip of a welding torch and a consumable electrode arc and a non-consumable electrode arc are generated and welded. In the welding arc start control method,
When starting welding, a voltage is applied between the consumable electrode and the base material, and between the non-consumable electrode and the base material, the consumable electrode is fed forward to the base material, and when it comes into contact with the base material, it is fed back from the base material. When the consumable electrode is separated from the base material by feeding, an initial arc with a small current value is generated, and while maintaining the initial arc, the backward feeding is continued for a predetermined period to increase the arc length. The consumable electrode is re-advanced at a steady feeding speed and the welding voltage between the consumable electrode and the base metal is controlled at a constant voltage based on the steady voltage setting value to shift from the initial arc to a large current steady arc. Two electrodes characterized in that a plasma atmosphere is filled in a space between the non-consumable electrode and the base material by the consumable electrode arc to generate a non-consumable electrode arc, and the consumable electrode arc and the non-consumable electrode arc are started. Ah It is an arc start control method of welding.

また、第2の発明は、前記再前進送給開始時点から非消耗電極アーク発生時点までの初期期間中は、前記定常送給速度よりも遅い初期送給速度で消耗電極を送給する、ことを特徴とする第1の発明記載の2電極アーク溶接のアークスタート制御方法である。   In a second aspect of the present invention, the consumable electrode is fed at an initial feeding speed that is slower than the steady feeding speed during an initial period from the re-forward feeding start time to the non-consumable electrode arc occurrence time. An arc start control method for two-electrode arc welding according to the first aspect of the invention.

また、第3の発明は、前記非消耗電極は中空構造であり、前記消耗電極はこの中空内を貫通し送給させ、前記消耗電極アークがミグアークであり、前記非消耗電極アークがプラズマアークであり、
前記再前進送給開始時点から前記定常送給速度よりも速い初期送給速度で消耗電極を送給し、非消耗電極アーク発生時点から所定期間経過後は前記定常送給速度で消耗電極を送給する、ことを特徴とする第1の発明記載の2電極アーク溶接のアークスタート制御方法である。
According to a third aspect of the present invention, the non-consumable electrode has a hollow structure, the consumable electrode penetrates through the hollow, the consumable electrode arc is a MIG arc, and the non-consumable electrode arc is a plasma arc. Yes,
The consumable electrode is fed at an initial feeding speed that is faster than the steady feeding speed from the start of re-forward feeding, and the consumable electrode is fed at the steady feeding speed after a predetermined period of time has elapsed since the occurrence of the non-consumable electrode arc. An arc start control method for two-electrode arc welding according to the first aspect of the present invention.

また、第4の発明は、前記非消耗電極は中空構造であり、前記消耗電極はこの中空内を貫通し送給させ、前記消耗電極アークがミグアークであり、前記非消耗電極アークがプラズマアークであり、
前記再前進送給開始時点から前記定常電圧設定値よりも小さな初期電圧設定値に基づいて消耗電極・母材間の溶接電圧を定電圧制御し、非消耗電極アーク発生時点から所定期間経過後は前記定常電圧設定値に基づいて消耗電極・母材間の溶接電圧を定電圧制御する、ことを特徴とする第1の発明記載の2電極アーク溶接のアークスタート制御方法である。
According to a fourth aspect of the present invention, the non-consumable electrode has a hollow structure, the consumable electrode penetrates through the hollow, the consumable electrode arc is a MIG arc, and the non-consumable electrode arc is a plasma arc. Yes,
The welding voltage between the consumable electrode and the base material is controlled at a constant voltage based on an initial voltage setting value smaller than the steady voltage setting value from the re-forward feed start time, and after a predetermined period has elapsed since the non-consumable electrode arc has occurred. The arc start control method for two-electrode arc welding according to the first aspect of the invention, wherein the welding voltage between the consumable electrode and the base material is controlled at a constant voltage based on the steady voltage setting value.

上記第1の発明によれば、消耗電極を一旦母材に接触させてから後退送給によって引き上げて小電流値の初期アークを発させた後に、定常アークへと移行させてアークスタートさせる。このために、初期アーク発生時に溶断を伴わないので、スパッタはほとんど発生しない。さらに、消耗電極アークによってプラズマ雰囲気空間が非消耗電極直下に形成されるために、高周波放電高電圧又はパルス状直流高電圧を印加することなく、通常の無負荷電圧(100V程度)の印加によって非消耗電極アークを発生させることができる。このために、強い電磁波ノイズは発生せず、かつ、溶接条件によってアークスタート性が悪くなることもなく常に良好なアークスタート性を得ることができる。   According to the first aspect of the invention, after the consumable electrode is once brought into contact with the base material and then pulled up by reverse feeding to generate an initial arc of a small current value, the arc is started by shifting to a steady arc. For this reason, since there is no fusing at the time of initial arc generation, sputtering hardly occurs. Furthermore, since the plasma atmosphere space is formed immediately below the non-consumable electrode by the consumable electrode arc, it is not applied by applying a normal no-load voltage (about 100 V) without applying a high-frequency discharge high voltage or a pulsed DC high voltage. A consumable electrode arc can be generated. For this reason, strong electromagnetic wave noise does not occur, and good arc start performance can always be obtained without deterioration of arc start performance due to welding conditions.

上記第2の発明によれば、上述した第1の発明の効果に加えて、消耗電極を再前進送給するときに初期期間を設け、この期間中は送給速度を定常送給速度よりも遅くすることによってアーク長をさらに高くし、非消耗電極と母材との間のプラズマ雰囲気空間を非消耗電極先端近傍まで分布させることができる。このために、非消耗電極アークのアークスタート性をさらに向上させることができる。   According to the second aspect of the invention, in addition to the effect of the first aspect described above, an initial period is provided when the consumable electrode is fed forward again. During this period, the feeding speed is set higher than the steady feeding speed. By slowing down, the arc length can be further increased, and the plasma atmosphere space between the non-consumable electrode and the base material can be distributed to the vicinity of the tip of the non-consumable electrode. For this reason, the arc start property of the non-consumable electrode arc can be further improved.

上記第3の発明によれば、再前進送給開始時点から消耗電極の送給速度を定常送給速度よりも速くすることによって、プラズマアーク発生時の消耗電極の燃え上がりによるバーンバックを防止することができる。さらに、プラズマアーク発生後の所定期間中の送給速度を定常送給速度よりも速くすることで、燃え上がったアーク長を速やかに定常アーク長に収束させることができる。このために、プラズマミグ溶接において、第1の発明の効果に加えて、消耗電極のバーンバックを防止して良好なアークスタート性を得ることができる。   According to the third aspect of the present invention, the burnback due to the burning up of the consumable electrode at the time of the plasma arc is prevented by making the supply speed of the consumable electrode faster than the steady feed speed from the start of re-forward feeding. Can do. Furthermore, the burned arc length can be quickly converged to the steady arc length by making the feeding speed during a predetermined period after the plasma arc generation faster than the steady feeding speed. For this reason, in plasma MIG welding, in addition to the effects of the first invention, burnback of the consumable electrode can be prevented and good arc start performance can be obtained.

上記第4の発明によれば、再前進送給開始時点から消耗電極アークの電圧設定値を定常値よりも小さくすることによって、プラズマアーク発生時の消耗電極の燃え上がりによるバーンバックを防止することができる。さらに、プラズマアーク発生後の所定期間中の電圧設定値を定常値よりも小さくすることで、燃え上がったアーク長を速やかに定常アーク長に収束させることができる。このために、プラズマミグ溶接において、第1の発明の効果に加えて、消耗電極のバーンバックを防止して良好なアークスタート性を得ることができる。   According to the fourth aspect of the present invention, by setting the voltage setting value of the consumable electrode arc to be smaller than the steady-state value from the start of re-forward feeding, it is possible to prevent burnback due to the burning up of the consumable electrode when the plasma arc occurs. it can. Furthermore, the burned arc length can be quickly converged to the steady arc length by making the voltage setting value during the predetermined period after the plasma arc generation smaller than the steady value. For this reason, in plasma MIG welding, in addition to the effects of the first invention, burnback of the consumable electrode can be prevented and good arc start performance can be obtained.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施の形態1]
図1は、本発明の実施の形態1に係る2電極アーク溶接のアークスタート制御方法を示すタイミングチャートである。同図(A)は溶接開始信号Stの、同図(B)は消耗電極の送給速度Fwの、同図(C)は消耗電極アーク溶接電圧Vwaの、同図(D)は消耗電極アーク溶接電流Iwaの、同図(E)は非消耗電極アーク溶接電圧Vwbの、同図(F)は非消耗電極アーク溶接電流Iwbの時間変化を示し、同図(G1)〜(G5)はアーク発生部の模式図である。同図は、図7及び図8で上述した溶接装置における各信号のタイミングチャートである。したがって、本実施の形態の溶接装置の構成は図7と同一であるが、各信号に対するシーケンス制御が異なっている。以下、同図を参照して説明する。
[Embodiment 1]
FIG. 1 is a timing chart showing an arc start control method for two-electrode arc welding according to Embodiment 1 of the present invention. FIG. 4A shows the welding start signal St, FIG. 4B shows the consumable electrode feed speed Fw, FIG. 3C shows the consumable electrode arc welding voltage Vwa, and FIG. 4D shows the consumable electrode arc. (E) of the welding current Iwa is a time change of the non-consumable electrode arc welding voltage Vwb, (F) is a time change of the non-consumable electrode arc welding current Iwb, and FIGS. (G1) to (G5) are arcs. It is a schematic diagram of a generation | occurrence | production part. This figure is a timing chart of each signal in the welding apparatus described above with reference to FIGS. Therefore, although the structure of the welding apparatus of this Embodiment is the same as FIG. 7, the sequence control with respect to each signal differs. Hereinafter, a description will be given with reference to FIG.

(1)時刻t1〜t2の前進送給期間(スローダウン送給期間)
時刻t1において、同図(A)に示すように、溶接開始信号StがHighレベルになると、同図(B)及び(G1)に示すように、消耗電極1aはスローダウン速度で前進送給され、同図(C)に示すように、消耗電極1aと母材2との間に無負荷電圧が印加する。同時に、同図(E)に示すように、非消耗電極1bと母材2との間に高周波放電高電圧を印加することなく通常の無負荷電圧が印加する。
(1) Forward feeding period (slow-down feeding period) at times t1 to t2
At time t1, as shown in FIG. 6A, when the welding start signal St becomes a high level, the consumable electrode 1a is fed forward at a slow-down speed as shown in FIGS. The no-load voltage is applied between the consumable electrode 1a and the base material 2 as shown in FIG. At the same time, a normal no-load voltage is applied between the non-consumable electrode 1b and the base material 2 without applying a high-frequency discharge high voltage, as shown in FIG.

(2)時刻t2〜t3の後退送給短絡期間
時刻t2において、同図(G2)に示すように、消耗電極1aが母材2と接触すると、同図(B)に示すように、ワイヤ送給モータを逆回転させて消耗電極1aを後退送給する。同時に、同図(C)に示すように、消耗電極・母材間は短絡電圧値に低下し、同図(D)に示すように、消耗電極をジュール熱でほとんど加熱しない程度の数十Aの小電流を通電する。
(2) Reverse feed short circuit period from time t2 to t3 When the consumable electrode 1a contacts the base material 2 at time t2, as shown in FIG. (G2), wire feed is performed as shown in FIG. The feed electrode is rotated backward to feed the consumable electrode 1a. At the same time, as shown in FIG. 8C, the consumable electrode and the base material are reduced to a short-circuit voltage value, and as shown in FIG. Apply a small current.

(3)時刻t3〜t4の後退送給アーク期間
時刻t3において、消耗電極1aが後退送給によって母材2から離れると、同図(G3)に示すように、消耗電極・母材間に初期アークが発生する。この初期アークは消耗電極の溶断ではなく後退送給によって発生し、かつ、電流値も小さいので、スパッタはほとんど発生しない。初期アークが発生すると、同図(C)に示すように、短絡電圧からアーク電圧に変化する。この初期アークが発生した状態で予め定めた後退送給アーク期間Tdの間後退送給を継続する。
(3) Reverse feed arc period from time t3 to t4 When the consumable electrode 1a is separated from the base material 2 by reverse feed at time t3, as shown in FIG. An arc is generated. This initial arc is generated not by fusing of the consumable electrode but by backward feeding and the current value is small, so that almost no spatter is generated. When the initial arc occurs, the short-circuit voltage changes to the arc voltage as shown in FIG. In this state where the initial arc is generated, the backward feeding is continued for a predetermined backward feeding arc period Td.

(4)時刻t4〜t5の再前進送給期間
時刻t4において、上記の後退送給アーク期間Tdが経過すると、同図(B)に示すように、消耗電極1aを後退送給から定常送給速度での再前進送給に切り換える。これにより、同図(D)に示すように、定常の溶接電流が通電し、同図(G4)に示すように、消耗電極1aと母材2との間のアークは初期アークから定常アークに移行する。この時刻t4以降、同図(C)に示すように、消耗電極アーク溶接電圧Vwaは上記の電圧設定信号Vrの定常値に定電圧制御される。時刻t4〜t5の期間中は、上記の後退送給によってアーク長が高くなっており、それに加えて大電流値の定常溶接電流が通電しているので、消耗電極1aと母材2との間に大きく広がった定常アークが発生し、このアーク中はプラズマ雰囲気空間となっている。非消耗電極1bは消耗電極1aと隣接しているので、このプラズマ雰囲気空間は非消耗電極1b直下にも広く分布している。
(4) Re-forward feeding period from time t4 to t5 When the backward feeding arc period Td elapses at time t4, the consumable electrode 1a is fed from the backward feeding to the steady feeding as shown in FIG. Switch to re-forward feed at speed. As a result, a steady welding current flows as shown in FIG. 4D, and the arc between the consumable electrode 1a and the base material 2 changes from the initial arc to the steady arc as shown in FIG. 4G4. Transition. After this time t4, as shown in FIG. 5C, the consumable electrode arc welding voltage Vwa is constant-voltage controlled to the steady value of the voltage setting signal Vr. During the period from the time t4 to the time t5, the arc length is increased by the backward feeding described above, and in addition to that, a steady welding current having a large current value is energized, so that there is a gap between the consumable electrode 1a and the base material 2. A steady arc is generated which spreads in the plasma, and a plasma atmosphere space is formed in the arc. Since the non-consumable electrode 1b is adjacent to the consumable electrode 1a, this plasma atmosphere space is also widely distributed just below the non-consumable electrode 1b.

(5)時刻t5以降の定常送給期間
時刻t5において、同図(E)に示すように、非消耗電極・母材間に無負荷電圧が印加され、かつ、非消耗電極1bと母材2との間の空間がプラズマ雰囲気になっているために、同図(G5)に示すように、非消耗電極・母材間に非消耗電極アークが誘発されて発生する。アークが発生すると、同図(E)に示すように、無負荷電圧からアーク電圧に低下し、同図(F)に示すように、非消耗電極アーク溶接電流Iwbが通電する。この時点で、消耗電極アーク及び非消耗電極アークが共に発生している状態になり、良好なアークスタートが完了する。
(5) Steady feeding period after time t5 At time t5, as shown in FIG. 5E, no-load voltage is applied between the non-consumable electrode and the base material, and the non-consumable electrode 1b and the base material 2 are applied. Since the space between and is a plasma atmosphere, a non-consumable electrode arc is induced between the non-consumable electrode and the base material as shown in FIG. When the arc is generated, as shown in FIG. 5E, the no-load voltage is reduced to the arc voltage, and the non-consumable electrode arc welding current Iwb is energized as shown in FIG. At this point, both a consumable electrode arc and a non-consumable electrode arc are generated, and a good arc start is completed.

上記において、非消耗電極アークを高周波放電高電圧又はパルス状直流高電圧を印加することなく発生させることができる。このときに、非消耗電極アークを安定して発生させるためには、上記の後退送給アーク期間Tdが重要である。この期間終了時点での初期アークのアーク長が非消耗電極1bの先端よりも少し高い位置であれば、非消耗電極1bの直下の空間にプラズマ雰囲気空間を形成することができ、良好なアークスタートが実現する。したがって、時刻t4〜t5の期間中の消耗電極アークのアーク長を適正化することが、非消耗電極アークのアークスタート性にとって重要である。   In the above, the non-consumable electrode arc can be generated without applying a high frequency discharge high voltage or a pulsed DC high voltage. At this time, in order to stably generate the non-consumable electrode arc, the reverse feed arc period Td is important. If the arc length of the initial arc at the end of this period is slightly higher than the tip of the non-consumable electrode 1b, a plasma atmosphere space can be formed in the space immediately below the non-consumable electrode 1b, and a good arc start Is realized. Therefore, it is important for the arc start property of the non-consumable electrode arc to optimize the arc length of the consumable electrode arc during the period of time t4 to t5.

上述した実施の形態1によれば、時刻t3において後退送給と小電流の通電によって初期アークを発生させるので、消耗電極アークのアークスタートに伴うスパッタの発生がほとんどない。さらに、時刻t5において、非消耗電極アークが高周波放電高電圧の印加なしにアークスタートするので、強い電磁波ノイズも発生しない。   According to the first embodiment described above, since the initial arc is generated by the backward feeding and the application of a small current at time t3, almost no spatter is generated due to the arc start of the consumable electrode arc. Further, at time t5, the non-consumable electrode arc starts without applying a high-frequency discharge high voltage, so that no strong electromagnetic noise is generated.

図2は、実施の形態1に係る2電極アーク溶接のアークスタート制御方法を図8で上述したプラズマミグ溶接に適用した場合のアーク発生部を示す図である。同図は上述した図1の(G4)及び(G5)に対応している。図1(A)〜(F)のタイミングチャートはプラズマミグ溶接の場合も同様である。   FIG. 2 is a diagram showing an arc generation portion when the arc start control method of the two-electrode arc welding according to the first embodiment is applied to the plasma MIG welding described above with reference to FIG. This figure corresponds to (G4) and (G5) of FIG. 1 described above. The timing charts of FIGS. 1A to 1F are the same in the case of plasma MIG welding.

同図(G4)に示すように、消耗電極1aの後退送給アーク期間Tdが終了し、初期アークから定常アークへと移行する。この定常アークによって、シールドガスノズル5の下端と母材2との間の空間にプラズマ雰囲気が充満する。そして、同図(G5)に示すように、シールドガスノズル5内の非消耗電極と母材との間にプラズマ(非消耗電極)アークが誘発されて発生する。   As shown in FIG. 4G4, the reverse feed arc period Td of the consumable electrode 1a ends, and a transition is made from the initial arc to the steady arc. Due to this steady arc, the plasma atmosphere fills the space between the lower end of the shield gas nozzle 5 and the base material 2. As shown in FIG. 5G5, a plasma (non-consumable electrode) arc is generated between the non-consumable electrode and the base material in the shield gas nozzle 5 and is generated.

[実施の形態2]
図3は、本発明の実施の形態2に係る2電極アーク溶接のアークスタート制御方法を示すタイミングチャートである。同図は上述した図1と対応しており、時刻t4〜t5の初期期間Tiのみ異なっている。以下、この異なる初期期間Tiについて説明する。
[Embodiment 2]
FIG. 3 is a timing chart showing an arc start control method for two-electrode arc welding according to Embodiment 2 of the present invention. This figure corresponds to FIG. 1 described above, and is different only in the initial period Ti from time t4 to t5. Hereinafter, the different initial periods Ti will be described.

時刻t4において、後退送給アーク期間Tdが経過すると、同図(B)に示すように、送給速度Fwは定常送給速度よりも遅い速度に予め定めた初期送給速度での再前進送給に切り換わる。これに応動して、同図(D)に示すように、定常の溶接電流値よちも小さな電流が通電する。時刻t4〜t5の初期期間Ti中は、消耗電極1aは定常送給速度よりも遅い初初期送給速度で前進送給されるので、同図(G4)に示すように、消耗電極アークのアーク長が時刻t4時点よりもさらに高くなる。このために、プラズマ雰囲気空間がさらに広く広がって形成される。この結果、時刻t5において、同図(G5)に示すように、非消耗電極アークが確実に誘発されてアークスタートする。非消耗電極アークが発生すると、同図(E)に示すように、無負荷電圧からアーク電圧に低下し、同図(F)に示すように、非消耗電極アーク溶接電流Iwbが通電する。これに応動して、同図(B)に示すように、送給速度Fwは定常送給速度に変化し、同図(D)に示すように、定常の溶接電流が通電する。   When the reverse feed arc period Td elapses at time t4, as shown in FIG. 5B, the feed speed Fw is set to a speed slower than the steady feed speed, and the re-forward feed at a predetermined initial feed speed is performed. Switch to pay. In response to this, a current smaller than the steady welding current value is applied as shown in FIG. During the initial period Ti from time t4 to t5, the consumable electrode 1a is fed forward at an initial initial feed speed that is slower than the steady feed speed, so as shown in FIG. The length becomes higher than that at time t4. For this reason, the plasma atmosphere space is further widened and formed. As a result, at time t5, as shown in FIG. 5G5, the non-consumable electrode arc is reliably induced to start the arc. When the non-consumable electrode arc is generated, as shown in FIG. 5E, the no-load voltage is reduced to the arc voltage, and the non-consumable electrode arc welding current Iwb is energized as shown in FIG. In response to this, the feed speed Fw changes to a steady feed speed as shown in FIG. 5B, and a steady welding current is applied as shown in FIG.

図4は、実施の形態2に係る2電極アーク溶接のアークスタート制御方法を図8で上述したプラズマミグ溶接に適用した場合のアーク発生部を示す図である。同図は上述した図1の(G4)及び(G5)に対応している。図1(A)〜(F)のタイミングチャートはプラズマミグ溶接の場合も同様である。   FIG. 4 is a diagram showing an arc generation part when the arc start control method of the two-electrode arc welding according to the second embodiment is applied to the plasma MIG welding described above with reference to FIG. This figure corresponds to (G4) and (G5) of FIG. 1 described above. The timing charts of FIGS. 1A to 1F are the same in the case of plasma MIG welding.

同図(G4)に示すように、初期期間Ti中は、アーク長がさらに高くなった消耗電極アークが発生している。この消耗電極アークによって、シールドガスノズル5の下端と母材2との間の空間にプラズマ雰囲気が充満する。そして、同図(G5)に示すように、シールドガスノズル5内の非消耗電極と母材との間にプラズマ(非消耗電極)アークが誘発されて発生する。   As shown in FIG. 4G4, during the initial period Ti, a consumable electrode arc having an even longer arc length occurs. This consumable electrode arc fills the plasma atmosphere in the space between the lower end of the shield gas nozzle 5 and the base material 2. As shown in FIG. 5G5, a plasma (non-consumable electrode) arc is generated between the non-consumable electrode and the base material in the shield gas nozzle 5 and is generated.

[実施の形態3]
図5は、本発明の実施の形態3に係る2電極アーク溶接のアークスタート制御方法を示すタイミングチャートである。同図は、図8で上述したプラズマミグ溶接の場合であり、非消耗電極1bは軸方向に中空構造になっており、その中空内を消耗電極1aが貫通して送給される。同図は上述した図1及び図3と対応しており、同図(B1)に示す電圧設定信号Vrが追加された以外は同じ信号である。また、同図は図1及び図3と時刻t4以降の動作が異なる。以下、この異なる期間について同図を参照して説明する。
[Embodiment 3]
FIG. 5 is a timing chart showing an arc start control method for two-electrode arc welding according to Embodiment 3 of the present invention. This figure shows the case of the plasma MIG welding described above with reference to FIG. 8. The non-consumable electrode 1b has a hollow structure in the axial direction, and the consumable electrode 1a is fed through the hollow. This figure corresponds to FIG. 1 and FIG. 3 described above, and is the same signal except that the voltage setting signal Vr shown in FIG. In addition, this figure differs from FIGS. 1 and 3 in the operation after time t4. Hereinafter, these different periods will be described with reference to FIG.

時刻t3〜t4の後退送給によって、同図(C)に示すように、アーク長は高くなり消耗電極アーク溶接電圧Vwaもアーク長に比例して大きくなる。時刻t4において後退送給アーク期間Tdが経過すると、同図(B)に示すように、定常送給速度よりも速い初期送給速度での再前進送給を開始する。時刻t5までに消耗電極アークによってシールドガスノズル5内の非消耗電極1bと母材2との間の空間にプラズマ雰囲気が充満する。このために、時刻t5において、同図(E)に示すように、100V程度の通常の無負荷電圧によって、同図(G5)に示すように、非消耗電極1b・母材2間にプラズマアーク(非消耗電極アーク)が発生し、同図(F)に示すように、プラズマアーク溶接電流Iwbが通電する。このときに、同図(G5)に示すように、消耗電極1aはプラズマアークによって包まれるために溶融が促進されて、同図(C)に示すように、アーク長が燃え上がり急に高くなる。この燃え上がり量が大きいときは、消耗電極1aがトーチ下端部に溶着するバーンバックと呼ばれる状態が発生し、アークスタート不良となる。このバーンバックは、トーチ高さ、プラズマアーク溶接電流Iwb、消耗電極1aの送給速度等の組み合わせ条件によって発生する。プラズマアーク溶接電流Iwbが大きいときは発生しやすくなる。したがって、溶接条件によってはバーンバックが発生しない場合もある。このために、再前進送給を開始する時刻t4からプラズマアークが発生する時刻t5までの期間の初期送給速度を定常送給速度よりも速くすることで、同図(C)に示すように、アーク長を低くしておき、時刻t5時点での燃え上がりによっても溶着が発生しないようにする。さらに、プラズマアアークが発生した時刻t5から所定期間Td2が経過する時刻t6までの期間は、上記の初期送給速度から定常送給速度に減少させることによって、同図(C)に示すように、燃え上がりを抑制してアーク長を速やかに定常アーク長に収束させる。同図において時刻t5〜t6の期間中の送給速度Fwを減少させずにそのまま維持し、時刻t6において定常送給速度に戻すようにしても良い。時刻t5〜t6の期間は、定常アーク長に収束する時間に相当する。   As shown in FIG. 4C, the arc length is increased and the consumable electrode arc welding voltage Vwa is increased in proportion to the arc length by the backward feeding at the times t3 to t4. When the reverse feed arc period Td elapses at time t4, re-forward feed at an initial feed speed higher than the steady feed speed is started as shown in FIG. The plasma atmosphere fills the space between the non-consumable electrode 1b and the base material 2 in the shield gas nozzle 5 by the consumable electrode arc by time t5. Therefore, at time t5, as shown in FIG. 5E, a normal no-load voltage of about 100 V causes a plasma arc between the non-consumable electrode 1b and the base material 2 as shown in FIG. (Non-consumable electrode arc) is generated, and plasma arc welding current Iwb is applied as shown in FIG. At this time, as shown in FIG. 6G5, the consumable electrode 1a is enveloped by the plasma arc, so that melting is accelerated, and as shown in FIG. 5C, the arc length burns and suddenly increases. When this amount of burn-up is large, a state called burnback occurs in which the consumable electrode 1a is welded to the lower end of the torch, resulting in an arc start failure. This burnback occurs depending on a combination condition such as the torch height, the plasma arc welding current Iwb, and the feed rate of the consumable electrode 1a. It tends to occur when the plasma arc welding current Iwb is large. Therefore, burnback may not occur depending on the welding conditions. For this reason, by making the initial feeding speed in the period from the time t4 at which re-forward feeding starts to the time t5 at which the plasma arc is generated faster than the steady feeding speed, as shown in FIG. The arc length is kept low so that welding does not occur even when the flame burns up at time t5. Further, during the period from the time t5 when the plasma arc is generated to the time t6 when the predetermined period Td2 elapses, the initial feeding speed is decreased to the steady feeding speed as shown in FIG. The arc length is quickly converged to the steady arc length by suppressing the burning. In the figure, the feeding speed Fw during the period from time t5 to t6 may be maintained as it is without being reduced, and may be returned to the steady feeding speed at time t6. The period from time t5 to t6 corresponds to the time for convergence to the steady arc length.

上述した実施の形態3によれば、再前進送給開始時点から消耗電極の送給速度を定常送給速度よりも速くすることによって、プラズマアーク発生時の消耗電極の燃え上がりによるバーンバックを防止することができる。さらに、プラズマアーク発生後の所定期間中の送給速度を定常送給速度よりも速くすることで、燃え上がったアーク長を速やかに定常アーク長に収束させることができる。このために、プラズマミグ溶接において、実施の形態1の効果に加えて、消耗電極のバーンバックを防止して良好なアークスタート性を得ることができる。   According to the third embodiment described above, burnback due to burning of the consumable electrode at the time of plasma arc generation is prevented by increasing the supply speed of the consumable electrode from the starting point of re-advanced feeding to the steady feeding speed. be able to. Furthermore, the burned arc length can be quickly converged to the steady arc length by making the feeding speed during a predetermined period after the plasma arc generation faster than the steady feeding speed. For this reason, in plasma MIG welding, in addition to the effects of the first embodiment, burnback of the consumable electrode can be prevented and good arc start performance can be obtained.

[実施の形態4]
図6は、実施の形態4に係る2電極アーク溶接のアークスタート制御方法を示すタイミングチャートである。同図は上述した図5と対応しており、時刻t4〜t6の期間の動作のみが異なる。以下、この期間について同図を参照して説明する。
[Embodiment 4]
FIG. 6 is a timing chart showing an arc start control method of two-electrode arc welding according to the fourth embodiment. This figure corresponds to FIG. 5 described above, and only the operation during the period from time t4 to t6 is different. Hereinafter, this period will be described with reference to FIG.

時刻t5のプラズマアーク発生時の消耗電極のバーンバックを防止するために、図5では送給速度を速くした。これに対して、同図では、同図(B1)に示すように、電圧設定信号Vrの値を定常値よりも小さくしている。すなわち、同図(B1)に示すように、再前進送給開始時点からプラズマアーク発生時点までの時刻t4〜t5の期間中は、電圧設定信号Vrの値を定常値よりも小さくして、同図(C)に示すように、アーク長を低くする。さらに、プラズマアーク発生時点から所定期間Td2の間は、電圧設定信号Vrの値を小さな初期値から定常値へと増加させる。この電圧設定信号Vrの値に基づいて消耗電極溶接電圧Vwaは定電圧制御され、アーク長が制御される。この結果、電圧設定信号Vrの値によってアーク長を誘導することができる。時刻t5〜t6の電圧設定信号Vrの値は、時刻t4〜t5の値をそのまま維持しても良い。   In order to prevent burn-back of the consumable electrode when the plasma arc is generated at time t5, the feeding speed is increased in FIG. On the other hand, in the same figure, as shown in the figure (B1), the value of the voltage setting signal Vr is made smaller than the steady value. That is, as shown in FIG. 5B1, during the period from time t4 to t5 from the re-forward feed start time to the plasma arc occurrence time, the value of the voltage setting signal Vr is set to be smaller than the steady value. As shown in the figure (C), the arc length is lowered. Further, during the predetermined period Td2 from the time when the plasma arc is generated, the value of the voltage setting signal Vr is increased from a small initial value to a steady value. Based on the value of the voltage setting signal Vr, the consumable electrode welding voltage Vwa is controlled at a constant voltage, and the arc length is controlled. As a result, the arc length can be induced by the value of the voltage setting signal Vr. The value of the voltage setting signal Vr at times t5 to t6 may be maintained as it is at times t4 to t5.

上述した実施の形態4によれば、再前進送給開始時点から消耗電極アークの電圧設定値を定常値よりも小さくすることによって、プラズマアーク発生時の消耗電極の燃え上がりによるバーンバックを防止することができる。さらに、プラズマアーク発生後の所定期間中の電圧設定値を定常値よりも小さくすることで、燃え上がったアーク長を速やかに定常アーク長に収束させることができる。このために、プラズマミグ溶接において、実施の形態1の効果に加えて、消耗電極のバーンバックを防止して良好なアークスタート性を得ることができる。   According to the above-described fourth embodiment, by setting the voltage setting value of the consumable electrode arc to be smaller than the steady-state value from the start of re-forward feeding, the burnback due to the burning up of the consumable electrode when the plasma arc occurs can be prevented. Can do. Furthermore, the burned arc length can be quickly converged to the steady arc length by making the voltage setting value during the predetermined period after the plasma arc generation smaller than the steady value. For this reason, in plasma MIG welding, in addition to the effects of the first embodiment, burnback of the consumable electrode can be prevented and good arc start performance can be obtained.

上記において、電圧設定値の代わりに、同図(F)に示すプラズマアーク溶接電流Iwbを小さくしても良い。   In the above, instead of the voltage setting value, the plasma arc welding current Iwb shown in FIG.

本発明の実施の形態1に係る2電極アーク溶接のアークスタート制御方法を示すタイミングチャートである。It is a timing chart which shows the arc start control method of the two-electrode arc welding which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る2電極アーク溶接のアークスタート制御方法をプラズマミグ溶接に適用したときのアーク発生部の模式図である。It is a schematic diagram of an arc generation part when the arc start control method of the two-electrode arc welding according to Embodiment 1 of the present invention is applied to plasma MIG welding. 本発明の実施の形態2に係る2電極アーク溶接のアークスタート制御方法を示すタイミングチャートである。It is a timing chart which shows the arc start control method of the two-electrode arc welding which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る2電極アーク溶接のアークスタート制御方法をプラズマミグ溶接に適用したときのアーク発生部の模式図である。It is a schematic diagram of an arc generation part when the arc start control method of the two-electrode arc welding which concerns on Embodiment 2 of this invention is applied to plasma MIG welding. 本発明の実施の形態3に係る2電極アーク溶接のアークスタート制御方法を示すタイミングチャートである。It is a timing chart which shows the arc start control method of the two-electrode arc welding which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る2電極アーク溶接のアークスタート制御方法を示すタイミングチャートである。It is a timing chart which shows the arc start control method of the two-electrode arc welding which concerns on Embodiment 4 of this invention. 従来技術1の2電極アーク溶接装置の構成図である。It is a block diagram of the 2 electrode arc welding apparatus of the prior art 1. FIG. 従来技術2のプラズマミグ溶接装置の構成図である。It is a block diagram of the plasma MIG welding apparatus of the prior art 2. 従来技術における2電極アーク溶接のアークスタート制御方法を示すタイミングチャートである。It is a timing chart which shows the arc start control method of the two-electrode arc welding in a prior art.

符号の説明Explanation of symbols

1a 消耗電極
1b 非消耗電極
2 母材
3a 消耗電極アーク
3b 非消耗電極アーク
4a 給電チップ
4b コレット
5 シールドガスノズル
6 送給ロール
7 プラズマノズル
8 スパッタ
Fc 送給制御信号
Fw 送給速度
Iwa 消耗電極アーク溶接電流
Iwb 非消耗電極アーク溶接電流
M ワイヤ送給モータ
PSM 消耗電極アーク溶接電源
PSP プラズマ溶接電源
PST 非消耗電極アーク溶接電源
ST 溶接開始回路
St 溶接開始信号
Td 後退送給アーク期間
Td2 所定期間
Ti 初期期間
Vr 電圧設定信号
Vwa 消耗電極アーク溶接電圧
Vwb 非消耗電極アーク溶接電圧

DESCRIPTION OF SYMBOLS 1a Consumable electrode 1b Non-consumable electrode 2 Base material 3a Consumable electrode arc 3b Non-consumable electrode arc 4a Feed tip 4b Collet 5 Shield gas nozzle 6 Feed roll 7 Plasma nozzle 8 Sputter Fc Feed control signal Fw Feed speed Iwa Consumable electrode arc welding Current Iwb Non-consumable electrode arc welding current M Wire feed motor PSM Consumable electrode arc welding power source PSP Plasma welding power source PST Non-consumable electrode arc welding power source ST Welding start circuit St Welding start signal Td Reverse feed arc period Td2 Predetermined period Ti Initial period Vr Voltage setting signal Vwa Consumable electrode arc welding voltage Vwb Non-consumable electrode arc welding voltage

Claims (4)

消耗電極及び非消耗電極を溶接トーチ先端の1つのシールドガスノズル内に設け消耗電極アーク及び非消耗電極アークを発生させて溶接する2電極アーク溶接のアークスタート制御方法において、
溶接開始に際し、消耗電極・母材間及び非消耗電極・母材間に電圧を印加し、消耗電極を母材へ前進送給し母材と接触すると母材から後退送給し、この後退送給によって消耗電極が母材から離れると小電流値の初期アークを発生させ、この初期アークを維持しながら前記後退送給を所定期間だけ継続してアーク長を高くし、この所定期間が経過すると消耗電極を定常送給速度で再前進送給すると共に定常電圧設定値に基づいて消耗電極・母材間の溶接電圧を定電圧制御して前記初期アークから大電流値の定常アークに移行させ、この消耗電極アークによって非消耗電極と母材との間の空間にプラズマ雰囲気を充満させて非消耗電極アークを発生させ、消耗電極アーク及び非消耗電極アークをアークスタートさせることを特徴とする2電極アーク溶接のアークスタート制御方法。
In an arc start control method of two-electrode arc welding in which a consumable electrode and a non-consumable electrode are provided in one shield gas nozzle at the tip of a welding torch and a consumable electrode arc and a non-consumable electrode arc are generated and welded,
When starting welding, a voltage is applied between the consumable electrode and the base material, and between the non-consumable electrode and the base material, the consumable electrode is fed forward to the base material, and when it comes into contact with the base material, it is fed back from the base material. When the consumable electrode is separated from the base material by feeding, an initial arc with a small current value is generated, and while maintaining the initial arc, the backward feeding is continued for a predetermined period to increase the arc length. The consumable electrode is re-advanced at a steady feeding speed and the welding voltage between the consumable electrode and the base metal is controlled at a constant voltage based on the steady voltage setting value to shift from the initial arc to a large current steady arc. Two electrodes characterized in that a plasma atmosphere is filled in a space between the non-consumable electrode and the base material by the consumable electrode arc to generate a non-consumable electrode arc, and the consumable electrode arc and the non-consumable electrode arc are started. Ah Arc start control method of welding.
前記再前進送給開始時点から非消耗電極アーク発生時点までの初期期間中は、前記定常送給速度よりも遅い初期送給速度で消耗電極を送給する、ことを特徴とする請求項1記載の2電極アーク溶接のアークスタート制御方法。   The consumable electrode is fed at an initial feeding speed that is slower than the steady feeding speed during an initial period from the start of re-forward feeding to the occurrence of a non-consumable electrode arc. The arc start control method of two-electrode arc welding. 前記非消耗電極は中空構造であり、前記消耗電極はこの中空内を貫通し送給させ、前記消耗電極アークがミグアークであり、前記非消耗電極アークがプラズマアークであり、
前記再前進送給開始時点から前記定常送給速度よりも速い初期送給速度で消耗電極を送給し、非消耗電極アーク発生時点から所定期間経過後は前記定常送給速度で消耗電極を送給する、ことを特徴とする請求項1記載の2電極アーク溶接のアークスタート制御方法。
The non-consumable electrode has a hollow structure, the consumable electrode is fed through the hollow, the consumable electrode arc is a MIG arc, and the non-consumable electrode arc is a plasma arc,
The consumable electrode is fed at an initial feeding speed that is faster than the steady feeding speed from the start of re-forward feeding, and the consumable electrode is fed at the steady feeding speed after a predetermined period of time has elapsed since the occurrence of the non-consumable electrode arc. The arc start control method for two-electrode arc welding according to claim 1, wherein:
前記非消耗電極は中空構造であり、前記消耗電極はこの中空内を貫通し送給させ、前記消耗電極アークがミグアークであり、前記非消耗電極アークがプラズマアークであり、
前記再前進送給開始時点から前記定常電圧設定値よりも小さな初期電圧設定値に基づいて消耗電極・母材間の溶接電圧を定電圧制御し、非消耗電極アーク発生時点から所定期間経過後は前記定常電圧設定値に基づいて消耗電極・母材間の溶接電圧を定電圧制御する、ことを特徴とする請求項1記載の2電極アーク溶接のアークスタート制御方法。

The non-consumable electrode has a hollow structure, the consumable electrode is fed through the hollow, the consumable electrode arc is a MIG arc, and the non-consumable electrode arc is a plasma arc,
The welding voltage between the consumable electrode and the base material is controlled at a constant voltage based on an initial voltage setting value smaller than the steady voltage setting value from the re-forward feed start time, and after a predetermined period has elapsed since the non-consumable electrode arc has occurred. 2. The arc start control method for two-electrode arc welding according to claim 1, wherein the welding voltage between the consumable electrode and the base material is controlled at a constant voltage based on the steady voltage setting value.

JP2006092865A 2005-10-27 2006-03-30 Arc start control method for two-electrode arc welding Active JP4875393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092865A JP4875393B2 (en) 2005-10-27 2006-03-30 Arc start control method for two-electrode arc welding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005312339 2005-10-27
JP2005312339 2005-10-27
JP2006092865A JP4875393B2 (en) 2005-10-27 2006-03-30 Arc start control method for two-electrode arc welding

Publications (2)

Publication Number Publication Date
JP2007144509A true JP2007144509A (en) 2007-06-14
JP4875393B2 JP4875393B2 (en) 2012-02-15

Family

ID=38206529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092865A Active JP4875393B2 (en) 2005-10-27 2006-03-30 Arc start control method for two-electrode arc welding

Country Status (1)

Country Link
JP (1) JP4875393B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207855A (en) * 2009-03-10 2010-09-24 Daihen Corp Method of controlling arc start for two-electrode arc welding
KR101478883B1 (en) 2011-12-15 2015-01-02 닛테츠 스미킨 요우세츠 고교 가부시키가이샤 Welding by the use of two electrodes plasma torch
CN107363375A (en) * 2016-11-09 2017-11-21 广东技术师范学院 A kind of high-speed double-wire robot welds multifrequency modulating wave prosecutor method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516636B1 (en) * 2014-12-23 2020-09-15 Fronius Int Gmbh Torch for a welding machine
CN110977097B (en) * 2019-11-14 2021-03-26 北京航空航天大学 Method for improving aluminum alloy arc welding seam blowhole defect

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154137A (en) * 1974-06-05 1975-12-11
JPS5180636A (en) * 1975-01-10 1976-07-14 Hitachi Ltd TANGUSUTENINA ATOGASUYO SETSUHO
JPS56105870A (en) * 1980-01-29 1981-08-22 Matsushita Electric Ind Co Ltd Arc welding equipment
JPS5722877A (en) * 1980-07-14 1982-02-05 Nippon Kokan Kk <Nkk> Method for alternating current gas shielded arc welding
JPS61108475A (en) * 1984-10-29 1986-05-27 Mitsubishi Heavy Ind Ltd Inert gas shield welding method
JPS63168283A (en) * 1986-12-29 1988-07-12 Toshiba Corp Plasma mig welding equipment
JPH07155948A (en) * 1993-12-09 1995-06-20 Daihen Corp Method for controlling arc start of pulse mag welding
JP2005028380A (en) * 2003-07-09 2005-02-03 Daihen Corp Retract arc start control method for consumable electrode arc welding
JP2006021228A (en) * 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd Consumable electrode welding method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154137A (en) * 1974-06-05 1975-12-11
JPS5180636A (en) * 1975-01-10 1976-07-14 Hitachi Ltd TANGUSUTENINA ATOGASUYO SETSUHO
JPS56105870A (en) * 1980-01-29 1981-08-22 Matsushita Electric Ind Co Ltd Arc welding equipment
JPS5722877A (en) * 1980-07-14 1982-02-05 Nippon Kokan Kk <Nkk> Method for alternating current gas shielded arc welding
JPS61108475A (en) * 1984-10-29 1986-05-27 Mitsubishi Heavy Ind Ltd Inert gas shield welding method
JPS63168283A (en) * 1986-12-29 1988-07-12 Toshiba Corp Plasma mig welding equipment
JPH07155948A (en) * 1993-12-09 1995-06-20 Daihen Corp Method for controlling arc start of pulse mag welding
JP2005028380A (en) * 2003-07-09 2005-02-03 Daihen Corp Retract arc start control method for consumable electrode arc welding
JP2006021228A (en) * 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd Consumable electrode welding method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207855A (en) * 2009-03-10 2010-09-24 Daihen Corp Method of controlling arc start for two-electrode arc welding
CN101844263A (en) * 2009-03-10 2010-09-29 株式会社大亨 The striking control method that double-electrode arc welding connects
KR101478883B1 (en) 2011-12-15 2015-01-02 닛테츠 스미킨 요우세츠 고교 가부시키가이샤 Welding by the use of two electrodes plasma torch
CN107363375A (en) * 2016-11-09 2017-11-21 广东技术师范学院 A kind of high-speed double-wire robot welds multifrequency modulating wave prosecutor method
CN107363375B (en) * 2016-11-09 2020-06-02 广东技术师范大学 Multi-frequency modulation wave control method for high-speed double-wire robot welding

Also Published As

Publication number Publication date
JP4875393B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP5005332B2 (en) Arc start control method for consumable electrode arc welding
JP4875393B2 (en) Arc start control method for two-electrode arc welding
JP2009208137A (en) Plasma mig welding method
JP2008229704A (en) Arc start control method for two-electrode arc welding
JP5410121B2 (en) Arc start control method for two-electrode arc welding
JP6524412B2 (en) Arc welding control method
JP2009226443A (en) Arc start control method for two-electrode arc welding
JP2009072809A (en) Method of starting welding in two-wire welding
JP2010155251A (en) Plasma gma welding method
JP2009072802A (en) Method for controlling arc start for double electrode arc welding
JP5545996B2 (en) Constriction detection control method for consumable electrode arc welding
JPH11138265A (en) Dc pulsed mag welding method and its equipment
JP6754935B2 (en) Arc welding control method
JP4915766B2 (en) Laser-arc hybrid welding method
JP2008105095A (en) Output control method for pulsed arc welding
JP2003145266A (en) Method for controlling arc start
JP2017119298A (en) Hot Wire Welding System and Hot Wire Welding Method
JP2007216303A (en) Arc start control method
JP2007196267A (en) Welding method
JP2005288540A (en) Welding power source with function of quickly reducing current when detecting constriction and welding equipment
JP2009166109A (en) Crater treatment method of two-electrode arc welding
JP6600812B2 (en) Arc welding apparatus and arc welding method
CN114682885B (en) Welding method, device, welding equipment and medium for consumable electrode gas shielded welding
JP2018202431A (en) Non-consumable electrode arc welding control method
JP2004276084A (en) Consumable electrode gas shielded arc welding torch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4875393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250