JP2007144298A - Efficient flue gas desulfurization method and apparatus - Google Patents

Efficient flue gas desulfurization method and apparatus Download PDF

Info

Publication number
JP2007144298A
JP2007144298A JP2005341526A JP2005341526A JP2007144298A JP 2007144298 A JP2007144298 A JP 2007144298A JP 2005341526 A JP2005341526 A JP 2005341526A JP 2005341526 A JP2005341526 A JP 2005341526A JP 2007144298 A JP2007144298 A JP 2007144298A
Authority
JP
Japan
Prior art keywords
desulfurization
exhaust gas
activated carbon
chamber
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005341526A
Other languages
Japanese (ja)
Inventor
Bunhatsu Son
文発 孫
Shiyoutetsu Kin
勝哲 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005341526A priority Critical patent/JP2007144298A/en
Publication of JP2007144298A publication Critical patent/JP2007144298A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To resolve problems wherein, in desulfurization of sulfur-containing flue gas generated in combustion of coal, a limestone-gypsum method requires power and a large amount of water for circulation of slurry causing enlargement and complication of the desulfurization facility, while in an adsorption method by activated carbon, a large amount of heat is needed for heating sulfur content adsorbed in activated carbon for decomposition and recovering, also causing enlargement and complication of the facility. <P>SOLUTION: High efficiency of the whole of the desulfurization system, durability, economic performance, easiness in maintenance and management of the desulfurization facility can be obtained, by combining a wet type ammonia absorbing method with a dry type activated carbon and alkaline absorption method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、石炭などの燃焼により生ずる排ガス中の硫黄酸化物(SOx)を除去するための排煙脱硫装置に関するものである。 The present invention relates to a flue gas desulfurization apparatus for removing sulfur oxide (SOx) in exhaust gas generated by combustion of coal or the like.

従来、排ガスの脱硫方法として、石灰石−石膏法が採用されている。他の方法では、乾式法として活性炭による吸着法が知られている。 Conventionally, a limestone-gypsum method has been adopted as a desulfurization method for exhaust gas. As another method, an adsorption method using activated carbon is known as a dry method.

上記の石灰石−石膏法では、石灰石や消石灰の微粉をスラリー液として排ガス中にスプレーし、排ガスの冷却とSOx の吸収を同時に行うため、スラリーの循環に要する動力と多量の水が必要となる。また、副生したスラリー状態の石膏は、水を分離し、石膏を回収する装置が必要になる。したがって、石灰石−石膏法は、脱硫設備の大型化や複雑化が求められる。   In the above limestone-gypsum method, limestone or slaked lime fine powder is sprayed into the exhaust gas as a slurry liquid, and the exhaust gas is cooled and SOx is absorbed at the same time, so that the power required for circulating the slurry and a large amount of water are required. The by-product slurry gypsum requires a device for separating the water and collecting the gypsum. Therefore, the limestone-gypsum method is required to increase the size and complexity of the desulfurization equipment.

一方、乾式法として活性炭による吸着法の場合、活性炭に吸着した硫黄分を加熱して分解、回収するため、大量の熱が必要となり、設備の大型化や複雑化が求められる。   On the other hand, in the case of an adsorption method using activated carbon as a dry method, the sulfur content adsorbed on the activated carbon is heated to be decomposed and recovered, so a large amount of heat is required, and the equipment is required to be large and complicated.

しかしながら、以上の技術によれば、石灰石−石膏法ではスラリーの循環に要する動力と多量の水が必要となり、脱硫設備の大型化や複雑化が避けられない。一方、活性炭による吸着法では、活性炭に吸着した硫黄分を加熱して分解、回収するため、大量の熱が必要となり、また設備の大型化や複雑化が必要となる。
そこで、この発明は、多量の動力、多量の水、大量の熱を必要としない、コンパクト化と簡素化した脱硫設備を提供することを課題とする。
However, according to the above technique, the limestone-gypsum method requires power and a large amount of water required for the circulation of the slurry, and the desulfurization equipment cannot be increased in size and complexity. On the other hand, in the adsorption method using activated carbon, the sulfur component adsorbed on the activated carbon is heated to be decomposed and recovered, so that a large amount of heat is required, and the equipment must be enlarged and complicated.
Therefore, an object of the present invention is to provide a compact and simplified desulfurization facility that does not require a large amount of power, a large amount of water, and a large amount of heat.

以上の課題を解決するために、請求項1の発明は、石炭などの燃焼により生ずる硫黄分を含む排ガスを脱硫塔の下部脱硫室に導入し、排ガス温度が130℃以上の雰囲気の下、蒸発床の熱により気体となったアンモニアとの混合反応により1次脱硫処理し、1次処理された排ガスを上部脱硫室に導入し、排ガス中の残留硫黄分をアルカリ性脱硫ブロックの積層の吸収により2次脱硫処理することを特徴とする。
請求項2の発明は、下部脱硫室において、水とアンモニアの混合液をノズルにより噴霧し、排ガス温度が130℃以上の雰囲気の下、蒸発床の熱により気体化し、硫黄分を含む排ガスと混合反応し、1次脱硫処理を行うことを特徴とする。
請求項3の発明は、上部脱硫室において、活性炭、コンクリート、鉄粉と生石灰、消石灰などで組成されたアルカリ性脱硫ブロックの積層により、下部脱硫室から入ってくる排ガス中の残留硫黄分を吸収することにより2次脱硫処理することを特徴とする。
In order to solve the above-mentioned problems, the invention of claim 1 introduces an exhaust gas containing sulfur produced by combustion of coal or the like into a lower desulfurization chamber of a desulfurization tower, and evaporates under an atmosphere where the exhaust gas temperature is 130 ° C. or higher. Primary desulfurization treatment is performed by mixing reaction with ammonia that has become gas due to the heat of the bed, and the first-treated exhaust gas is introduced into the upper desulfurization chamber, and residual sulfur content in the exhaust gas is absorbed by the lamination of the alkaline desulfurization block. It is characterized by the following desulfurization treatment.
The invention according to claim 2 is that in the lower desulfurization chamber, a mixture of water and ammonia is sprayed with a nozzle, gasified by the heat of the evaporating bed in an atmosphere with an exhaust gas temperature of 130 ° C. or higher, and mixed with the exhaust gas containing sulfur. It reacts and performs a primary desulfurization process.
The invention of claim 3 absorbs residual sulfur in the exhaust gas entering from the lower desulfurization chamber by laminating an alkaline desulfurization block composed of activated carbon, concrete, iron powder and quicklime, slaked lime, etc. in the upper desulfurization chamber. It is characterized by performing a secondary desulfurization process.

第一発明、第二発明、または第三発明によれば、多量の動力、多量の水、大量の熱を必要とせず、しかも高効率でコンパクト化と簡素化した脱硫設備が実現できる。 According to the first invention, the second invention, or the third invention, a desulfurization facility that does not require a large amount of power, a large amount of water, and a large amount of heat and that is highly efficient, compact, and simplified can be realized.

以下本発明の実施形態について説明する。
図1に示すように、本発明は、脱硫塔3、蒸発床4、ノズル5、下部脱硫室6、脱硫ブロック7、脱硫ブロック積層17、上部脱硫室8、水タンク9、ポンプ10、ポンプ11、アンモニアタンク12、混合器13、通気穴16などにより構成される。
Embodiments of the present invention will be described below.
As shown in FIG. 1, the present invention includes a desulfurization tower 3, an evaporating bed 4, a nozzle 5, a lower desulfurization chamber 6, a desulfurization block 7, a desulfurization block stack 17, an upper desulfurization chamber 8, a water tank 9, a pump 10, and a pump 11. , An ammonia tank 12, a mixer 13, a vent hole 16, and the like.

石炭などの燃焼により生ずる硫黄分を含む排ガスは脱硫塔3の下部脱硫室6に入り、通気穴を通じて上昇する。混合器13などにより供給されるアンモニアはノズル5を通じて噴霧し、排ガス温度が130℃以上の雰囲気の下、蒸発床の熱により気体となり、上昇してきた硫黄分を含む排ガスと混合反応する。これは、1次脱硫処理、すなわちアンモニア吸収による脱硫となる。この反応は次のとおりであると考えられる。
2NH+SO+HO→(NHSO
Exhaust gas containing sulfur produced by combustion of coal or the like enters the lower desulfurization chamber 6 of the desulfurization tower 3 and rises through the vent hole. Ammonia supplied by the mixer 13 or the like is sprayed through the nozzle 5 and becomes a gas by the heat of the evaporating bed in an atmosphere where the exhaust gas temperature is 130 ° C. or more, and is mixed with the exhaust gas containing the rising sulfur content. This is a primary desulfurization treatment, that is, desulfurization by ammonia absorption. This reaction is considered as follows.
2NH 3 + SO 2 + H 2 O → (NH 4 ) 2 SO 3

この1次脱硫処理を受けた混合ガスを含む排ガスは共に上昇し、上部脱硫室の活性炭、コンクリート、鉄粉と生石灰、消石灰などのアルカリ性脱硫ブロックの積層に進入し、アンモニア吸収により産生した(NHSOは脱硫ブロックの活性炭部分に吸着される。また、一部未反応のSOはHOと反応し、脱硫ブロックの活性炭に吸着されてHSOになり、NHはHSOと反応して、活性炭表面にNHHSOと(NHSOを生成する。一方、残りの硫黄酸化物は脱硫ブロックのアルカリ性材と中和反応し、アルカリ性材に吸収される。他方、脱硫ブロックに含まれる鉄粉は、SO、HOと酸化反応し、FeSOとFe(SOとなり、酸化膨張して、すでに活性炭に吸着されている(NHSOなどとアルカリ性材に吸収された中和物と共に、脱硫ブロック通気孔壁面から剥がれ落ちる。よって、新しい活性炭、アルカリ性材壁面が再び露出される。これらの吸着、吸収反応、酸化反応によって2次脱硫処理が行われる。アルカリ吸収反応は次のとおりであると考えられる。
SO+HO=HSO=H+HSO
SO+2OH-=SO 2−+HO
2SO 2−+O=2SO 2−
The exhaust gas containing the mixed gas that has undergone this primary desulfurization process rises and enters the stack of alkaline desulfurization blocks such as activated carbon, concrete, iron powder and quicklime and slaked lime in the upper desulfurization chamber, and is produced by ammonia absorption (NH 4 ) 2 SO 3 is adsorbed on the activated carbon part of the desulfurization block. In addition, partially unreacted SO 2 reacts with H 2 O and is adsorbed on activated carbon of the desulfurization block to become H 2 SO 4 , and NH 3 reacts with H 2 SO 4 to form NH 4 HSO on the activated carbon surface. 4 and (NH 3 ) 2 SO 3 are produced. On the other hand, the remaining sulfur oxides are neutralized with the alkaline material of the desulfurization block and absorbed by the alkaline material. On the other hand, the iron powder contained in the desulfurization block undergoes an oxidation reaction with SO 2 and H 2 O to become FeSO 4 and Fe 2 (SO 4 ) 3 , which undergoes oxidative expansion and has already been adsorbed on activated carbon (NH 4 ). 2 SO 3 and the neutralized material absorbed by the alkaline material are peeled off from the wall surface of the desulfurization block vent hole. Thus, new activated carbon and alkaline material wall surfaces are exposed again. The secondary desulfurization treatment is performed by these adsorption, absorption reaction, and oxidation reaction. The alkali absorption reaction is considered as follows.
SO 2 + H 2 O = H 2 SO 3 = H + + HSO 3
SO 2 + 2OH = SO 3 2− + H 2 O
2SO 3 2- + O 2 = 2SO 4 2-

また、脱硫ブロックアルカリ性材の強力な除湿能力により、排ガス中の水蒸気は吸収され、排ガスの含湿率は1.2%となり、排ガスの温度は130℃以上となるため、排ガスを再加熱する必要もなく、吸引ファンなどの設備の結露の恐れもなくなる。 In addition, due to the strong dehumidifying ability of the desulfurized block alkaline material, water vapor in the exhaust gas is absorbed, the moisture content of the exhaust gas becomes 1.2%, and the temperature of the exhaust gas becomes 130 ° C or higher, so it is necessary to reheat the exhaust gas In addition, there is no risk of condensation on equipment such as a suction fan.

脱硫ブロックは、特殊加工により微細孔質構造を持つため、通気孔を通る排ガス中の(NHSO、残留硫黄分や水蒸気を効率よく吸収、吸着できる。ただし、脱硫ブロックは、一定期間が経つと、吸収、吸着が飽和状態になりつつあるためその性能が劣る。従って、脱硫効率を保つため一定期間ごとに新しい脱硫ブロックを交換しなければならない。交換周期は、6ヶ月1回である。 Since the desulfurization block has a fine porous structure by special processing, it can efficiently absorb and adsorb (NH 4 ) 2 SO 3 , residual sulfur and water vapor in the exhaust gas passing through the vent holes. However, the desulfurization block has poor performance after a certain period of time because absorption and adsorption are becoming saturated. Therefore, a new desulfurization block must be replaced at regular intervals to maintain the desulfurization efficiency. The exchange cycle is once every 6 months.

脱硫により産生した硫安などの副製品は、脱硫ブロックを交換する際、系外に搬出し、分離、回収、処分する。 By-products such as ammonium sulfate produced by desulfurization are taken out of the system, separated, recovered and disposed of when the desulfurization block is replaced.

脱硫装置の系統図である。It is a systematic diagram of a desulfurization apparatus. 蒸発床の部分拡大図である。It is the elements on larger scale of an evaporating bed. 脱硫ブロック図である。It is a desulfurization block diagram.

符号の説明Explanation of symbols

1 ボイラ
2 集塵機
3 脱硫塔
4 蒸発床
5 ノズル
6 下部脱硫室
7 脱硫ブロック
8 上部脱硫室
9 水タンク
10 ポンプ
11 ポンプ
12 アンモニアタンク
13 混合器
14 吸引ファン
15 煙突
16 通気穴
17 脱硫ブロック積層
DESCRIPTION OF SYMBOLS 1 Boiler 2 Dust collector 3 Desulfurization tower 4 Evaporation bed 5 Nozzle 6 Lower desulfurization chamber 7 Desulfurization block 8 Upper desulfurization chamber 9 Water tank 10 Pump 11 Pump 12 Ammonia tank 13 Mixer 14 Suction fan 15 Chimney 16 Vent hole 17 Desulfurization block lamination

Claims (3)

石炭などの燃焼により生ずる硫黄分を含む排ガスを脱硫塔の下部脱硫室に導入し、排ガス温度が130℃以上の雰囲気の下、蒸発床の熱により気体となったアンモニアとの混合反応により1次脱硫処理し、1次処理された排ガスを上部脱硫室に導入し、排ガス中の残留硫黄分をアルカリ性脱硫ブロックの積層の吸収により2次脱硫処理することを特徴とする高効率排煙脱硫方法及び装置。 An exhaust gas containing sulfur produced by combustion of coal or the like is introduced into the lower desulfurization chamber of the desulfurization tower, and the primary reaction is performed by a mixed reaction with ammonia that has become a gas due to the heat of the evaporating bed in an atmosphere with an exhaust gas temperature of 130 ° C. A high-efficiency flue gas desulfurization method characterized by introducing desulfurized and primary-treated exhaust gas into the upper desulfurization chamber, and performing secondary desulfurization treatment of residual sulfur content in the exhaust gas by absorbing a stack of alkaline desulfurization blocks; apparatus. 下部脱硫室において、水とアンモニアの混合液をノズルにより噴霧し、排ガス温度が130℃以上の雰囲気の下、蒸発床の熱により気体化し、硫黄分を含む排ガスと混合反応し、1次脱硫処理を行うことを特徴とする、請求項1記載の高効率排煙脱硫方法及び装置。 In the lower desulfurization chamber, a mixture of water and ammonia is sprayed with a nozzle, gasified by the heat of the evaporating bed in an atmosphere with an exhaust gas temperature of 130 ° C. or higher, mixed with the exhaust gas containing sulfur, and subjected to primary desulfurization treatment The high-efficiency flue gas desulfurization method and apparatus according to claim 1, wherein: 上部脱硫室において、活性炭、コンクリート、鉄粉と生石灰、消石灰などで組成されたアルカリ性脱硫ブロックの積層により、下部脱硫室から入ってくる排ガス中の残留硫黄分を吸収することにより2次脱硫処理することを特徴とする、請求項1記載の高効率排煙脱硫方法及び装置。
In the upper desulfurization chamber, secondary desulfurization treatment is performed by absorbing residual sulfur in the exhaust gas entering from the lower desulfurization chamber by laminating alkaline desulfurization blocks composed of activated carbon, concrete, iron powder and quicklime, slaked lime, etc. The high-efficiency flue gas desulfurization method and apparatus according to claim 1.
JP2005341526A 2005-11-28 2005-11-28 Efficient flue gas desulfurization method and apparatus Pending JP2007144298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005341526A JP2007144298A (en) 2005-11-28 2005-11-28 Efficient flue gas desulfurization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341526A JP2007144298A (en) 2005-11-28 2005-11-28 Efficient flue gas desulfurization method and apparatus

Publications (1)

Publication Number Publication Date
JP2007144298A true JP2007144298A (en) 2007-06-14

Family

ID=38206339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341526A Pending JP2007144298A (en) 2005-11-28 2005-11-28 Efficient flue gas desulfurization method and apparatus

Country Status (1)

Country Link
JP (1) JP2007144298A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306321B (en) * 2008-07-15 2011-02-16 李宝林 Coal smoke desulfurization and dust removal device and its use method
CN102908849A (en) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 Treatment method for waste gas discharged from sewage farm
JP2014077234A (en) * 2012-10-09 2014-05-01 Takao Yokoe Device for catching oxides and dust by vehicle width safety pole
CN105597513A (en) * 2016-01-29 2016-05-25 石家庄宇清环保科技有限公司 Flue gas desulfurizing and dust removing device of coal-fired boiler
CN106362573A (en) * 2016-11-30 2017-02-01 唐山绿源环保科技有限公司 Desulfurizer and desulphurising process for mixed gas containing sulfides in diversified forms

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306321B (en) * 2008-07-15 2011-02-16 李宝林 Coal smoke desulfurization and dust removal device and its use method
CN102908849A (en) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 Treatment method for waste gas discharged from sewage farm
JP2014077234A (en) * 2012-10-09 2014-05-01 Takao Yokoe Device for catching oxides and dust by vehicle width safety pole
CN105597513A (en) * 2016-01-29 2016-05-25 石家庄宇清环保科技有限公司 Flue gas desulfurizing and dust removing device of coal-fired boiler
CN106362573A (en) * 2016-11-30 2017-02-01 唐山绿源环保科技有限公司 Desulfurizer and desulphurising process for mixed gas containing sulfides in diversified forms

Similar Documents

Publication Publication Date Title
Cheng et al. Desulfurization and Denitrification Technologies of Coal-fired Flue Gas.
AU2015271405B2 (en) Process and device for desulphurization and denitration of flue gas
RU2378040C2 (en) Thorough purification of gaseous combustion products, including removal of co2
US8877152B2 (en) Oxidation system and method for cleaning waste combustion flue gas
CA2839326C (en) Integrated carbon dioxide removal and ammonia-soda process
US8980207B1 (en) Method and system for removal of mercury from a flue gas
WO2011152551A1 (en) Exhaust gas processing system and method
US7998446B2 (en) Flue gas desulfurization process utilizing hydrogen peroxide
JPWO2005005025A1 (en) Combustion exhaust gas treatment device and treatment method
CN102172470A (en) Method and device for removing sulfur and carbon oxides from power plant flue gas in combination mode
JP2009220021A (en) Wet-type flue gas desulfurization apparatus
JP2007144298A (en) Efficient flue gas desulfurization method and apparatus
EP3257570B1 (en) Integrated desulfurization and carbon dioxide capture system for flue gases
JP5144967B2 (en) Exhaust gas treatment system
JPH0523535A (en) Removal of acidic gas from combustion exhaust gas
JPH078748A (en) Wet process flue gas desulfurization and device using desulfurization method
JP2012213744A (en) Apparatus and method for treating exhaust gas and coal upgrading process facility
KR101644538B1 (en) Method and apparatus for capturing and resourcing carbon dioxide from flue gas containing carbon dioxide
CN102553433B (en) Device and method for removing CO2 in coal-fired flue gas
CN102921292B (en) Method used to improve carbon dioxide trapping performance of papermaking white mud in fire coal fluidized bed boiler system
JP2003236334A (en) Purifying system for flue gas treating liquid
KR20210015999A (en) Exhaust gas purifying agent and exhaust gas purifying method using the same
AU2015263824A1 (en) Integrated de-SOx and de-NOx process
JPH038411A (en) Waste water treatment of wet type desulfurizing device
Zhu Non-calcium desulphurisation technologies