JPH038411A - Waste water treatment of wet type desulfurizing device - Google Patents

Waste water treatment of wet type desulfurizing device

Info

Publication number
JPH038411A
JPH038411A JP1142374A JP14237489A JPH038411A JP H038411 A JPH038411 A JP H038411A JP 1142374 A JP1142374 A JP 1142374A JP 14237489 A JP14237489 A JP 14237489A JP H038411 A JPH038411 A JP H038411A
Authority
JP
Japan
Prior art keywords
wastewater
flue gas
slurry
gas desulfurization
coal ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1142374A
Other languages
Japanese (ja)
Other versions
JP2886180B2 (en
Inventor
Takeo Komuro
小室 武勇
Norio Arashi
紀夫 嵐
Shigeru Nozawa
野沢 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15313893&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH038411(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1142374A priority Critical patent/JP2886180B2/en
Publication of JPH038411A publication Critical patent/JPH038411A/en
Application granted granted Critical
Publication of JP2886180B2 publication Critical patent/JP2886180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Removal Of Specific Substances (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To treat waste water in a closed circuit by thickening the waste water, returning the recovered water to the stack gas desulfurizing device, adding coal ashes to the concd. water and evaporating the water in the resulted slurry, thereby forming the resulted product of hydration reaction of the dissolved components in the waste water and the coal ashes. CONSTITUTION:The waste water 23 from the stack gas desulfurizing device 11 by a wet type limestone gypsum method applied to treatment of waste combustion gases is thickened by a device 20 and the recovered water is returned to the device 11 by a line 24. The coal ashes 15, 16, 18 are added to the concd. water from the line 25 to prepare the slurry; thereafter, the water in the slurry is evaporated by an evaporation dryer 27 to form the hardened matter 28 contg. the resulted product of hydration reaction of the dissolved components (e.g. halogen compd. dithionic acid, etc.) in the waste water and the coal ashes so that the waste water 23 is not discharged to the outside of the device 11. As a result, the materials, such as halogen compd. and dithionic acid, contained in the waste water from the stack gas desulfurizing device using the wet type limestone gypsum method are recovered as insoluble solids which are easy to handle and have no possibility of reelution.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、石炭火力発電所ボイラなどに適用される排煙
脱硫装置から排出される排水の処理法に係り、特に湿式
石灰石−石膏法による排煙脱硫処理装置の無排水化法お
よびその過程で得られる硬化物に関する。
The present invention relates to a method for treating wastewater discharged from flue gas desulfurization equipment applied to boilers of coal-fired power plants, etc., and particularly to a method for making flue gas desulfurization treatment equipment non-drainage using the wet limestone-gypsum method and its process. The present invention relates to the obtained cured product.

【従来の技術】[Conventional technology]

火力発電を対象にした排煙脱硫装置の主流は湿式石灰石
−石膏法であるが、この方式の課題は排水量が多い点に
ある1例えば、100万kwの石炭火力発電系における
湿式石灰石−石膏法脱硫装置の排水量は約44 t /
 h rもあり、排水処理費のコストが高い欠点があっ
た。そのため、最近、湿式石灰石−石膏法による排煙脱
硫装置周りで排水を出さないクローズ化したプラントの
検討が進められてきており、例えば、特開昭50−72
871号公報記載のものでは、脱硫装置から排出する排
水の全量を乾式集塵器に接続される排ガス煙道内に噴霧
し、蒸発乾固させ、得られた固形物を集塵器で捕集し、
排水を系外に出さない無排水化システムの方法が検討さ
れている。 なお、この種の無排水化システムを思考したもので関連
するものとして、特開昭50−72871号、特開昭5
1−124669号、特開昭52−32896号、特開
昭55−97225号、特開昭55−134632号、
特開昭56−155617号、特開昭57−32717
号、特開昭57−136921号、特開昭59−906
L7号、特開昭60−21220号、特開昭60−22
2135号、特開昭60−235625号、特開昭60
−238121号、特開昭61−138518号、特開
昭61−178022号、特開昭61−181519号
、特開昭62−4451号、特開昭62−117616
号、特開昭62−197130号の各公報に記載された
ものなどが挙げられる。
The mainstream of flue gas desulfurization equipment for thermal power generation is the wet limestone-gypsum method, but the problem with this method is that it requires a large amount of wastewater1.For example, the wet limestone-gypsum method in a 1 million kW coal-fired power generation system The amount of water discharged from the desulfurization equipment is approximately 44 tons/
hr, and had the drawback of high wastewater treatment costs. Therefore, recently, studies have been underway to create a closed plant that does not emit waste water around the flue gas desulfurization equipment using the wet limestone-gypsum method.
In the method described in Publication No. 871, the entire amount of wastewater discharged from the desulfurization equipment is sprayed into an exhaust gas flue connected to a dry dust collector, evaporated to dryness, and the resulting solids are collected by the dust collector. ,
A method of creating a drainage-free system that does not discharge wastewater outside the system is being considered. In addition, related publications considering this type of drainage-free system include JP-A-50-72871 and JP-A-5
1-124669, JP-A-52-32896, JP-A-55-97225, JP-A-55-134632,
JP-A-56-155617, JP-A-57-32717
No., JP-A-57-136921, JP-A-59-906
L7, JP-A-60-21220, JP-A-60-22
No. 2135, JP-A-60-235625, JP-A-60
-238121, JP 61-138518, JP 61-178022, JP 61-181519, JP 62-4451, JP 62-117616
Examples include those described in each publication of No. 1971 and Japanese Patent Application Laid-open No. 197130/1983.

【発明が解決するための課題】[Problems to be solved by the invention]

上記した従来技術は、排ガス煙道ラインの乾式集塵器の
直前の部分に排水を噴霧し、蒸発固化して得られた固形
物を集塵器で回収する方法と、石炭灰と排水を混合して
投棄する方法に分類できる。 しかし、前者の方式では、排ガスの導管にスプレーした
排水を蒸発させるには、煙道内において、噴霧排水を所
定時間滞留させる必要が有り、導管が長くなると共に、
集塵器の電極に蒸発乾固した固形物が付着し、集塵器の
集塵効率が低下するので、電極のメンテナンス等が必要
になるなどの不具合が懸念される。しかも、蒸発乾固し
た固形物は、主成分は塩化カルシウムであるため、吸湿
性があり排出作業などのハンドリングにも問題がある。 また、後者の方法では、石炭灰と排水を混合させても、
それを投棄する際、単に物理的に灰分へ排水が吸湿して
いるのみであるため、投棄処理したとき排水中の有害物
質が再溶出する心配がある。 特に、排水中に含まれているジチオン酸などのCOD物
質およびハロゲン化合物が再溶出する懸念があった。一
方、石炭灰と排水を混ぜ、高温状態で焼成処理する方法
も提案されているが、処理プロセスがかなり複雑となり
、処理コストも高くなる欠点がある。 そこで、本発明の目的は比較的簡易な処理法として、湿
式石灰石−石膏法を用いる排煙脱硫装置からの排水中に
含まれるハロゲン化合物、ジチオン酸等の物質をハンド
リングの容易な、再溶出のおそれのない不溶性固形物と
して回収し、あわせて分離した排水を系外に出さない排
水のクローズ化をした湿式石灰石−石膏法による排煙脱
硫装置における排水処理法を提供することである。
The above-mentioned conventional technology involves a method in which wastewater is sprayed into the exhaust gas flue line just before the dry precipitator, and the solid matter obtained by evaporation and solidification is collected in the precipitator, and a method in which coal ash and wastewater are mixed together. It can be classified into two types: However, in the former method, in order to evaporate the wastewater sprayed into the flue gas pipe, it is necessary to allow the sprayed wastewater to remain in the flue for a predetermined period of time, which increases the length of the pipe and
Solid matter that has evaporated to dryness adheres to the electrodes of the precipitator, reducing the dust collection efficiency of the precipitator, which may cause problems such as the need for maintenance of the electrodes. Moreover, since the solid material evaporated to dryness is mainly composed of calcium chloride, it is hygroscopic and has problems in handling such as discharge work. In addition, in the latter method, even if coal ash and wastewater are mixed,
When the wastewater is dumped, the ash content simply physically absorbs moisture, so there is a risk that harmful substances in the wastewater may re-elute when the wastewater is dumped. In particular, there was a concern that COD substances such as dithionic acid and halogen compounds contained in the wastewater may be re-eluted. On the other hand, a method has also been proposed in which coal ash and wastewater are mixed and burned at high temperatures, but this method has the disadvantage of making the treatment process quite complicated and increasing the treatment cost. Therefore, the purpose of the present invention is to provide a relatively simple treatment method for removing substances such as halogen compounds and dithionic acid contained in the waste water from flue gas desulfurization equipment using the wet limestone-gypsum method, which is easy to handle and can be re-eluted. To provide a wastewater treatment method in a flue gas desulfurization device using a wet limestone-gypsum method, which recovers the wastewater as a safe insoluble solid and also closes the wastewater so that the separated wastewater is not discharged outside the system.

【課題を解決するための手段】[Means to solve the problem]

本発明は上記の目的を達成するために、鋭意検討した結
果、湿式石灰石−石膏法を用いた排煙脱硫装置から排出
する排水中のハロゲン、ジチオン酸等と石炭灰との間で
水和反応をおこなわせ、水和反応生成物を乾燥させると
、不溶性の硬化物が得られることを見いだし、本発明を
完成した。すなわち、本発明は上記の目的を達成するた
めに次のような構成を採用した。 燃焼排ガス処理に適用される湿式石灰石−石膏法による
排煙脱硫装置からの排水を濃縮し、回収水分は排煙脱硫
装置に戻し、該濃縮水に石炭灰を添加してスラリ化した
後、該スラリ中の水分を蒸発させて、排水中の溶解成分
と石炭灰との水和反応生成物を含む硬化物を生成させる
ことおよび該硬化物を生成させることにより上記排水を
排煙脱硫装置系外に出さない湿式石灰石−石膏法による
排煙脱硫装置の排水処理法、およびこの排水処理法を発
電システムに適用することである。
In order to achieve the above object, the present invention has been developed as a result of extensive studies, and has been developed through a hydration reaction between coal ash and halogens, dithionic acid, etc. in the waste water discharged from a flue gas desulfurization equipment using the wet limestone-gypsum method. It was discovered that by drying the hydration reaction product, an insoluble cured product could be obtained, and the present invention was completed. That is, the present invention employs the following configuration to achieve the above object. The wastewater from the flue gas desulfurization equipment using the wet limestone-gypsum method applied to flue gas treatment is concentrated, the recovered moisture is returned to the flue gas desulfurization equipment, and after adding coal ash to the concentrated water to form a slurry, The water in the slurry is evaporated to produce a hardened product containing a hydration reaction product between dissolved components in the wastewater and coal ash, and by producing the cured product, the wastewater is removed from the flue gas desulfurization system. The purpose of the present invention is to provide a wastewater treatment method for flue gas desulfurization equipment using the wet limestone-gypsum method, which does not generate wastewater, and to apply this wastewater treatment method to power generation systems.

【作用】[Effect]

発電用ボイラの燃焼排ガスの湿式石灰石−石膏法による
排煙脱硫装置から抜き出される排水中に含まれる代表的
な成分を第1表に示す。 第1表 この排水中にはハロゲン化合物、ジチオン酸等が含まれ
ており、この排水を濃縮した後、石炭灰を入れ混合液の
pHを7以上のスラリーにすると、第2表に示した石炭
灰の成分のうち、主成分である酸化カルシウム、酸化ア
ルミニウムまたは酸化けい素等が溶出する。 第2表 このスラリ中に溶出した酸化カルシウム、酸化アルミニ
ウムまたは酸化けい素等は排水中のハロゲンイオン、ジ
チオン酸イオンと反応し、蒸発乾固処理工程あるいは水
蒸気による加熱処理工程を経て、不溶性の水和硬化物が
得られる。水和硬化物の生成を促進するにはスラリのp
Hを高めることにより、石炭灰中の酸化カルシウム、酸
化アルミニウムまたは酸化けい素等をスラリ中に溶出さ
せることができ、さらに、スラリ中に高濃度でハロゲン
化合物、ジチオン酸等が存在していることが有効である
。 さらに必要に応じて、石灰(消石灰あるいは生石灰)ま
たは石膏等を加えることで、例えば、ハロゲン化合物の
塩素イオンは、石炭灰中のCa0A1203 、S i
 02 、SO+ ’−,Ca (OH) 2CaSO
<等と反応し、次ぎのような種々の複塩形態の水和物を
生成する。 m 、 CaO−^120.−5iOt−n、Ca5O
,−x、、1120s、cao−^120x−nxch
so<−x2.Nz0m3caO−^120.−5iO
z−nrcac+!2−x3.820m、CaO−八1
2oz−n4CaCL−x<、H20水和物中のml 
、 nl 、 Xl + ”’、 m4 、 n4 。 Xl等の値は排水性状、水和反応条件によって異なるが
、このような水和物が生成すると、機械的強度の高い化
学的に安定な硬化物が得られる。 通常、水和反応は緩慢であり、それを促進させるには、
飽和水蒸気によって行われるが、本発明ではハンドリン
グのし易さから蒸発乾固するが、あるいは排ガスに含ま
れる8〜12%の水蒸気との接触により、水和反応を促
進させ、充分な硬化物が得られることが分かった。 なお、石炭灰の主成分であるA1203 。 SiO2,Fe203などに消石灰、石膏を添加し、水
で混練したスラリを蒸発乾固による水和反応あるいは水
蒸気による加熱で水和反応を行い硬化物を生成する方法
については、既にrセメントの材料化学1 (大日本図
書出版)に記述されている。しかし、本発明の水和物は
、湿式排煙脱硫装置から排出される排水中の成分すなわ
ちハロゲン化合物、ジチオン酸等が重要な役割を果し、
水和反応によって得られる水和物である点で、上記刊行
物記載の水和物生成反応とは異なったものである。 このようにして石炭灰と濃縮排水との反応生成物を蒸発
乾燥器等でボイラ下流の排ガスで蒸発乾固するとき、あ
るいはボイラ下流の排ガス煙道中で水蒸気を含む排ガス
と直接接触または間接接触させて加熱処理するときに発
生する水分は蒸発し上記排ガス煙道中の排ガスに同伴し
て湿式石灰石−石膏法の脱硫装置に導入される、また、
上記脱硫装置からの排水を濃縮した際に分離した分離水
は脱硫装置に回収されので、実質的に脱硫装置からは系
外に排水を出さなくすることができ、湿式石灰石−石膏
法の脱硫装置の無排水化が達成できる。 一方、排水中のハロゲン化合物、ジチオン酸等は、水和
反応により硬化物中に安定な複塩として固定されるので
、硬化物は従来性われていた石炭灰と同様な処理ができ
、投棄や埋め立て処理が可能である。また硬化物はブロ
ック化できるので軽量骨材、軟弱地盤改良材、土木用骨
材またはコンクリート材料としても用い得る。 ところで、本発明のボイラ燃焼排ガスの湿式脱硫装置か
らの排水中には、0.8〜2 w t%の塩素イオンが
含まれているが、このような塩素量を前述の水和物(β
−3CaO−A120xCaCNz  ・XH,Oなど
)として固定するためには、第2表に示す石炭灰中のC
aO含有量でも一応は可能ではあるが、用途により硬化
物の機械的硬度を高くする必要がある場合には、別途、
系外から消石灰、生石灰あるいは石膏、その他の硬化促
進剤を添加することが効果的である。このように石灰、
石膏はpH調節作用のほかに硬化物の機械的強度の向上
作用もある。第6図、第7図に排水に消石灰、石膏を添
加する量を変え、得られるそれぞれの硬化物の機械的強
度を調べた結果を示す。 第6図に示すように硬化物に消石灰を添加する量を増や
すと、得られる硬化物の機械的強度は高くなり、消石灰
添加量20wt%位にその最適値がある。また、第7図
に示すように硬化物に石膏を添加する量を壜やすと消石
灰同様に硬化物の機械的強度を高くでき、石膏添加量が
8 w t%前後にその極大値が見られる0石膏源とし
ては石膏の固体そのものを用いても良いが、湿式石灰石
−石膏法を用いる排煙脱硫装置では、脱硫装置の吸収塔
系で循環しているスラリ中には石膏が10%程度含まれ
ているので、直接スラリの一部を抜き出し、これを石膏
源として用い、このスラリに石炭灰を添加することによ
り、機械的強度の高い硬化物が得られる。このように、
吸収塔系の石膏を含むスラリの一部を常時、あるいは間
欠的に抜き出し、これに石炭灰を添加し、排ガスと接触
させることにより、機械的強度の高い硬化物を得ること
ができる効果があると同時に、脱硫装置循環スラリ中の
ハロゲン化合物を所定量以下に維持し、脱硫装置の脱硫
性能を低下させないという効果もある。 なお、硬化物の用途、目的に応じて高強度の硬化物を得
るには、消石灰、石膏添加量を制御することが有効であ
ることが明らかになったが、さらに、消石灰、生石灰1
石膏以外に、セメント、石英、粘土、カオリナイト、硫
酸アルミニウム等からなる濃縮排水と石炭灰の水和反応
を促進する物質のうち一以上の物質を添加すると得られ
る硬化物から不純物が溶出しないで、−段と安定した不
溶出処理ができる。 また、湿式石灰石−石膏法では、副生石膏純度を高める
ために、吸収塔と別途に除塵塔を設置し、排ガスに含ま
れるダストをあらかじめ除去する場合がある。除塵塔を
設置する場合は、除塵塔内の排水には、ハロゲン化合物
、ジチオン酸等が濃縮し液のpHも低下しているので、
それを脱硫装置の後流部の排水に用いる場合には、その
pHを調整することが必要であり、そのためにpH調節
剤として石炭灰単独、もしくは、さらに必要ならアルカ
リ物質を添加するが、一般には安価な消石灰、生石灰な
どを上記排水に添加することが有効となる。また、たと
えpHの低い上記排水に石炭灰を添加して、本発明の処
理をしても、前述の目的とする硬化物が得られる。 湿式石灰石−石膏法による排ガスの脱硫装置では石灰石
スラリと排ガスを接触させると、亜硫酸ガスなどが石灰
石スラリ中に吸収されると同時に該スラリにハロゲン化
合物などが濃縮してくる。 吸収された亜硫酸ガスは酸化されて石膏として回収され
るが、ハロゲン化合物の内、とくに塩素は溶解度が大き
いため、スラリ中に溶けている6本発明者らが行った脱
硫実験の結果によると、第5図に示すように吸収系の脱
硫性能を一定に保持するためにpHを一定にしようとす
ると、吸収塔内の石灰石スラリ中の塩素イオン濃度が高
くなるにつれて供給する石灰石の量を多くしなければな
らない、ところが、吸収系の石灰石スラリ中の塩素イオ
ン濃度が8,000〜20.OOOppmになると石灰
石の溶解速度が低下し、石灰石スラリによる排ガスの脱
硫性能に悪い影響を与える。そのため、湿式石灰石−石
膏法の円滑な運用を図るためには、石灰石スラリ中の塩
素濃度が所定濃度以上に成らないように吸収塔系の石膏
を含むスラリの一部を常時、あるいは間欠的に抜き出し
、吸収塔内のスラリをメイクアップする必要がある。 そこで、上述したように湿式石灰石−石膏法排煙脱硫装
置の吸収塔系で循環しているスラリの一部を抜き出し、
これを濃縮排水と石炭灰との水和反応生成物の硬化促進
のための石膏源として用いることは、吸収塔の石灰石ス
ラリ中の塩素濃度を所定濃度以下に保つ効果もある。 また、脱硫装置の循環石灰石スラリ中に溶解しているハ
ロゲン化合物の濃度が高くても、ギ酸ソーダ、酢酸ソー
ダなどの有機アルカリ金属塩、ギ酸、酢酸、アジピン酸
等のカルボン酸、硫酸ナトリウム、硫酸マグネシウム等
の無機金属塩などのハロゲンイオン緩和剤を脱硫装置内
に添加しておくと、第8図に示すように石灰石のスラリ
中への溶解速度が低下しない、そのため、この場合は脱
硫装置から排出する排水の量を低減させることができ、
石炭灰の使用量を少なくすることが可能となるのみなら
ず、脱硫装置の後流側に設定される無排水化設備の負担
が軽減され、上記緩和剤は硬化物に固定できる。また、
脱硫装置から排出する排水に石炭灰あるいは液層から選
択的にハロゲン化合物を吸収する吸収剤、たとえばイオ
ン交換樹脂を添加して混ぜ合わせ、相分離したのち上澄
み液は吸収塔に戻し、沈澱物を蒸発乾固することによっ
ても硬化物が得られる。
Table 1 shows typical components contained in the waste water extracted from the flue gas desulfurization equipment using the wet limestone-gypsum method for the combustion flue gas of a power generation boiler. Table 1: This wastewater contains halogen compounds, dithionic acid, etc. After concentrating this wastewater, coal ash is added to make a slurry with a pH of 7 or more, and the coal shown in Table 2 is Among the components of the ash, the main components such as calcium oxide, aluminum oxide, and silicon oxide are eluted. Table 2 Calcium oxide, aluminum oxide, silicon oxide, etc. eluted into this slurry react with halogen ions and dithionate ions in the wastewater, and are then evaporated to dryness or heated with steam to form insoluble water. A cured product is obtained. To promote the formation of hydrated hardened products,
By increasing H, calcium oxide, aluminum oxide, silicon oxide, etc. in coal ash can be eluted into the slurry, and furthermore, halogen compounds, dithionic acid, etc. can be present at high concentrations in the slurry. is valid. Furthermore, by adding lime (slaked lime or quicklime) or gypsum as necessary, for example, chlorine ions of halogen compounds can be removed from Ca0A1203, Si
02,SO+'-,Ca(OH)2CaSO
It reacts with < etc. to produce various double salt hydrates as shown below. m, CaO-^120. -5iOt-n, Ca5O
,-x,,1120s,cao-^120x-nxch
so<-x2. Nz0m3caO-^120. -5iO
z-nrcac+! 2-x3.820m, CaO-81
2oz-n4CaCL-x<, ml in H20 hydrate
,nl, Usually, the hydration reaction is slow, so to accelerate it,
This is carried out using saturated steam, but in the present invention it is evaporated to dryness for ease of handling, or the hydration reaction is accelerated by contact with 8 to 12% of steam contained in the exhaust gas, and a sufficient cured product is produced. I found out that I can get it. Note that A1203 is the main component of coal ash. The method of producing a hardened product by adding slaked lime and gypsum to SiO2, Fe203, etc. and kneading it with water and evaporating the slurry to dryness or heating it with water vapor to produce a hardened product has already been reported in the material chemistry of r-cement. 1 (Dainippon Tosho Publishing). However, in the hydrate of the present invention, components in the wastewater discharged from the wet flue gas desulfurization equipment, such as halogen compounds and dithionic acid, play an important role.
This is different from the hydrate-forming reaction described in the above publication in that it is a hydrate obtained by a hydration reaction. In this way, when the reaction product of coal ash and concentrated wastewater is evaporated to dryness in the exhaust gas downstream of the boiler in an evaporator or the like, or it is brought into direct or indirect contact with the exhaust gas containing water vapor in the exhaust gas flue downstream of the boiler. The moisture generated during the heat treatment is evaporated and introduced into the wet limestone-gypsum desulfurization equipment along with the exhaust gas in the exhaust gas flue.
The separated water that is separated when concentrating the waste water from the desulfurization equipment is collected in the desulfurization equipment, so that virtually no waste water is discharged from the desulfurization equipment, and the wet limestone-gypsum desulfurization equipment No wastewater can be achieved. On the other hand, halogen compounds, dithionic acid, etc. in wastewater are fixed as stable double salts in the cured product through hydration reactions, so the cured product can be treated in the same way as conventional coal ash, and can be disposed of without being dumped. Landfill processing is possible. Furthermore, since the cured product can be made into blocks, it can be used as lightweight aggregate, soft ground improvement material, civil engineering aggregate, or concrete material. By the way, the wastewater from the wet desulfurization apparatus for boiler combustion exhaust gas of the present invention contains 0.8 to 2 wt% of chlorine ions, and this amount of chlorine can be reduced by
-3CaO-A120xCaCNz ・XH, O, etc.), the carbon in the coal ash shown in Table 2 must be
Although it is possible to increase the aO content, if it is necessary to increase the mechanical hardness of the cured product depending on the application,
It is effective to add slaked lime, quicklime, gypsum, or other hardening accelerators from outside the system. In this way lime,
In addition to adjusting pH, gypsum also has the effect of improving the mechanical strength of cured products. Figures 6 and 7 show the results of examining the mechanical strength of the cured products obtained by varying the amounts of slaked lime and gypsum added to the wastewater. As shown in FIG. 6, when the amount of slaked lime added to the cured product is increased, the mechanical strength of the resulting cured product increases, and its optimum value is found at around 20 wt% of the amount of slaked lime added. Furthermore, as shown in Figure 7, if the amount of gypsum added to the cured product is increased, the mechanical strength of the cured product can be increased, similar to slaked lime, and its maximum value is seen when the amount of gypsum added is around 8wt%. 0 Although solid gypsum itself may be used as a gypsum source, in flue gas desulfurization equipment that uses the wet limestone-gypsum method, the slurry circulating in the absorption tower system of the desulfurization equipment contains about 10% gypsum. Therefore, by directly extracting a portion of the slurry, using it as a gypsum source, and adding coal ash to this slurry, a cured product with high mechanical strength can be obtained. in this way,
By constantly or intermittently extracting a portion of the slurry containing gypsum from the absorption tower system, adding coal ash to it and bringing it into contact with exhaust gas, it is possible to obtain a hardened product with high mechanical strength. At the same time, it also has the effect of maintaining the halogen compound in the circulating slurry of the desulfurization device at a predetermined amount or less and not reducing the desulfurization performance of the desulfurization device. In addition, it has become clear that controlling the amount of slaked lime and gypsum added is effective in obtaining a high-strength cured product depending on the use and purpose of the cured product.
In addition to gypsum, adding one or more substances that promote the hydration reaction between concentrated wastewater and coal ash, such as cement, quartz, clay, kaolinite, and aluminum sulfate, will prevent impurities from leaching out of the resulting hardened product. A much more stable non-elution treatment can be achieved. Furthermore, in the wet limestone-gypsum method, in order to increase the purity of the by-product gypsum, a dust removal tower may be installed separately from the absorption tower to remove dust contained in the exhaust gas in advance. If a dust removal tower is installed, halogen compounds, dithionic acid, etc. will be concentrated in the waste water inside the dust removal tower, and the pH of the liquid will also be lowered.
When it is used as wastewater downstream of a desulfurization equipment, it is necessary to adjust its pH.For this purpose, coal ash alone or, if necessary, an alkaline substance is added as a pH adjusting agent. It is effective to add inexpensive slaked lime, quicklime, etc. to the wastewater. Further, even if coal ash is added to the waste water having a low pH and the waste water is treated according to the present invention, the above-mentioned desired cured product can be obtained. In an exhaust gas desulfurization device using a wet limestone-gypsum method, when limestone slurry and exhaust gas are brought into contact, sulfur dioxide gas and the like are absorbed into the limestone slurry, and at the same time, halogen compounds and the like are concentrated in the slurry. The absorbed sulfur dioxide gas is oxidized and recovered as gypsum, but among halogen compounds, chlorine has a particularly high solubility, so it is dissolved in the slurry6.According to the results of desulfurization experiments conducted by the present inventors, As shown in Figure 5, when trying to keep the pH constant in order to keep the desulfurization performance of the absorption system constant, the amount of limestone supplied increases as the chlorine ion concentration in the limestone slurry in the absorption tower increases. However, the chlorine ion concentration in the limestone slurry of the absorption system is 8,000 to 20. When it reaches OOOppm, the dissolution rate of limestone decreases, which has a negative effect on the desulfurization performance of exhaust gas by the limestone slurry. Therefore, in order to ensure smooth operation of the wet limestone-gypsum method, it is necessary to constantly or intermittently remove a portion of the slurry containing gypsum in the absorption tower system so that the chlorine concentration in the limestone slurry does not exceed a predetermined concentration. It is necessary to extract it and make up the slurry inside the absorption tower. Therefore, as mentioned above, a part of the slurry circulating in the absorption tower system of the wet limestone-gypsum flue gas desulfurization equipment was extracted.
Using this as a gypsum source for accelerating the hardening of the hydration reaction product of concentrated wastewater and coal ash also has the effect of keeping the chlorine concentration in the limestone slurry in the absorption tower below a predetermined concentration. In addition, even if the concentration of halogen compounds dissolved in the circulating limestone slurry of the desulfurization equipment is high, organic alkali metal salts such as sodium formate and sodium acetate, carboxylic acids such as formic acid, acetic acid, and adipic acid, sodium sulfate, sulfuric acid, etc. If a halogen ion mitigating agent such as an inorganic metal salt such as magnesium is added to the desulfurization equipment, the rate of dissolution of limestone into the slurry will not decrease, as shown in Figure 8. The amount of wastewater discharged can be reduced,
Not only is it possible to reduce the amount of coal ash used, but the burden on the non-drainage equipment installed on the downstream side of the desulfurization equipment is reduced, and the relaxation agent can be fixed in the hardened material. Also,
An absorbent such as an ion exchange resin that selectively absorbs halogen compounds from the coal ash or liquid layer is added to the wastewater discharged from the desulfurization equipment and mixed. After phase separation, the supernatant liquid is returned to the absorption tower and the precipitate is removed. A cured product can also be obtained by evaporation to dryness.

【実施例】【Example】

以下、本発明の実施例を第1図、第2図により説明する
。第1図の実施例は、石炭火力発電システムにおける総
合排煙処理法として、高温集B器3を設置する(低ダス
ト方式)に本発明の排水処理装置を適用したフローシー
トを、第2図は低温$!!m器3を空気予熱器8の後流
側に設置したく高ダスト方式)の実施例を示す。 第1図に示す石炭火力における総合排煙処理システムに
ついて説明する。ボイラ1からの燃焼排ガス2は高温!
塵器3に導かれ石炭灰が捕集され、燃焼排ガスは脱硝装
置6に導入される。アンモニア5が脱硝装置6の前流側
の燃焼排ガスに供給される。脱硝装置6の後流側の燃焼
排ガス7は次ぎに空気予熱器8に導かれ、排ガス温度は
下げられる。空気予熱器8を出た約120℃の燃焼排ガ
スっけガス−ガス熱交換器13に導かれ、熱交換器13
の隣接後流部に配置された脱硫装置11からの出口排ガ
ス12と熱交換される。脱硫装置11からの出口排ガス
12は露点以上に昇温され、煙突から排出される。第2
図に示す総合排煙処理システムも第1図について説明し
たのと同様に作動する。 第1図および第2図に設置した本発明の排水処理装置は
、以下のように作動する。脱硫装置11からの排水23
は濃縮装置20に導かれ、ハロゲン化合物、COD物質
、金属成分等が濃縮される。 排水の濃縮法は、蒸発法、電気的な方法(電気分解、電
気透析)、晶析法あるいは化学的な方法等によって行わ
れ、第1図および第2図には空気予熱器8の出口の排ガ
スの熱源を利用した蒸発法の実施例を示す。スラリ濃縮
後の水分はライン24より脱硫装置に回収され、湿式排
煙脱硫の無排水化が達成される。ハロゲン化合物、CO
D物質、金属成分等が濃縮された排水は次にスラリ混練
機1つに導かれ、電気集塵器3で回収された石炭灰15
.16の一部が供給される。さらに、必要なら消石灰、
石膏等の硬化促進剤がライン17より供給される。スラ
リ26は、次に蒸発乾燥器27に供給され、スラリ26
を蒸発乾固することで、硬化物28を得る。蒸発乾固の
熱源は、脱硫装置の上流側の排ガス9を有効に使用する
ことが効果的である。ただし、スラリより高い温度雰囲
気のものであれば上記排ガスに限定されるものではない
。第1図および第2図に示した実施例では空気予熱器8
の後流側の排ガス9を使用した例を示す。 濃縮装置20に使用した排ガス22および蒸発乾燥器2
7に使用した排ガス2つは、それぞれ脱硫装置11の前
流側の排ガスライン10に戻すことが、排ガスのクロー
ズ化に有効である。それと同時に濃縮装置20および蒸
発乾燥器27から回収された水分を系外へ排出させない
ためにも有効である。 第3図に示す実施例は、第1図、第2図に示した総合排
煙処理システムにおける湿式石灰石−石膏法脱硫装置か
ら排出される排水23の処理方法について、排ガスライ
ンを利用した場合の蒸発法による濃縮法の詳細な説明図
を示す。第3図において、湿式石灰石−石膏法脱硫装置
11から排出される排水23は、第1[Aおよび第2図
に示す集血器3で回収される石炭灰15および別途用意
した石灰(消石灰、あるいは生石灰)または石膏17と
スラリ混練機19で混練されスラリ状になる。 圭炭灰15、石灰17および排水23を適度な粘性のス
ラリにし、そのスラリ26は次に成形器30に送り出す
く第1図、第2図では図示せず、)。 成形物26は、次に蒸発乾燥器27に送り、第1図、第
2図に示した排ガスライン21の排ガスと直接接触させ
、成形物26の蒸発乾固を行う、すなわち、第3図にお
いて、図示するように蒸発乾燥器27内において排ガス
ライン21と交差する方向に移動する無端コンベヤ40
上に成形物26が載置され、コンベア40上を移動中に
燃焼排ガス21により蒸発乾固される過程で水和反応が
進み硬化物28となる。 また、図示してはないが、成形物26をボイラ1と脱硫
装置11との間に設置されるボイラ排ガス煙道中に導き
、排ガスと直接接触または間接接触させ、硬化物を生成
させても良い、なお、このとき排ガス中の水蒸気による
加熱処理により水和反応が促進される。 スラリ中の水分は排ガスに同伴され、ボイラ排ガス煙道
中に回収されここでも排水の無排水化が達成される。 スラリ混練機19を出たスラリはボイラ排ガス等を熱源
とする蒸発乾固の代わりにもちろん、スラリの温度より
高い温度雰囲気であれば、ボイラ排ガス以外の熱源、水
蒸気源であるボイラ蒸気または工場廃熱利用の水蒸気等
を用いて硬化物にすることもできる。 このようにして、得られた硬化物28は、蒸発乾燥器2
7の底部から系外に抜き出される。 第4図には第1図、第2図に示した蒸発乾燥器27から
抜き出される硬化物28についてX線回折により、塩素
化合物が複塩としてどのように取り込まれているかを確
認した結果を示す。第4図から明らかなように排水中の
塩素は添加した石炭灰、消石灰などとの水和反応により
、β−3CaO−Al 20.−CaC12−10H2
0のような水和物として安定に固定される。 また、上記排水中の塩素濃度を1,000.10.00
0.50,000.100,000および200.OO
Oppmとし、該排水スラリを石炭灰と混合し、硬化物
を生成させ、温度120.150.200および350
℃で蒸発乾固する硬化試験を行った。その結果を第3表
(a)(b)に示す。 第3表(a) 第3表(b) 第3表(a)に示すように、排水中の塩素濃度が高くな
る程、固化処理に有効と言える。また、蒸発乾固温度は
100〜150°C前後が効果的と言える。 無排水化処理工程への排水量を低減するには、脱硫装置
11からの排水23中のハロゲン化合物、ジチオン酸等
の濃度を一旦濃縮する工程、すなわち、第1図、第2図
の脱硫装置11からの排水を濃縮する装置20を設ける
ことが効果的となる。 このようにして、得られた排水からの水和生成物の蒸発
乾固後の硬化物について、産業廃棄物を対象とした規準
に準じた溶出試験の結果を第4表および第9図(a)〜
(c)に示ず。 (以下余白) 第4表 硬化物含有成分 (単位 mg/e  ) この結果から、硬化物は安定にハロゲン物質。 ジチオン酸などを固定しており、産業廃棄物に準じた埋
め立ての投棄処理などが可能であることが明らかになっ
た。特に、ジチオン酸、およびハロゲンの中でもフッ素
イオンの固定がしやすいことが分かった。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2. The embodiment shown in Fig. 1 is a flow sheet in which the wastewater treatment device of the present invention is applied to installing a high temperature collector B 3 (low dust method) as a comprehensive flue gas treatment method in a coal-fired power generation system. is low temperature $! ! An example of a high-dust system in which the air preheater 3 is installed on the downstream side of the air preheater 8 is shown below. A comprehensive flue gas treatment system for a coal-fired power plant shown in FIG. 1 will be explained. Combustion exhaust gas 2 from boiler 1 is high temperature!
The coal ash is guided to a duster 3 and collected, and the combustion exhaust gas is introduced to a denitrification device 6. Ammonia 5 is supplied to the combustion exhaust gas upstream of the denitrification device 6. The combustion exhaust gas 7 on the downstream side of the denitrification device 6 is then led to an air preheater 8, and the exhaust gas temperature is lowered. The combustion exhaust gas at about 120°C exiting the air preheater 8 is guided to the gas-gas heat exchanger 13.
Heat is exchanged with the outlet exhaust gas 12 from the desulfurization device 11 arranged in the downstream part adjacent to the exhaust gas. The exhaust gas 12 from the desulfurizer 11 is heated to a temperature higher than the dew point and is discharged from the chimney. Second
The integrated flue gas treatment system shown in the figure also operates in the same manner as described with respect to FIG. The wastewater treatment apparatus of the present invention installed in FIGS. 1 and 2 operates as follows. Drainage water 23 from the desulfurization equipment 11
is led to a concentrator 20, where halogen compounds, COD substances, metal components, etc. are concentrated. Concentration of wastewater is carried out by evaporation, electrical methods (electrolysis, electrodialysis), crystallization, or chemical methods. An example of an evaporation method using a heat source of exhaust gas will be shown. Moisture after slurry concentration is recovered to the desulfurization device through the line 24, achieving drainage-free wet flue gas desulfurization. Halogen compounds, CO
The wastewater in which the D substance, metal components, etc. are concentrated is then led to one slurry mixer, and the coal ash 15 collected by an electrostatic precipitator 3
.. A portion of 16 is supplied. In addition, slaked lime if necessary.
A hardening accelerator such as gypsum is supplied through line 17. The slurry 26 is then fed to an evaporative dryer 27, where the slurry 26
By evaporating to dryness, a cured product 28 is obtained. As the heat source for evaporation to dryness, it is effective to effectively use the exhaust gas 9 on the upstream side of the desulfurization device. However, the exhaust gas is not limited to the above exhaust gas as long as it is in an atmosphere with a temperature higher than that of the slurry. In the embodiment shown in FIGS. 1 and 2, the air preheater 8
An example is shown in which exhaust gas 9 on the downstream side of is used. Exhaust gas 22 and evaporative dryer 2 used in the concentrator 20
It is effective to return the two exhaust gases used in step 7 to the exhaust gas line 10 on the upstream side of the desulfurization device 11 to close the exhaust gases. At the same time, this is also effective in preventing the water collected from the concentrator 20 and the evaporator 27 from being discharged outside the system. The embodiment shown in FIG. 3 is a method for treating waste water 23 discharged from the wet limestone-gypsum desulfurization equipment in the integrated flue gas treatment system shown in FIGS. 1 and 2, using an exhaust gas line. A detailed explanatory diagram of a concentration method using an evaporation method is shown. In FIG. 3, wastewater 23 discharged from the wet limestone-gypsum desulfurization equipment 11 is composed of coal ash 15 collected in the first [A and blood collector 3 shown in FIG. 2] and separately prepared lime (slaked lime, Alternatively, it is kneaded with quicklime (or quicklime) or gypsum 17 in a slurry mixer 19 to form a slurry. The Kei coal ash 15, lime 17, and wastewater 23 are made into a slurry of appropriate viscosity, and the slurry 26 is then sent to a molding machine 30 (not shown in FIGS. 1 and 2). The molded product 26 is then sent to an evaporator dryer 27, where it is brought into direct contact with the exhaust gas from the exhaust gas line 21 shown in FIGS. 1 and 2, and the molded product 26 is evaporated to dryness. , an endless conveyor 40 moving in a direction intersecting the exhaust gas line 21 within the evaporative dryer 27 as shown in the figure.
The molded product 26 is placed thereon, and during the process of being evaporated to dryness by the combustion exhaust gas 21 while moving on the conveyor 40, a hydration reaction progresses and a cured product 28 is formed. Although not shown, the molded product 26 may be introduced into a boiler exhaust gas flue installed between the boiler 1 and the desulfurization device 11, and brought into direct or indirect contact with the exhaust gas to generate a cured product. At this time, the hydration reaction is promoted by the heat treatment using water vapor in the exhaust gas. Moisture in the slurry is entrained in the exhaust gas and collected in the boiler exhaust gas flue, achieving zero drainage here as well. Instead of being evaporated to dryness using boiler exhaust gas as a heat source, the slurry exiting the slurry kneader 19 can be used as a heat source other than boiler exhaust gas, boiler steam as a water vapor source, or factory waste if the temperature is higher than the temperature of the slurry. It can also be made into a cured product using heat-utilizing steam or the like. In this way, the obtained cured product 28 is transferred to the evaporator dryer 2.
It is extracted out of the system from the bottom of 7. FIG. 4 shows the results of X-ray diffraction of the cured product 28 extracted from the evaporator dryer 27 shown in FIGS. 1 and 2 to confirm how chlorine compounds are incorporated as double salts. show. As is clear from Fig. 4, chlorine in the wastewater is converted into β-3CaO-Al 20. due to a hydration reaction with added coal ash, slaked lime, etc. -CaC12-10H2
It is stably fixed as a hydrate such as 0. In addition, the chlorine concentration in the above wastewater was set to 1,000.10.00.
0.50,000.100,000 and 200. OO
Oppm, the wastewater slurry is mixed with coal ash to form a hardened product, and the temperature is 120.150.200 and 350.
A curing test was conducted by evaporating to dryness at ℃. The results are shown in Table 3 (a) and (b). Table 3 (a) Table 3 (b) As shown in Table 3 (a), it can be said that the higher the chlorine concentration in the waste water, the more effective it is for solidification treatment. Further, it can be said that an effective evaporation temperature is around 100 to 150°C. In order to reduce the amount of wastewater to the wastewater-free treatment process, the concentration of halogen compounds, dithionic acid, etc. in the wastewater 23 from the desulfurization equipment 11 is temporarily concentrated, that is, the desulfurization equipment 11 shown in FIGS. 1 and 2. It becomes effective to provide a device 20 for concentrating the waste water from. Table 4 and Figure 9 (a )~
Not shown in (c). (Margins below) Table 4: Components contained in the cured product (unit: mg/e) From these results, the cured product is a stable halogen substance. It has been revealed that it fixes dithionic acid and other substances, and can be disposed of in landfills similar to industrial waste. In particular, dithionic acid and fluorine ions among halogens were found to be easily fixed.

【発明の効果】【Effect of the invention】

本発明によれば、湿式石灰石−石膏法による排ガスの脱
硫装置から排出する排水中のハロゲン化合物およびCO
D物質、金属等が石炭灰で固定され、不溶性の硬化物が
得られ、かつ、脱硫装置の無排水化が達成できる。また
、湿式石灰石−石膏法による排ガスの脱硫装置の吸収塔
内のスラリ中のハロゲン化合物の濃度を所定濃度以下に
保持できるので、スラリ中への石灰石の溶解度が必要以
上に高くなることがなくなり、吸収塔の円滑な運用がで
き、石灰石の使用量の低減ができる。さらに、ハロゲン
物質およびCOD物質、金属等は硬化物に安定な水和物
として固定できるので、産業廃棄物に準じた処理ができ
、石炭灰と同様な埋め立てなど投棄処理が可能となり、
そのほが、軽量骨材、軟弱地盤改良材等にも用い得る。 また、石炭灰のほかに濃縮排水に消石灰、生石灰あるい
は石膏、その他の硬化促進剤を添加すると硬化物の機械
的強度が向上し、より化学的にも安定した硬化物が得ら
れる。 さらに、脱硫装置の循環石灰石スラリ中に溶解している
ハロゲン化合物の濃度が高くても、ハロゲンイオン緩和
剤を脱硫装置内に添加しておくと、石灰石のスラリ中へ
の溶解速度が低下しない。そのため、この場合は脱硫装
置がら排出する排水の量を低減させるとともに、緩和剤
は硬化物に固定でき、無排水化設備の負担が軽減される
。 従来の無排水化処理を行わない工程における排水処理の
ために必要なエネルギー単位を100とすると、本発明
の脱硫装置からの排水の無排水化処理に要するエネルギ
ー単位は約63である。 さらに従来の上記排水を濃縮しないで石炭灰とで固形物
を得る方法のばあいは排水濃度が低いので石炭灰をこれ
に加えてもスラリか得られず、そのため固形物を得るた
めには、排水量に見合った大量の石炭灰が必要であった
が、本発明の方法では排水が濃縮されているので石炭灰
を濃縮排水に添加するだけでスラリか容易に得られ、た
とえば44t/hの排水量にたいして従来の方法では、
固形物を得るためには約43 t/hの石炭灰が必要で
あったが、本発明の方法においては、排水量44t/h
のもの(約7500ppmのハロゲン化合物を含有して
いる。)を例えば、11 t/hに濃縮するとく約30
.OOOppmのハロゲン化合物を含有している。)、
石炭灰の使用量は100〜200g/hに削減できる。
According to the present invention, halogen compounds and CO in the wastewater discharged from the flue gas desulfurization equipment using the wet limestone-gypsum method
Substance D, metals, etc. are fixed with coal ash, an insoluble cured product is obtained, and a desulfurization device can be made drain-free. In addition, the concentration of halogen compounds in the slurry in the absorption tower of the exhaust gas desulfurization equipment using the wet limestone-gypsum method can be maintained below a predetermined concentration, so the solubility of limestone in the slurry does not become higher than necessary. The absorption tower can operate smoothly and the amount of limestone used can be reduced. Furthermore, halogen substances, COD substances, metals, etc. can be fixed as stable hydrates in the hardened material, so they can be treated in the same manner as industrial waste, and can be disposed of in landfills or other forms of disposal in the same way as coal ash.
As such, it can also be used as lightweight aggregate, soft ground improvement material, etc. Furthermore, if slaked lime, quicklime, gypsum, or other hardening accelerator is added to the concentrated wastewater in addition to coal ash, the mechanical strength of the cured product will be improved and a more chemically stable cured product will be obtained. Furthermore, even if the concentration of halogen compounds dissolved in the circulating limestone slurry of the desulfurization device is high, if a halogen ion moderator is added in the desulfurization device, the rate of dissolution of limestone into the slurry will not be reduced. Therefore, in this case, the amount of wastewater discharged from the desulfurization equipment is reduced, and the relaxation agent can be fixed to the cured product, reducing the burden on the wastewater-free equipment. If the energy unit required for wastewater treatment in a conventional process without wastewater treatment is 100, then the energy unit required for the wastewater treatment of wastewater from the desulfurization apparatus of the present invention is about 63. Furthermore, in the case of the conventional method of obtaining solids by combining the wastewater with coal ash without concentrating it, the concentration of the wastewater is so low that even if coal ash is added to it, a slurry cannot be obtained; therefore, in order to obtain solids, A large amount of coal ash was required in proportion to the amount of wastewater, but since the method of the present invention concentrates the wastewater, slurry can be easily obtained by simply adding coal ash to the concentrated wastewater. In contrast, traditional methods
Approximately 43 t/h of coal ash was required to obtain solids, but in the method of the present invention, the wastewater amount was 44 t/h.
(containing about 7,500 ppm of halogen compounds), for example, when concentrating to 11 t/h, about 30
.. Contains OOOppm of halogen compounds. ),
The amount of coal ash used can be reduced to 100-200g/h.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明の脱硫装置の無排水化
システムの一実施例の概略図、第4図は硬化物のX線回
折結果、第5図は湿式石灰石−石膏法の吸収塔内スラリ
中のpHを一定に保持したときの塩素濃度と平衡な石灰
石濃度を、第6.7図は石灰石、石膏添加量と硬化物の
強度をそれぞれ示す、第8図はハロゲンイオン緩和剤を
添加した状聾におけるスラリ中のCaC○、の溶解度と
脱硫率との関係を示す図、第9[21(a)〜(c)は
脱硫IJt水の石炭灰固化処理物濃縮溶出試験の結果を
示す図面である。 ボイラ、3・・集塵器、6・・・脱硝装置、・・空気予
熱器、13・・ガスーガス熱交tfA器、1・・・脱硫
装置、20・・・濃!装置、7・・・消石灰、石膏等、
15.16.18・・石炭灰、9・・・スラリ混練機、
27・蒸発乾燥器3−・・脱硫装置からの排水、28・
・・硬化物第 3 図 第 図 塩素イオン濃度(ppm) 第 6 図 消石灰添加量(it%) 第 図 第 図 石膏添加量 (vt%) 第 図 (1))
Figures 1, 2, and 3 are schematic diagrams of an embodiment of the drainage-free desulfurization system of the present invention, Figure 4 is the X-ray diffraction results of the cured product, and Figure 5 is the wet limestone-gypsum system. Figure 6.7 shows the limestone concentration and equilibrium limestone concentration when the pH in the slurry in the absorption tower is kept constant, Figure 6.7 shows the amount of limestone and gypsum added and the strength of the cured product, and Figure 8 shows the halogen concentration. A diagram showing the relationship between the solubility of CaC○ in the slurry and the desulfurization rate in the case of deafness to which an ion relaxant has been added. It is a drawing showing the results of the test. Boiler, 3... Dust collector, 6... Denitrification device,... Air preheater, 13... Gas-gas heat exchanger tfA device, 1... Desulfurization device, 20... Concentration! Equipment, 7...slaked lime, gypsum, etc.
15.16.18...Coal ash, 9...Slurry kneading machine,
27・Evaporator dryer 3-・Drainage from desulfurization equipment, 28・
...Cured product Fig. 3 Fig. Chlorine ion concentration (ppm) Fig. 6 Addition amount of slaked lime (it%) Fig. Fig. Addition amount of gypsum (vt%) Fig. (1))

Claims (9)

【特許請求の範囲】[Claims] (1)燃焼排ガス処理に適用される湿式石灰石−石膏法
による排煙脱硫装置からの排水を濃縮し、回収水分は排
煙脱硫装置に戻し、該濃縮水に石炭灰を添加してスラリ
化した後、該スラリ中の水分を蒸発させて、排水中の溶
解成分と石炭灰との水和反応生成物を含む硬化物を生成
させることにより上記排水を排煙脱硫装置系外に出さな
いことを特徴とする湿式石灰石−石膏法による排煙脱硫
装置の排水処理法。
(1) Drainage from the flue gas desulfurization equipment using the wet limestone-gypsum method applied to combustion exhaust gas treatment was concentrated, the recovered water was returned to the flue gas desulfurization equipment, and coal ash was added to the concentrated water to form a slurry. After that, water in the slurry is evaporated to produce a hardened product containing a hydration reaction product between dissolved components in the wastewater and coal ash, thereby preventing the wastewater from exiting the flue gas desulfurization system. A wastewater treatment method for flue gas desulfurization equipment using the wet limestone-gypsum method.
(2)排煙脱硫装置から排出する濃縮排水に石炭灰に加
えてさらに、該排水中の溶解成分と石炭灰との水和反応
を促進させる水和反応促進剤を添加することを特徴とす
る請求項1記載の排煙脱硫装置の排水処理法。
(2) In addition to coal ash, a hydration reaction promoter is added to the concentrated wastewater discharged from the flue gas desulfurization equipment to promote the hydration reaction between dissolved components in the wastewater and coal ash. A wastewater treatment method for a flue gas desulfurization device according to claim 1.
(3)排煙脱硫装置の吸収塔循環スラリの一部を抜き出
した該スラリを水和反応促進剤として使用することを特
徴とする請求項2記載の排煙脱硫装置の排水処理法。
(3) The wastewater treatment method for a flue gas desulfurization device according to claim 2, wherein a portion of the slurry circulated in the absorption tower of the flue gas desulfurization device is extracted and used as a hydration reaction accelerator.
(4)排煙脱硫装置の吸収塔循環スラリにハロゲンイオ
ン緩和剤を添加することを特徴とする請求項1ないし3
記載の排煙脱硫装置の排水処理法。
(4) Claims 1 to 3, characterized in that a halogen ion mitigating agent is added to the absorption tower circulation slurry of the flue gas desulfurization equipment.
Wastewater treatment method for flue gas desulfurization equipment described.
(5)燃焼排ガスに適用される湿式石灰石−石膏法によ
る排煙脱硫装置から排出する濃縮排水と石炭灰との混合
物からなるスラリ中の水分を蒸発させて得られる、該排
水中の溶解成分と石炭灰との水和反応生成物を含む硬化
物。
(5) Dissolved components in the wastewater obtained by evaporating the water in the slurry consisting of a mixture of concentrated wastewater and coal ash discharged from a flue gas desulfurization equipment using the wet limestone-gypsum method applied to combustion flue gas. A hardened product containing a hydration reaction product with coal ash.
(6)排煙脱硫装置から排出する濃縮排水に石炭灰に加
えてさらに、該排水中の溶解成分と石炭灰との水和反応
を促進させる水和反応促進剤を添加することを特徴とす
る請求項5記載の硬化物。
(6) In addition to coal ash, a hydration reaction accelerator is added to the concentrated wastewater discharged from the flue gas desulfurization equipment to promote the hydration reaction between dissolved components in the wastewater and coal ash. The cured product according to claim 5.
(7)排煙脱硫装置の吸収塔循環スラリを一部抜き出し
た該スラリを水和反応促進剤として使用することを特徴
とする請求項5ないし6記載の硬化物。
(7) The cured product according to any one of claims 5 to 6, wherein a portion of the slurry circulated in an absorption tower of a flue gas desulfurization equipment is extracted and used as a hydration reaction accelerator.
(8)水和反応促進剤は石灰、セメント、粘土石英、カ
オリナイト、石膏、硫酸アルミニウムからなる群のうち
から選ばれる一以上の物質であることを特徴とする請求
項6記載の硬化物。
(8) The cured product according to claim 6, wherein the hydration reaction accelerator is one or more substances selected from the group consisting of lime, cement, clay quartz, kaolinite, gypsum, and aluminum sulfate.
(9)燃焼ボイラからのボイラ排ガスを脱硝処理、集塵
処理等の後、脱硫処理する発電システムの排煙脱硫処理
法において、湿式石灰石−石膏法の脱硫装置からの濃縮
排水に石炭灰を添加してスラリ状にし、該スラリを乾燥
して硬化物とし、排水に含まれるハロゲン化合物、CO
D物質、金属成分を硬化物に固定したことを特徴とする
発電システムの排煙脱硫処理装置の排水処理法。
(9) In a flue gas desulfurization treatment method for a power generation system in which boiler exhaust gas from a combustion boiler is desulfurized after denitrification treatment, dust collection treatment, etc., coal ash is added to the concentrated wastewater from the wet limestone-gypsum desulfurization equipment. The slurry is dried to form a hardened product, and the halogen compounds and CO contained in the wastewater are removed.
A wastewater treatment method for a flue gas desulfurization treatment device for a power generation system, characterized by fixing substance D and metal components in a cured product.
JP1142374A 1989-06-05 1989-06-05 Wastewater treatment method for wet desulfurization equipment Expired - Fee Related JP2886180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1142374A JP2886180B2 (en) 1989-06-05 1989-06-05 Wastewater treatment method for wet desulfurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1142374A JP2886180B2 (en) 1989-06-05 1989-06-05 Wastewater treatment method for wet desulfurization equipment

Publications (2)

Publication Number Publication Date
JPH038411A true JPH038411A (en) 1991-01-16
JP2886180B2 JP2886180B2 (en) 1999-04-26

Family

ID=15313893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1142374A Expired - Fee Related JP2886180B2 (en) 1989-06-05 1989-06-05 Wastewater treatment method for wet desulfurization equipment

Country Status (1)

Country Link
JP (1) JP2886180B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088609C (en) * 1997-10-21 2002-08-07 三菱重工业株式会社 Waste gas desulfurization device
US8517628B2 (en) 2009-06-26 2013-08-27 Joseph Vögele AG Road finisher with automatic engine controller
JP2014516308A (en) * 2011-04-08 2014-07-10 エネル プロドゥツィオーネ ソシエタ ペル アチオニ Method for monitoring and controlling the chemical reaction of a ZLD process in a power plant
CN108178362A (en) * 2016-12-08 2018-06-19 中电华创电力技术研究有限公司 A kind of desulfurization by lime gypsum method wastewater zero emission treatment method and system
WO2020204026A1 (en) 2019-04-01 2020-10-08 三菱日立パワーシステムズ株式会社 Device and method pertaining to gas purification treatment and/or combustion ash neutralization treatment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088609C (en) * 1997-10-21 2002-08-07 三菱重工业株式会社 Waste gas desulfurization device
US8517628B2 (en) 2009-06-26 2013-08-27 Joseph Vögele AG Road finisher with automatic engine controller
JP2014516308A (en) * 2011-04-08 2014-07-10 エネル プロドゥツィオーネ ソシエタ ペル アチオニ Method for monitoring and controlling the chemical reaction of a ZLD process in a power plant
CN108178362A (en) * 2016-12-08 2018-06-19 中电华创电力技术研究有限公司 A kind of desulfurization by lime gypsum method wastewater zero emission treatment method and system
CN108178362B (en) * 2016-12-08 2024-03-15 中电华创电力技术研究有限公司 Limestone-gypsum desulfurization wastewater zero-emission treatment method and system
WO2020204026A1 (en) 2019-04-01 2020-10-08 三菱日立パワーシステムズ株式会社 Device and method pertaining to gas purification treatment and/or combustion ash neutralization treatment

Also Published As

Publication number Publication date
JP2886180B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
CA2952395C (en) Process and device for desulfurization-denitration of flue gas
US6613141B2 (en) Recovery of cement kiln dust through precipitation of calcium sulfate using sulfuric acid solution
WO2020204026A1 (en) Device and method pertaining to gas purification treatment and/or combustion ash neutralization treatment
KR101860295B1 (en) Treatment Apparatus of FGD Wastewater by using Vacuum Evaporation and Method Thereof
TWI795750B (en) Apparatus and method for combustion exhaust gas purification
CN206580583U (en) FGD wastewater zero discharge systems
CN101543729B (en) Method suitable for utilization of resource of sintering flue gas desulphurization waste solution
JPH06226042A (en) Method for removal of sulfur dioxide from heated gaseous stream containing sulfur dioxide and for production of alpha type calcined gypsum
JPH0833826A (en) Treatment of boiler waste combustion gas for coal fired thermal power plant and device therefor
JPH038411A (en) Waste water treatment of wet type desulfurizing device
CN109205909B (en) System and method for treating flue gas desulfurization wastewater of coal-fired power plant boiler
JP2007144298A (en) Efficient flue gas desulfurization method and apparatus
WO2001032324A1 (en) Method for treating combustion ash of coal and method for desulfurization
KR102131679B1 (en) Waste fluid treatment apparatus containing salt and method for treating same
JPH02198613A (en) Method for wet-desulfurizing exhaust gas
JP4681259B2 (en) Sludge treatment method and sludge treatment system
JP2004073976A (en) Method of treating waste gypsum product
JP3002516B2 (en) Wet flue gas desulfurization method
JP2562222B2 (en) Prevention method of phosphorus scattering in melting furnace
JP2940981B2 (en) Wet exhaust gas desulfurization apparatus and wet exhaust gas desulfurization method
JPH0929058A (en) Solidification of desulfurized drain with coal ash
JPS6043198B2 (en) Neutralization and solidification treatment method for waste sulfuric acid
JP3519555B2 (en) Exhaust gas treatment method for heavy oil fuel fired boiler
JP2877268B2 (en) Production method of solid molded product from slurry by-product from wet lime gypsum desulfurization unit
JP2823327B2 (en) Dry desulfurization method and apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees