JP2007143956A - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
JP2007143956A
JP2007143956A JP2005344086A JP2005344086A JP2007143956A JP 2007143956 A JP2007143956 A JP 2007143956A JP 2005344086 A JP2005344086 A JP 2005344086A JP 2005344086 A JP2005344086 A JP 2005344086A JP 2007143956 A JP2007143956 A JP 2007143956A
Authority
JP
Japan
Prior art keywords
tib
blade
titanium alloy
particles
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005344086A
Other languages
Japanese (ja)
Inventor
Takehiro Onishi
健宏 大西
Takanori Nishihara
孝典 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005344086A priority Critical patent/JP2007143956A/en
Publication of JP2007143956A publication Critical patent/JP2007143956A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Knives (AREA)
  • Scissors And Nippers (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool which is rustproof, lightweight than those made of stainless steel or special steel, and has a stronger abrasion-resisting property than carbide dispersion titanium alloy. <P>SOLUTION: A base material includes titanium alloy made of at least either of an alpha phase or beta phase with titanium as the main component and TiB particles dispersed in the titanium alloy. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、刃の主面に小さい角度で斜面を形成した大刃と、該主面の縁部に沿ってさらに大きい角度で斜面を形成した小刃とを有した刃物などにおいて、チタン合金中に硬質粒子を均一分散させたチタン基複合材料を利用した刃物およびその製造方法に関するものであり、ナイフ、カッターの刃、調理用刃物、鋏、カミソリ、その他各種の刃材に関する技術分野に属するものである。   The present invention provides a cutting tool having a large blade with a small angle formed on the main surface of the blade and a small blade with a large angle formed along the edge of the main surface. The present invention relates to a blade using a titanium-based composite material in which hard particles are uniformly dispersed in and a manufacturing method thereof, and belongs to a technical field related to knives, cutter blades, cooking blades, scissors, razors, and other various blade materials. It is.

純チタンやチタン合金は、軽量で高い弾性を有し、不銹、非磁性等の特徴を有する各種工業製品の有用な素材である。しかし、純チタンやチタン合金は、炭素鋼、ステンレス鋼などに比べて硬度が低いため、耐摩耗性を要する刃物の素材としては不適と考えられていた。   Pure titanium and titanium alloys are useful materials for various industrial products that are lightweight, have high elasticity, and have characteristics such as sterility and non-magnetism. However, pure titanium and titanium alloys have been considered to be unsuitable as materials for blades that require wear resistance because of their lower hardness than carbon steel, stainless steel, and the like.

最近では、上記チタン合金の強度、剛性、耐摩耗性等の特性を改善するため、該チタン合金中に硬質粒子を分散させた複合材が開発されている。この分散粒子としては、TiC、TiN、SiC、TiB2 等の粒子が使用されている。   Recently, a composite material in which hard particles are dispersed in the titanium alloy has been developed in order to improve properties such as strength, rigidity, and wear resistance of the titanium alloy. As the dispersed particles, particles such as TiC, TiN, SiC, and TiB2 are used.

また、特開平11−131171号公報では、炭化物を添加したチタン合金刃物から、耐摩耗性、強度をもたせていることが報告されている。   Japanese Patent Application Laid-Open No. 11-131171 reports that a titanium alloy blade to which carbide is added has wear resistance and strength.

また、特開平8−311586号公報では、TiBを有するチタン合金を他の基材に溶射した刃物としていることが報告されている。
特開平11−131171号公報 特開平8−311586号公報
Japanese Patent Application Laid-Open No. 8-311586 reports that a blade is obtained by thermally spraying a titanium alloy having TiB on another substrate.
Japanese Patent Laid-Open No. 11-131171 JP-A-8-311586

しかしながら、特許文献1では、炭化物を添加したチタン合金刃物であるが、耐摩耗性、強度が不十分であることがわかっている。   However, in Patent Document 1, although it is a titanium alloy blade to which carbide is added, it is known that the wear resistance and strength are insufficient.

また、特許文献2では、TiBを有するチタン合金を他の基材に溶射した刃物であるが、刃物を研ぐと溶射したTiBを有するチタン合金がすぐ磨耗してなくなるため、製品寿命が短いという問題があった。さらに、TiBを有するチタン合金を他の基材に溶射するため、密着性が悪くなり剥がれる恐れがあった。さらに、TiBを有するチタン合金を他の基材に溶射するという工程が製造上の大きな負担となっていた。   Further, in Patent Document 2, a blade is obtained by thermally spraying a titanium alloy having TiB on another base material. However, when the blade is sharpened, the sprayed titanium alloy having TiB is not immediately worn, so that the product life is short. was there. Furthermore, since the titanium alloy having TiB is sprayed on another base material, there is a possibility that the adhesion is deteriorated and peeled off. Furthermore, the process of thermal spraying a titanium alloy having TiB on another base material has been a heavy burden in production.

前記問題点に鑑みて本発明の耐摩耗性チタン刃物は、基材が、チタンを主成分としたα相3、β相4の少なくとも一方からなるチタン合金と、該チタン合金中に分散したTiB粒子とを有することを特徴とする。   In view of the above problems, the wear-resistant titanium blade of the present invention has a base material in which a titanium alloy containing at least one of α-phase 3 and β-phase 4 whose main component is titanium, and TiB dispersed in the titanium alloy. And particles.

上記TiB粒子の一部がチタン合金の表面に露出していることを特徴とする。   Part of the TiB particles is exposed on the surface of the titanium alloy.

かくして得た焼結部からなる刃材は、研削により所要の箇所に刃付け加工を施すことにより、所望の刃物を得ることができる。   The blade material composed of the sintered portion thus obtained can obtain a desired blade by performing a cutting process on a required portion by grinding.

本発明の耐摩耗性チタン刃物は、延性および靱性が低下しにくく、室温から高温までの強度、耐摩耗性等の特性が向上した耐摩耗性チタン刃物となる。炭素鋼、特殊鋼、ステンレス鋼に比べて当然に軽量であり、しかも海水中でも錆びない点でステンレス刃物以上に不銹性において勝り、炭化物添加に比べて高耐摩耗性をもつことが可能とった。   The wear-resistant titanium blade of the present invention is a wear-resistant titanium blade with improved ductility and toughness and improved properties such as strength from room temperature to high temperature and wear resistance. Naturally, it is lighter than carbon steel, special steel, and stainless steel. Moreover, it is superior to stainless steel blades in terms of sterility even in seawater, and it has higher wear resistance than carbide addition. .

また、本発明の刃物が初期から摩耗していく過程においても、分散しているTiB粒子が被処理物に対して、常に点接触しギザ刃機構になることから切れ味は変わることはない。   Further, even in the process in which the blade of the present invention is worn from the beginning, the dispersed TiB particles are always in point contact with the object to be processed, so that the sharpness is not changed.

また、TiBは母材のチタン合金内において高温から低温まで熱力学的に安定であり、チタン中に溶けにくく、チタンとの熱膨張差がほぼないので、TiB粒子が容易に脱粒することもなく、切れ味はいつまでも続くこととなる。   In addition, TiB is thermodynamically stable from high temperature to low temperature in the base titanium alloy, hardly dissolves in titanium, and has almost no difference in thermal expansion from titanium, so that TiB particles do not easily fall off. The sharpness will last forever.

以下に、請求項にかかる発明の実施形態を説明する。   Hereinafter, embodiments of the claimed invention will be described.

本発明は、基材が、チタンを主成分としたα相3、β相4の少なくとも一方からなるチタン合金と、該チタン合金中に分散したTiB粒子とを有することを特徴とする。   The present invention is characterized in that the base material has a titanium alloy composed of at least one of α phase 3 and β phase 4 containing titanium as a main component, and TiB particles dispersed in the titanium alloy.

TiB粒子が均一分散されておらず局所的にTiB粒子が無いところが発生してしまうと耐摩耗性が劣ることとなり、反対にTiB粒子が多いところでは緻密化が得られずボイドが発生し、衝撃性が劣ってしまう。原料作製段階にTiB粒子あるいはTiB粒子となる前駆体を混合させ分散させておく必要がある。   If the TiB particles are not uniformly dispersed and there are places where there are no TiB particles, the wear resistance will be inferior. On the other hand, where there are many TiB particles, densification will not be obtained and voids will occur. It is inferior. It is necessary to mix and disperse TiB particles or precursors to become TiB particles in the raw material preparation stage.

ここで単に分散ではなく均一分散と説明しているのは、TiB粒子に等方性があり、またα相3、β相4、α相3+β相4を取り囲んでいるものではなく、凝集しているものではないことを明確にするためである。例えば20μm以下のTiBが400μm以下の平均間隔で点在している。ここで分散性での平均間隔の測定方法は、金属組織を示すSEM(走査型電子顕微鏡)写真(倍率500倍)を使用し、写真上の任意のTiB粒子1点から最短距離で存在するTiB粒子までの距離を定義し、平均値を算出したものである。TiB粒子が均一分散されたことにより、炭化物添加に比べて高耐摩耗性をもつことが可能とった。これは、炭化物の場合、炭素が母材に固溶し脆性化をまねくことが考えられ、対して硼化物は母材に固溶することもなく、熱力学的にも安定な元素だからである。   The reason why it is described as uniform dispersion, not simply dispersion is that TiB particles are isotropic and do not surround α phase 3, β phase 4, α phase 3 + β phase 4, but agglomerate. This is to clarify that they are not. For example, TiB of 20 μm or less is scattered at an average interval of 400 μm or less. Here, as a method for measuring the average distance in dispersibility, an SEM (scanning electron microscope) photograph showing a metal structure (magnification 500 times) is used, and TiB existing at the shortest distance from one arbitrary TiB particle on the photograph. The distance to the particle is defined and the average value is calculated. Due to the uniform dispersion of the TiB particles, it was possible to have higher wear resistance than the carbide addition. This is because, in the case of carbides, it is considered that carbon dissolves in the base material and causes embrittlement, whereas boride does not dissolve in the base material and is a thermodynamically stable element. .

そして上記TiB粒子の面積比が5%未満では、粒子分散強化の効果が小さく、上記材料を加工する際には難削材となり焼きつきが起き、完成品の刃体が反りやすい。また、特定値を越えると粒子が粗大化し、合金材料の靭性が低下する恐れがある。   When the area ratio of the TiB particles is less than 5%, the effect of particle dispersion strengthening is small, and when the material is processed, it becomes a difficult-to-cut material and seizure occurs, and the finished blade is likely to warp. Moreover, when a specific value is exceeded, there exists a possibility that a particle may coarsen and the toughness of an alloy material may fall.

また、母材となるチタン合金は純チタンに強化用合金元素を添加し機械的性質を改良したものである。強化用合金元素は、ヤング率がβ相4より大きいα相3安定化元素として0.5〜7.0重量%であるAlと、熱処理を行い更に強度を高めることができるβ相安定化元素として1.0〜12.0重量%であるV、2.0〜30.0重量%であるMo、1.0〜7.0重量%であるFeを添加したものであり、α相3安定化元素およびβ相安定化元素を適当に添加することでα相3+β相4といった優れた機械的性質が得られる。   The titanium alloy as the base material is obtained by adding mechanical alloying elements to pure titanium to improve mechanical properties. The alloying element for strengthening is 0.5% to 7.0% by weight of Al having a Young's modulus greater than β-phase 4 as an α-phase 3 stabilizing element, and β-phase stabilizing element capable of further increasing the strength by heat treatment. 1.0 to 12.0% by weight of V, 2.0 to 30.0% by weight of Mo, 1.0 to 7.0% by weight of Fe, and α phase 3 stable Appropriate mechanical properties such as α-phase 3 + β-phase 4 can be obtained by appropriately adding chemical elements and β-phase stabilizing elements.

さらに本発明は、上記TiB粒子の一部がチタン合金の表面に露出していることを特徴とする。   Furthermore, the present invention is characterized in that a part of the TiB particles is exposed on the surface of the titanium alloy.

これは包丁の刃先の接触部分にあらわれはじめたTiB粒子が被処理物と点接触するギザ刃機構になるため切れ味は変わることはない。もちろん、TiB粒子は母材のチタン合金内において高温から低温まで熱力学的に安定であり、チタン中に溶けにくく、チタンとの熱膨張差がほぼないので、TiB粒子が容易に脱落することもないので、切れ味はいつまでも続くこととなる。突出する量はTiB粒子のアスペクト比に依存するが、TiB粒子の長手方向が突出するのが好ましい。   Since the TiB particles that have begun to appear at the contact portion of the knife edge of the knife become a pointed contact mechanism with the workpiece, the sharpness does not change. Of course, TiB particles are thermodynamically stable from high temperature to low temperature in the base titanium alloy, are not easily dissolved in titanium, and have almost no difference in thermal expansion from titanium, so TiB particles can easily fall off. Since there is no, the sharpness will continue forever. The protruding amount depends on the aspect ratio of the TiB particles, but it is preferable that the longitudinal direction of the TiB particles protrudes.

切れ味は一定荷重の下に刃先をテスト用紙に当て、一定速度で片道30mmの往復サイクル運動を128往復させ、テスト用紙の切込み枚数を1サイクル毎に記録する評価方法を採用し、128回まで安定しているかで評価することができる。   The sharpness is stable up to 128 times by applying an evaluation method in which the cutting edge is applied to the test paper under a constant load, the reciprocating cycle motion of 30 mm one way at a constant speed is reciprocated 128 times, and the number of test paper cuts is recorded per cycle. You can evaluate whether you are doing.

前記の評価方法から、横軸を対数表示とし128往復までの切れ味直線の傾きは大きく、他に比べて耐摩耗性があるといえる。テストを行うことで母材が摩耗し切れ味低下を招くが、母材が摩耗していく過程において、分散しているTiB粒子が随時現れ、TiB粒子が点接触しギザ刃機構になることから切れ味は変わることはなく、また、刃付け時にTiB粒子が点接触となるギザ刃機構状態となっていることも本発明の利点であることを失わない。特に上記TiB粒子が刃の表面から突出している面積比特定の範囲であることが好ましい。面積比が小さいとギザ刃機構として耐摩耗性が低下し、大きいと切れ味自体が低下する傾向になる。ここで面積比の測定方法は、金属組織を示すSEM(走査型電子顕微鏡)写真(倍率500倍)を使用し、刃先の稜線から1mm角を撮影し、そのなかで任意のTiBの粒径が1μm以上のTiBの占める面積比を求めたものである。   From the above evaluation method, it can be said that the horizontal axis is logarithmically displayed and the inclination of the sharp straight line up to 128 reciprocations is large, and it has higher wear resistance than others. By performing the test, the base material wears and causes a reduction in sharpness. However, in the process where the base material wears, the dispersed TiB particles appear at any time and the TiB particles come into point contact to form a serrated edge mechanism. There is no change, and the fact that the TiB particles are in the point contact state at the time of blade attachment is also an advantage of the present invention. In particular, it is preferable that the TiB particles have a specific area ratio range protruding from the blade surface. When the area ratio is small, the wear resistance of the serrated blade mechanism is lowered, and when the area ratio is large, the sharpness itself tends to be lowered. Here, the area ratio is measured by using a SEM (scanning electron microscope) photograph (magnification 500 times) showing a metal structure, photographing a 1 mm square from the edge line of the blade edge, in which the particle size of any TiB is The area ratio occupied by TiB of 1 μm or more is obtained.

また、上記TiB粒子の平均粒径は1〜20μmであり、そのうち平均粒径1〜20μmのものが、平均20〜400μmの間隔で点在していることが好ましい。平均粒径が1μm未満だとTiB粒子が脱粒して切れ味が悪くなり易く、平均粒径が20μmより大きいと切断面の品位が粗くなる傾向がある。そして平均粒径1〜20μmのTiB粒子が、平均20μm未満の間隔で分散していると、切れ味自体が低下するという不具合があり、粒径1〜20μmのTiB粒子が、平均400μmより大きい間隔で分散していると、ギザ刃機構として耐摩耗性の機能が低下するという不具合がある。   The average particle size of the TiB particles is 1 to 20 μm, and among them, particles having an average particle size of 1 to 20 μm are preferably scattered at an average interval of 20 to 400 μm. When the average particle size is less than 1 μm, TiB particles are likely to be shattered, resulting in poor sharpness, and when the average particle size is greater than 20 μm, the quality of the cut surface tends to be rough. And when TiB particles having an average particle diameter of 1 to 20 μm are dispersed at intervals of less than 20 μm on average, there is a problem that the sharpness itself is lowered, and TiB particles having a particle diameter of 1 to 20 μm are at intervals greater than the average of 400 μm. If dispersed, there is a problem that the wear resistance function of the serrated blade mechanism is lowered.

なお、本発明の刃材には副成分としてAgを重量比において0.1〜10%添加することも可能であり、Agを配合すれば、この刃材による刃物は抗菌性がある。しかも、その配合量が少量であるため、刃物の重量、営利性及び切れ味の寿命に悪影響があらわれないことも、本発明の利点であることを失わない。   In addition, it is also possible to add 0.1 to 10% by weight of Ag as a subsidiary component to the blade material of the present invention. If Ag is mixed, the blade made of this blade material has antibacterial properties. And since the compounding quantity is a small amount, it is not lost that it is an advantage of this invention that a bad influence is not exerted on the weight of a blade, a profitability, and the life of sharpness.

次に、本発明の実施例を示す。   Next, examples of the present invention will be described.

本発明の試料には、チタンを約80%含み、その他金属及びその化合物の粉末素材を添加、混合後、圧縮成形には4ton/cmの圧力を使用する。焼結は真空炉中、1,200〜1,300℃で所要時間は約2時間としたものである。 The sample of the present invention contains about 80% titanium, and powder materials of other metals and their compounds are added and mixed, and then a pressure of 4 ton / cm 2 is used for compression molding. Sintering is performed in a vacuum furnace at 1,200 to 1,300 ° C. for a required time of about 2 hours.

かくして得た焼結部からなる刃材は、研削により所要の箇所に刃付け加工を施すことにより、所望の刃物を得ることができる。   The blade material composed of the sintered portion thus obtained can obtain a desired blade by performing a cutting process on a required portion by grinding.

TiBの分散量を種々変更して、耐摩耗性、抗折強度を調べた結果を表1に示し、耐摩耗性をグラフ化したものを図2に示す。

Figure 2007143956
Table 1 shows the results of examining the wear resistance and bending strength by variously changing the amount of TiB dispersed, and FIG. 2 shows a graph of the wear resistance.
Figure 2007143956

耐摩耗性の測定方法は、前記評価方法により耐摩耗性をグラフの傾きが優れているものには◎印を、やや優れているものには○印を、耐摩耗性がみられるものには△印を、全く耐摩耗性が見られないものを×印を付している。   The wear resistance measurement method is based on the above evaluation method. Wear resistance is indicated by ◎ for those with excellent slope, ○ for slightly superior, and for wear resistance. A triangle mark is given to those where no wear resistance is seen.

抗折強度の測定方法は、JISR1601−1995規格により4mm×3mm×36mmの検体を使用した。抗折強度が1600MPa以上のものには○印を、1200〜1600MPa未満のものには△印を、1200MPa未満のものには×印を付している。   As a method for measuring the bending strength, a specimen of 4 mm × 3 mm × 36 mm was used according to the JIS R1601-1995 standard. Those with a bending strength of 1600 MPa or more are marked with ◯, those with 1200 to less than 1600 MPa are marked with Δ, and those with less than 1200 MPa are marked with x.

実施例1〜5と比較例1〜3を比較する。   Examples 1-5 and Comparative Examples 1-3 are compared.

比較例1では、TiB粒子を均一分散させていないため、耐摩耗性、耐摩耗性が劣る。   In Comparative Example 1, since the TiB particles are not uniformly dispersed, the wear resistance and wear resistance are poor.

比較例2でおよび比較例3のような従来の炭化物添加やジルコニアセラミックのものは耐摩耗性および抗折強度のいずれかで劣ることがわかる。   It can be seen that the conventional carbide addition and zirconia ceramics in Comparative Example 2 and Comparative Example 3 are inferior in either wear resistance or bending strength.

次に、チタン合金中のα相:β相の比、平均粒径、平均間隔を種々変更し、初期切れ味、耐摩耗性、抗折強度、断面品位を調べた結果を表2に示す。

Figure 2007143956
Next, Table 2 shows the results of examining initial sharpness, wear resistance, bending strength, and cross-sectional quality by variously changing the α phase: β phase ratio, average particle diameter, and average interval in the titanium alloy.
Figure 2007143956

初期切れ味の測定方法は、前記耐摩耗性の評価方法により一回目の切れ味枚数が50枚以上のものには○印を、それよりも劣るものには△印を付している。   In the initial sharpness measurement method, a circle mark is given to those having a first sharpness of 50 or more, and a triangle mark is given to those inferior to that, according to the abrasion resistance evaluation method.

断面品位の測定方法は、刃先断面をSEM(走査型電子顕微鏡)写真(倍率500倍)より、刃先断面の刃幅を調べたものである。刃幅が1μm未満のものには◎印を、1〜3μm未満のものには○印を、3μm以上のものには△印を付している。   The method for measuring the cross-sectional quality is a method in which the blade width of the blade edge cross section is examined from a SEM (scanning electron microscope) photograph (magnification 500 times). Those with a blade width of less than 1 μm are marked with ◎, those with a blade width of less than 1 to 3 μm are marked with ◯, and those with a blade width of 3 μm or more are marked with Δ.

試料No17〜21より、耐摩耗性、抗折強度、断面品位の点でTiBの平均粒子径は1〜20μmが好ましいことがわかる。   From Sample Nos. 17 to 21, it can be seen that the average particle diameter of TiB is preferably 1 to 20 μm in terms of wear resistance, bending strength and cross-sectional quality.

試料No22〜26より、耐摩耗性、抗折強度、断面品位の点でTiBの平均間隔は20〜400μmが好ましいことがわかる。特に断面品位からみると、平均粒径と平均間隔が影響しTiB粒子が刃先にならぶ存在確立が高くなることで、TiBが突出しすぎてしまうためである。   From Sample Nos. 22 to 26, it is understood that the average interval of TiB is preferably 20 to 400 μm in terms of wear resistance, bending strength, and cross-sectional quality. In particular, when viewed from the cross-sectional quality, the average particle diameter and the average interval influence the TiB particles, and the existence probability that the TiB particles follow the cutting edge becomes high, so that TiB protrudes too much.

本発明に係る刃物のギザ刃状況の透視模式図である。It is a see-through | perspective schematic diagram of the jagged blade condition of the cutter which concerns on this invention. 本発明に係る耐摩耗性をグラフ化したグラフである。It is a graph which graphed abrasion resistance concerning the present invention. 本発明の、α相、β相、TiBが入った透視模式図。The perspective schematic diagram containing the alpha phase, beta phase, and TiB of the present invention.

符号の説明Explanation of symbols

1 テスト紙
2 刃部(基材)
3 α相
4 β相
5 TiB粒子
1 Test paper 2 Blade (base material)
3 α phase 4 β phase 5 TiB particles

Claims (2)

基材が、チタンを主成分としたα相、β相の少なくとも一方からなるチタン合金と、該チタン合金中に分散したTiB粒子とを有することを特徴とする刃物。   A blade comprising a base material having a titanium alloy composed of at least one of an α phase and a β phase mainly composed of titanium, and TiB particles dispersed in the titanium alloy. 上記TiB粒子の一部がチタン合金の表面に露出していることを特徴とする請求項1に記載の刃物。   The blade according to claim 1, wherein a part of the TiB particles is exposed on the surface of the titanium alloy.
JP2005344086A 2005-11-29 2005-11-29 Cutting tool Pending JP2007143956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005344086A JP2007143956A (en) 2005-11-29 2005-11-29 Cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005344086A JP2007143956A (en) 2005-11-29 2005-11-29 Cutting tool

Publications (1)

Publication Number Publication Date
JP2007143956A true JP2007143956A (en) 2007-06-14

Family

ID=38206069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344086A Pending JP2007143956A (en) 2005-11-29 2005-11-29 Cutting tool

Country Status (1)

Country Link
JP (1) JP2007143956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051898A1 (en) * 2014-09-30 2016-04-07 株式会社iMott Scissors
JP6194437B2 (en) * 2015-06-22 2017-09-06 京セラ株式会社 Knife

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326731A (en) * 1993-11-18 1994-07-05 Electrofuel Manufacturing Company Ceramic compositions for wear resistant applications
JPH08157990A (en) * 1994-09-29 1996-06-18 Kyocera Corp Silver-colored sintered compact and its production
JPH08311586A (en) * 1995-05-16 1996-11-26 Maruto Hasegawa Kosakusho:Kk Alpha plus beta titanium alloy matrix composite, titanium alloy material for various products, and titanium alloy product
WO2004046262A2 (en) * 2002-11-15 2004-06-03 University Of Utah Integral titanium boride coatings on titanium surfaces and associated methods
JP2005076052A (en) * 2003-08-28 2005-03-24 Daido Steel Co Ltd Titanium alloy with improved rigidity and strength

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326731A (en) * 1993-11-18 1994-07-05 Electrofuel Manufacturing Company Ceramic compositions for wear resistant applications
JPH08157990A (en) * 1994-09-29 1996-06-18 Kyocera Corp Silver-colored sintered compact and its production
JPH08311586A (en) * 1995-05-16 1996-11-26 Maruto Hasegawa Kosakusho:Kk Alpha plus beta titanium alloy matrix composite, titanium alloy material for various products, and titanium alloy product
WO2004046262A2 (en) * 2002-11-15 2004-06-03 University Of Utah Integral titanium boride coatings on titanium surfaces and associated methods
JP2005076052A (en) * 2003-08-28 2005-03-24 Daido Steel Co Ltd Titanium alloy with improved rigidity and strength

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051898A1 (en) * 2014-09-30 2016-04-07 株式会社iMott Scissors
US10327799B2 (en) 2014-09-30 2019-06-25 Imott Inc. Scissors
JP6194437B2 (en) * 2015-06-22 2017-09-06 京セラ株式会社 Knife
JPWO2016208646A1 (en) * 2015-06-22 2017-09-14 京セラ株式会社 Knife

Similar Documents

Publication Publication Date Title
JP4690475B2 (en) Cermet and coated cermet tools
JP5652113B2 (en) WC-based cemented carbide cutting tool and surface-coated WC-based cemented carbide cutting tool exhibiting excellent fracture resistance in heat-resistant alloy cutting
JP2005521495A (en) Self-growing cutting tool with hard coating
JP6564763B2 (en) Sintered blade material and manufacturing method thereof
Zou et al. Effects of superfine refractory carbide additives on microstructure and mechanical properties of TiB2–TiC+ Al2O3 composite ceramic cutting tool materials
Long et al. WC–Ni3Al–B composites prepared through Ni+ Al elemental powder route
KR20090102080A (en) Blade using ultra-hard microscopic particles
JP2007143956A (en) Cutting tool
JP3641794B2 (en) Diamond blade
JP2011235410A (en) Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy
JP6931202B2 (en) Titanium Nitride Powder and Titanium Nitride Powder Manufacturing Method
JP5153624B2 (en) COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD, COMPOSITION USED FOR THE SAME, AND CUTTER USING SAME
JP6685688B2 (en) Silicon nitride sintered body and wear resistant member using the same
JP2019527293A (en) Corrosion resistant and fatigue resistant cemented carbide machining line tools
JP2007126326A (en) Diamond sintered body
US20060185254A1 (en) Titanium coated diamond containing edge material and method for manufacturing the same
JP7042989B1 (en) Diamond sintered body, and tools equipped with the diamond sintered body
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
JPH07278719A (en) Particulate plate crystal cemented carbide containing wc and its production
JP2012041595A (en) Cermet
JP2006131975A (en) Cermet for saw blade
JP6028374B2 (en) Target and hard coating coated cutting tool
Murakami et al. Correlation analysis between microstructure and mechanical properties of spark-plasma-sintered Ti (C, N)–W cermets according to changes in titanium, carbon and nitrogen contents
JP2013053022A (en) Composite sintered body and composite sintered body tool using the same
KR20170095160A (en) Blades with micro serrated edge for cutting instruments and cutting instruments with the blades

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A131 Notification of reasons for refusal

Effective date: 20110329

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A131 Notification of reasons for refusal

Effective date: 20110628

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110818

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110