JP2007142757A - Differential amplifier circuit - Google Patents

Differential amplifier circuit Download PDF

Info

Publication number
JP2007142757A
JP2007142757A JP2005333099A JP2005333099A JP2007142757A JP 2007142757 A JP2007142757 A JP 2007142757A JP 2005333099 A JP2005333099 A JP 2005333099A JP 2005333099 A JP2005333099 A JP 2005333099A JP 2007142757 A JP2007142757 A JP 2007142757A
Authority
JP
Japan
Prior art keywords
current
differential
differential amplifier
comparison
temperature fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005333099A
Other languages
Japanese (ja)
Other versions
JP4332522B2 (en
Inventor
Satoshi Yoshida
聡 吉田
Shuichi Matsumoto
修一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Oki Networks Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Oki Networks Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd, Oki Networks Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2005333099A priority Critical patent/JP4332522B2/en
Publication of JP2007142757A publication Critical patent/JP2007142757A/en
Application granted granted Critical
Publication of JP4332522B2 publication Critical patent/JP4332522B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a differential amplifier circuit capable of conducting normal operation even in a low supply voltage with little gain variation due to temperature. <P>SOLUTION: The differential amplifier circuit comprises a differential amplifier 5, a temperature fluctuation detector 2, a comparison current generator 3, and a current adjuster 4. The gain of the differential amplifier 5 is controlled according to current of a PMOS51 controlled by an adjustment signal COM. The temperature fluctuation detector 2 has a differential circuit of a configuration identical to the differential amplifier 5, and outputs a current difference Igm generated according to temperature fluctuation during biasing two input sides of the differential circuit with a minute potential difference V1-V2. The comparison current generator 3 generates a reference current Irf for comparison according to a minute potential difference V3=V1-V2. The current adjuster 4 outputs the adjustment signal COM so that the value of the current difference Igm output from the temperature fluctuation detector 2 becomes same as the one of the reference current Irf generated in the comparison current generator 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、温度による利得変動の少ない差動増幅回路、特にその低電源電圧化に関するものである。   The present invention relates to a differential amplifier circuit with little gain fluctuation due to temperature, and particularly to a reduction in power supply voltage thereof.

特開2001−339259号公報JP 2001-339259 A 特開2000−174568号公報JP 2000-174568 A

図2は、上記特許文献1に記載された従来の差動増幅回路の構成図である。
この差動増幅回路は、差動対を構成するトランジスタMN20及びMN21と、負荷ダイオードを構成するトランジスタMN22及びMN23と、定電流源I241,I242及びI243とで構成されている。定電流源I241は差動対を構成するトランジスタMN20,MN21へ電流を供給するもので、定電流源I242及びI243は負荷ダイオードへバイアス電流を供給するものである。
FIG. 2 is a configuration diagram of a conventional differential amplifier circuit described in Patent Document 1. In FIG.
The differential amplifier circuit includes transistors MN20 and MN21 that form a differential pair, transistors MN22 and MN23 that form a load diode, and constant current sources I241, I242, and I243. The constant current source I241 supplies current to the transistors MN20 and MN21 constituting the differential pair, and the constant current sources I242 and I243 supply bias current to the load diode.

この定電流源I242及びI243によって、負荷ダイオードを構成するトランジスタMN22及びMN23に供給するバイアス電流I2の大きさを調整し、そのゲート・ソース間電圧Vgsが、差動対を構成するトランジスタMN20及びMN21の動作状態に関わらず、常にドレイン電流が十分な大きさで流れる範囲に予め設定しておく。   The constant current sources I242 and I243 adjust the magnitude of the bias current I2 supplied to the transistors MN22 and MN23 constituting the load diode, and the gate-source voltage Vgs is adjusted to make the transistors MN20 and MN21 constituting the differential pair. Regardless of the operating state, a range in which the drain current always flows with a sufficient magnitude is set in advance.

これにより、温度変動等によって負荷ダイオードを構成するトランジスタMN22及びMN23に流れる電流が変化しても、出力電圧OUTN13,OUTP14の変動が抑制され、温度による利得変動の少ない差動増幅回路が得られる。   As a result, even if the currents flowing through the transistors MN22 and MN23 constituting the load diode change due to temperature fluctuation or the like, fluctuations in the output voltages OUTN13 and OUTP14 are suppressed, and a differential amplifier circuit with little gain fluctuation due to temperature can be obtained.

しかしながら、前記差動増幅回路は、次のような課題があった。
即ち、この差動増幅回路では、電源電位VDDと接地電位GNDの間に、少なくとも3個のトランジスタが直列に接続されている。電源電圧を1.35Vとした場合、通常のMOSトランジスタの閾値電圧は0.6V程度であり、かつ飽和領域で動作するドレイン・ソース間電圧は0.4Vであることを考慮すると、電源電位VDDと接地電位GNDの間に直列に接続できる素子数は、トランジスタ2個と抵抗等の受動素子1個が限界となる。従って、図2の差動増幅回路は、1.35Vの低電源電圧では正常な動作ができないという問題があった。
However, the differential amplifier circuit has the following problems.
That is, in this differential amplifier circuit, at least three transistors are connected in series between the power supply potential VDD and the ground potential GND. Considering that the threshold voltage of a normal MOS transistor is about 0.6 V and the drain-source voltage operating in the saturation region is 0.4 V when the power supply voltage is 1.35 V, the power supply potential VDD The number of elements that can be connected in series between the ground potential GND is limited to two transistors and one passive element such as a resistor. Therefore, the differential amplifier circuit of FIG. 2 has a problem that it cannot operate normally at a low power supply voltage of 1.35V.

本発明は、例えば1.35Vの低電源電圧でも正常な動作が可能で、温度による利得変動の少ない差動増幅回路を提供することを目的としている。   An object of the present invention is to provide a differential amplifier circuit which can operate normally even with a low power supply voltage of 1.35 V, for example, and has little gain fluctuation due to temperature.

本発明の差動増幅回路は、調整信号で制御される定電流部の電流に応じて利得が制御される差動増幅手段と、前記差動増幅手段と同一構成の差動回路を有し、該差動回路の2つの入力側を微小な電位差でバイアスして温度変動に応じて発生した電流差を検出する温度変動検出手段と、前記微小な電位差に応じた比較用の基準電流を生成する比較電流生成手段と、前記温度変動検出手段で検出された電流差と前記比較電流生成手段で生成された基準電流が同じ値となるように前記調整信号を出力する電流調整手段とを備えたことを特徴としている。   The differential amplifier circuit of the present invention has a differential amplifier having a gain controlled according to the current of the constant current unit controlled by the adjustment signal, and a differential circuit having the same configuration as the differential amplifier. A temperature fluctuation detecting means for detecting a current difference generated according to a temperature fluctuation by biasing the two input sides of the differential circuit with a minute electric potential difference and a reference current for comparison according to the minute electric potential difference are generated. A comparison current generation unit; and a current adjustment unit that outputs the adjustment signal so that the current difference detected by the temperature fluctuation detection unit and the reference current generated by the comparison current generation unit have the same value. It is characterized by.

本発明では、温度変動検出手段によって、差動増幅手段と同一構成の差動回路を微小な電位差でバイアスして温度変動に応じて発生した電流差を検出し、比較電流生成手段によって、同じ微小な電位差に応じた比較用の基準電流を生成し、この温度変動による電流差が比較用の基準電流と同じ値になるように電流調整手段から調整信号を出力するようにしている。これにより、差動増幅手段の利得が抵抗値の比になるように制御され、抵抗値の製造ばらつきや温度変動による利得変動を抑制することができるという効果がある。   In the present invention, the temperature difference detecting means biases a differential circuit having the same configuration as the differential amplifying means with a minute potential difference to detect a current difference generated according to the temperature fluctuation, and the comparison current generating means detects the same minute difference. A reference current for comparison according to the potential difference is generated, and an adjustment signal is output from the current adjustment means so that the current difference due to temperature fluctuation becomes the same value as the reference current for comparison. As a result, the gain of the differential amplifying means is controlled so as to have a ratio of resistance values, and there is an effect that fluctuations in resistance values due to manufacturing variations and fluctuations in temperature due to temperature fluctuations can be suppressed.

差動増幅手段、温度変動検出手段、比較電流生成手段及び電流調整手段において、電源電位と接地電位の間に直列に接続するトランジスタの数を2個以下となるような回路構成とする。これにより、例えば1.35Vの低電源電圧でも正常な動作が可能になる。   The differential amplifying means, the temperature fluctuation detecting means, the comparison current generating means, and the current adjusting means have a circuit configuration in which the number of transistors connected in series between the power supply potential and the ground potential is two or less. Thereby, for example, a normal operation can be performed even with a low power supply voltage of 1.35V.

図1は、本発明の実施例を示す差動増幅回路の構成図である。
この差動増幅回路は、基準電圧生成部1と、温度変動検出部2と、比較電流生成部3と、電流調整部4と、差動増幅部5とで構成されている。
FIG. 1 is a configuration diagram of a differential amplifier circuit showing an embodiment of the present invention.
The differential amplifier circuit includes a reference voltage generation unit 1, a temperature fluctuation detection unit 2, a comparison current generation unit 3, a current adjustment unit 4, and a differential amplification unit 5.

基準電圧生成部1は、電源電位VDDと接地電位GNDの間に接続された抵抗分圧器で構成され、微小な電位差を有する2つの電位VDD−V1,VDD−V2(但し、V1>V2)と、この電位差(V1−V2)と同じ電位V3を出力するものである。   The reference voltage generation unit 1 includes a resistor voltage divider connected between the power supply potential VDD and the ground potential GND, and has two potentials VDD-V1 and VDD-V2 (where V1> V2) having a minute potential difference. The same potential V3 as this potential difference (V1-V2) is output.

温度変動検出部2は、MOSトランジスタで構成された差動回路を、基準電圧生成部1で生成された微小な電位差V1−V2でバイアスし、周囲温度に応じて発生した電流差Igmを検出するものである。   The temperature fluctuation detection unit 2 biases the differential circuit composed of MOS transistors with a small potential difference V1-V2 generated by the reference voltage generation unit 1, and detects a current difference Igm generated according to the ambient temperature. Is.

この温度変動検出部2は、それぞれのゲートに、基準電圧生成部1からの電位VDD−V1,VDD−V2が与えられるPチャネルMOSトランジスタ(以下、「PMOS」という)11,12を有している。PMOS11,12のソースは共通接続され、電流調整部4から与えられる調整信号CONで導通状態が制御されるPMOS13を介して電源電位VDDに接続されている。   The temperature fluctuation detection unit 2 has P-channel MOS transistors (hereinafter referred to as “PMOS”) 11 and 12 to which the potentials VDD-V1 and VDD-V2 from the reference voltage generation unit 1 are applied at respective gates. Yes. The sources of the PMOSs 11 and 12 are connected in common and connected to the power supply potential VDD via the PMOS 13 whose conduction state is controlled by the adjustment signal CON supplied from the current adjustment unit 4.

PMOS11,12のドレインは、それぞれ抵抗14,15を介して接地電位GNDに接続されている。また、PMOS11,12のドレインは、演算増幅器(OP)16の非反転入力端子と反転入力端子に接続されている。演算増幅器16の出力側は、PMOS17のゲートに接続され、このPMOS17のソースは抵抗18を介して電源電位VDDに接続され、ソースはノードN2に接続されている。   The drains of the PMOSs 11 and 12 are connected to the ground potential GND through resistors 14 and 15, respectively. The drains of the PMOSs 11 and 12 are connected to the non-inverting input terminal and the inverting input terminal of the operational amplifier (OP) 16. The output side of the operational amplifier 16 is connected to the gate of the PMOS 17, the source of the PMOS 17 is connected to the power supply potential VDD via the resistor 18, and the source is connected to the node N2.

ノードN2には、NチャネルMOSトランジスタ(以下、「NMOS」という)19のドレイン及びゲートと、NMOS20,21のゲートが接続されている。NMOS19〜21のソースは接地電位GNDに接続され、このNMOS20のドレインはPMOS11のドレインに接続され、NMOS21のドレインは抵抗22を介して電源電位VDDに接続されている。そして、NMOS21のドレインから、周囲温度に応じて発生した電流差が電圧Vgmに変換されて出力されるようになっている。   The node N2 is connected to the drain and gate of an N-channel MOS transistor (hereinafter referred to as “NMOS”) 19 and the gates of NMOS 20 and 21. The sources of the NMOSs 19 to 21 are connected to the ground potential GND, the drain of the NMOS 20 is connected to the drain of the PMOS 11, and the drain of the NMOS 21 is connected to the power supply potential VDD via the resistor 22. The current difference generated according to the ambient temperature is converted from the drain of the NMOS 21 into the voltage Vgm and output.

比較電流生成部3は、基準電圧生成部1で生成された電位V3(=V1−V2)を抵抗に印加することにより、比較用の基準電流Irfを生成するものである。   The comparison current generator 3 generates the reference current Irf for comparison by applying the potential V3 (= V1-V2) generated by the reference voltage generator 1 to the resistor.

この比較電流生成部3は、反転入力端子に基準電圧生成部1からの電位V3が与えられる演算増幅器31を有している。演算増幅器31の出力側はPMOS32のゲートに接続され、このPMOS32のソースは電源電位VDDに接続されている。PMOS32のドレインは、演算増幅器31の非反転入力端子に接続されると共に、抵抗33を介して接地電位GNDに接続されている。   The comparison current generator 3 has an operational amplifier 31 to which the potential V3 from the reference voltage generator 1 is applied to the inverting input terminal. The output side of the operational amplifier 31 is connected to the gate of the PMOS 32, and the source of the PMOS 32 is connected to the power supply potential VDD. The drain of the PMOS 32 is connected to the non-inverting input terminal of the operational amplifier 31 and is connected to the ground potential GND through the resistor 33.

演算増幅器31の出力側は、更にPMOS34のゲートに接続され、このPMOS34のソースは電源電位VDDに接続されている。PMOS34のドレインは、NMOS35のドレイン及びゲートと、NMOS36のゲートに接続されている。NMOS35,36のソースは接地電位GNDに接続され、このNMOS36のドレインが、抵抗37を介して電源電位VDDに接続されている。そして、NMOS36のドレインから、比較用の基準電流Irfが電圧Vrfに変換されて出力されるようになっている。   The output side of the operational amplifier 31 is further connected to the gate of the PMOS 34, and the source of the PMOS 34 is connected to the power supply potential VDD. The drain of the PMOS 34 is connected to the drain and gate of the NMOS 35 and the gate of the NMOS 36. The sources of the NMOSs 35 and 36 are connected to the ground potential GND, and the drain of the NMOS 36 is connected to the power supply potential VDD via the resistor 37. The reference current Irf for comparison is converted into a voltage Vrf and output from the drain of the NMOS 36.

電流調整部4は、温度変動検出部2で検出される電流差Igmが、比較電流生成部3で生成された基準電流Irfと同じ値になるような調整信号CONを生成し、この温度変動検出部2から出力される電流差Igmを調整するものである。   The current adjustment unit 4 generates an adjustment signal CON so that the current difference Igm detected by the temperature fluctuation detection unit 2 becomes the same value as the reference current Irf generated by the comparison current generation unit 3, and detects the temperature fluctuation. The current difference Igm output from the unit 2 is adjusted.

この電流調整部4は、演算増幅器41を有し、この演算増幅器41の非反転入力端子が温度変動検出部2のNMOS21のドレインに接続され、反転入力端子が比較電流生成部3のNMOS36のドレインに接続されている。演算増幅器41の出力側は、NMOS42のゲートに接続され、このNMOS42のドレインはノードN4に、ソースは抵抗43を介して接地電位GNDにそれぞれ接続されている。ノードN4には、PMOS44のドレインとゲートが接続され、このPMOS44のソースが電源電位VDDに接続されている。更にノードN4と接地電位GNDの間には、定電流回路45が接続されている。そして、このノードN4の電圧が調整信号CONとして、温度変動検出部2と差動増幅部5に与えられるようになっている。   The current adjustment unit 4 includes an operational amplifier 41, the non-inverting input terminal of the operational amplifier 41 is connected to the drain of the NMOS 21 of the temperature fluctuation detection unit 2, and the inverting input terminal is the drain of the NMOS 36 of the comparison current generation unit 3. It is connected to the. The output side of the operational amplifier 41 is connected to the gate of the NMOS 42, the drain of the NMOS 42 is connected to the node N 4, and the source is connected to the ground potential GND through the resistor 43. The node N4 is connected to the drain and gate of the PMOS 44, and the source of the PMOS 44 is connected to the power supply potential VDD. Further, a constant current circuit 45 is connected between the node N4 and the ground potential GND. The voltage of the node N4 is supplied to the temperature fluctuation detection unit 2 and the differential amplification unit 5 as the adjustment signal CON.

差動増幅部5は、電流調整部4から与えられる調整信号CONで駆動電流が制御されて、2つの入力信号INP,INNの電位差を増幅して相補的な出力信号OUTP,OUTNを出力するものである。   The differential amplifier 5 controls the drive current with the adjustment signal CON supplied from the current adjustment unit 4 and amplifies the potential difference between the two input signals INP and INN to output complementary output signals OUTP and OUTN. It is.

この差動増幅部5は、ゲートに調整信号CONが与えられるPMOS51を有している。PMOS51のソースは電源電位VDDに、ドレインはノードN5にそれぞれ接続されている。ノードN5は、直列接続されたPMOS52と抵抗53を介して接地電位GNDに接続されると共に、直列接続されたPMOS54と抵抗55を介して接地電位GNDに接続されている。そして、PMOS52,54のゲートに、それぞれ入力信号INP,INNが与えられ、これらのPMOS52,54のドレインから、相補的な出力信号OUTN,OUTPがそれぞれ出力されるようになっている。   The differential amplifier 5 includes a PMOS 51 to which an adjustment signal CON is given to the gate. The source of the PMOS 51 is connected to the power supply potential VDD, and the drain is connected to the node N5. The node N5 is connected to the ground potential GND via a PMOS 52 and a resistor 53 connected in series, and is connected to the ground potential GND via a PMOS 54 and a resistor 55 connected in series. Input signals INP and INN are applied to the gates of the PMOSs 52 and 54, respectively, and complementary output signals OUTN and OUTP are output from the drains of the PMOSs 52 and 54, respectively.

なお、演算増幅器16,31,41は、いずれも同様の回路構成で、図1の右下の一点鎖線枠内に示すように、ゲートがそれぞれ非反転入力端子及び反転入力端子に対応するNMOSa,bを有している。NMOSa,bのソースは接地電位GNDに接続され、このNMOSaのドレインは、PMOScのドレイン及びゲートとPMOSdのゲートに接続されている。PMOSc,dのソースは電源電位VDDに接続され、このPMOSdのドレインはNMOSbのドレインに接続されている。そして、NMOSbとPMOSdのドレイン同士の接続箇所が、この演算増幅器の出力端子outとなっている。   The operational amplifiers 16, 31, and 41 all have the same circuit configuration, and as shown in the one-dot chain line frame in the lower right of FIG. 1, the gates of the NMOSs a and B correspond to the non-inverting input terminal and the inverting input terminal, respectively. b. The sources of the NMOSa and b are connected to the ground potential GND, and the drain of the NMOSa is connected to the drain and gate of the PMOSc and the gate of the PMOSd. The sources of the PMOSs c and d are connected to the power supply potential VDD, and the drain of the PMOSd is connected to the drain of the NMOSb. The connection point between the drains of NMOSb and PMOSd is the output terminal out of this operational amplifier.

ここで、この差動増幅回路を構成する各素子の定数及びサイズは、次のように設定されているものとする。   Here, it is assumed that the constants and sizes of the elements constituting the differential amplifier circuit are set as follows.

抵抗14,15、抵抗22,37、及び抵抗53,55は、それぞれ同一の抵抗値とする。PMOS11,12,52,54、PMOS13,44,51、PMOS32,34、NMOS19,20,21、及びNMOS35,36は、それぞれ同一サイズとする。また、演算増幅器16,31,41を構成するNMOSa,b、及びPMOSc,dも、それぞれ同一サイズとする。   The resistors 14 and 15, the resistors 22 and 37, and the resistors 53 and 55 have the same resistance value. The PMOSs 11, 12, 52, 54, PMOSs 13, 44, 51, PMOSs 32, 34, NMOSs 19, 20, 21, and NMOSs 35, 36 are the same size. Also, the NMOSs a and b and the PMOSs c and d constituting the operational amplifiers 16, 31, and 41 have the same size.

このように、この差動増幅回路では、電源電位VDDと接地電位GNDの間に直列に接続されるトランジスタの数を2個までに制限し、電源電圧の低電圧化を図っている。   Thus, in this differential amplifier circuit, the number of transistors connected in series between the power supply potential VDD and the ground potential GND is limited to two to reduce the power supply voltage.

次に動作を説明する。
温度変動検出部2では、PMOS11〜13と抵抗14,15によって差動増幅器が構成され、PMOS11,12のゲートは、それぞれ電位VDD−V1,VDD−V2にバイアスされている。従って、PMOS11,12に流れる電流をそれぞれIa,Ibとし、PMOS13に流れる電流をIとすれば、VDD−V1<VDD−V2であるので、次の関係が成り立つ。
I=Ia+Ib、Ia>Ib
Next, the operation will be described.
In the temperature fluctuation detection unit 2, a differential amplifier is configured by the PMOSs 11 to 13 and the resistors 14 and 15, and the gates of the PMOSs 11 and 12 are biased to the potentials VDD-V1 and VDD-V2, respectively. Accordingly, assuming that the currents flowing through the PMOSs 11 and 12 are Ia and Ib and the current flowing through the PMOS 13 is I, VDD−V1 <VDD−V2, and therefore, the following relationship is established.
I = Ia + Ib, Ia> Ib

PMOS11,12のドレインは、それぞれ演算増幅器16の非反転入力端子と反転入力端子に接続されている。ここで、演算増幅器16の非反転入力端子の電位が上昇すると、出力電位も上昇する。演算増幅器16は、PMOS17,NMOS19,20及び抵抗18によってソースフォロワ回路が構成されているので、この演算増幅器16の出力電位が上昇すると、PMOS17に流れる電流Igmが減少する。PMOS17はNMOS19と直列に接続され、このNMOS19とNMOS20がカレントミラーを構成しているので、このNMOS20に流れる電流もIgmである。従って、演算増幅器16の非反転入力端子の電位上昇でこの演算増幅器16の出力電位が上昇すると、NMOS20に流れる電流Igmが減少する。   The drains of the PMOSs 11 and 12 are connected to the non-inverting input terminal and the inverting input terminal of the operational amplifier 16, respectively. Here, when the potential at the non-inverting input terminal of the operational amplifier 16 increases, the output potential also increases. Since the operational amplifier 16 forms a source follower circuit by the PMOS 17, NMOS 19 and 20, and the resistor 18, when the output potential of the operational amplifier 16 increases, the current Igm flowing through the PMOS 17 decreases. The PMOS 17 is connected in series with the NMOS 19, and the NMOS 19 and the NMOS 20 constitute a current mirror. Therefore, the current flowing through the NMOS 20 is also Igm. Therefore, when the output potential of the operational amplifier 16 rises due to the rise in the potential of the non-inverting input terminal of the operational amplifier 16, the current Igm flowing through the NMOS 20 decreases.

NMOS20の電流は、NMOS11のドレインから供給されているので、このNMOS20の電流が減少すると、NMOS11のドレインから抵抗14側へ流れる電流がその分だけ増加する。これにより、抵抗14による電圧降下が増加し、演算増幅器16の反転入力端子の電位が上昇する。このような動作により、演算増幅器16の反転入力端子と非反転入力端子の電位は等しくなり、次の式が成り立つ。
Ia×R14=(Ib−Igm)×R15
Since the current of the NMOS 20 is supplied from the drain of the NMOS 11, when the current of the NMOS 20 decreases, the current flowing from the drain of the NMOS 11 toward the resistor 14 increases accordingly. As a result, the voltage drop due to the resistor 14 increases, and the potential of the inverting input terminal of the operational amplifier 16 increases. By such an operation, the potentials of the inverting input terminal and the non-inverting input terminal of the operational amplifier 16 become equal, and the following equation is established.
Ia * R14 = (Ib-Igm) * R15

ここで、R14,R15は、それぞれ抵抗14,15の抵抗値で、これらは同一の値に設定されているので、上式は次式のようになる。
Ib=Ia−Igm ・・(1)
Here, R14 and R15 are the resistance values of the resistors 14 and 15, respectively, and these are set to the same value, so the above equation becomes as follows.
Ib = Ia-Igm (1)

また、電流Iaは、PMOS11のドレイン・ソース電流であるので、次式となる。
Ia=k×(V1−Vs−Vt) ・・(2)
ここで、VsはPMOS11のソースの電位、VtはPMOS11の閾値電圧、kはPMOS11のディメンジョン(ゲート幅W/ゲート長L)に比例する定数である。
Further, since the current Ia is the drain / source current of the PMOS 11, the following equation is obtained.
Ia = k × (V1−Vs−Vt) 2 (2)
Here, Vs is the source potential of the PMOS 11, Vt is the threshold voltage of the PMOS 11, and k is a constant proportional to the dimension of the PMOS 11 (gate width W / gate length L).

同様に、電流IbはPMOS12のドレイン・ソース電流であり、PMOS11,12は同一サイズであるの、次式で表される。
Ib=k×(V2−Vs−Vt) ・・(3)
Similarly, the current Ib is the drain-source current of the PMOS 12, and the PMOSs 11 and 12 have the same size.
Ib = k × (V2−Vs−Vt) 2 ... (3)

(1)式に、(2),(3)式を代入すると、次の等式が得られる。
k×(V2−Vs−Vt)=k×(V1−Vs−Vt)−Igm
従って、Igmは次のようになる。
Igm=k×(V1−Vs−Vt)−k×(V2−Vs−Vt)
=k×(V1−Vs−Vt+V2−Vs−VT)×(V1−V2) ・・(4)
Substituting Equations (2) and (3) into Equation (1) yields the following equation:
k * (V2-Vs-Vt) 2 = k * (V1-Vs-Vt) 2- Igm
Therefore, Igm is as follows.
Igm = k * (V1-Vs-Vt) 2- k * (V2-Vs-Vt) 2
= K * (V1-Vs-Vt + V2-Vs-VT) * (V1-V2) (4)

MOSトランジスタの静特性は、Ids=k×(Vg−Vs−Vt) であるので、そのコンダクタンスgmは、次のようになる。
gm=2k×(Vg−Vs−Vt) ・・(5)
Since the static characteristic of the MOS transistor is Ids = k × (Vg−Vs−Vt) 2 , the conductance gm is as follows.
gm = 2k × (Vg−Vs−Vt) (5)

ここで、PMOS11,12のコンダクタンスを、それぞれgm1,gm2とすれば、(4),(5)式から、次式が得られる。
Igm=(gm1/2+gm2/2)×(V1−V2) ・・(6)
Here, if the conductances of the PMOSs 11 and 12 are gm1 and gm2, respectively, the following equations are obtained from the equations (4) and (5).
Igm = (gm1 / 2 + gm2 / 2) × (V1-V2) (6)

ここで、電圧V1,V2の差を小さくすると、gm1とgm2はほぼ等しくなる。ほぼ等しいコンダクタンスgm1,gm2を、gmorgとすると、(6)式は次のようになる。
Igm=gmorg×(V1−V2) ・・(7)
Here, when the difference between the voltages V1 and V2 is reduced, gm1 and gm2 are substantially equal. When substantially equal conductances gm1 and gm2 are gmorg, the equation (6) is as follows.
Igm = gmor × (V1−V2) (7)

NMOS19,21はカレントミラーを構成し、これらのサイズは同一であるので、NMOS21に流れる電流もIgmとなる。従って、NMOS21のドレインの電位Vgmは、抵抗22の抵抗値をR22とすると、次のようになる。
Vgm=VDD−Igm×R22
=VDD−gmorg×(V1−V2)×R22 ・・(8)
The NMOSs 19 and 21 constitute a current mirror, and since their sizes are the same, the current flowing through the NMOS 21 is also Igm. Therefore, the potential Vgm of the drain of the NMOS 21 is as follows when the resistance value of the resistor 22 is R22.
Vgm = VDD-Igm × R22
= VDD-gmorg * (V1-V2) * R22 (8)

一方、比較電流生成部3では、演算増幅器31、PMOS32及び抵抗33が、ボルテージフォロワを構成している。これにより、演算増幅器31の反転入力端子の電位が上昇すると、この演算増幅器31の出力電位が下降し、PMOS32の電流が増加する。これに従い、抵抗33の電圧降下が増加して演算増幅器31の非反転入力端子の電位が上昇する。逆に、反転入力端子の電位が低下すると、演算増幅器31の出力電位が上昇し、PMOS32の電流が減少する。これに従い、抵抗33の電圧降下が減少して演算増幅器31の非反転入力端子の電位が低下するする。このような動作により、抵抗33に印加される電圧は、演算増幅器31の非反転入力端子の電位と同じV3となり、PMOS32に流れる電流Irfは、抵抗33の抵抗値をR33とすると、次のようになる。
Irf=V3/R33
On the other hand, in the comparison current generator 3, the operational amplifier 31, the PMOS 32, and the resistor 33 constitute a voltage follower. As a result, when the potential at the inverting input terminal of the operational amplifier 31 increases, the output potential of the operational amplifier 31 decreases and the current of the PMOS 32 increases. Accordingly, the voltage drop of the resistor 33 increases, and the potential of the non-inverting input terminal of the operational amplifier 31 increases. Conversely, when the potential at the inverting input terminal decreases, the output potential of the operational amplifier 31 increases and the current of the PMOS 32 decreases. In accordance with this, the voltage drop of the resistor 33 decreases and the potential of the non-inverting input terminal of the operational amplifier 31 decreases. By such an operation, the voltage applied to the resistor 33 becomes V3 which is the same as the potential of the non-inverting input terminal of the operational amplifier 31, and the current Irf flowing through the PMOS 32 is as follows when the resistance value of the resistor 33 is R33 become.
Irf = V3 / R33

PMOS32,34のゲートは、演算増幅器31の出力側に共通接続され、これらのサイズは同一であるので、PMOS34及びNMOS35に流れる電流もIrfとなる。また、NMOS35,36はカレントミラーを構成しているので、このNMOS36に流れる電流もIrfとなる。従って、NMOS36のドレインの電位Vrfは、抵抗37の抵抗値をR37とすると、次のようになる。
Vrf=VDD−Irf×R37
=VDD−V3×R37/R33 ・・(9)
The gates of the PMOSs 32 and 34 are commonly connected to the output side of the operational amplifier 31, and since the sizes thereof are the same, the current flowing through the PMOS 34 and the NMOS 35 is also Irf. Further, since the NMOSs 35 and 36 constitute a current mirror, the current flowing through the NMOS 36 is also Irf. Therefore, the potential Vrf of the drain of the NMOS 36 is as follows when the resistance value of the resistor 37 is R37.
Vrf = VDD−Irf × R37
= VDD-V3 × R37 / R33 (9)

電流調整部4の演算増幅器41には、温度変動検出部2からの電位Vgmと、比較電流生成部3からの電位Vrfが与えられる。   The operational amplifier 41 of the current adjustment unit 4 is supplied with the potential Vgm from the temperature fluctuation detection unit 2 and the potential Vrf from the comparison current generation unit 3.

演算増幅器41の非反転入力端子に与えられる電位Vgmと、反転入力端子に与えられる電位Vrfが同じであった状態から、非反転入力端子の電位Vgmが上昇すると、この演算増幅器41の出力電位も上昇する。演算増幅器41の出力側に接続されたNMOS42と抵抗43は、ソースフォロワを構成しているので、この抵抗43に印加される電圧が増加する。これにより、NMOS42に流れる電流が増加する。定電流回路45に流れる電流は一定であるので、PMOS44に流れる電流は、NMOS42の増加電流と同じ電流だけ増加する。   If the potential Vgm applied to the non-inverting input terminal of the operational amplifier 41 and the potential Vrf applied to the inverting input terminal are the same, and the potential Vgm of the non-inverting input terminal rises, the output potential of the operational amplifier 41 is also increased. To rise. Since the NMOS 42 and the resistor 43 connected to the output side of the operational amplifier 41 constitute a source follower, the voltage applied to the resistor 43 increases. As a result, the current flowing through the NMOS 42 increases. Since the current flowing through the constant current circuit 45 is constant, the current flowing through the PMOS 44 increases by the same current as the increased current of the NMOS 42.

PMOS44は、温度変動検出部2のPMOS13とカレントミラーを構成し、これらは同一サイズに設定されているので、PMOS44,13に流れる電流の大きさは同じIとなる。従って、温度変動検出部2のPMOS13に流れる電流も、NMOS42の増加電流と同じ電流だけ増加する。これにより、温度変動検出部2のPMOS11,12に流れる電流Ia,Ibも増加する。   The PMOS 44 constitutes a current mirror with the PMOS 13 of the temperature variation detection unit 2, and since these are set to the same size, the currents flowing through the PMOSs 44 and 13 have the same I. Accordingly, the current flowing through the PMOS 13 of the temperature variation detection unit 2 also increases by the same current as the increased current of the NMOS 42. As a result, the currents Ia and Ib flowing through the PMOSs 11 and 12 of the temperature fluctuation detection unit 2 also increase.

ここで、(5)式のコンダクタンスgmを別の記述で表現すると、gm=2√(k×Ids) であるから、MOSトランジスタに流れる電流の増加に伴い、コンダクタンスgmが増加することになる。これにより、PMOS11,12の電流Ia,Ibが増加すると、(8)式中のコンダクタンスgmorgが増加し、Vgmは下降する。   Here, when the conductance gm in the equation (5) is expressed by another description, gm = 2√ (k × Ids), the conductance gm increases as the current flowing through the MOS transistor increases. As a result, when the currents Ia and Ib of the PMOSs 11 and 12 increase, the conductance gmor in the equation (8) increases and Vgm decreases.

逆に、演算増幅器41の非反転入力端子の電位Vgmが下降した場合は、同様の帰還経路によって、この電位Vgmが上昇するように動作する。これにより、演算増幅器41の非反転入力端子に与えられる電位Vgmと、反転入力端子に与えられる電位Vrfは常に同電位となるように制御される。従って、(8),(9)式より、次の等式が成り立つ。
VDD−V3×R37/R33=VDD−gmorg×(V1−V2)×R22
これにより、gmorgは次式で表される。
gmorg=V3/(V1−V2)×R37/(R33×R22)
ここで、V3=V1−V2、R22=R37 であるから、gmorgは次のようになる。
gmorg=1/R33 ・・(10)
Conversely, when the potential Vgm at the non-inverting input terminal of the operational amplifier 41 falls, the operation is performed so that the potential Vgm rises by the same feedback path. As a result, the potential Vgm applied to the non-inverting input terminal of the operational amplifier 41 and the potential Vrf applied to the inverting input terminal are controlled to be always the same potential. Therefore, the following equation is established from the equations (8) and (9).
VDD−V3 × R37 / R33 = VDD−gmor × (V1−V2) × R22
Thereby, gmorg is expressed by the following equation.
gmorg = V3 / (V1-V2) × R37 / (R33 × R22)
Here, since V3 = V1-V2 and R22 = R37, gmorg is as follows.
gmorg = 1 / R33 (10)

差動増幅部5では、PMOS51が電流調整部4のPMOS41との間でカレントミラーを構成し、これらのPMOS41,51は同一サイズに設定されているので、このPMOS51に流れる電流もIとなる。従って、PMOS52,54のゲートに入力される入力信号INP,INNが均衡した状態のとき、これらのPMOS52,54のコンダクタンスgmは、温度変動検出部2におけるPMOS11,12のコンダクタンスの値、即ちgmorgに一致する。ここで、差動増幅部5の利得Gainは、PMOS52(54)のコンダクタンスgmorgと、抵抗53(55)の抵抗値R53の積となるので、次式のようになる。
Gain=gmorg×R53
In the differential amplifying unit 5, the PMOS 51 forms a current mirror with the PMOS 41 of the current adjusting unit 4, and these PMOSs 41 and 51 are set to the same size, so that the current flowing through the PMOS 51 is also I. Therefore, when the input signals INP and INN input to the gates of the PMOSs 52 and 54 are in a balanced state, the conductance gm of the PMOSs 52 and 54 is equal to the conductance value of the PMOSs 11 and 12 in the temperature variation detection unit 2, that is, gmorg. Match. Here, the gain Gain of the differential amplifier 5 is the product of the conductance gmor of the PMOS 52 (54) and the resistance value R53 of the resistor 53 (55).
Gain = gmor × R53

上式に(10)式を代入すると、差動増幅部5の利得Gainは、次のようになる。
Gain=R53/R33
即ち、差動増幅部5の利得Gainは抵抗の比で決定される。
Substituting equation (10) into the above equation, the gain Gain of the differential amplifying unit 5 is as follows.
Gain = R53 / R33
That is, the gain Gain of the differential amplifier 5 is determined by the resistance ratio.

以上のように、この実施例の差動増幅回路は、差動回路を微小な電位差V1−V2でバイアスして周囲温度に応じて発生した電流差を検出する温度変動検出部2と、この微小な電位差V1−V2に応じた比較用の基準電流を生成する比較電流生成部3と、温度変動検出部2から出力される電位Vgmと、比較電流生成部3から出力される電位Vrfとを同じ値にするための調整信号COMを生成する電流調整部4を有し、この調整信号COMで差動増幅部5の利得を制御するようにしている。これにより、差動増幅部5の利得を抵抗値の比で決定することができるので、抵抗値の製造ばらつきや温度変動に依存せず、一定の利得を得ることができるという利点がある。   As described above, the differential amplifier circuit of this embodiment includes the temperature fluctuation detection unit 2 that detects the current difference generated according to the ambient temperature by biasing the differential circuit with the minute potential difference V1-V2, and the minute fluctuation circuit. The comparison current generation unit 3 that generates a reference current for comparison according to the potential difference V1−V2, the potential Vgm output from the temperature fluctuation detection unit 2, and the potential Vrf output from the comparison current generation unit 3 are the same. A current adjustment unit 4 that generates an adjustment signal COM for setting the value is provided, and the gain of the differential amplification unit 5 is controlled by the adjustment signal COM. As a result, the gain of the differential amplifying unit 5 can be determined by the ratio of the resistance values, so that there is an advantage that a constant gain can be obtained without depending on manufacturing variations of resistance values and temperature fluctuations.

更に、この差動増幅器を構成する温度変動検出部2、比較電流生成部3、電流調整部4、及び差動増幅部5は、電源電位VDDと接地電位GNDの間に直列に接続されるトランジスタの数を2個までに制限する回路構成としている。これにより、例えば1.35Vのような低電源電圧でも正常な動作が可能になるという利点がある。   Further, the temperature fluctuation detection unit 2, the comparison current generation unit 3, the current adjustment unit 4, and the differential amplification unit 5 constituting the differential amplifier are transistors connected in series between the power supply potential VDD and the ground potential GND. The circuit configuration is limited to two. As a result, there is an advantage that normal operation is possible even with a low power supply voltage such as 1.35V.

なお、本発明は、上記実施例に限定されず、種々の変形が可能である。この変形例としては、例えば、次のようなものがある。   In addition, this invention is not limited to the said Example, A various deformation | transformation is possible. Examples of this modification include the following.

制御対象の差動増幅部5は、1つに限らず、複数の差動増幅部を同じ調整信号COMで同時に制御するようにすることができる。   The number of differential amplifiers 5 to be controlled is not limited to one, and a plurality of differential amplifiers can be controlled simultaneously with the same adjustment signal COM.

本発明の実施例を示す差動増幅回路の構成図である。It is a block diagram of the differential amplifier circuit which shows the Example of this invention. 従来の差動増幅回路の構成図である。It is a block diagram of the conventional differential amplifier circuit.

符号の説明Explanation of symbols

1 基準電圧生成部
2 温度変動検出部
3 比較電流生成部
4 電流調整部
5 差動増幅部
11〜13,17,32,34,44,51,52,54 PMOS
14,15,18,22,33,37,43,53,55 抵抗
16,31,41 演算増幅器
19〜21,35,36,42 NMOS
45 定電流回路
DESCRIPTION OF SYMBOLS 1 Reference voltage generation part 2 Temperature fluctuation detection part 3 Comparison current generation part 4 Current adjustment part 5 Differential amplification part 11-13, 17, 32, 34, 44, 51, 52, 54 PMOS
14, 15, 18, 22, 33, 37, 43, 53, 55 Resistors 16, 31, 41 Operational amplifiers 19-21, 35, 36, 42 NMOS
45 Constant current circuit

Claims (2)

調整信号で制御される定電流部の電流に応じて利得が制御される差動増幅手段と、
前記差動増幅手段と同一構成の差動回路を有し、該差動回路の2つの入力側を微小な電位差でバイアスして温度変動に応じて発生した電流差を検出する温度変動検出手段と、
前記微小な電位差に応じた比較用の基準電流を生成する比較電流生成手段と、
前記温度変動検出手段で検出された電流差と前記比較電流生成手段で生成された基準電流が同じ値となるように前記調整信号を出力する電流調整手段とを、
備えたことを特徴とする差動増幅回路。
Differential amplification means whose gain is controlled in accordance with the current of the constant current section controlled by the adjustment signal;
A temperature fluctuation detecting means having a differential circuit having the same configuration as the differential amplifying means, and biasing two input sides of the differential circuit with a small potential difference to detect a current difference generated according to the temperature fluctuation; ,
Comparison current generating means for generating a reference current for comparison according to the minute potential difference;
Current adjusting means for outputting the adjustment signal so that the current difference detected by the temperature fluctuation detecting means and the reference current generated by the comparison current generating means have the same value;
A differential amplifier circuit comprising:
前記差動増幅手段、前記温度変動検出手段、前記比較電流生成手段及び前記電流調整手段は、電源電位と接地電位の間に直列に接続されるトランジスタの数を2個以下で構成したことを特徴とする請求項1記載の差動増幅回路。   The differential amplifying means, the temperature fluctuation detecting means, the comparison current generating means, and the current adjusting means comprise two or less transistors connected in series between a power supply potential and a ground potential. The differential amplifier circuit according to claim 1.
JP2005333099A 2005-11-17 2005-11-17 Differential amplifier circuit Expired - Fee Related JP4332522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005333099A JP4332522B2 (en) 2005-11-17 2005-11-17 Differential amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005333099A JP4332522B2 (en) 2005-11-17 2005-11-17 Differential amplifier circuit

Publications (2)

Publication Number Publication Date
JP2007142757A true JP2007142757A (en) 2007-06-07
JP4332522B2 JP4332522B2 (en) 2009-09-16

Family

ID=38205096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005333099A Expired - Fee Related JP4332522B2 (en) 2005-11-17 2005-11-17 Differential amplifier circuit

Country Status (1)

Country Link
JP (1) JP4332522B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124693A (en) * 2009-12-09 2011-06-23 Asahi Kasei Electronics Co Ltd Frequency conversion circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124693A (en) * 2009-12-09 2011-06-23 Asahi Kasei Electronics Co Ltd Frequency conversion circuit

Also Published As

Publication number Publication date
JP4332522B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP2007049233A (en) Constant current circuit
JP5690469B2 (en) Differential amplifier, reference voltage generation circuit, differential amplification method, and reference voltage generation method
US9407221B2 (en) Differential amplifier circuit
JP2009290844A (en) Amplifier, and offset adjustment circuit
JP2010268350A (en) Termination resistance adjusting circuit
US20050184805A1 (en) Differential amplifier circuit
US20070210856A1 (en) Band gap constant-voltage circuit
US7443240B2 (en) AM intermediate frequency variable gain amplifier circuit, variable gain amplifier circuit and its semiconductor integrated circuit
US7279985B2 (en) Regulated cascode amplifier with small-sized feed-back amplifier
JP2004328640A (en) Circuit for generating bias current, circuit for driving laser diode, and transmitter for optical communication
JP4694942B2 (en) Constant current circuit
KR100419015B1 (en) Current sense amplifier
JP4332522B2 (en) Differential amplifier circuit
JP4892366B2 (en) Overcurrent protection circuit and voltage regulator
JP2006329655A (en) Current detecting circuit and constant voltage supply circuit
JP3839651B2 (en) Stabilized power circuit
US11695377B2 (en) Amplifier with low component count and accurate gain
JP2004274207A (en) Bias voltage generator circuit and differential amplifier
US10720890B1 (en) High-speed high-accuracy amplifier and method thereof
US9455676B2 (en) Semiconductor circuit and amplifier circuit
US7030696B2 (en) Differential amplifier and semiconductor device
US10873305B2 (en) Voltage follower circuit
US8922279B2 (en) Voltage controlled variable gain amplifier circuit
JP2006222495A (en) Photocurrent detection circuit
US7852157B2 (en) Differential amplifier

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees