JP2007142272A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2007142272A
JP2007142272A JP2005336085A JP2005336085A JP2007142272A JP 2007142272 A JP2007142272 A JP 2007142272A JP 2005336085 A JP2005336085 A JP 2005336085A JP 2005336085 A JP2005336085 A JP 2005336085A JP 2007142272 A JP2007142272 A JP 2007142272A
Authority
JP
Japan
Prior art keywords
layer
semiconductor substrate
drain
electrode
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005336085A
Other languages
Japanese (ja)
Inventor
Masamichi Yanagida
正道 柳田
Tetsuya Yoshida
哲哉 吉田
Kojiro Kameyama
工次郎 亀山
Hiroki Eto
弘樹 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005336085A priority Critical patent/JP2007142272A/en
Publication of JP2007142272A publication Critical patent/JP2007142272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow resistance to be smaller by constituting a drain electrode composed of a through-hole electrode penetrating a semiconductor substrate, so as to shorten an electric current route passing through a semiconductor substrate compared with a conventional structure. <P>SOLUTION: A semiconductor device includes an epitaxial layer 2 formed on an n-type semiconductor substrate 1, a p-type impurity diffused layer 3 formed on the epitaxial layer 2, a trench groove 4 formed to have a prescribed depth in the epitaxial layer 2 from the surface layer of the impurity diffused layer 3, a gate electrode 6 formed by embedding a conductive layer in the trench groove 4 via an insulating layer 5, source layers 7 formed on the surface layer of the impurity diffused layer 3 and also in both the sidewalls of the trench groove 4 so as to be adjacent to the insulating layer 5, a drain layer 9 formed to have a through-hole electrode structure in a through-hole 1A which is formed to penetrate the semiconductor substrate 1 from the surface layer of the epitaxial layer 2, and a metallic layer 14 which is formed on the rear surface of the semiconductor substrate 1 and electrically connected to the bottom part of the drain layer 9. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体装置に関し、特にトレンチ構造のアップドレイン型のMOSトランジスタを形成する技術に関する。   The present invention relates to a semiconductor device, and more particularly to a technology for forming an up drain type MOS transistor having a trench structure.

従来のトレンチ構造のアップドレイン型のMOSトランジスタは半導体基板内を電流が通過する構造である。   A conventional up-drain type MOS transistor having a trench structure has a structure in which a current passes through a semiconductor substrate.

即ち、図3に示すように、例えばN型シリコンから成る半導体基板51上にエピタキシャル層52が形成され、このエピタキシャル層52の表層にP型不純物拡散層53(チャネル領域)が形成されている。また、前記P型不純物拡散層53の表層から前記エピタキシャル層52の所定深さ位置まで達するトレンチ溝54が形成されており、このトレンチ溝54内に絶縁層55で取り囲まれたポリシリコン膜から成る導電層が埋設され、ゲート電極(G)56が構成されている。   That is, as shown in FIG. 3, an epitaxial layer 52 is formed on a semiconductor substrate 51 made of, for example, N-type silicon, and a P-type impurity diffusion layer 53 (channel region) is formed on the surface layer of the epitaxial layer 52. A trench groove 54 is formed from the surface layer of the P-type impurity diffusion layer 53 to a predetermined depth position of the epitaxial layer 52. The trench groove 54 is made of a polysilicon film surrounded by an insulating layer 55. A conductive layer is buried and a gate electrode (G) 56 is formed.

更に、前記エピタキシャル層52の表層で、かつ前記トレンチ溝54の両側壁部に前記絶縁層55に隣接したN+型のソース層57が形成され、そして、隣り合うソース層57間にまたがるようにP+型のボディー層58が形成されている。   Further, an N + type source layer 57 adjacent to the insulating layer 55 is formed on the surface layer of the epitaxial layer 52 and on both side walls of the trench groove 54, and P + so as to straddle between the adjacent source layers 57. A mold body layer 58 is formed.

また、前記エピタキシャル層52の表層から前記半導体基板51の所定深さ位置まで達するようにN型不純物拡散層が形成され、N+型のドレイン層59が構成されている。   Further, an N-type impurity diffusion layer is formed so as to reach from the surface layer of the epitaxial layer 52 to a predetermined depth position of the semiconductor substrate 51, and an N + type drain layer 59 is configured.

更に、そして、前記エピタキシャル層52上に前記ソース層57及びドレイン層59を覆うように、例えばAl合金等から成る金属層が形成され、それそれソース電極(S)60とドレイン電極(D)61が形成されている。   Further, a metal layer made of, for example, an Al alloy or the like is formed on the epitaxial layer 52 so as to cover the source layer 57 and the drain layer 59, and the source electrode (S) 60 and the drain electrode (D) 61, respectively. Is formed.

そして、前記半導体基板51の裏面に金属層62が形成されて成る半導体装置63が構成されている。
特開2004−363302号公報
A semiconductor device 63 having a metal layer 62 formed on the back surface of the semiconductor substrate 51 is formed.
JP 2004-363302 A

ここで、前記トレンチ構造のアップドレイン型のMOSトランジスタは、図3に示した矢印方向に沿って、前記ソース電極(S)60、P型不純物拡散層53、エピタキシャル層52及び半導体基板51内を通って、この半導体基板51の裏面に形成された前記金属層62を介して、再び半導体基板51内を通って、前記ドレイン電極61に電流I2が流れる。   Here, the up-drain type MOS transistor having the trench structure passes through the source electrode (S) 60, the P-type impurity diffusion layer 53, the epitaxial layer 52, and the semiconductor substrate 51 along the direction of the arrow shown in FIG. Then, the current I <b> 2 flows through the semiconductor substrate 51 again through the metal layer 62 formed on the back surface of the semiconductor substrate 51 and flows through the drain electrode 61.

このとき、高抵抗の半導体基板51を2度通過するため、製品としての抵抗値が高くなってしまう。   At this time, since the high-resistance semiconductor substrate 51 passes twice, the resistance value as a product becomes high.

そこで、本発明の半導体装置は、第1導電型の半導体基板に形成されたエピタキシャル層と、前記エピタキシャル層に形成された第2導電型の不純物拡散層と、前記不純物拡散層の表層から前記エピタキシャル層の所定深さ位置まで形成されたトレンチ溝と、前記トレンチ溝内に絶縁層を介して導電層が埋設されて成るゲート電極と、前記不純物拡散層の表層で、かつ前記トレンチ溝の両側壁部に前記絶縁層に隣接して形成されたソース層と、前記エピタキシャル層の表層から前記半導体基板を貫通するように貫通孔が穿設され、この貫通孔内に貫通電極構造を成すように形成されたドレイン層と、前記半導体基板の裏面に形成され、前記ドレイン層の底部と電気的に接続された金属層とを具備したことを特徴とするものである。   Accordingly, the semiconductor device of the present invention includes an epitaxial layer formed on a first conductivity type semiconductor substrate, a second conductivity type impurity diffusion layer formed on the epitaxial layer, and a surface layer of the impurity diffusion layer. A trench groove formed to a predetermined depth position of the layer, a gate electrode in which a conductive layer is embedded in the trench groove via an insulating layer, a surface layer of the impurity diffusion layer, and both side walls of the trench groove A through hole is formed in the portion so as to penetrate the semiconductor substrate from a source layer formed adjacent to the insulating layer and a surface layer of the epitaxial layer, and a through electrode structure is formed in the through hole. And a metal layer formed on the back surface of the semiconductor substrate and electrically connected to the bottom of the drain layer.

また、前記半導体装置が、フリップチップを構成することを特徴とする。   Further, the semiconductor device constitutes a flip chip.

更に、前記貫通電極は、1つまたは複数個から成ることを特徴とする。   Further, the through electrode is composed of one or a plurality of through electrodes.

本発明の半導体装置によれば、従来のような不純物拡散層から成るドレイン電極に比して、半導体基板を貫通した貫通電極から成るドレイン電極が構成されていることで、従来構造に比して半導体基板内を通過する電流経路が短縮されるため、低抵抗化が図れる。   According to the semiconductor device of the present invention, compared to the conventional drain electrode composed of the impurity diffusion layer, the drain electrode composed of the through electrode penetrating the semiconductor substrate is configured. Since the current path passing through the semiconductor substrate is shortened, the resistance can be reduced.

以下、本発明の半導体装置に係る一実施形態について図面を参照しながら説明する。   Hereinafter, an embodiment according to a semiconductor device of the present invention will be described with reference to the drawings.

本発明の半導体装置は、貫通電極技術を適用したアップドレイン型のMOSトランジスタ構造である。   The semiconductor device of the present invention has an up drain type MOS transistor structure to which the through electrode technology is applied.

先ず、図1に示すように一導電型、例えばN型シリコンから成る半導体基板1上にエピタキシャル層2が形成され、このエピタキシャル層2の表層にP型不純物拡散層3(チャネル領域)が形成されている。   First, as shown in FIG. 1, an epitaxial layer 2 is formed on a semiconductor substrate 1 made of one conductivity type, for example, N-type silicon, and a P-type impurity diffusion layer 3 (channel region) is formed on the surface of the epitaxial layer 2. ing.

尚、本実施形態では、例えば前記エピタキシャル層2の厚さは10μmであり、半導体基板1の厚さはエピタキシャル層2の厚さを含めて200μmで、前記P型不純物拡散層3の厚さは1〜1.5μmである。   In this embodiment, for example, the thickness of the epitaxial layer 2 is 10 μm, the thickness of the semiconductor substrate 1 is 200 μm including the thickness of the epitaxial layer 2, and the thickness of the P-type impurity diffusion layer 3 is 1 to 1.5 μm.

また、前記P型不純物拡散層3の表層から前記エピタキシャル層2の所定深さ位置まで達するトレンチ溝4が形成されており、このトレンチ溝4内に絶縁層5で取り囲まれたポリシリコン膜から成る導電層が埋設され、ゲート電極(G)6が構成されている。   Further, a trench groove 4 is formed which extends from the surface layer of the P-type impurity diffusion layer 3 to a predetermined depth position of the epitaxial layer 2, and is made of a polysilicon film surrounded by the insulating layer 5 in the trench groove 4. A conductive layer is buried and a gate electrode (G) 6 is formed.

ここで、本実施形態では、例えば前記トレンチ溝4の深さは2μmであり、トレンチ溝4の中央部の開口径は0.4μmである。   Here, in the present embodiment, for example, the depth of the trench groove 4 is 2 μm, and the opening diameter of the central portion of the trench groove 4 is 0.4 μm.

更に、前記エピタキシャル層2内には、その表層で、かつ前記トレンチ溝4の両側壁部に前記絶縁層5に隣接したN型のソース層7が形成され、そして、隣り合うソース層7間にまたがるようにP型のボディー層8が形成されている。   Further, an N-type source layer 7 adjacent to the insulating layer 5 is formed in the epitaxial layer 2 on the surface layer and on both side walls of the trench groove 4, and between the adjacent source layers 7. A P-type body layer 8 is formed so as to straddle.

また、前記エピタキシャル層2の表層から前記半導体基板1を貫通するように貫通孔1Aが穿設され、この貫通孔1A内に貫通電極構造を成すドレイン層9が構成されている。   A through hole 1A is formed from the surface layer of the epitaxial layer 2 so as to penetrate the semiconductor substrate 1, and a drain layer 9 forming a through electrode structure is formed in the through hole 1A.

ここで、前記貫通孔1Aの中央部の開口径は、例えば25μm〜30μmであり、この貫通孔1A内に、例えばTiN膜またはTiW膜等から成るバリアメタル層10が形成され、このバリアメタル層10上に不図示のシード層(例えば、Cuシード層)を介して貫通電極材料としてCu層11が形成されている。   Here, the opening diameter of the central portion of the through hole 1A is, for example, 25 μm to 30 μm, and a barrier metal layer 10 made of, for example, a TiN film or a TiW film is formed in the through hole 1A. A Cu layer 11 is formed on the substrate 10 as a through electrode material via a seed layer (for example, a Cu seed layer) (not shown).

更に、前記エピタキシャル層2上に前記ソース層7とドレイン層9をそれぞれ被覆するように、例えばAl合金(Al−Si、Al−Si−Cu、Al−Cu)等から成る金属層が形成され、それそれソース電極(S)12とドレイン電極(D)13が形成されている。   Further, a metal layer made of, for example, an Al alloy (Al—Si, Al—Si—Cu, Al—Cu) or the like is formed on the epitaxial layer 2 so as to cover the source layer 7 and the drain layer 9, respectively. A source electrode (S) 12 and a drain electrode (D) 13 are formed accordingly.

そして、前記半導体基板1の裏面に金属層14が形成されて成る半導体装置15が構成されている。従って、前記貫通電極構造のドレイン電極(D)13の底部は前記金属層14と電気的に接続されている。   A semiconductor device 15 is configured in which a metal layer 14 is formed on the back surface of the semiconductor substrate 1. Accordingly, the bottom of the drain electrode (D) 13 having the through electrode structure is electrically connected to the metal layer 14.

尚、本実施形態では、前記金属層14として、例えばTi−Ni−Au合金層(50nm−500nm−50nm)を用いているが、これ以外にも低抵抗な導電材料であれば良い。   In this embodiment, for example, a Ti—Ni—Au alloy layer (50 nm-500 nm-50 nm) is used as the metal layer 14, but any other conductive material having a low resistance may be used.

このように構成された本発明の半導体装置15である、貫通電極技術を適用したアップドレイン型のMOSトランジスタは、図1に示した矢印方向に沿って、前記ソース電極(S)12、P型不純物拡散層3、エピタキシャル層2及び半導体基板1内を通って、この半導体基板1の裏面に形成された前記金属層14を介して、前記貫通電極構造を成すドレイン電極(D)13に電流I1が流れる。   The up-drain type MOS transistor to which the through electrode technology is applied, which is the semiconductor device 15 of the present invention configured as described above, has the source electrode (S) 12, P-type along the arrow direction shown in FIG. Through the impurity diffusion layer 3, the epitaxial layer 2 and the semiconductor substrate 1, the current I 1 is supplied to the drain electrode (D) 13 forming the through electrode structure via the metal layer 14 formed on the back surface of the semiconductor substrate 1. Flows.

従って、従来の半導体装置63のように、前記ソース電極(S)60、P型不純物拡散層53、エピタキシャル層52、半導体基板51内を通って金属層62を流れた電流が、再び半導体基板51内を通ってドレイン電極(D)61に流れる構造のものに比して、電流が流れる高抵抗な半導体基板の領域を半減させることができ、製品の抵抗値を低減させることができる(本発明の半導体装置の抵抗値R1<従来の半導体装置の抵抗値R2)。   Therefore, as in the conventional semiconductor device 63, the current that flows through the metal layer 62 through the source electrode (S) 60, the P-type impurity diffusion layer 53, the epitaxial layer 52, and the semiconductor substrate 51 again becomes the semiconductor substrate 51. Compared to a structure in which a current flows through the drain electrode (D) 61, the region of the high-resistance semiconductor substrate through which current flows can be halved, and the resistance value of the product can be reduced (the present invention). The resistance value R1 of the semiconductor device <the resistance value R2 of the conventional semiconductor device).

このように本発明の半導体装置では、電流が200μmの厚さを有する半導体基板51内を通過することになるため、電流経路の一方を貫通電極から成る金属層とすることで、電流伝搬の高速化が図れる。   As described above, in the semiconductor device of the present invention, the current passes through the semiconductor substrate 51 having a thickness of 200 μm. Therefore, by using one of the current paths as a metal layer made of a through electrode, high-speed current propagation is achieved. Can be achieved.

ここで、従来のおよそ10〜20mΩcm程度のSbドープ基板結晶に代わり、最近では数mΩcm程度まで低抵抗化を実現したAsドープ基板結晶が使用されてきてはいるが、それでも従来の半導体装置構造では抵抗低減化の妨げとなってしまっていた。   Here, in place of the conventional Sb-doped substrate crystal of about 10 to 20 mΩcm, an As-doped substrate crystal realizing a low resistance of about several mΩcm has been used recently. It was an obstacle to resistance reduction.

また、本発明では、前記不純物拡散層から成るドレイン層59に比して金属が埋設された貫通電極から成るドレイン電極(D)13であるため、低抵抗化が図れる。ここで、貫通電極の体積を広げることでも、より低抵抗化を図ることができる。また、複数個の貫通電極を形成することで、全体としての体積を増大させる構造のものであっても良い。   Further, in the present invention, since the drain electrode (D) 13 is made of a through electrode in which a metal is buried, compared to the drain layer 59 made of the impurity diffusion layer, the resistance can be reduced. Here, the resistance can be further reduced by increasing the volume of the through electrode. Moreover, the thing of the structure which increases the volume as a whole by forming a some penetration electrode may be used.

このような構成の半導体装置により、低抵抗なフリップチップを実現することができる。   With the semiconductor device having such a structure, a low-resistance flip chip can be realized.

即ち、図2は、本発明を採用したフリップチップの平面図で示すもので、図2の左上のバンプ電極16がゲート電極用で、左下のバンプ電極17がソース電極(S)用で、右側上下のバンプ電極18がドレイン電極用である。尚、プリップチップの平坦性を妨げない範囲内で、更に複数のバンプ電極を構成するものであっても良い。   That is, FIG. 2 is a plan view of a flip chip adopting the present invention. In FIG. 2, the upper left bump electrode 16 is for the gate electrode, the lower left bump electrode 17 is for the source electrode (S), and the right side. The upper and lower bump electrodes 18 are for the drain electrode. It should be noted that a plurality of bump electrodes may be formed as long as the flatness of the plip chip is not hindered.

本発明の実施形態に係る半導体装置を示す断面図である。It is sectional drawing which shows the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置を示す平面図である。1 is a plan view showing a semiconductor device according to an embodiment of the present invention. 従来の半導体装置を示す断面図である。It is sectional drawing which shows the conventional semiconductor device.

符号の説明Explanation of symbols

1 半導体基板
1A 貫通孔
2 エピタキシャル層
3 P型不純物拡散層(チャネル領域)
4 トレンチ溝
5 絶縁層
6 ゲート電極(G)
7 ソース層
8 ボディー層
9 ドレイン層
10 バリアメタル層
11 Cu層
12 ソース電極(S)
13 ドレイン電極(D)
14 金属層
15 半導体装置
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 1A Through-hole 2 Epitaxial layer 3 P-type impurity diffusion layer (channel region)
4 Trench groove 5 Insulating layer 6 Gate electrode (G)
7 Source layer 8 Body layer 9 Drain layer 10 Barrier metal layer 11 Cu layer 12 Source electrode (S)
13 Drain electrode (D)
14 Metal layer 15 Semiconductor device

Claims (4)

アップドレイン型の半導体装置において、半導体基板の裏面に形成された金属層に電気的に接続され、ドレイン電極を構成する貫通電極を設けたことを特徴とする半導体装置。 In the up-drain type semiconductor device, a semiconductor device comprising a through electrode that is electrically connected to a metal layer formed on a back surface of a semiconductor substrate and forms a drain electrode. 第1導電型の半導体基板に形成されたエピタキシャル層と、前記エピタキシャル層に形成された第2導電型の不純物拡散層と、前記不純物拡散層の表層から前記エピタキシャル層の所定深さ位置まで形成されたトレンチ溝と、前記トレンチ溝内に絶縁層を介して導電層が埋設されて成るゲート電極と、前記不純物拡散層の表層で、かつ前記トレンチ溝の両側壁部に前記絶縁層に隣接して形成されたソース層と、前記エピタキシャル層の表層から前記半導体基板を貫通するように貫通孔が穿設され、この貫通孔内に貫通電極構造を成すように形成されたドレイン層と、前記半導体基板の裏面に形成され、前記ドレイン層の底部と電気的に接続された金属層とを具備したことを特徴とする半導体装置。 An epitaxial layer formed on the first conductivity type semiconductor substrate, a second conductivity type impurity diffusion layer formed on the epitaxial layer, and a surface layer of the impurity diffusion layer to a predetermined depth position of the epitaxial layer. A trench electrode, a gate electrode in which a conductive layer is embedded in the trench groove via an insulating layer, a surface layer of the impurity diffusion layer, and adjacent to the insulating layer on both side walls of the trench groove A source layer formed, a drain hole formed so as to penetrate the semiconductor substrate from a surface layer of the epitaxial layer, and a drain layer formed so as to form a through electrode structure in the through hole; and the semiconductor substrate A semiconductor device comprising a metal layer formed on the back surface of the drain layer and electrically connected to the bottom of the drain layer. 前記半導体装置が、フリップチップを構成することを特徴とする請求項1もしくは請求項2のいずれかに記載の半導体装置。 The semiconductor device according to claim 1, wherein the semiconductor device forms a flip chip. 前記貫通電極は、1つまたは複数個から成ることを特徴とする請求項1または請求項2のいずれかに記載の半導体装置。 The semiconductor device according to claim 1, wherein the through electrode includes one or a plurality of through electrodes.
JP2005336085A 2005-11-21 2005-11-21 Semiconductor device Pending JP2007142272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005336085A JP2007142272A (en) 2005-11-21 2005-11-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005336085A JP2007142272A (en) 2005-11-21 2005-11-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2007142272A true JP2007142272A (en) 2007-06-07

Family

ID=38204757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005336085A Pending JP2007142272A (en) 2005-11-21 2005-11-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2007142272A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150176A (en) * 2005-11-30 2007-06-14 Sharp Corp Semiconductor device and manufacturing method thereof
KR100943505B1 (en) * 2007-09-17 2010-02-22 주식회사 동부하이텍 A semiconductor device
US20110101525A1 (en) * 2009-10-30 2011-05-05 Vishay-Siliconix Semiconductor device with trench-like feed-throughs
CN102376765A (en) * 2010-09-22 2012-03-14 成都芯源系统有限公司 Semiconductor device and method for manufacturing the same
US8604525B2 (en) 2009-11-02 2013-12-10 Vishay-Siliconix Transistor structure with feed-through source-to-substrate contact
EP3051592A1 (en) * 2015-01-27 2016-08-03 Nxp B.V. Semiconductor device
US9425304B2 (en) 2014-08-21 2016-08-23 Vishay-Siliconix Transistor structure with improved unclamped inductive switching immunity
CN110520999A (en) * 2016-06-30 2019-11-29 德州仪器公司 The power MOSFET of the deep decanting zone contact with metal filling of wafer-level package
WO2022224889A1 (en) * 2021-04-22 2022-10-27 有限会社Mtec Semiconductor element manufacturing method and vertical mosfet element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181373A (en) * 1987-01-22 1988-07-26 Mitsubishi Electric Corp Semiconductor device
JPH1168092A (en) * 1997-08-08 1999-03-09 Nissan Motor Co Ltd Trench-type semiconductor device
JP2002353452A (en) * 2001-05-25 2002-12-06 Toshiba Corp Power semiconductor element
JP2006121041A (en) * 2004-09-24 2006-05-11 Toshiba Corp Semiconductor device and manufacturing method of semiconductor device
JP2008509557A (en) * 2004-08-03 2008-03-27 フェアチャイルド・セミコンダクター・コーポレーション Semiconductor power device with surface side drain using recessed trench

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181373A (en) * 1987-01-22 1988-07-26 Mitsubishi Electric Corp Semiconductor device
JPH1168092A (en) * 1997-08-08 1999-03-09 Nissan Motor Co Ltd Trench-type semiconductor device
JP2002353452A (en) * 2001-05-25 2002-12-06 Toshiba Corp Power semiconductor element
JP2008509557A (en) * 2004-08-03 2008-03-27 フェアチャイルド・セミコンダクター・コーポレーション Semiconductor power device with surface side drain using recessed trench
JP2006121041A (en) * 2004-09-24 2006-05-11 Toshiba Corp Semiconductor device and manufacturing method of semiconductor device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150176A (en) * 2005-11-30 2007-06-14 Sharp Corp Semiconductor device and manufacturing method thereof
KR100943505B1 (en) * 2007-09-17 2010-02-22 주식회사 동부하이텍 A semiconductor device
US10032901B2 (en) 2009-10-30 2018-07-24 Vishay-Siliconix Semiconductor device with trench-like feed-throughs
US9306056B2 (en) * 2009-10-30 2016-04-05 Vishay-Siliconix Semiconductor device with trench-like feed-throughs
US20110101525A1 (en) * 2009-10-30 2011-05-05 Vishay-Siliconix Semiconductor device with trench-like feed-throughs
CN102648517A (en) * 2009-10-30 2012-08-22 维西埃-硅化物公司 Semiconductor device
KR20120118455A (en) * 2009-10-30 2012-10-26 비쉐이-실리코닉스 Semiconductor device
JP2013509729A (en) * 2009-10-30 2013-03-14 ヴィシェイ−シリコニックス Semiconductor element
WO2011053880A3 (en) * 2009-10-30 2011-08-04 Vishay-Siliconix Semiconductor device
US20170025527A1 (en) * 2009-10-30 2017-01-26 Vishay-Siliconix Semiconductor device with trench-like feed-throughs
KR101659853B1 (en) * 2009-10-30 2016-09-30 비쉐이-실리코닉스 Semiconductor device
US8604525B2 (en) 2009-11-02 2013-12-10 Vishay-Siliconix Transistor structure with feed-through source-to-substrate contact
US9064896B2 (en) 2009-11-02 2015-06-23 Vishay-Siliconix Transistor structure with feed-through source-to-substrate contact
US9443959B2 (en) 2009-11-02 2016-09-13 Vishay-Siliconix Transistor structure with feed-through source-to-substrate contact
CN102376765A (en) * 2010-09-22 2012-03-14 成都芯源系统有限公司 Semiconductor device and method for manufacturing the same
TWI482281B (en) * 2010-09-22 2015-04-21 Monolithic Power Systems Inc Vertical discrete devices with trench contacts and associated methods of manufacturing
US9716166B2 (en) 2014-08-21 2017-07-25 Vishay-Siliconix Transistor structure with improved unclamped inductive switching immunity
US9425304B2 (en) 2014-08-21 2016-08-23 Vishay-Siliconix Transistor structure with improved unclamped inductive switching immunity
US10181523B2 (en) 2014-08-21 2019-01-15 Vishay-Siliconix Transistor structure with improved unclamped inductive switching immunity
US10643941B2 (en) 2015-01-27 2020-05-05 Nexperia B.V. Semiconductor device
EP3051592A1 (en) * 2015-01-27 2016-08-03 Nxp B.V. Semiconductor device
CN110520999B (en) * 2016-06-30 2023-09-29 德州仪器公司 Chip-scale packaged power MOSFET with metal-filled deep-sinker contacts
CN110520999A (en) * 2016-06-30 2019-11-29 德州仪器公司 The power MOSFET of the deep decanting zone contact with metal filling of wafer-level package
WO2022224889A1 (en) * 2021-04-22 2022-10-27 有限会社Mtec Semiconductor element manufacturing method and vertical mosfet element

Similar Documents

Publication Publication Date Title
JP2007142272A (en) Semiconductor device
JP5589052B2 (en) Semiconductor device
US8889514B2 (en) Trench MOSFET having a top side drain
US8018031B2 (en) MOS transistors formed on the front and back surface of a semiconductor substrate
KR100758343B1 (en) Silicon carbide semiconductor device
JP2007184553A (en) Semiconductor device and its fabrication process
JP4929304B2 (en) Semiconductor device
WO2019069580A1 (en) Semiconductor device
JP7135445B2 (en) semiconductor equipment
US8803226B2 (en) Semiconductor device and method for manufacturing the same
CN101667583A (en) Semiconductor device having vertical field effect transistor and method of manufacturing the same
KR20090127150A (en) Method and structure for making a top-side contact to a substrate
JP6069059B2 (en) Silicon carbide semiconductor device
JP2010087096A (en) Semiconductor device and method for manufacturing the same
TWI748233B (en) Lateral power device with reduced on-resistance
JP2009076540A (en) Semiconductor device
JP6992388B2 (en) Semiconductor device
JPWO2007034547A1 (en) Trench gate power MOSFET
JP7188230B2 (en) semiconductor equipment
JP6555284B2 (en) Semiconductor device
JP2006313773A (en) Semiconductor device and manufacturing method thereof
JP2005332886A (en) Semiconductor device
US12100763B2 (en) Semiconductor device having cell section with gate structures partly covered with protective film
JP6411929B2 (en) MOSFET
JP5657601B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081110

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110526

RD02 Notification of acceptance of power of attorney

Effective date: 20110526

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120618