JP2007141591A - Separator for lithium ion secondary battery, and lithium ion secondary battery using it - Google Patents

Separator for lithium ion secondary battery, and lithium ion secondary battery using it Download PDF

Info

Publication number
JP2007141591A
JP2007141591A JP2005332368A JP2005332368A JP2007141591A JP 2007141591 A JP2007141591 A JP 2007141591A JP 2005332368 A JP2005332368 A JP 2005332368A JP 2005332368 A JP2005332368 A JP 2005332368A JP 2007141591 A JP2007141591 A JP 2007141591A
Authority
JP
Japan
Prior art keywords
separator
lithium ion
secondary battery
weight
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005332368A
Other languages
Japanese (ja)
Inventor
Ariyoshi Abe
有美 安部
Kaoru Inoue
薫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005332368A priority Critical patent/JP2007141591A/en
Publication of JP2007141591A publication Critical patent/JP2007141591A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To reduce resistance of a separator and to improve mechanical strength thereof in order to provide high capacity and an excellent cycle characteristic even for a lithium ion secondary battery for a high-power application. <P>SOLUTION: This separator is used for a lithium ion secondary battery provided with a positive electrode formed of a lithium-containing composite oxide, a negative electrode formed of a material capable of retaining lithium, the separator, and a nonaqueous electrolyte. By dispersing a lithium ion conducting substance of 0.5-10 wt.% with respect to the weight of the whole separator in the separator, lithium ion conductivity of the separator is improved, so that resistance of the separator can be reduced and mechanical strength thereof can be improved at the same time. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はリチウムイオン二次電池、特にそのセパレータのリチウムイオン伝導性と機械的強度の向上に関する。   The present invention relates to an improvement in lithium ion conductivity and mechanical strength of a lithium ion secondary battery, particularly its separator.

近年、携帯電話、パソコン、ビデオカメラなどの民生用電子機器の駆動用電源として小型・軽量で高エネルギー密度を有する二次電池への要望が高まっている。中でも、リチウム含有複合酸化物を正極活物質とし、リチウムイオンを吸蔵および放出することができる炭素材料やシリコン化合物、スズ化合物等を負極材料とし、正極と負極との間に介在するセパレータにポリエチレンやポリプロピレンなどからなる微多孔膜を用い、LiBF4、LiPF6等のリチウム塩を溶解した非プロトン性の有機溶媒を電解液とするリチウムイオン二次電池は、高電圧で高エネルギー密度を得られるために広く利用されている。 In recent years, there has been a growing demand for secondary batteries that are small, light, and have high energy density as power sources for consumer electronic devices such as mobile phones, personal computers, and video cameras. Among them, a lithium-containing composite oxide is used as a positive electrode active material, a carbon material capable of occluding and releasing lithium ions, a silicon compound, a tin compound, or the like is used as a negative electrode material. A separator interposed between the positive electrode and the negative electrode is made of polyethylene or A lithium ion secondary battery using an aprotic organic solvent in which a lithium salt such as LiBF 4 or LiPF 6 is dissolved using a microporous membrane made of polypropylene or the like can obtain a high energy density at a high voltage. Widely used.

特に近年は、自動車搭載用の大型高出力リチウムイオン二次電池や電動工具用に急速充電及び大電流放電が可能な小型・軽量の高出力リチウムイオン二次電池への要望が高まっており、その開発が盛んに行われている。急速充電や大電流放電といった過酷な条件において高容量とサイクル特性を維持するには、電池内でのリチウムイオンのイオン伝導性が高いことが必要となる。電池内においてセパレータの元来の役割は正極と負極を隔離することであるために、上記のように絶縁性のポリオレフィン系微多孔膜が使用されており、リチウムイオン伝導性が良好とは言いがたい。その中でセパレータの抵抗を極力下げるためにセパレータの薄膜化・高空孔率化を進めてきている。しかしながら、正極と負極を隔離する本来の役割や安全性の観点から、このような取り組みにも限界がある。   In particular, in recent years, there has been an increasing demand for large-sized high-power lithium-ion secondary batteries for use in automobiles and small and lightweight high-power lithium-ion secondary batteries capable of rapid charging and large-current discharge for power tools. Development is actively underway. In order to maintain high capacity and cycle characteristics under severe conditions such as rapid charging and large current discharge, it is necessary that the ion conductivity of lithium ions in the battery is high. Since the original role of the separator in the battery is to separate the positive electrode and the negative electrode, the insulating polyolefin microporous film is used as described above, and it is said that the lithium ion conductivity is good. I want. In order to reduce the resistance of the separator as much as possible, the separator has been made thinner and higher in porosity. However, there is a limit to this approach from the viewpoint of the original role and safety of separating the positive electrode and the negative electrode.

そこで、高いリチウムイオン伝導性を持たせてセパレータの低抵抗化を実現するために、セパレータに誘電性を有する無機化合物を含有させること(特許文献1)やリチウムイオン伝導性のガラスセラミックス粉体を含有する媒体中に電解液を含浸させたガラスセラミックス複合電解質をセパレータとして用いること(特許文献2)が提案されている。
特開2001−283811号公報 特開2001−15160号公報
Therefore, in order to provide high lithium ion conductivity and to reduce the resistance of the separator, the separator contains an inorganic compound having dielectric properties (Patent Document 1) or a lithium ion conductive glass ceramic powder. The use of a glass-ceramic composite electrolyte obtained by impregnating an electrolytic solution in a contained medium as a separator has been proposed (Patent Document 2).
JP 2001-283811 A Japanese Patent Laid-Open No. 2001-15160

特許文献1に記載の誘電性を有する無機化合物をセパレータに含有させる方法では、セパレータの空孔内やセパレータ近傍に存在するリチウム塩の解離を促進させることでリチウムイオン伝導性を向上させることができると提案されている。しかしながら、電解液自体のリチウム塩濃度にも限界があることから、特に高率充放電に追随するだけの充分なリチウムイオン伝導性をセパレータに持たせることができず、高率充放電において高容量の電池が得られないという課題がある。   In the method of incorporating a dielectric inorganic compound described in Patent Document 1 into a separator, lithium ion conductivity can be improved by promoting dissociation of lithium salts existing in the pores of the separator or in the vicinity of the separator. It has been proposed. However, since the lithium salt concentration of the electrolytic solution itself is also limited, the separator cannot have sufficient lithium ion conductivity sufficient to follow particularly high rate charge / discharge. However, there is a problem that the battery cannot be obtained.

また、特許文献2に記載のリチウムイオン伝導性ガラスセラミックス粉体を含有する媒体中に電解液を含浸させたガラスセラミックス複合電解質は、前記媒体が結着剤の役割を果たしたリチウムイオン伝導性複合固体電解質であり、この固体電解質をセパレータとして用いても、従来のポリオレフィン系セパレータと比較して引張り強度と引張り伸びが弱くなる。そのために、正極と負極とセパレータを積層して密着させた積層型電池では、正極、負極間の絶縁性を確保できるが、正極と負極とセパレータを巻回させた巻回型電池では、正極、負極間の絶縁性が充分確保できずに、絶縁不良率が高くなる。また、先述したように従来のポリオレフィン系セパレータと比較して引張り強度と引張り伸びが弱く、特に充放電の繰り返しによる電極活物質の膨張収縮に追随できず、電池のサイクル特性が劣化するという課題がある。   In addition, a glass ceramic composite electrolyte obtained by impregnating an electrolyte in a medium containing lithium ion conductive glass ceramic powder described in Patent Document 2 is a lithium ion conductive composite in which the medium serves as a binder. Even if this solid electrolyte is used as a separator, the tensile strength and the tensile elongation are weaker than those of conventional polyolefin-based separators. Therefore, in a laminated battery in which a positive electrode, a negative electrode, and a separator are stacked and adhered, insulation between the positive electrode and the negative electrode can be secured. However, in a wound battery in which the positive electrode, the negative electrode, and the separator are wound, the positive electrode, The insulation between the negative electrodes cannot be sufficiently secured, and the insulation failure rate becomes high. In addition, as described above, the tensile strength and tensile elongation are weak compared to conventional polyolefin-based separators, and in particular, the expansion and contraction of the electrode active material due to repeated charge and discharge cannot be followed, and the battery cycle characteristics deteriorate. is there.

上記課題を解決するために、本発明のリチウムイオン二次電池用セパレータ及びリチウムイオン二次電池では、セパレータ中にリチウムイオン伝導性物質を分散させていることを特徴とする。これにより、リチウムイオン二次電池におけるセパレータ内のリチウムイオン透過経路として、(1)セパレータの空孔内の電解液、(2)リチウムイオン伝導性物質内、(3)リチウムイオン伝導性物質と電解液との界面、の3経路を考えることができ、リチウムイオン伝導性物質を含まず経路(1)のみの従来のセパレータよりもリチウムイオン伝導性が向上し、セパレータの抵抗が低減すると考えられる。それにより、高出力用途での高率充放電という過酷な使用条件においても、セパレータ内でのリチウムイオン伝導性が追随できるために、高容量で良好なサイクル特性を持つリチウムイオン二次電池が得られる。また、リチウムイオン伝導性物質をセパレータ全体の重量の0.5重量%〜10重量%セパレータ内に均一に分散させることで、ポリオレフィン等のセパレータ主材料の引張り強度や引張り伸びを維持したままリチウムイオン伝導性と機械的強度を向上させることができる。そのため、正極、負極、セパレータを巻回する工程でセパレータの破膜がなく容易に製造が可能となり生産性が向上する。さらに高率充放電を繰り返してもセパレータの劣化が少なく良好なサイクル特性を持つリチウムイオン二次電池が得られる。   In order to solve the above-described problems, the lithium ion secondary battery separator and the lithium ion secondary battery of the present invention are characterized in that a lithium ion conductive material is dispersed in the separator. Thus, as a lithium ion permeation path in the separator in the lithium ion secondary battery, (1) the electrolyte solution in the pores of the separator, (2) in the lithium ion conductive material, (3) the lithium ion conductive material and electrolysis The three paths of the interface with the liquid can be considered, and it is considered that the lithium ion conductivity is improved and the resistance of the separator is reduced as compared with the conventional separator including only the path (1) without including the lithium ion conductive material. As a result, the lithium ion conductivity in the separator can follow the severe usage conditions of high rate charge and discharge for high output applications, and thus a lithium ion secondary battery with high capacity and good cycle characteristics can be obtained. It is done. In addition, lithium ion conductive material is uniformly dispersed in 0.5% to 10% by weight of the total weight of the separator, so that lithium ion can be maintained while maintaining the tensile strength and tensile elongation of the separator main material such as polyolefin. Conductivity and mechanical strength can be improved. For this reason, in the process of winding the positive electrode, the negative electrode, and the separator, the separator is not broken, and it can be easily manufactured, and the productivity is improved. Furthermore, even if high rate charge / discharge is repeated, a lithium ion secondary battery having good cycle characteristics with little deterioration of the separator can be obtained.

本発明によれば、セパレータ中にセパレータ全体の重量に対して0.5重量%〜10重量%のリチウムイオン伝導性物質の粒子を分散させることにより、セパレータ内のリチウムイオン伝導性とセパレータの機械的強度が向上するため、高率充放電時においても高容量でサイクル特性が良好なリチウムイオン二次電池が得られる。   According to the present invention, the lithium ion conductivity in the separator and the separator machine are dispersed by dispersing 0.5% to 10% by weight of lithium ion conductive material particles in the separator with respect to the total weight of the separator. Therefore, a lithium ion secondary battery having a high capacity and good cycle characteristics can be obtained even during high rate charge / discharge.

本発明で用いられるセパレータについて説明する。   The separator used in the present invention will be described.

上記セパレータの主材料は従来のリチウムイオン二次電池に使用できる物質であれば特に限定されないが、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂を単一あるいは複合して用いることが一般的であり、本発明でも加工性の点から好ましい。膜厚としては、9μm〜25μmが好ましい。膜厚が25μmを越えると、電池内に占めるセパレータの容積が増えるために活物質の容積が減少し電池容量の点で不利になる。また、膜厚が9μmより小さくなると、セパレータの機械的強度が低下し電池の組み立て性と安全性の点で不利になる。   The main material of the separator is not particularly limited as long as it is a substance that can be used in a conventional lithium ion secondary battery. However, it is common to use a single or composite polyolefin resin such as polyethylene or polypropylene. However, it is preferable from the viewpoint of workability. The film thickness is preferably 9 μm to 25 μm. When the film thickness exceeds 25 μm, the volume of the separator in the battery increases, so that the volume of the active material decreases, which is disadvantageous in terms of battery capacity. On the other hand, if the film thickness is smaller than 9 μm, the mechanical strength of the separator is lowered, which is disadvantageous in terms of battery assembly and safety.

リチウムイオン伝導性物質としては、リチウムイオン伝導性ガラス及びリチウムイオン伝導性結晶が挙げられ、いずれを用いてもよいが、リチウムイオン伝導性ガラスのほうがややリチウムイオン伝導性に優れる。   Examples of the lithium ion conductive material include lithium ion conductive glass and lithium ion conductive crystal, which may be used, but lithium ion conductive glass is slightly superior in lithium ion conductivity.

リチウムイオン伝導性ガラスとしては、例えば、Li3PO4−Li2S−SiS2、Li2S−P25、LiPON等を挙げることができるがこれらに限定されず周知のものを用いることができる。 Examples of the lithium ion conductive glass include Li 3 PO 4 —Li 2 S—SiS 2 , Li 2 S—P 2 S 5 , LiPON, and the like. Can do.

リチウムイオン伝導性結晶としては、例えば、La0.55Li0.33TiO3やLi4+xSi1-xAlx4(0≦x≦1)等を挙げることができるが、これらに限定されず周知のものを用いることができる。 Examples of the lithium ion conductive crystal include La 0.55 Li 0.33 TiO 3 and Li 4 + x Si 1-x Al x O 4 (0 ≦ x ≦ 1), but are not limited thereto and are well known. Can be used.

これらのリチウムイオン伝導性物質は、原料を所定の割合で混合後、粉砕、分級して得ることができるが、セパレータ内に分散させるリチウムイオン伝導性物質の平均粒径としては20nm〜1000nmが好ましい。リチウムイオン伝導性物質の粒子を平均粒径が1000nmまでの細かい粒子とすることで、リチウムイオン伝導性物質と電解液との接触面積が増大し、セパレータ内のリチウムイオン伝導性をより向上させることができると考えられる。   These lithium ion conductive materials can be obtained by mixing raw materials at a predetermined ratio, and then pulverizing and classifying them. The average particle size of the lithium ion conductive material dispersed in the separator is preferably 20 nm to 1000 nm. . By making the particles of the lithium ion conductive material fine particles having an average particle size up to 1000 nm, the contact area between the lithium ion conductive material and the electrolytic solution is increased, and the lithium ion conductivity in the separator is further improved. It is thought that you can.

本発明のリチウムイオン伝導性物質の粒子が分散しているセパレータは、最初に主材料である従来のセパレータ材料にリチウムイオン伝導性物質を加える以外は従来の電池セパレータと同様の方法で作製できる。例えば(1)高分子材料とリチウムイオン伝導性物質に後工程で簡単に抽出できる添加剤を加えて成形し、添加剤を適当な溶媒で除去する抽出法、(2)高分子材料とリチウムイオン伝導性物質を混ぜて結晶性高分子材料を成形後、非晶部分を選択的に延伸して微細孔を形成する延伸法などが挙げられる。   The separator in which particles of the lithium ion conductive material of the present invention are dispersed can be produced in the same manner as the conventional battery separator except that the lithium ion conductive material is first added to the conventional separator material which is the main material. For example, (1) an extraction method in which an additive that can be easily extracted in a subsequent process is added to a polymer material and a lithium ion conductive material, and the additive is removed with an appropriate solvent. (2) the polymer material and lithium ion Examples thereof include a stretching method in which a conductive material is mixed to form a crystalline polymer material, and then amorphous portions are selectively stretched to form micropores.

リチウムイオン伝導性物質の含有量としては、セパレータ全体の重量に対して、0.5重量%〜10重量%にすることで、セパレータ内のリチウムイオン伝導性を向上させると同時に、従来のセパレータが持つ引張り強度や引張り伸びを損ねることもないので電池を組み立てる際の加工性も維持できる。リチウムイオン伝導性物質の含有量が0.5重量%未満の場合は、リチウムイオン伝導性物質を添加したことによるリチウムイオン伝導性の向上が見られないために、セパレータの低抵抗化の効果が得られない。またリチウムイオン伝導性物質の含有量が10重量%を越えると、電池組み立て時にセパレータが破れやすくなり、セパレータの製膜自体が困難になることもある。   The content of the lithium ion conductive material is 0.5% by weight to 10% by weight with respect to the total weight of the separator, thereby improving the lithium ion conductivity in the separator and at the same time, Since the tensile strength and tensile elongation of the battery are not impaired, workability when assembling the battery can be maintained. When the content of the lithium ion conductive material is less than 0.5% by weight, the lithium ion conductivity is not improved by the addition of the lithium ion conductive material. I can't get it. On the other hand, if the content of the lithium ion conductive material exceeds 10% by weight, the separator may be easily broken during battery assembly, and it may be difficult to form the separator itself.

正極、負極および電解液には、従来からリチウムイオン二次電池で用いられているものを特に限定なく用いることができる。   As the positive electrode, the negative electrode, and the electrolytic solution, those conventionally used in lithium ion secondary batteries can be used without any particular limitation.

正極活物質としては、従来から公知のリチウム含有複合酸化物を用いることができる。例えば、一般式LiMxOy(ただし、1<x≦2、2<y≦4、M=Co、Ni、Mn、Fe、Al、VおよびTiからなる群より選択される少なくとも1種)で表されるリチウム含有複合酸化物やそれらに表面処理を施した材料が用いられる。   Conventionally known lithium-containing composite oxides can be used as the positive electrode active material. For example, it is represented by the general formula LiMxOy (where 1 <x ≦ 2, 2 <y ≦ 4, M = Co, at least one selected from the group consisting of Ni, Mn, Fe, Al, V and Ti). Lithium-containing composite oxides and materials obtained by subjecting them to surface treatment are used.

正極の作製は、周知の方法で行うことできる。例えば、この正極活物質に結着剤、導電剤、溶媒とを混合して調製した正極合剤ペーストを集電体両面に塗布して、乾燥後に圧延することによって作製することができる。導電剤には天然黒鉛、人造黒鉛、アセチレンブラック等を使用することができる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等を使用することができる。溶媒としては、N−メチルピロリドン、テトラヒドロフラン、ジメチルホルムアミド等を使用することができる。集電体にはアルミニウム、ステンレス等の金属が用いられるが、アルミニウムが好ましい。   The positive electrode can be manufactured by a known method. For example, it can be produced by applying a positive electrode mixture paste prepared by mixing a binder, a conductive agent, and a solvent to this positive electrode active material on both sides of the current collector and rolling it after drying. As the conductive agent, natural graphite, artificial graphite, acetylene black, or the like can be used. As the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, or the like can be used. As the solvent, N-methylpyrrolidone, tetrahydrofuran, dimethylformamide and the like can be used. A metal such as aluminum or stainless steel is used for the current collector, but aluminum is preferred.

負極活物質としては、リチウム金属、リチウム合金などの合金の他、リチウムイオンを吸蔵および放出することができる金属間化合物、炭素材料、有機化合物、無機化合物、金属錯体、有機高分子化合物等のリチウムを保持し得る材料が用いられる。これらは単独で用いてもよく、組み合わせて用いてもよい。これらの中では、特に炭素材料が好ましい。   Examples of the negative electrode active material include lithium metals, lithium alloys, and other lithium ions such as intermetallic compounds, carbon materials, organic compounds, inorganic compounds, metal complexes, and organic polymer compounds that can occlude and release lithium ions. The material which can hold | maintain is used. These may be used alone or in combination. Among these, a carbon material is particularly preferable.

炭素材料の平均粒子サイズは0.1μm〜60μmが好ましく、0.5μm〜30μmが特に好ましい。炭素材料の比表面積は1m2/g〜10m2/gであることが好ましい。なかでも炭素六角平面の間隔(d002)が3.35Å〜3.40Åであり、c軸方向の結晶子の大きさ(Lc)が100Å以上である黒鉛が好ましい。 The average particle size of the carbon material is preferably 0.1 μm to 60 μm, particularly preferably 0.5 μm to 30 μm. The specific surface area of the carbon material is preferably 1m 2 / g~10m 2 / g. Among them, graphite having a carbon hexagonal plane interval (d 002 ) of 3.35 to 3.40 and a crystallite size (L c ) in the c-axis direction of 100 mm or more is preferable.

負極の作製は、周知の方法で行うことができる。例えば、この負極活物質にと結着剤を含むペーストを負極集電体両面に塗布して乾燥後圧延することで作製することができる。結着剤としては、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレンブタジエンゴム等の公知材料が用いられる。集電体には、周知の材料が用いられるが銅が好ましい。   The negative electrode can be produced by a known method. For example, the negative electrode active material and a binder containing a binder can be applied to both surfaces of the negative electrode current collector, dried, and then rolled. As the binder, known materials such as polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, and styrene butadiene rubber are used. A known material is used for the current collector, but copper is preferred.

電解液としては、非水溶媒およびそれに溶解するリチウム塩からなるものが好ましく用いられる。非水溶媒には、エチレンカーボネート、プロピレンカーボネートなどの環状炭酸エステル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状炭酸エステル、γ―ブチロラクトン、γ―バレロラクトンなどの環状カルボン酸エステルなどが好ましく用いられる。リチウム塩としては、LiPF6、LiBF4などが好ましく、これらは単独で、もしくは組み合わせて用いられる。 As the electrolytic solution, a non-aqueous solvent and a lithium salt dissolved therein are preferably used. Non-aqueous solvents are preferably cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, and cyclic carboxylic acid esters such as γ-butyrolactone and γ-valerolactone. Used. As the lithium salt, LiPF 6 , LiBF 4 and the like are preferable, and these can be used alone or in combination.

電池の形態については特に限定はなく、円筒形、偏平形および角形のいずれでもよい。電池には誤動作時にも安全を確保できるように、例えば内圧開放型安全弁装置や電流遮断型安全弁装置等を備えることが好ましい。   The form of the battery is not particularly limited, and may be any of a cylindrical shape, a flat shape, and a square shape. It is preferable that the battery is provided with, for example, an internal pressure relief type safety valve device or a current cutoff type safety valve device so that safety can be ensured even in the case of malfunction.

以下に実施例を挙げて本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例1)
(1)正極の作製
正極は、Li2CO3とCo34とNiOとMnO2とを混合し、900℃で10時間焼成したLi0.94Ni0.35Mn0.35Co0.352の粉末100重量部にアセチレンブラック2.5重量部、フッ素樹脂系結着剤4重量部を混合し、カルボキシメチルセルロース水溶液に懸濁させて、ペースト状にした。このペーストを厚さ0.03mmのアルミ箔の両面に塗着し、乾燥後圧延し合剤部の多孔度が25%となるようにして、幅52mmで単位面積当たりの理論容量が3.7mAh/cm2となる極板厚み99μmの正極板を得た。
Example 1
(1) Fabrication of positive electrode The positive electrode is a mixture of Li 2 CO 3 , Co 3 O 4 , NiO, and MnO 2, and calcined at 900 ° C. for 10 hours. Li 0.94 Ni 0.35 Mn 0.35 Co 0.35 O 2 powder 100 parts by weight Acetylene black (2.5 parts by weight) and a fluororesin-based binder (4 parts by weight) were mixed and suspended in a carboxymethylcellulose aqueous solution to obtain a paste. This paste is applied to both sides of an aluminum foil having a thickness of 0.03 mm, dried and rolled so that the porosity of the mixture portion is 25%, and the theoretical capacity per unit area is 52 mA with a width of 3.7 mAh. / cm 2 and comprising electrode plate to obtain a positive electrode plate having a thickness of 99 .mu.m.

(2)負極の作製
負極は、メソフェーズ小球体を2800℃で黒鉛化したメソフェーズ黒鉛100重量部を、固形分として1重量%のスチレン/ブタジエンゴムエマルジョンと、固形分として1重量%のカルボキシメチルセルロース水溶液とともに攪拌してペースト状にした。このペーストを厚さ0.02mmの銅箔の両面に塗着し、乾燥後圧延して合剤部の多孔度が35%になるようにして、幅57mm、負荷容量が250mAh/gの負極板とした。ここで負荷容量(mAh/g)は正極単位面積当たりの容量(mAh/cm2)を負極単位面積当たりの活物質量(g/cm2)で割った値とした。
(2) Production of Negative Electrode The negative electrode is made of 100 parts by weight of mesophase graphite obtained by graphitizing mesophase spherules at 2800 ° C., a 1% by weight styrene / butadiene rubber emulsion as a solid content, and a 1% by weight carboxymethylcellulose aqueous solution as a solid content. The mixture was stirred to make a paste. This paste is applied to both sides of a 0.02 mm thick copper foil, dried and rolled so that the porosity of the mixture part becomes 35%, a negative electrode plate having a width of 57 mm and a load capacity of 250 mAh / g It was. Here, the load capacity (mAh / g) was a value obtained by dividing the capacity per unit area (mAh / cm 2 ) of the positive electrode by the amount of active material (g / cm 2 ) per unit area of the negative electrode.

(3)セパレータの作製
セパレータは、主材料のポリエチレンとリチウムイオン伝導性物質の平均粒径が100nmであるLi3PO4−Li2S−SiS2とで構成されたものを使用した。平均粒径が100nmのLi3PO4−Li2S−SiS2は、Li3PO42重量%、Li2S49重量%、SiS249重量%を遊星型ボールミルで機械的に混合後、粉砕、分級して得た。
(3) Production of Separator A separator composed of polyethylene as a main material and Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of a lithium ion conductive material of 100 nm was used. Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of 100 nm was mechanically mixed with Li 3 PO 4 2 wt%, Li 2 S 49 wt%, and SiS 2 49 wt% using a planetary ball mill, and then pulverized. Obtained by classification.

重量平均分子量が800000である高密度ポリエチレン47.5重量%と前記Li3PO4−Li2S−SiS22.5重量%と鉱物オイル50重量%の混合物を混練・加熱溶融して2軸押出機で膜状に成形した。次に、この膜を145℃に加熱したテンター延伸機により幅方向と長さ方向にそれぞれ延伸し、148℃雰囲気中で10秒間熱処理した。その後、膜をトリクロロエチレン溶剤に浸漬して膜中の鉱物オイルを抽出除去して、付着した溶剤を乾燥除去した。さらに110℃に加熱したテンター延伸機で幅方向に延伸して、膜厚20μm、高密度ポリエチレン95重量%、Li3PO4−Li2S−SiS25重量%からなるセパレータを作製した。 A mixture of 47.5% by weight of high-density polyethylene having a weight average molecular weight of 800,000, 2.5% by weight of Li 3 PO 4 -Li 2 S-SiS 2 and 50% by weight of mineral oil is kneaded, heated and melted to produce a biaxial The film was formed into a film with an extruder. Next, this film was stretched in the width direction and the length direction by a tenter stretching machine heated to 145 ° C. and heat-treated in an atmosphere of 148 ° C. for 10 seconds. Thereafter, the membrane was immersed in a trichlorethylene solvent to extract and remove the mineral oil in the membrane, and the attached solvent was removed by drying. Further, the film was stretched in the width direction by a tenter stretching machine heated to 110 ° C. to prepare a separator having a film thickness of 20 μm, high-density polyethylene 95% by weight, and Li 3 PO 4 —Li 2 S—SiS 2 5% by weight.

(4)電池の組み立て
所定の正極と上記負極とを用いて、円筒形リチウムイオン二次電池(直径26mm、高さ65mm)を組み立てた。図1に、本実施例で作製した円筒形リチウムイオン電池の縦断面図を示す。上記電池は以下のようにして組み立てた。
(4) Assembly of battery A cylindrical lithium ion secondary battery (diameter 26 mm, height 65 mm) was assembled using a predetermined positive electrode and the negative electrode. FIG. 1 shows a longitudinal sectional view of a cylindrical lithium ion battery produced in this example. The battery was assembled as follows.

まず、所定の正極3の正極集電体7にアルミニウム製正極リード10、所定の負極2の負極集電体6にニッケル製負極リード9を取り付けたあと、所定のセパレータ4を介して巻回し、巻回型の電極群を構成した。電極群の下部にポリプロピレン製の絶縁板8を配し、負極リード9をニッケルメッキした鉄製の電池缶5の底部に溶接するとともに正極リード10を内圧作動型の安全弁装置13を介して電池蓋11に溶接した。その後、電池缶5の内部に非水電解液を減圧方式により注入した。最後に電池缶5の開口端部を絶縁封口板ガスケット12を介してかしめることにより容量2.6Ahの本発明の円筒形リチウムイオン二次電池1を完成させた。   First, after attaching the aluminum positive electrode lead 10 to the positive electrode current collector 7 of the predetermined positive electrode 3 and the nickel negative electrode lead 9 to the negative electrode current collector 6 of the predetermined negative electrode 2, winding it through the predetermined separator 4, A wound electrode group was constructed. A polypropylene insulating plate 8 is arranged at the bottom of the electrode group, and the negative electrode lead 9 is welded to the bottom of a nickel-plated iron battery can 5 and the positive electrode lead 10 is connected to the battery lid 11 via an internal pressure-operated safety valve device 13. Welded to. Thereafter, a non-aqueous electrolyte was injected into the battery can 5 by a reduced pressure method. Finally, the cylindrical lithium ion secondary battery 1 of the present invention having a capacity of 2.6 Ah was completed by caulking the open end of the battery can 5 with an insulating sealing plate gasket 12.

非水電解液には、エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートの体積比15:15:70の混合溶媒に1.40mol/lの濃度になるようにLiPF6を溶解したものを用いた。 As the non-aqueous electrolyte, a solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate in a volume ratio of 15:15:70 to a concentration of 1.40 mol / l was used.

(実施例2)
セパレータに対して、実施例1と同様の平均粒径が100nmのLi3PO4−Li2S−SiS2を用い、重量平均分子量が800000である高密度ポリエチレン49.75重量%と、Li3PO4−Li2S−SiS20.25重量%と鉱物オイル50重量%の混合物を用いる以外は実施例1と同様の方法でセパレータを作製し、膜厚20μm、高密度ポリエチレン99.5重量%、Li3PO4−Li2S−SiS20.5重量%からなるセパレータを得た。またこのセパレータを用いる以外は実施例1と同様の方法でリチウムイオン二次電池を作製した。
(Example 2)
For the separator, Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of 100 nm as in Example 1 was used, 49.75% by weight of high-density polyethylene having a weight average molecular weight of 800,000, and Li 3 A separator was prepared in the same manner as in Example 1 except that a mixture of 0.25% by weight of PO 4 -Li 2 S—SiS 2 and 50% by weight of mineral oil was used, and a film thickness of 20 μm and high density polyethylene of 99.5% were used. %, Li 3 PO 4 —Li 2 S—SiS 2 0.5 wt% separator was obtained. A lithium ion secondary battery was produced in the same manner as in Example 1 except that this separator was used.

(実施例3)
セパレータに対して、実施例1と同様の平均粒径が100nmのLi3PO4−Li2S−SiS2を用い、重量平均分子量が800000である高密度ポリエチレン45重量%と、Li3PO4−Li2S−SiS25重量%と鉱物オイル50重量%の混合物を用いる以外は実施例1と同様の方法でセパレータを作製し、膜厚20μm、高密度ポリエチレン90重量%、Li3PO4−Li2S−SiS210重量%からなるセパレータを得た。またこのセパレータを用いる以外は実施例1と同様の方法でリチウムイオン二次電池を作製した。
(Example 3)
For the separator, Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of 100 nm as in Example 1 was used, and 45% by weight of high-density polyethylene having a weight average molecular weight of 800,000, and Li 3 PO 4 A separator was prepared in the same manner as in Example 1 except that a mixture of 5% by weight of -Li 2 S-SiS 2 and 50% by weight of mineral oil was used, and a film thickness of 20 μm, high-density polyethylene 90% by weight, Li 3 PO 4 A separator composed of 10% by weight of —Li 2 S—SiS 2 was obtained. A lithium ion secondary battery was produced in the same manner as in Example 1 except that this separator was used.

(実施例4)
セパレータに対して、平均粒径が100nmのLi3PO4−Li2S−SiS2の代わりに平均粒径が10nmのLi3PO4−Li2S−SiS2を用いて、膜厚20μm、高密度ポリエチレン95重量%、Li3PO4−Li2S−SiS25重量%からなるセパレータを作製して用いる以外は実施例1と同様の方法によりリチウムイオン二次電池を作製した。
Example 4
For the separator, using Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of 10 nm instead of Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of 100 nm, a film thickness of 20 μm, A lithium ion secondary battery was produced in the same manner as in Example 1 except that a separator composed of 95% by weight of high density polyethylene and 5% by weight of Li 3 PO 4 —Li 2 S—SiS 2 was produced.

(実施例5)
セパレータに対して、平均粒径が100nmのLi3PO4−Li2S−SiS2の代わりに平均粒径が20nmのLi3PO4−Li2S−SiS2を用いて、膜厚20μm、高密度ポリエチレン95重量%、Li3PO4−Li2S−SiS25重量%からなるセパレータを作製して用いる以外は実施例1と同様の方法によりリチウムイオン二次電池を作製した。
(Example 5)
For the separator, Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of 20 nm was used instead of Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of 100 nm, and the film thickness was 20 μm, A lithium ion secondary battery was produced in the same manner as in Example 1 except that a separator composed of 95% by weight of high density polyethylene and 5% by weight of Li 3 PO 4 —Li 2 S—SiS 2 was produced.

(実施例6)
セパレータに対して、平均粒径が100nmのLi3PO4−Li2S−SiS2の代わりに平均粒径が500nmのLi3PO4−Li2S−SiS2を用いて、膜厚20μm、高密度ポリエチレン95重量%、Li3PO4−Li2S−SiS25重量%からなるセパレータを作製して用いる以外は実施例1と同様の方法によりリチウムイオン二次電池を作製した。
(Example 6)
For the separator, using Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of 500 nm instead of Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of 100 nm, a film thickness of 20 μm, A lithium ion secondary battery was produced in the same manner as in Example 1 except that a separator composed of 95% by weight of high density polyethylene and 5% by weight of Li 3 PO 4 —Li 2 S—SiS 2 was produced.

(実施例7)
セパレータに対して、平均粒径が100nmのLi3PO4−Li2S−SiS2の代わりに平均粒径が1000nmのLi3PO4−Li2S−SiS2を用いて、膜厚20μm、高密度ポリエチレン95重量%、Li3PO4−Li2S−SiS25重量%からなるセパレータを作製して用いる以外は実施例1と同様の方法によりリチウムイオン二次電池を作製した。
(Example 7)
With respect to the separator, Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of 1000 nm was used instead of Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of 100 nm, and the film thickness was 20 μm. A lithium ion secondary battery was produced in the same manner as in Example 1 except that a separator composed of 95% by weight of high density polyethylene and 5% by weight of Li 3 PO 4 —Li 2 S—SiS 2 was produced.

(実施例8)
セパレータに対して、平均粒径が100nmのLi3PO4−Li2S−SiS2の代わりに平均粒径が2000nmのLi3PO4−Li2S−SiS2を用いて、膜厚20μm、高密度ポリエチレン95重量%、Li3PO4−Li2S−SiS25重量%からなるセパレータを作製して用いる以外は実施例1と同様の方法によりリチウムイオン二次電池を作製した。
(Example 8)
For the separator, using Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of 2000 nm instead of Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of 100 nm, a film thickness of 20 μm, A lithium ion secondary battery was produced in the same manner as in Example 1 except that a separator composed of 95% by weight of high density polyethylene and 5% by weight of Li 3 PO 4 —Li 2 S—SiS 2 was produced.

(実施例9)
セパレータとして、主材料のポリエチレンとリチウムイオン伝導性物質の平均粒径が100nmであるLi2S−P25で構成されたものを使用した。
Example 9
As a separator, it was used having an average particle diameter of the polyethylene and the lithium ion conductive material of the main material is composed of Li 2 S-P 2 S 5 is 100 nm.

平均粒径が100nmのLi2S−P25は、Li2SとP25を物質量比で6:4の割合で遊星型ボールミルにより機械的に混合後、粉砕、分級して得た。 Li 2 S—P 2 S 5 having an average particle size of 100 nm is obtained by mechanically mixing Li 2 S and P 2 S 5 at a mass ratio of 6: 4 by a planetary ball mill, then pulverizing and classifying. Obtained.

重量平均分子量が800000である高密度ポリエチレン46重量%と、Li2S−P254重量%と鉱物オイル50重量%の混合物を用いる以外は実施例1と同様の方法でセパレータを作製し、膜厚20μm、高密度ポリエチレン92重量%、Li2S−P258重量%からなるセパレータを得た。また、このセパレータを用いる以外は実施例1と同様の方法でリチウムイオン二次電池を作製した。 A separator was prepared in the same manner as in Example 1 except that a mixture of 46% by weight of high-density polyethylene having a weight average molecular weight of 800,000, 4% by weight of Li 2 S—P 2 S 5 and 50% by weight of mineral oil was used. A separator made of 20 μm thick, 92% by weight of high-density polyethylene, and 8% by weight of Li 2 S—P 2 S 5 was obtained. Further, a lithium ion secondary battery was produced in the same manner as in Example 1 except that this separator was used.

(実施例10)
セパレータとして、主材料のポリエチレンとリチウムイオン伝導性物質の平均粒径が100nmであるLa0.55Li0.33TiO3で構成されたものを使用した。
(Example 10)
As the separator, a separator made of La 0.55 Li 0.33 TiO 3 having an average particle size of 100 nm of polyethylene and a lithium ion conductive material was used.

平均粒径が100nmのLa0.55Li0.33TiO3は、La23、Li2CO3、TiO2を物質量比で11:40:7の割合で混合し、800℃、1150℃でそれぞれ24時間焼成後、粉砕、分級して得た。 La 0.55 Li 0.33 TiO 3 having an average particle diameter of 100 nm is prepared by mixing La 2 O 3 , Li 2 CO 3 , and TiO 2 at a mass ratio of 11: 40: 7, respectively, at 800 ° C. and 1150 ° C., respectively. It was obtained by pulverizing and classifying after time baking.

重量平均分子量が800000である高密度ポリエチレン46重量%と、前記La0.55Li0.33TiO34重量%と鉱物オイル50重量%の混合物を用いる以外は実施例1と同様の方法でセパレータを作製し、膜厚20μm、高密度ポリエチレン92重量%、La0.55Li0.33TiO38重量%からなるセパレータを得た。また、このセパレータを用いる以外は実施例1と同様の方法でリチウムイオン二次電池を作製した。 A separator was prepared in the same manner as in Example 1 except that 46% by weight of high-density polyethylene having a weight average molecular weight of 800,000, 4% by weight of La 0.55 Li 0.33 TiO 3 and 50% by weight of mineral oil were used. A separator having a thickness of 20 μm, high-density polyethylene 92% by weight, and La 0.55 Li 0.33 TiO 3 8% by weight was obtained. Further, a lithium ion secondary battery was produced in the same manner as in Example 1 except that this separator was used.

(比較例1)
セパレータに対して、実施例1と同様の平均粒径が100nmのLi3PO4−Li2S−SiS2を用い、重量平均分子量が800000である高密度ポリエチレン49.9重量%と、Li3PO4−Li2S−SiS20.1重量%と鉱物オイル50重量%の混合物を用いる以外は実施例1と同様の方法でセパレータを作製し、膜厚20μm、高密度ポリエチレン99.8重量%、Li3PO4−Li2S−SiS20.2重量%からなるセパレータを得た。またこのセパレータを用いる以外は実施例1と同様の方法でリチウムイオン二次電池を作製した。
(Comparative Example 1)
For the separator, Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of 100 nm as in Example 1 was used, 49.9% by weight of high density polyethylene having a weight average molecular weight of 800,000, and Li 3 A separator was prepared in the same manner as in Example 1 except that a mixture of 0.1% by weight of PO 4 -Li 2 S—SiS 2 and 50% by weight of mineral oil was used, and a film thickness of 20 μm and high density polyethylene of 99.8% were used. %, Li 3 PO 4 —Li 2 S—SiS 2 0.2 wt% separator was obtained. A lithium ion secondary battery was produced in the same manner as in Example 1 except that this separator was used.

(比較例2)
セパレータに対して、実施例1と同様の平均粒径が100nmのLi3PO4−Li2S−SiS2を用い、重量平均分子量が800000である高密度ポリエチレン40重量%と、Li3PO4−Li2S−SiS210重量%と鉱物オイル50重量%の混合物を用いる以外は実施例1と同様の方法でセパレータを作製し、膜厚20μm、高密度ポリエチレン80重量%、Li3PO4−Li2S−SiS220重量%からなるセパレータを得た。またこのセパレータを用いる以外は実施例1と同様の方法でリチウムイオン二次電池を作製した。
(Comparative Example 2)
For the separator, Li 3 PO 4 —Li 2 S—SiS 2 having an average particle diameter of 100 nm as in Example 1 was used, and 40% by weight of high-density polyethylene having a weight average molecular weight of 800,000, and Li 3 PO 4 A separator was prepared in the same manner as in Example 1 except that a mixture of 10% by weight of Li 2 S—SiS 2 and 50% by weight of mineral oil was used, and a film thickness of 20 μm, high-density polyethylene 80% by weight, Li 3 PO 4 A separator composed of 20% by weight of —Li 2 S—SiS 2 was obtained. A lithium ion secondary battery was produced in the same manner as in Example 1 except that this separator was used.

(比較例3)
セパレータに対して、リチウムイオン伝導性物質を加えなかったこと以外は実施例1と同様にして、ポリエチレン製微多孔膜のセパレータを作製し、このセパレータを用いてリチウムイオン二次電池を作製した。
(Comparative Example 3)
A polyethylene microporous membrane separator was prepared in the same manner as in Example 1 except that no lithium ion conductive material was added to the separator, and a lithium ion secondary battery was prepared using this separator.

これらの実施例1〜実施例10及び比較例1〜比較例3のリチウムイオン二次電池用セパレータ及びリチウムイオン二次電池について、以下の方法でセパレータの電気抵抗、初期電池容量、サイクル特性の評価を行った。   About the separator for lithium ion secondary batteries and the lithium ion secondary battery of Examples 1 to 10 and Comparative Examples 1 to 3, evaluation of separator electrical resistance, initial battery capacity, and cycle characteristics was performed by the following methods. Went.

(セパレータの電気抵抗の評価)
本実施例及び比較例のセパレータを1.25mol/lのLiPF6、エチレンカーボネート:エチルメチルカーボネート=1:3(体積比)の電解液に浸漬してSUS電極で挟み、電圧振幅10mV、周波数1kHz〜100kHzの条件下で交流インピーダンスを測定してCole−Coleプロットより求めた値をセパレータの電気抵抗として評価した。
(Evaluation of separator electrical resistance)
The separator of this example and the comparative example was immersed in an electrolyte solution of 1.25 mol / l LiPF 6 , ethylene carbonate: ethyl methyl carbonate = 1: 3 (volume ratio) and sandwiched between SUS electrodes, voltage amplitude 10 mV, frequency 1 kHz. The AC impedance was measured under a condition of ˜100 kHz, and the value obtained from the Cole-Cole plot was evaluated as the electrical resistance of the separator.

(初期電池容量の評価)
作製したリチウムイオン二次電池を環境温度20℃において10Aの定電流充電で充電電圧4.2Vに達した後、4.2V一定下で終止電流を0.26Aとした定電圧充電を行い、20分の休止後、放電電流20Aで放電終止電圧2.0Vの定電流放電を行って初期電池容量を得た。その際、各実施例と比較例での電池容量の比較例3での電池容量に対する割合を100分率で求めた。
(Evaluation of initial battery capacity)
The manufactured lithium ion secondary battery reached a charging voltage of 4.2 V by constant current charging at 10 A at an environmental temperature of 20 ° C., and then charged at a constant voltage of 4.26 A at a constant voltage of 4.2 V. After a rest of minutes, a constant current discharge at a discharge end voltage of 2.0 V was performed at a discharge current of 20 A to obtain an initial battery capacity. At that time, the ratio of the battery capacity in each example and the comparative example to the battery capacity in Comparative Example 3 was obtained at 100 minutes.

(500サイクル後の容量維持率の評価)
作製したリチウムイオン二次電池を環境温度20℃において10Aの定電流充電で4.2Vに達した後、4.2V一定下で終止電流を0.26Aとした定電圧充電を行い、20分の休止後、放電電流20Aで放電終止電圧2.0Vの定電流放電を行って、初期電池容量を得た。その後、20分休止して同様の充放電サイクルを繰り返し、500サイクル目の電池容量をこの電池の500サイクル後の電池容量とした。得られた500サイクル後後の電池容量の初期容量に対する割合を100分率で求めた。
(Evaluation of capacity maintenance rate after 500 cycles)
The produced lithium ion secondary battery reached 4.2V by constant current charging at 10 A at an environmental temperature of 20 ° C., and then charged at constant voltage of 4.26 A under constant constant 4.2 V, and charged for 20 minutes. After the rest, a constant current discharge with a discharge end voltage of 2.0 V was performed with a discharge current of 20 A to obtain an initial battery capacity. Then, after a 20-minute pause, the same charge / discharge cycle was repeated, and the battery capacity at the 500th cycle was defined as the battery capacity after 500 cycles of this battery. The ratio of the obtained battery capacity after 500 cycles with respect to the initial capacity was determined in terms of 100 minutes.

各実施例と比較例について、セパレータの電気抵抗、初期電池容量、500サイクル後の容量維持率の評価結果を表1に示した。   Table 1 shows the evaluation results of the electrical resistance of the separator, the initial battery capacity, and the capacity retention rate after 500 cycles for each example and comparative example.

Figure 2007141591
Figure 2007141591

表1より、セパレータ内に0.5重量%〜10重量%のリチウムイオン伝導性物質の粒子を分散させるとセパレータの電気抵抗が低くなり、それを用いたリチウムイオン二次電池において高率充放電という過酷な条件下でも初期電池容量とサイクル特性で良好な結果が得られることが判明した。これは先述したように、セパレータのリチウムイオン伝導性と機械的強度の向上によるものと考えられる。   According to Table 1, when 0.5% to 10% by weight of lithium ion conductive material particles are dispersed in the separator, the electrical resistance of the separator is lowered, and high rate charge / discharge is achieved in a lithium ion secondary battery using the separator. It was found that good results were obtained with the initial battery capacity and cycle characteristics even under such severe conditions. As described above, this is considered to be due to the improvement of the lithium ion conductivity and mechanical strength of the separator.

また、実施例1、実施例4および実施例5の比較により、リチウムイオン伝導性物質の平均粒径を10nmまで細かくしてもセパレータ及び電池特性は変わらなかったので、セパレータの作製における工程の簡素化の観点から、平均粒径としては20nmまで、さらには100nmまで粉砕すれば充分であるといえる。   Further, by comparing Example 1, Example 4 and Example 5, the separator and battery characteristics did not change even when the average particle size of the lithium ion conductive material was reduced to 10 nm. From the viewpoint of making it easier, it can be said that it is sufficient to grind the average particle size to 20 nm, further to 100 nm.

比較例1については、リチウムイオン伝導性物質の含有量が少ないために、リチウムイオン伝導性の向上が見られず、リチウムイオン伝導性物質を含有しない従来のセパレータを用いた電池(比較例3)と電池特性に変化がなかった。   In Comparative Example 1, since the content of the lithium ion conductive material is small, the lithium ion conductivity is not improved, and a battery using a conventional separator not containing the lithium ion conductive material (Comparative Example 3) There was no change in battery characteristics.

また、比較例2については、リチウムイオン伝導性物質の含有量が多いために、リチウムイオン伝導性が向上し、初期電池容量は向上するが、サイクル特性の向上は見られず、先述したように、高率充放電を繰り返した際のセパレータの劣化が大きいためと考えられる。   Further, in Comparative Example 2, since the content of the lithium ion conductive material is large, the lithium ion conductivity is improved and the initial battery capacity is improved, but the cycle characteristics are not improved, and as described above. It is considered that the separator is greatly deteriorated when high rate charge / discharge is repeated.

同様の本発明の効果は実施例に示した以外のリチウムイオン伝導性物質の粒子を分散させたセパレータ及びそのセパレータを用いたリチウムイオン二次電池においても得られた。   Similar effects of the present invention were also obtained in a separator in which particles of a lithium ion conductive material other than those shown in Examples were dispersed and a lithium ion secondary battery using the separator.

本発明により、リチウムイオン伝導性と機械的強度が向上するセパレータ及び、高出力用途でも高容量でサイクル特性が良好なリチウムイオン二次電池が得られる。   According to the present invention, a separator that improves lithium ion conductivity and mechanical strength, and a lithium ion secondary battery that has a high capacity and good cycle characteristics even in high output applications can be obtained.

円筒形リチウムイオン二次電池の縦断面図Longitudinal section of cylindrical lithium ion secondary battery

符号の説明Explanation of symbols

1 リチウムイオン二次電池
2 負極
3 正極
4 セパレータ
5 電池缶
6 負極集電体
7 正極集電体
8 絶縁板
9 負極リード
10 正極リード
11 電池蓋
12 絶縁封口板ガスケット
13 安全弁装置
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 2 Negative electrode 3 Positive electrode 4 Separator 5 Battery can 6 Negative electrode collector 7 Positive electrode collector 8 Insulating plate 9 Negative electrode lead 10 Positive electrode lead 11 Battery cover 12 Insulation sealing plate gasket 13 Safety valve device

Claims (3)

リチウム含有複合酸化物からなる正極とリチウムを保持しうる材料からなる負極と、セパレータと、非水電解質とを備えたリチウムイオン二次電池用セパレータであって、前記セパレータ中にセパレータ全体の重量に対して0.5重量%〜10重量%のリチウムイオン伝導性物質を分散させていることを特徴とするリチウムイオン二次電池用セパレータ。 A separator for a lithium ion secondary battery comprising a positive electrode made of a lithium-containing composite oxide, a negative electrode made of a material capable of holding lithium, a separator, and a non-aqueous electrolyte. On the other hand, a lithium ion secondary battery separator in which 0.5 to 10% by weight of a lithium ion conductive material is dispersed. 前記リチウムイオン伝導性物質の平均粒径が20nm〜1000nmであることを特徴とする請求項1に記載のリチウムイオン二次電池用セパレータ。 2. The separator for a lithium ion secondary battery according to claim 1, wherein an average particle diameter of the lithium ion conductive material is 20 nm to 1000 nm. リチウム含有複合酸化物からなる正極と、リチウムを保持しうる材料からなる負極と、セパレータと、非水電解質とを備えたリチウムイオン二次電池であって、前記セパレータに請求項1または請求項2に記載のセパレータを用いたことを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery comprising a positive electrode made of a lithium-containing composite oxide, a negative electrode made of a material capable of holding lithium, a separator, and a nonaqueous electrolyte, wherein the separator is claimed in claim 1 or claim 2. A lithium ion secondary battery using the separator described in 1.
JP2005332368A 2005-11-17 2005-11-17 Separator for lithium ion secondary battery, and lithium ion secondary battery using it Pending JP2007141591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005332368A JP2007141591A (en) 2005-11-17 2005-11-17 Separator for lithium ion secondary battery, and lithium ion secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005332368A JP2007141591A (en) 2005-11-17 2005-11-17 Separator for lithium ion secondary battery, and lithium ion secondary battery using it

Publications (1)

Publication Number Publication Date
JP2007141591A true JP2007141591A (en) 2007-06-07

Family

ID=38204221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005332368A Pending JP2007141591A (en) 2005-11-17 2005-11-17 Separator for lithium ion secondary battery, and lithium ion secondary battery using it

Country Status (1)

Country Link
JP (1) JP2007141591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067693A (en) * 2012-09-07 2014-04-17 Asahi Kasei Corp Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067693A (en) * 2012-09-07 2014-04-17 Asahi Kasei Corp Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2018032649A (en) * 2012-09-07 2018-03-01 旭化成株式会社 Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
KR102140129B1 (en) Anode with mesh type insulating layer, lithium secondary battery containing the same
KR101476043B1 (en) Carbon-silicone composite, preparation method thereof, and anode active material comprising the same
CA2792747C (en) Lithium secondary battery using ionic liquid
US9484599B2 (en) Non-aqueous electrolyte secondary battery
JP2016502253A (en) Porous silicon-based negative electrode active material and lithium secondary battery including the same
WO2013014830A1 (en) Lithium-ion secondary cell
US20150349308A1 (en) Lithium Secondary Battery
KR20140105794A (en) Lithium secondary battery and method for manufacturing same
JPWO2013065187A1 (en) Sealed lithium secondary battery and manufacturing method thereof
KR102161591B1 (en) Positive electrode for lithium secondary battery having improved capacity and safety and lithium secondary battery comprising the same
KR101697008B1 (en) Lithium secondary battery
JP2005259682A (en) Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
JP2010108732A (en) Lithium secondary battery
KR20190031174A (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising the same
JP2022125286A (en) Design method of electrode for lithium secondary battery and manufacturing method of electrode for lithium secondary battery including the same
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP2010272380A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
CN113574702A (en) Negative electrode active material for secondary battery, method for producing same, negative electrode for secondary battery comprising same, and lithium secondary battery
JP2009199730A (en) Non-aqueous electrolyte secondary battery
JP2023538082A (en) Negative electrode and secondary battery containing the same
JP2016134218A (en) Lithium ion secondary battery
KR20190066867A (en) Negative electrode active material, negative electrode including the negative electrode active material, and lithium secondary battery including the same
JP2007242348A (en) Lithium-ion secondary battery
JP2013114983A (en) Nonaqueous electrolyte battery
JP4876765B2 (en) Method for producing non-aqueous electrolyte secondary battery