JP2007139653A - Non-contact type flaw detection device and non-contact type flaw detection method - Google Patents

Non-contact type flaw detection device and non-contact type flaw detection method Download PDF

Info

Publication number
JP2007139653A
JP2007139653A JP2005336010A JP2005336010A JP2007139653A JP 2007139653 A JP2007139653 A JP 2007139653A JP 2005336010 A JP2005336010 A JP 2005336010A JP 2005336010 A JP2005336010 A JP 2005336010A JP 2007139653 A JP2007139653 A JP 2007139653A
Authority
JP
Japan
Prior art keywords
image
cooling air
contact type
inspection object
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005336010A
Other languages
Japanese (ja)
Inventor
Junji Baba
淳史 馬場
Tetsuya Matsui
哲也 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005336010A priority Critical patent/JP2007139653A/en
Publication of JP2007139653A publication Critical patent/JP2007139653A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact type flaw detection device capable of rapidly performing non-destructive inspection due to a shearography method with high precision, and a non-contact type flaw detection method. <P>SOLUTION: The non-contact type flaw detection device is equipped with an induction heater 101 for applying heat strain to an inspection target A, a laser oscillator 102 for irradiating the inspection target A with a laser beam, an image measuring means 104 for shifting the reflected image from the inspection target A in a specific direction to perform double exposure measurement, an image analyzing means 204 for forming an inspection image from the differential image obtained by the image measuring means 104 and a cooling air sending means 106 for cooling the inspection target A. During double exposure measurement, the driving of the cooling air sending means 106 is stopped or the flow direction of cooling air 106a sent from the cooling air sending means 106 and the shift direction of a reflected image are allowed to coincide or approximate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、シェアログラフィ法と呼ばれる非接触式欠陥検査方法及び当該欠陥検査方法を実行する装置に係り、特に、検査対象物に熱歪みを付与する場合におけるこの種の欠陥検査装置及び方法の検査効率の改善手段に関する。   The present invention relates to a non-contact type defect inspection method called a shearography method and an apparatus for executing the defect inspection method, and more particularly to a defect inspection apparatus and method of this type in the case where thermal distortion is applied to an inspection object. The present invention relates to a means for improving inspection efficiency.

従来より、各種構造材を対象とした非破壊検査では、検査対象物の欠陥の有無を検査するために、VT(目視検査法)やPT(浸透探傷法)などが広く用いられている。VTは非常に簡単かつ迅速な非破壊検査法であるが、判断が人間の目視に委ねられているため、判断結果に個人差があり、信頼性の高い非破壊検査方法であるとは言い難い。なお、かかる欠点に対処するため、近年では、デジタルカメラなどの撮影手段を利用したVTが用いられているが、検査対象物の表面状態によっては欠陥を見逃しやすいという問題点が指摘されている。また、この方法は、原理的に表面下の内部欠陥を検出することができないので、実用上十分な欠陥データを得ることができないという問題もある。   Conventionally, in nondestructive inspections for various structural materials, VT (visual inspection method), PT (penetration flaw detection method), and the like are widely used to inspect the presence or absence of defects in an inspection object. VT is a very simple and quick non-destructive inspection method, but because judgment is left to the human eye, there are individual differences in judgment results and it is difficult to say that it is a highly reliable non-destructive inspection method. . In recent years, a VT using a photographing means such as a digital camera has been used to deal with such a drawback, but it has been pointed out that a defect is easily overlooked depending on the surface state of the inspection object. In addition, this method has a problem that, in principle, internal defects below the surface cannot be detected, so that practically sufficient defect data cannot be obtained.

一方、PTは、検査対象物に浸透液を塗布して欠陥に浸透させた後、余分な浸透液を拭き取り、その後、現像液と塗布して欠陥を見やすくする技術であり、欠陥の検出精度が非常に高いという利点を有するが、その反面、浸透液及び現像液の塗布と拭き取りに多大な労力を要し、検査に長時間を要するという問題点がある。また、この方法も、VTと同様に、原理的に表面下の内部欠陥を検出することができない。   On the other hand, PT is a technology that applies a penetrating liquid to an inspection object to infiltrate the defect, wipes off the excess penetrating liquid, and then applies it with a developer to make the defect easy to see. Although it has an advantage of being very high, there is a problem in that it requires a lot of labor to apply and wipe the penetrating solution and the developer, and takes a long time for the inspection. Also, this method cannot detect internal defects under the surface in principle as in the case of VT.

このような理由から、近年では、迅速かつ信頼性の高い非破壊検査を実現するため、光学的な非破壊検査技術の開発が進められている。   For these reasons, in recent years, optical nondestructive inspection techniques have been developed in order to realize quick and reliable nondestructive inspection.

光学的な非破壊検査技術としては、シェアログラフィ法が従来より知られている。シェアログラフィ法の検査原理は次の通りである。まず、レーザ光を計測対象領域に拡大照射する。計測対象領域からの反射光は、使用している光が干渉性の高いレーザ光であり、かつ計測対象物の表面が拡散性であるため、スペックルパターンとなる。この計測対象領域からの反射画像を撮像素子の手前に設置した分光素子で2つに分け、これら2つの反射画像を計測対象物の表面方向に僅かにずらしてCCDなどの撮像素子で撮影する。この撮像素子の二重露光により、撮像された反射画像は微分画像となる。また、レーザ光は干渉性が高いため、二重露光される2つの画像は互いに干渉し、二重露光されたパターンは干渉パターンとなる。この操作を外部応力の変化の過程で2度行うことにより、外部応力による歪みの微分値の経時変化が、干渉パターンの位相変化として得られ、使用するレーザ光の波長レベルの微小な表面歪みが計測される。欠陥が存在する部位では周囲と異なる局所的な歪みを生じるため、微分画像とすることで外部応力による低周波な歪みを除去し、欠陥部での局所的な歪みのみを画像化することにより、欠陥を抽出することができる(例えば、非特許文献1参照)。   As an optical nondestructive inspection technique, a shearography method has been conventionally known. The inspection principle of the shearography method is as follows. First, the measurement target region is enlarged and irradiated with laser light. The reflected light from the measurement target region becomes a speckle pattern because the light being used is highly coherent laser light and the surface of the measurement target is diffusive. The reflected image from the measurement target region is divided into two by a spectroscopic element installed in front of the image sensor, and the two reflected images are slightly shifted in the direction of the surface of the measurement object and photographed by an image sensor such as a CCD. Due to the double exposure of the image sensor, the captured reflected image becomes a differential image. Further, since the laser light has high coherence, the two images that are double-exposed interfere with each other, and the double-exposed pattern becomes an interference pattern. By performing this operation twice in the course of changes in external stress, the temporal change in the differential value of strain due to external stress can be obtained as a phase change in the interference pattern, and a minute surface distortion at the wavelength level of the laser beam used can be obtained. It is measured. Since the local distortion that differs from the surroundings occurs in the part where the defect exists, by removing the low-frequency distortion due to external stress by making it a differential image, only the local distortion at the defect part is imaged, A defect can be extracted (for example, refer nonpatent literature 1).

なお、シェアログラフィ法を実行する際の検査対象物への歪み付与手段としては、検査対象物を減圧室に入れる、検査対象物を機械的に押圧するなどの方法のほか、検査対象物を加熱するという方法も従来から提案されている(例えば、特許文献1参照)。
早川峰之、「シェアログラフィーによる非破壊内部欠陥検査」、検査技術、日本工業出版、2004年6月1日発行、VOl.9、NO.6、第21頁から第26頁 特開平7−218449号公報
In addition, as a means for imparting strain to the inspection object when performing the shearography method, in addition to methods such as placing the inspection object in a decompression chamber or mechanically pressing the inspection object, A method of heating has also been proposed (see, for example, Patent Document 1).
Mineyuki Hayakawa, “Non-destructive internal defect inspection by shearography”, inspection technology, Nihon Kogyo Publishing, published on June 1, 2004, Vol. 9, NO. 6, pages 21 to 26 JP 7-218449 A

検査対象物への歪み付与手段として加熱手段を用いると、減圧室や機械的な押圧装置を備える場合に比べて検査設備を小型、簡単かつ安価なものにすることができるが、従来のこの種の欠陥検査装置においては、検査対象物の冷却手段が備えられておらず、検査対象物の冷却が自然放熱により行われているため、検査対象物の放熱に長時間を要し、検査を迅速に行うことができないという不都合がある。   When heating means is used as means for imparting strain to the inspection object, the inspection equipment can be made smaller, simpler, and cheaper than when a decompression chamber or a mechanical pressing device is provided. In this defect inspection device, there is no cooling means for the inspection object, and the inspection object is cooled by natural heat dissipation. There is an inconvenience that it cannot be done.

また、本願発明者等の研究によると、欠陥検査装置に強制冷却装置として冷却風送風装置を備えた場合、冷却風送風装置からの冷却風の送風方向と二重露光測定する際のスペックルパターンのずらし方向との関係が不適切であると、検出画像のS/Nが低下し、高精度の欠陥検査を迅速に行うことができない。   In addition, according to the study by the inventors of the present application, when the defect inspection apparatus is provided with a cooling air blowing device as a forced cooling device, the direction of cooling air from the cooling air blowing device and the speckle pattern when performing double exposure measurement If the relationship with the shift direction is inappropriate, the S / N of the detected image is lowered, and high-accuracy defect inspection cannot be performed quickly.

本発明は、かかる研究成果に基づいてなされたものであり、その目的は、シェアログラフィー法による非破壊検査を迅速かつ高精度に実施可能な非接触式欠陥検査装置及び方法を提供することにある。   The present invention has been made on the basis of such research results, and an object thereof is to provide a non-contact type defect inspection apparatus and method capable of performing non-destructive inspection by a shearography method quickly and with high accuracy. is there.

前記課題を解決するため、非接触式欠陥検査装置に関して、本発明は、第1に、検査対象物を加熱し当該検査対象物に熱歪みを付与する加熱手段と、前記検査対象物にレーザ光を照射するレーザ光照射手段と、前記検査対象物からの反射画像を前記検査対象物の表面方向にずらして二重露光計測する画像計測手段と、当該画像計測手段で得られた微分画像から熱歪みの時間変化を解析し検査画像を生成する画像解析手段と、前記各手段を制御する制御手段とを備えた非接触式欠陥検査装置において、前記加熱手段にて加熱された前記検査対象物を冷却する冷却風送風手段を備え、当該冷却風送風手段の駆動を前記制御手段にて制御することを特徴とする。   In order to solve the above-mentioned problem, the present invention relates to a non-contact type defect inspection apparatus. First, the present invention is directed to heating means for heating an inspection object and applying thermal strain to the inspection object, and laser light to the inspection object. A laser beam irradiating means for irradiating, an image measuring means for performing double exposure measurement by shifting a reflected image from the inspection object toward the surface of the inspection object, and a differential image obtained by the image measuring means In a non-contact type defect inspection apparatus including an image analysis unit that analyzes a temporal change in distortion and generates an inspection image, and a control unit that controls the units, the inspection object heated by the heating unit Cooling air blowing means for cooling is provided, and the driving of the cooling air blowing means is controlled by the control means.

第2に、前記第1の構成の非接触式欠陥検査装置において、前記画像計測手段による二重露光計測を行う際、前記冷却風送風手段の駆動を停止することを特徴とする。   Secondly, in the non-contact type defect inspection apparatus of the first configuration, when the double exposure measurement by the image measuring unit is performed, the driving of the cooling air blowing unit is stopped.

第3に、前記第1の構成の非接触式欠陥検査装置において、前記冷却風送風手段を駆動した状態で前記画像計測手段による二重露光計測を行う際、前記冷却風送風手段から送風される冷却風の流れ方向と前記画像計測手段により二重露光計測される前記反射画像のずらし方向とを合致又は近似させることを特徴とする。   Thirdly, in the non-contact type defect inspection apparatus of the first configuration, when the double exposure measurement is performed by the image measuring unit in a state where the cooling air blowing unit is driven, the cooling air blowing unit blows air. The flow direction of the cooling air and the shift direction of the reflected image measured by double exposure measurement by the image measuring means are matched or approximated.

第4に、前記第3の構成の非接触式欠陥検査装置において、前記冷却風の流れ方向及び前記反射画像のずらし方向が少なくとも2方向以上の多方向に切り替え可能に構成されていることを特徴とする。   Fourthly, in the non-contact type defect inspection apparatus of the third configuration, the flow direction of the cooling air and the shift direction of the reflection image can be switched to at least two directions. And

第5に、前記第1乃至第4の構成の非接触式欠陥検査装置において、前記加熱手段として、誘導加熱器を備えたことを特徴とする。   Fifth, in the non-contact type defect inspection apparatus having the first to fourth configurations, an induction heater is provided as the heating means.

第6に、前記第1乃至第5の構成の非接触式欠陥検査装置において、前記制御手段に、前記加熱手段による前記検査対象物の加熱時間と、前記冷却風送風手段による前記検査対象物の冷却速度と、前記画像計測手段による二重露光計測の時間タイミングとの関係が予め記憶されたデータベースを備えることを特徴とする。   Sixth, in the non-contact type defect inspection apparatus having the first to fifth configurations, the control means includes a heating time of the inspection object by the heating means, and an inspection object by the cooling air blowing means. There is provided a database in which the relationship between the cooling rate and the time timing of double exposure measurement by the image measuring means is stored in advance.

一方、非接触式欠陥検査方法に関して、本発明は、第1に、検査対象物を加熱して当該検査対象物に熱歪みを付与する過程と、前記検査対象物にレーザ光を照射する過程と、前記検査対象物からの反射画像を前記検査対象物の表面方向にずらして二重露光計測する操作を前記熱歪みの大きさが異なる状態で複数回行う過程と、得られた複数の微分画像から熱歪みの時間変化を解析し検査画像を生成する過程とを含む非接触式欠陥検査方法において、前記検査対象物を加熱した後、前記検査対象物に冷却風を送風して前記検査対象物を冷却する過程を有することを特徴とする。   On the other hand, regarding the non-contact type defect inspection method, the present invention includes, firstly, a process of heating the inspection object and applying thermal strain to the inspection object, and a process of irradiating the inspection object with laser light. , A process of performing a double exposure measurement by shifting the reflected image from the inspection object in the direction of the surface of the inspection object, and a plurality of differential images obtained in a state where the thermal strain is different in a plurality of times In the non-contact type defect inspection method including a process of analyzing a time change of thermal distortion from the inspection and generating an inspection image, the inspection object is heated and then cooled air is blown to the inspection object. It has the process of cooling.

第2に、前記第1の構成の非接触式欠陥検査方法において、前記反射画像を二重露光計測する際、前記検査対象物への前記冷却風の送風を停止することを特徴とする。   Second, in the non-contact type defect inspection method of the first configuration, when the reflection image is subjected to double exposure measurement, the blowing of the cooling air to the inspection object is stopped.

第3に、前記第1の構成の非接触式欠陥検査方法において、前記反射画像を二重露光計測する際に前記検査対象物への前記冷却風の送風を行い、前記冷却風の流れ方向と前記二重露光計測される各反射画像のずらし方向とを合致又は近似させることを特徴とする。   Third, in the non-contact type defect inspection method of the first configuration, when the reflected image is subjected to double exposure measurement, the cooling air is blown to the inspection object, and the flow direction of the cooling air is The shift direction of each reflection image measured by the double exposure is matched or approximated.

第4に、前記第3の構成の非接触式欠陥検査方法において、前記検査対象物上の1つの検査対象領域について、前記冷却風の流れ方向及び前記反射画像のずらし方向を少なくとも2方向以上の多方向に切り替え、各切り換え方向ごとに前記二重露光計測を行うことを特徴とする。   Fourth, in the non-contact type defect inspection method of the third configuration, with respect to one inspection target region on the inspection target, the flow direction of the cooling air and the shift direction of the reflection image are at least two directions or more. Switching to multiple directions, the double exposure measurement is performed for each switching direction.

第5に、前記第1乃至第4の構成の非接触式欠陥検査方法において、前記検査対象物の加熱時間と、前記冷却風送風手段による前記検査対象物の冷却速度と、前記二重露光計測の時間タイミングとを、データベースに予め記憶されたデータに基づいて決定することを特徴とする。   Fifth, in the non-contact type defect inspection method of the first to fourth configurations, the heating time of the inspection object, the cooling rate of the inspection object by the cooling air blowing means, and the double exposure measurement Is determined based on data stored in advance in a database.

本発明は、検査対象物に歪みを付与する手段として加熱器を備えた非接触式欠陥検査装置に、検査対象物冷却用の冷却風送風手段を備えるので、加熱後の検査対象物を迅速に冷却することができ、欠陥検査の迅速性を高めることができる。   In the present invention, since the non-contact type defect inspection apparatus provided with a heater as a means for imparting distortion to the inspection object is provided with cooling air blowing means for cooling the inspection object, the inspection object after heating can be quickly It can cool and can improve the speed of defect inspection.

以下、本発明の第1実施形態を図1乃至図6を用いて説明する。図1は第1実施形態に係る非接触式欠陥検査装置の構成図、図2は第1実施形態に係る探傷部と検査対象物の側面図、図3は第1実施形態に係る画像計測手段の構成図、図4は第1実施形態に係る解析・制御手段で行われる加熱時間の決定方法及び計測タイミングの決定方法を示す図、図5は第1実施形態に係る非接触式欠陥検査装置で実行される欠陥検査の手順を示す図、図6は欠陥検査時における第1実施形態に係る探傷部の動作を示す図である。   A first embodiment of the present invention will be described below with reference to FIGS. 1 is a configuration diagram of a non-contact type defect inspection apparatus according to the first embodiment, FIG. 2 is a side view of a flaw detection unit and an inspection object according to the first embodiment, and FIG. 3 is an image measuring unit according to the first embodiment. FIG. 4 is a diagram illustrating a heating time determination method and a measurement timing determination method performed by the analysis / control unit according to the first embodiment, and FIG. 5 is a non-contact type defect inspection apparatus according to the first embodiment. FIG. 6 is a diagram showing the operation of the flaw detector according to the first embodiment during the defect inspection.

図1及び図2に示すように、本例の非接触式欠陥検査装置は、探傷部100と、解析・制御部200と、表示部300とから主に構成されている。   As shown in FIGS. 1 and 2, the non-contact type defect inspection apparatus of this example mainly includes a flaw detection unit 100, an analysis / control unit 200, and a display unit 300.

探傷部100は、検査対象物A上に移動可能に設置されるもので、検査対象物Aを加熱して所望の検査対象領域Bに熱歪みを付与する誘導加熱器101と、照明用のレーザ光102aを発振するレーザ発振器102と、レーザ発振器102から発振されたレーザ光102aを拡大して検査対象領域Bに照射する拡大照射光学系103と、検査対象領域Bからの反射光(反射画像)102bを二重露光する画像計測手段104と、検査対象領域Bからの反射画像102bを画像計測手段104に導く反射鏡105と、検査対象領域に冷却風106aを供給するファンなどの冷却風送風手段106と、移動機構としての車輪107とが備えられている。   The flaw detection unit 100 is movably installed on the inspection object A, and includes an induction heater 101 that heats the inspection object A and applies thermal distortion to a desired inspection object region B, and an illumination laser. A laser oscillator 102 that oscillates the light 102a, an enlarged irradiation optical system 103 that expands the laser light 102a oscillated from the laser oscillator 102 and irradiates the inspection target region B, and reflected light (reflected image) from the inspection target region B Cooling air blowing means such as an image measuring means 104 that double-exposes 102b, a reflecting mirror 105 that guides the reflected image 102b from the inspection target area B to the image measuring means 104, and a fan that supplies cooling air 106a to the inspection target area 106 and a wheel 107 as a moving mechanism are provided.

画像計測手段104は、図3(a)に示すように、検査対象領域Bからの反射画像(スペックルパターン)102bを集光する集光レンズ111と、当該集光レンズ111により集光された反射画像102bを2つの反射画像112a,112bに分岐する分光素子112と、当該分光素子112にて分岐された2つの反射画像のうち、一方の反射画像112aを反射する第1の反射鏡113と、他方の反射画像112bを反射する第2の反射鏡114と、これら第1及び第2の反射鏡113,114にて反射された2つの反射画像112a,112bを受光するCCDなどの画像計測素子115とを備えて構成されている。第1の反射鏡113は、画像計測素子115のほぼ中央領域に一方の反射画像112aを入射するように、光軸に対してほぼ垂直に設定されており、第2の反射鏡114は、画像計測素子115の受光面における前記一方の反射画像112aの入射位置からやや離れた位置に他方の反射画像112bが入射されるように、光軸に対してやや傾斜した状態で設定されている。したがって、画像計測素子115の受光面には、図3(b)に模式的に示すように、2つの反射画像112a,112bが干渉することにより得られる微分画像116が入射される。微分画像の微分幅は、反射光112a,112bのずらし量ΔXにより決定される。   As shown in FIG. 3A, the image measuring unit 104 condenses the reflected image (speckle pattern) 102b from the inspection target region B, and is collected by the condensing lens 111. A spectroscopic element 112 that branches the reflected image 102b into two reflected images 112a and 112b, and a first reflecting mirror 113 that reflects one of the reflected images 112a out of the two reflected images branched by the spectroscopic element 112, A second reflecting mirror 114 that reflects the other reflected image 112b, and an image measuring element such as a CCD that receives the two reflected images 112a and 112b reflected by the first and second reflecting mirrors 113 and 114. 115. The first reflecting mirror 113 is set substantially perpendicular to the optical axis so that one of the reflected images 112a is incident on a substantially central region of the image measuring element 115, and the second reflecting mirror 114 is an image. It is set in a slightly inclined state with respect to the optical axis so that the other reflected image 112b is incident on the light receiving surface of the measuring element 115 at a position slightly away from the incident position of the one reflected image 112a. Therefore, as schematically shown in FIG. 3B, the differential image 116 obtained by the interference of the two reflected images 112a and 112b is incident on the light receiving surface of the image measuring element 115. The differential width of the differential image is determined by the shift amount ΔX of the reflected lights 112a and 112b.

なお、2つの反射画像112a,112bのずらし方向は、冷却風送風手段106から送風される冷却風106aの流れ方向と合致又は近似するように設定される。即ち、検査対象領域Bに沿って流れる冷却風送風手段106からの冷却風106aは、流速及び温度分布が不均一であることから光の屈折率も不均一であり、その不均一の程度は、冷却風106aの流れ方向で小さく、冷却風106aの流れ方向と直交する方向で大きくなる。したがって、冷却風106aの流れ方向と直交する方向に2つの反射画像112a,112bをずらすと、その微分効果によって光の屈折率の不均一が強調され、ノイズが大きくなるのに対して、冷却風106aの流れ方向に2つの反射光112a,112bをずらすと、その微分効果によって光の屈折率の不均一が軽減され、ほとんどノイズを生じないからである。   The shifting direction of the two reflected images 112a and 112b is set to match or approximate the flow direction of the cooling air 106a blown from the cooling air blowing means 106. That is, the cooling air 106a from the cooling air blowing means 106 flowing along the inspection target region B has a non-uniform flow rate and temperature distribution, and therefore has a non-uniform refractive index of light. It is small in the flow direction of the cooling air 106a and large in the direction orthogonal to the flow direction of the cooling air 106a. Therefore, if the two reflected images 112a and 112b are shifted in the direction orthogonal to the flow direction of the cooling air 106a, the differential effect emphasizes the non-uniformity of the refractive index of the light and the noise increases. This is because if the two reflected lights 112a and 112b are shifted in the flow direction of 106a, the non-uniformity of the refractive index of light is reduced by the differential effect, and almost no noise is generated.

解析・制御部200は、図1に示すように、誘導加熱器101を制御する誘導加熱手段201、画像計測手段104で取得した画像を取り込む画像取り込み手段202、冷却風送風手段106を制御する冷却制御手段203と、これらに制御開始のタイミング信号を送ると共に計測した微分画像の解析を行う解析・制御手段204と、画像計測の時間タイミングを決定するデータベース205とが備えられている。データベース205には、検査対象物Aの材質、厚さ、温度に応じた欠陥部の局所歪み量のデータが保存されており、これらのデータに基づいて解析・制御手段204にて加熱時間の決定と計測タイミングの決定とが行われる。なお、解析・制御手段204としてコンピュータが用いられる場合には、当該コンピュータの内部にデータベース205を備えることもできる。   As shown in FIG. 1, the analysis / control unit 200 includes an induction heating unit 201 that controls the induction heater 101, an image capturing unit 202 that captures an image acquired by the image measurement unit 104, and a cooling that controls the cooling air blowing unit 106. A control unit 203, an analysis / control unit 204 for transmitting a control start timing signal to the control unit 203 and analyzing the measured differential image, and a database 205 for determining the time timing of the image measurement are provided. The database 205 stores data on the amount of local strain of the defect portion corresponding to the material, thickness, and temperature of the inspection object A, and the analysis / control means 204 determines the heating time based on these data. And measurement timing are determined. When a computer is used as the analysis / control unit 204, the database 205 can be provided inside the computer.

解析・制御手段204における加熱時間の決定と計測タイミングの決定は、データベース205の保存データ及び図4に示す検査対象物Aの加熱冷却特性に基づいて、以下のようにして行われる。即ち、まず、誘導加熱器101を所望の検査対象領域Bに位置付けた後にこれを起動し、検査対象領域Bを誘導加熱により昇温する。これが図4の加熱過程であり、加熱時間は、データベース205に保存されている検査対象物Aの材質、厚さ、温度に応じた欠陥部Cの局所歪む量のデータに基づき決定する。その後、加熱をやめて冷却過程に入り、シェアログラフィ計測を行う。この際も材質、厚さ、温度に応じた欠陥部Cの局所歪む量のデータに基づき計測のタイミングを決定する。前述のように、シェアログラフィ計測では歪み付与の前後或いは歪み付与の途中段階で2回の計測を行う必要があるため、図4の例では、まず、高温状態で参照画像の画像計測(1)を行い、その後、低温状態で2回目の画像計測(2)を行う。画像計測(1),(2)の時間間隔Sは、データベース205に保存された温度変化量Tに対する歪み量のデータから、検出しなければならない最小の欠陥寸法の局所歪み量を十分に高いS/Nで計測できる時間間隔となるように設定する。   Determination of the heating time and measurement timing in the analysis / control means 204 is performed as follows based on the data stored in the database 205 and the heating / cooling characteristics of the inspection object A shown in FIG. That is, first, after the induction heater 101 is positioned in a desired inspection target region B, it is activated, and the inspection target region B is heated by induction heating. This is the heating process of FIG. 4, and the heating time is determined based on the data of the amount of local distortion of the defect portion C corresponding to the material, thickness, and temperature of the inspection object A stored in the database 205. Thereafter, the heating is stopped, the cooling process is started, and shearography measurement is performed. Also at this time, the measurement timing is determined based on the data of the amount of local distortion of the defect portion C according to the material, thickness, and temperature. As described above, in shearography measurement, since it is necessary to perform measurement twice before and after applying distortion, or in the middle of applying distortion, in the example of FIG. 4, first, image measurement of a reference image (1 After that, the second image measurement (2) is performed in a low temperature state. The time interval S between the image measurements (1) and (2) is set to a sufficiently high local distortion amount of the minimum defect size that must be detected from the distortion amount data stored in the database 205 with respect to the temperature change amount T. Set the time interval to be measurable with / N.

表示部300は、画像計測手段104により計測された反射画像301及びシェアログラフィ計測により得られた微分画像や画像解析を行った後の微分画像等の検査画像302を必要に応じて適宜表示する。検査対象領域B内に欠陥がある場合には、検査画像302中に欠陥信号303が表示される。この欠陥信号の有無、大きさ、形状及び方位により、検査対象領域B内における欠陥の有無、大きさ、形状、方位及び種別を判別する。   The display unit 300 displays the reflected image 301 measured by the image measuring unit 104 and the inspection image 302 such as a differential image obtained by shearography measurement and a differential image after image analysis as necessary. . If there is a defect in the inspection target area B, a defect signal 303 is displayed in the inspection image 302. The presence / absence, size, shape, orientation, and type of a defect in the inspection target region B are determined based on the presence / absence, size, shape, and orientation of the defect signal.

次に、図5及び図6を用いて、本発明の非接触式欠陥検査装置を用いた欠陥検査方法と検査時の探傷部の動作について説明する。   Next, the defect inspection method using the non-contact type defect inspection apparatus of the present invention and the operation of the flaw detection unit at the time of inspection will be described with reference to FIGS.

まず、車輪107を利用して探傷部100を検査対象物A上で移動し、図6(a)に示すように探傷部100に備えられた誘導加熱器101を所望の検査対象領域Bに位置付ける(手順S401)。次に、誘導加熱器101により、所望の検査対象領域Bを誘導加熱する(手順S402)。次に、図6(b)に示すように探傷部100に備えられた拡大照射光学系103の視野内に前記誘導加熱された検査対象領域Bが入るように探傷部100を移動する(手順S403)。この際、探傷部100に備えられたレーザ発振器102及び冷却風送風手段106は動作しておいてもかまわないし、探傷部の移動に合わせて動作を開始しても良い。次に、探傷部100に備えられた冷却風送風手段106から送風される冷却風106aにより検査対象領域Bを冷却する(手順S404)。そして、検査対象領域Bの冷却過程の高温時と低温時とで、シェアログラフィ計測を実施する(手順S405)。この際の計測条件は、前述したとおり、データベース205を用いて決定する。次に、このようにして得られた微分画像を解析して歪みの時間変化に応じた検査画像を得ると共に、表示部300に所要の画像を表示する(手順S406)。前記の各過程で得られた画像は、必要に応じて解析・制御手段200に保存しておいても良い。次に、検査対象物Aの全範囲についての検査が終了したかどうかの判別を行い(手順S407)、終了している場合にはシステムを終了し(手順S408)、終了していない場合には探傷部100を次の検査対象領域Bに移動して(手順S409)、手順S402以降の各手順を繰り返す。   First, the flaw detection unit 100 is moved on the inspection object A using the wheels 107, and the induction heater 101 provided in the flaw detection unit 100 is positioned in a desired inspection object region B as shown in FIG. (Procedure S401). Next, the desired inspection target region B is induction-heated by the induction heater 101 (step S402). Next, as shown in FIG. 6B, the flaw detection unit 100 is moved so that the inductively heated inspection target region B is within the field of view of the enlarged irradiation optical system 103 provided in the flaw detection unit 100 (step S403). ). At this time, the laser oscillator 102 and the cooling air blowing means 106 provided in the flaw detection unit 100 may be operated, or may be started in accordance with the movement of the flaw detection unit. Next, the inspection target area B is cooled by the cooling air 106a blown from the cooling air blowing means 106 provided in the flaw detection unit 100 (step S404). Then, shearography measurement is performed at a high temperature and a low temperature in the cooling process of the inspection target region B (step S405). The measurement conditions at this time are determined using the database 205 as described above. Next, the differential image obtained in this way is analyzed to obtain an inspection image corresponding to the temporal change in distortion, and a required image is displayed on the display unit 300 (step S406). The image obtained in each of the above steps may be stored in the analysis / control unit 200 as necessary. Next, it is determined whether or not the inspection of the entire range of the inspection object A has been completed (procedure S407). If it has been completed, the system is terminated (procedure S408). The flaw detection unit 100 is moved to the next inspection target area B (procedure S409), and each procedure after step S402 is repeated.

本例の非接触式欠陥検査装置は、検査対象物Aの加熱手段として誘導加熱器101を用いたので、他の加熱手段、例えば温風機、赤外線ランプ又はレーザ発振器を用いた場合に比べて、広範囲を迅速に加熱することができ、欠陥検査の迅速性を高めることができる。また、本例の非接触式欠陥検査装置は、冷却風送風手段106を備えるので、加熱後の検査対象物Aを迅速に冷却することができ、この点からも欠陥検査の迅速性を高めることができる。さらに、本例の非接触式欠陥検査装置は、二重露光計測する際の2つの反射画像112a,112bのずらし方向と冷却風106aの流れ方向とを合致又は近似させるので、二重露光計測の際に検査対象領域Bに冷却風106aを流しても、冷却風106aの局部的な温度村に起因するノイズが抑制され、高精度の検査結果を得ることができる。   Since the non-contact type defect inspection apparatus of this example uses the induction heater 101 as the heating means of the inspection object A, compared with the case where other heating means, for example, a warm air machine, an infrared lamp, or a laser oscillator is used, A wide range can be heated quickly, and the speed of defect inspection can be improved. Moreover, since the non-contact type defect inspection apparatus of this example includes the cooling air blowing means 106, the inspection object A after heating can be quickly cooled, and also from this point, the speed of defect inspection is improved. Can do. Furthermore, the non-contact type defect inspection apparatus of this example matches or approximates the shifting direction of the two reflected images 112a and 112b and the flow direction of the cooling air 106a when performing double exposure measurement. Even if the cooling air 106a is caused to flow through the inspection target region B, noise caused by a local temperature village of the cooling air 106a is suppressed, and a highly accurate inspection result can be obtained.

なお、前記第1実施形態においては、画像計測手段104を誘導加熱器101の上方に設置しているが、装置寸法の制約がない場合には、他の配置とすることもできる。例えば、検査対象領域Bの真上にレーザ発振器102と拡大照射光学系103と画像計測手段104とを備えても良く、この場合には、反射鏡105は省略することができる。   In the first embodiment, the image measuring unit 104 is installed above the induction heater 101. However, if there is no restriction on the size of the apparatus, other arrangements may be used. For example, the laser oscillator 102, the enlarged irradiation optical system 103, and the image measuring unit 104 may be provided immediately above the inspection target region B. In this case, the reflecting mirror 105 can be omitted.

また、前記第1実施形態においては、探傷部100に車輪107を備え、探傷部100自体を移動可能な構成としているが、検査の自動化のため、スキャナなどの自動走査機構を備えることもできる。   In the first embodiment, the flaw detection unit 100 includes the wheel 107 and the flaw detection unit 100 itself can be moved. However, an automatic scanning mechanism such as a scanner may be provided to automate the inspection.

次に、図7及び図8を用いて、本発明の第2実施形態を説明する。図7は第2実施形態に係る非接触式欠陥検査装置の構成図、図8は第2実施形態に係る非接触式欠陥検査装置で実行される欠陥検査の手順を示す図である。   Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 7 is a configuration diagram of the non-contact type defect inspection apparatus according to the second embodiment, and FIG. 8 is a diagram illustrating a procedure of defect inspection executed by the non-contact type defect inspection apparatus according to the second embodiment.

本例の非接触式欠陥検査装置は、図7に示すように、探傷部100に、検査対象領域Bに対して第1の方向から冷却風106aを送風する第1の冷却風送風手段106と、検査対象領域Bに対して第2の方向から冷却風108aを送風する第1の冷却風送風手段108とを備えたことを特徴とする。その他の部分は、図1及び図2に示した第1実施形態に係る非接触式欠陥検査装置と同じであるので、対応する部分に同一の符号を付して説明を省略する。   As shown in FIG. 7, the non-contact type defect inspection apparatus of the present example includes a first cooling air blowing means 106 that blows cooling air 106 a from the first direction to the inspection target region B to the flaw detection unit 100. The first cooling air blowing means 108 that blows the cooling air 108a from the second direction with respect to the inspection target region B is provided. Other parts are the same as those of the non-contact type defect inspection apparatus according to the first embodiment shown in FIGS. 1 and 2, and therefore, the corresponding parts are denoted by the same reference numerals and description thereof is omitted.

第1及び第2の冷却風送風手段106,108は、互いにほぼ直交する方向に冷却風106a,108aを送風するように配置されており、各冷却風送風手段106,108から送風される冷却風106a,108aの強度を適宜調整することにより、検査対象領域Bに対して任意の方向の合成冷却風を送風することができる。したがって、検査対象領域Bに対する冷却風の送風方向と二重露光計測を実行する際の2つの反射画像112a,112b(図3参照)のずらし方向とを合致又は近似させるように画像計測手段104の構成を切り換えることにより、1つの検査対象領域Bについて、複数の方向からの欠陥検査を実行することができ、欠陥検査の精度を格段に高めることができる。   The first and second cooling air blowing means 106 and 108 are arranged so as to blow the cooling air 106a and 108a in directions substantially orthogonal to each other, and the cooling air blown from the respective cooling air blowing means 106 and 108. By appropriately adjusting the strengths of 106a and 108a, it is possible to blow synthetic cooling air in an arbitrary direction with respect to the inspection target region B. Accordingly, the image measuring unit 104 is configured to match or approximate the cooling air blowing direction with respect to the inspection target region B and the shifting directions of the two reflected images 112a and 112b (see FIG. 3) when performing the double exposure measurement. By switching the configuration, defect inspection from a plurality of directions can be executed for one inspection target region B, and the accuracy of defect inspection can be significantly improved.

即ち、前述の通り、シェアログラフィ法で計測した歪みの微分画像は、二重露光計測する際の2つの反射画像112a,112bのずらし方向への歪みの微分画像となるため、検査対象領域B内に存在する欠陥Cの形状や向きによっては、一方向からの検査では欠陥が検出されにくい場合がある。これに対して、冷却風の送風方向と二重露光計測を実行する際の2つの反射画像112a,112bのずらし方向とを切り換えて複数方向からの検査を実行すると、欠陥Cの形状や向きによらず、検査対象領域B内に存在する欠陥Cを確実に検出できるので、欠陥検査の精度を格段に高めることができる。図7の例では、画像の微分方向及び冷却風106a,108aの送風方向を90度変更して二重露光計測を2回行い、それぞれの検査画像304,305を表示部300の表示している。   That is, as described above, the differential image of distortion measured by the shearography method becomes a differential image of distortion in the shifting direction of the two reflected images 112a and 112b when performing double exposure measurement. Depending on the shape and orientation of the defect C existing inside, the defect may be difficult to detect by inspection from one direction. On the other hand, when inspection is performed from a plurality of directions by switching between the cooling air blowing direction and the shifting direction of the two reflected images 112a and 112b when performing double exposure measurement, the shape and direction of the defect C are changed. However, since the defect C existing in the inspection target area B can be reliably detected, the accuracy of the defect inspection can be remarkably improved. In the example of FIG. 7, the double exposure measurement is performed twice by changing the differential direction of the image and the blowing direction of the cooling air 106 a and 108 a by 90 degrees, and the respective inspection images 304 and 305 are displayed on the display unit 300. .

なお、本例の非接触式欠陥検査装置においては、検査対象領域Bに対する冷却風の送風方向と二重露光計測を実行する際の2つの反射画像112a,112bのずらし方向とを検査者に告知して正確な検査を実施できるようにするため、表示部300にこれらの告知内容を表示することが特に望ましい。   In the non-contact type defect inspection apparatus of this example, the inspector is notified of the cooling air blowing direction with respect to the inspection target region B and the shifting direction of the two reflection images 112a and 112b when performing double exposure measurement. Therefore, it is particularly desirable to display these notification contents on the display unit 300 so that an accurate inspection can be performed.

以下、第2実施形態に係る非接触式欠陥検査装置を用いた欠陥検査方法を、図8を用いて説明する。基本的には、図5に示した第1実施形態に係る非接触式欠陥検査装置を用いた欠陥検査方法の手順と同じであるが、シェアログラフィ計測を行った後(手順S705)に、冷却風の送風方向と二重露光計測を実行する際の2つの反射画像112a,112bのずらし方向に関する変更指示があったか否かを判定し(手順S706)、変更指示があったときには、冷却風の送風方向及び反射画像112a,112bのずらし方向を変更して(手順S707)、手順S702以降の操作を繰り返す。なお、この際には、1回目の計測において、既に検査対象領域Bが冷却され、温度が低下しているため、この温度低下を初期の温度条件として参照画像を取得し、しかる後に検査対象領域Bを昇温して2回目の計測を行う。手順S706において変更指示がなかったときには、手順S708に移行して、計測された画像を解析・制御部200に記憶する。   Hereinafter, a defect inspection method using the non-contact type defect inspection apparatus according to the second embodiment will be described with reference to FIG. Basically, it is the same as the procedure of the defect inspection method using the non-contact type defect inspection apparatus according to the first embodiment shown in FIG. 5, but after the shearography measurement is performed (step S705), It is determined whether or not there has been a change instruction regarding the direction of cooling air blowing and the shift direction of the two reflected images 112a and 112b when performing double exposure measurement (step S706). The blowing direction and the shifting direction of the reflected images 112a and 112b are changed (step S707), and the operations after step S702 are repeated. In this case, in the first measurement, since the inspection target area B has already been cooled and the temperature has decreased, a reference image is acquired with this temperature decrease as an initial temperature condition, and then the inspection target area The temperature of B is raised and the second measurement is performed. When there is no change instruction in step S706, the process proceeds to step S708, and the measured image is stored in the analysis / control unit 200.

なお、前記第2実施形態においては、冷却風の吹き出し方向が異なる複数の冷却風送風手段106,108を備えたが、かかる構成に代えて、1台の冷却風送風手段106のみを備え、ダクトを切り換えることによって冷却風の吹き出し方向を切り換えるようにすることもできる。   In the second embodiment, a plurality of cooling air blowing means 106, 108 having different cooling air blowing directions are provided. However, instead of such a configuration, only one cooling air blowing means 106 is provided, and a duct is provided. It is also possible to switch the blowing direction of the cooling air by switching.

また、前記各実施形態においては、検査対象領域Bに冷却風を送風した状態で反射画像の二重露光計測を行ったが、かかる構成に代えて、冷却風の送風を停止した状態で反射画像の二重露光計測を行うこともできる。このようにすると、冷却風の局所的な温度不均一に起因するノイズの発生を防止することができるので、前記各実施形態と同様に高精度な欠陥検査を実施することができる。   Moreover, in each said embodiment, although double exposure measurement of the reflected image was performed in the state which sent the cooling air to the test object area | region B, it replaced with this structure and the reflected image in the state which stopped ventilation of the cooling air. It is also possible to perform double exposure measurement. By doing so, it is possible to prevent the occurrence of noise due to local temperature non-uniformity of the cooling air, and thus it is possible to carry out highly accurate defect inspection as in the above embodiments.

さらに、前記各実施形態においては、検査対象物Aの加熱手段として誘導加熱器101を用いたが、本発明の要旨はこれに限定されるものではなく、温風器、赤外線ランプ又はレーザ光など、他の加熱手段を用いることもできる。   Furthermore, in each said embodiment, although the induction heater 101 was used as a heating means of the test object A, the summary of this invention is not limited to this, A warm air heater, an infrared lamp, a laser beam, etc. Other heating means can also be used.

第1実施形態に係る非接触式欠陥検査装置の構成図である。It is a block diagram of the non-contact-type defect inspection apparatus which concerns on 1st Embodiment. 第1実施形態に係る探傷部と検査対象物の側面図である。It is a side view of a flaw detection part and an inspection object concerning a 1st embodiment. 第1実施形態に係る画像計測手段の構成図である。It is a block diagram of the image measurement means which concerns on 1st Embodiment. 第1実施形態に係る解析・制御手段で行われる加熱時間の決定方法及び計測タイミングの決定方法を示す図である。It is a figure which shows the determination method of the heating time performed by the analysis and control means which concerns on 1st Embodiment, and the determination method of measurement timing. 図5は第1実施形態に係る非接触式欠陥検査装置で実行される欠陥検査の手順を示す図である。FIG. 5 is a diagram showing a procedure of defect inspection executed by the non-contact type defect inspection apparatus according to the first embodiment. 欠陥検査時における第1実施形態に係る探傷部の動作を示す図である。It is a figure which shows operation | movement of the flaw detection part which concerns on 1st Embodiment at the time of a defect inspection. 第2実施形態に係る非接触式欠陥検査装置の構成図である。It is a block diagram of the non-contact-type defect inspection apparatus which concerns on 2nd Embodiment. 第2実施形態に係る非接触式欠陥検査装置で実行される欠陥検査の手順を示す図である。It is a figure which shows the procedure of the defect inspection performed with the non-contact-type defect inspection apparatus which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

100 探傷部
101 誘導加熱器
102 レーザ発振器
104 画像計測手段
106 冷却風送風手段
200 解析・制御部
201 誘導加熱手段
202 画像取り込み手段
203 冷却制御手段
204 解析・制御手段
205 データベース
300 表示部
DESCRIPTION OF SYMBOLS 100 Flaw detection part 101 Induction heater 102 Laser oscillator 104 Image measurement means 106 Cooling air ventilation means 200 Analysis / control part 201 Induction heating means 202 Image capture means 203 Cooling control means 204 Analysis / control means 205 Database 300 Display part

Claims (11)

検査対象物を加熱し当該検査対象物に熱歪みを付与する加熱手段と、前記検査対象物にレーザ光を照射するレーザ光照射手段と、前記検査対象物からの反射画像を前記検査対象物の表面方向にずらして二重露光計測する画像計測手段と、当該画像計測手段で得られた微分画像から熱歪みの時間変化を解析し検査画像を生成する画像解析手段と、前記各手段を制御する制御手段とを備えた非接触式欠陥検査装置において、
前記加熱手段にて加熱された前記検査対象物を冷却する冷却風送風手段を備え、当該冷却風送風手段の駆動を前記制御手段にて制御することを特徴とする非接触式欠陥検査装置。
A heating unit that heats the inspection object and applies thermal strain to the inspection object, a laser light irradiation unit that irradiates the inspection object with laser light, and a reflection image from the inspection object. An image measuring unit that performs double exposure measurement by shifting in the surface direction, an image analyzing unit that analyzes a temporal change of thermal strain from a differential image obtained by the image measuring unit and generates an inspection image, and controls each of the units In a non-contact type defect inspection apparatus provided with a control means,
A non-contact type defect inspection apparatus comprising cooling air blowing means for cooling the inspection object heated by the heating means, and controlling the driving of the cooling air blowing means by the control means.
前記画像計測手段による二重露光計測を行う際、前記冷却風送風手段の駆動を停止することを特徴とする請求項1に記載の非接触式欠陥検査装置。   The non-contact type defect inspection apparatus according to claim 1, wherein when the double exposure measurement is performed by the image measurement unit, the driving of the cooling air blowing unit is stopped. 前記冷却風送風手段を駆動した状態で前記画像計測手段による二重露光計測を行う際、前記冷却風送風手段から送風される冷却風の流れ方向と前記画像計測手段により二重露光計測される前記反射画像のずらし方向とを合致又は近似させることを特徴とする請求項1に記載の非接触式欠陥検査装置。   When double exposure measurement is performed by the image measurement unit while the cooling air blowing unit is driven, the double exposure measurement is performed by the flow direction of the cooling air blown from the cooling air blowing unit and the image measurement unit. The non-contact type defect inspection apparatus according to claim 1, wherein the shift direction of the reflected image is matched or approximated. 前記冷却風の流れ方向及び前記反射画像のずらし方向が少なくとも2方向以上の多方向に切り替え可能に構成されていることを特徴とする請求項3に記載の非接触式欠陥検査装置。   The non-contact type defect inspection apparatus according to claim 3, wherein the flow direction of the cooling air and the shift direction of the reflected image can be switched to at least two directions. 前記加熱手段として、誘導加熱器を備えたことを特徴とする請求項1乃至請求項4に記載の非接触式欠陥検査装置。   The non-contact type defect inspection apparatus according to claim 1, further comprising an induction heater as the heating unit. 前記制御手段に、前記加熱手段による前記検査対象物の加熱時間と、前記冷却風送風手段による前記検査対象物の冷却速度と、前記画像計測手段による二重露光計測の時間タイミングとの関係が予め記憶されたデータベースを備えることを特徴とする請求項1乃至請求項5のいずれか1項に記載の非接触式欠陥検査装置。   In the control means, the relationship between the heating time of the inspection object by the heating means, the cooling speed of the inspection object by the cooling air blowing means, and the time timing of the double exposure measurement by the image measurement means is previously set. The non-contact type defect inspection apparatus according to any one of claims 1 to 5, further comprising a stored database. 検査対象物を加熱して当該検査対象物に熱歪みを付与する過程と、前記検査対象物にレーザ光を照射する過程と、前記検査対象物からの反射画像を前記検査対象物の表面方向にずらして二重露光計測する操作を前記熱歪みの大きさが異なる状態で複数回行う過程と、得られた複数の微分画像から熱歪みの時間変化を解析し検査画像を生成する過程とを含む非接触式欠陥検査方法において、
前記検査対象物を加熱した後、前記検査対象物に冷却風を送風して前記検査対象物を冷却する過程を有することを特徴とする非接触式欠陥検査方法。
A process of heating the inspection object to impart thermal strain to the inspection object, a process of irradiating the inspection object with laser light, and a reflection image from the inspection object in the surface direction of the inspection object A process of performing a double exposure measurement by shifting a plurality of times in a state where the magnitude of the thermal strain is different, and a process of generating a test image by analyzing temporal changes of the thermal strain from the obtained differential images In the non-contact type defect inspection method,
A non-contact type defect inspection method comprising a step of cooling the inspection object by blowing cooling air to the inspection object after heating the inspection object.
前記反射画像を二重露光計測する際、前記検査対象物への前記冷却風の送風を停止することを特徴とする請求項7に記載の非接触式欠陥検査方法。   The non-contact type defect inspection method according to claim 7, wherein when the reflected image is subjected to double exposure measurement, blowing of the cooling air to the inspection object is stopped. 前記反射画像を二重露光計測する際に前記検査対象物への前記冷却風の送風を行い、前記冷却風の流れ方向と前記二重露光計測される各反射画像のずらし方向とを合致又は近似させることを特徴とする請求項7に記載の非接触式欠陥検査方法。   When the double-exposure measurement is performed on the reflected image, the cooling air is blown to the inspection object, and the flow direction of the cooling air and the shift direction of each reflection image measured by the double exposure measurement are matched or approximated. The non-contact type defect inspection method according to claim 7, wherein: 前記検査対象物上の1つの検査対象領域について、前記冷却風の流れ方向及び前記反射画像のずらし方向を少なくとも2方向以上の多方向に切り替え、各切り換え方向ごとに前記二重露光計測を行うことを特徴とする請求項9に記載の非接触式欠陥検査方法。   For one inspection object area on the inspection object, the flow direction of the cooling air and the shift direction of the reflected image are switched to at least two or more directions, and the double exposure measurement is performed for each switching direction. The non-contact type defect inspection method according to claim 9. 前記検査対象物の加熱時間と、前記冷却風送風手段による前記検査対象物の冷却速度と、前記二重露光計測の時間タイミングとを、データベースに予め記憶されたデータに基づいて決定することを特徴とする請求項7乃至請求項10のいずれか1項に記載の非接触式欠陥検査方法。   The heating time of the inspection object, the cooling rate of the inspection object by the cooling air blowing means, and the time timing of the double exposure measurement are determined based on data stored in advance in a database. The non-contact type defect inspection method according to any one of claims 7 to 10.
JP2005336010A 2005-11-21 2005-11-21 Non-contact type flaw detection device and non-contact type flaw detection method Pending JP2007139653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005336010A JP2007139653A (en) 2005-11-21 2005-11-21 Non-contact type flaw detection device and non-contact type flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005336010A JP2007139653A (en) 2005-11-21 2005-11-21 Non-contact type flaw detection device and non-contact type flaw detection method

Publications (1)

Publication Number Publication Date
JP2007139653A true JP2007139653A (en) 2007-06-07

Family

ID=38202701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005336010A Pending JP2007139653A (en) 2005-11-21 2005-11-21 Non-contact type flaw detection device and non-contact type flaw detection method

Country Status (1)

Country Link
JP (1) JP2007139653A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315964A (en) * 2006-05-26 2007-12-06 Hitachi Ltd Underwater defect inspection device and underwater defect inspection method
JP2009014606A (en) * 2007-07-06 2009-01-22 Hitachi Ltd Residual stress measurement device and residual stress measuring technique
WO2010058844A1 (en) 2008-11-21 2010-05-27 リードケミカル株式会社 Adhesive material containing 5-methyl-1-phenyl-2-(1h)-pyridone
CN102519783A (en) * 2011-12-06 2012-06-27 西安交通大学 Nondestructive measurement method for M-integral of multi-defective material
JP2013535705A (en) * 2010-08-10 2013-09-12 エアバス オペレーションズ ゲーエムベーハー Method for connecting an optical waveguide embedded in a fiber composite material to an external optical waveguide
JP2014085161A (en) * 2012-10-19 2014-05-12 Tohoku Univ Method of nondestructive inspection of structure defect and system of nondestructive inspection of structure defect
KR101429348B1 (en) 2012-09-05 2014-08-13 한국원자력연구원 Nondestructive noncontact visual inspection apparatus and method for the internal crack detection of a specimen
WO2015056790A1 (en) * 2013-10-18 2015-04-23 国立大学法人佐賀大学 Cracking detection system and cracking detection method
JP2017120202A (en) * 2015-12-28 2017-07-06 国立研究開発法人産業技術総合研究所 Defect inspection method, and defect inspection device
US20170322183A1 (en) * 2016-05-03 2017-11-09 GM Global Technology Operations LLC Cylinder block inspection method and system
CN117683960A (en) * 2023-12-04 2024-03-12 北京科技大学 Blocking detection and gas circuit re-ventilation method for converter bottom blowing element based on laser signal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218449A (en) * 1994-02-04 1995-08-18 Toyota Motor Corp Method for optically detecting surface defect
JPH0862166A (en) * 1994-08-26 1996-03-08 Hitachi Ltd Method and apparatus for diagnosing stripping on outer wall of building
JPH08261963A (en) * 1995-03-27 1996-10-11 Rigaku Corp Sample heating device for thermal analyzer
JP2007024674A (en) * 2005-07-15 2007-02-01 Hitachi Ltd Surface/surface layer inspection device and surface/surface layer inspection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218449A (en) * 1994-02-04 1995-08-18 Toyota Motor Corp Method for optically detecting surface defect
JPH0862166A (en) * 1994-08-26 1996-03-08 Hitachi Ltd Method and apparatus for diagnosing stripping on outer wall of building
JPH08261963A (en) * 1995-03-27 1996-10-11 Rigaku Corp Sample heating device for thermal analyzer
JP2007024674A (en) * 2005-07-15 2007-02-01 Hitachi Ltd Surface/surface layer inspection device and surface/surface layer inspection method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
早川 峰之: "シェアログラフィーによる非破壊内部欠陥検査", 検査技術, vol. 9, no. 6, JPN6010033902, 1 June 2004 (2004-06-01), JP, pages 21 - 26, ISSN: 0001647442 *
馬場淳史ほか2名: "レーザシェアログラフィ法による広域探傷技術の開発", 日本原子力学会 2005年秋の大会 予稿集, JPN6010033903, 12 August 2005 (2005-08-12), JP, pages 248頁, ISSN: 0001647441 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315964A (en) * 2006-05-26 2007-12-06 Hitachi Ltd Underwater defect inspection device and underwater defect inspection method
JP4607821B2 (en) * 2006-05-26 2011-01-05 株式会社日立製作所 Underwater defect inspection apparatus and underwater defect inspection method
JP2009014606A (en) * 2007-07-06 2009-01-22 Hitachi Ltd Residual stress measurement device and residual stress measuring technique
WO2010058844A1 (en) 2008-11-21 2010-05-27 リードケミカル株式会社 Adhesive material containing 5-methyl-1-phenyl-2-(1h)-pyridone
JP2013535705A (en) * 2010-08-10 2013-09-12 エアバス オペレーションズ ゲーエムベーハー Method for connecting an optical waveguide embedded in a fiber composite material to an external optical waveguide
CN102519783A (en) * 2011-12-06 2012-06-27 西安交通大学 Nondestructive measurement method for M-integral of multi-defective material
KR101429348B1 (en) 2012-09-05 2014-08-13 한국원자력연구원 Nondestructive noncontact visual inspection apparatus and method for the internal crack detection of a specimen
JP2014085161A (en) * 2012-10-19 2014-05-12 Tohoku Univ Method of nondestructive inspection of structure defect and system of nondestructive inspection of structure defect
WO2015056790A1 (en) * 2013-10-18 2015-04-23 国立大学法人佐賀大学 Cracking detection system and cracking detection method
EP3059547A1 (en) * 2013-10-18 2016-08-24 Saga University Cracking detection system and cracking detection method
JPWO2015056790A1 (en) * 2013-10-18 2017-03-09 国立大学法人佐賀大学 Crack detection system and crack detection method
EP3059547A4 (en) * 2013-10-18 2017-05-10 Saga University Cracking detection system and cracking detection method
US9976968B2 (en) 2013-10-18 2018-05-22 Saga University Cracking detection system and cracking detection method
JP2017120202A (en) * 2015-12-28 2017-07-06 国立研究開発法人産業技術総合研究所 Defect inspection method, and defect inspection device
US20170322183A1 (en) * 2016-05-03 2017-11-09 GM Global Technology Operations LLC Cylinder block inspection method and system
US10458951B2 (en) * 2016-05-03 2019-10-29 GM Global Technology Operations LLC Cylinder block inspection method and system
DE102017207287B4 (en) 2016-05-03 2022-05-12 GM Global Technology Operations LLC SYSTEM FOR TESTING THERMAL-SPRAY COATING CYLINDER BORES OF ALUMINUM ALLOY CYLINDER BLOCKS
CN117683960A (en) * 2023-12-04 2024-03-12 北京科技大学 Blocking detection and gas circuit re-ventilation method for converter bottom blowing element based on laser signal
CN117683960B (en) * 2023-12-04 2024-06-11 北京科技大学 Blocking detection and gas circuit re-ventilation method for converter bottom blowing element based on laser signal

Similar Documents

Publication Publication Date Title
JP2007139653A (en) Non-contact type flaw detection device and non-contact type flaw detection method
JP6301951B2 (en) Sample inspection method and system using thermography
US7549789B2 (en) Method and apparatus for thermographic nondestructive evaluation of an object
JP4322890B2 (en) Undulation inspection device, undulation inspection method, control program of undulation inspection device, recording medium
JP2007024674A (en) Surface/surface layer inspection device and surface/surface layer inspection method
JP2010512509A (en) Improved laser and ultrasonic inspection using infrared thermography
WO2014199869A1 (en) Infrared inspection device
JP5138968B2 (en) Pass / fail judgment device
TWI695164B (en) Broadband wafer defect detection system and broadband wafer defect detection method
KR20170049590A (en) Thermographic examination means and method for non-destructive examination of a near-surface structure at a test object
EP2141489B1 (en) Thermographic inspection apparatus
JP4607821B2 (en) Underwater defect inspection apparatus and underwater defect inspection method
KR20110099279A (en) A 3d scanner
JP2013092465A (en) Three-dimensional surface inspection device and three-dimensional surface inspection method
JP2018179918A (en) Shape measurement system, and shape measurement method
JP5042503B2 (en) Defect detection method
JPH1062354A (en) Device and method of inspecting transparent plate for defect
Sfarra et al. Square pulse thermography (SPT) and digital speckle photography (DSP): non-destructive testing (NDT) techniques applied to the defects detection in aerospace materials
CN110849884A (en) Method and system for detecting bonding defects inside composite insulator
JP6539139B2 (en) Image processing method for infrared image data and infrared image processing apparatus
JPH08233542A (en) Non-contact displacement meter for sample in heated or cooled state
WO2019207973A1 (en) Image acquisition method, measurement method and image acquisition device
JP2015224912A (en) Defect measurement device and defect measurement method
JP2009180708A (en) Method and apparatus for shape measurement
JP6251049B2 (en) Surface shape inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019