WO2014199869A1 - Infrared inspection device - Google Patents
Infrared inspection device Download PDFInfo
- Publication number
- WO2014199869A1 WO2014199869A1 PCT/JP2014/064688 JP2014064688W WO2014199869A1 WO 2014199869 A1 WO2014199869 A1 WO 2014199869A1 JP 2014064688 W JP2014064688 W JP 2014064688W WO 2014199869 A1 WO2014199869 A1 WO 2014199869A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- infrared
- irradiation
- image
- inspection apparatus
- measurement
- Prior art date
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 135
- 238000005259 measurement Methods 0.000 claims abstract description 207
- 230000007547 defect Effects 0.000 claims abstract description 78
- 238000001514 detection method Methods 0.000 claims abstract description 40
- 238000000605 extraction Methods 0.000 claims abstract description 29
- 230000001678 irradiating effect Effects 0.000 claims abstract description 9
- 238000003384 imaging method Methods 0.000 claims description 25
- 230000003287 optical effect Effects 0.000 claims description 21
- 239000000284 extract Substances 0.000 claims description 7
- 230000010355 oscillation Effects 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- 230000006866 deterioration Effects 0.000 abstract description 17
- 230000002950 deficient Effects 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 abstract 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 230000000875 corresponding effect Effects 0.000 description 37
- 230000035882 stress Effects 0.000 description 24
- 230000001276 controlling effect Effects 0.000 description 19
- 238000000034 method Methods 0.000 description 17
- 230000008859 change Effects 0.000 description 16
- 230000000694 effects Effects 0.000 description 11
- 238000012545 processing Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 230000001360 synchronised effect Effects 0.000 description 6
- 230000008646 thermal stress Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/72—Investigating presence of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/04—Casings
- G01J5/047—Mobile mounting; Scanning arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0896—Optical arrangements using a light source, e.g. for illuminating a surface
Definitions
- the present invention relates to a measurement and inspection technique using infrared rays.
- the present invention also relates to an apparatus for measuring the state of temperature or stress on the surface or inside of an object such as a structure by detecting infrared rays, and inspecting a state such as a defect or deterioration.
- thermoelastic effect is expressed by the following formula (1).
- ⁇ T is a temperature change
- K is a thermoelastic coefficient
- T is an absolute temperature
- ⁇ is a variation of the main stress sum of the object.
- the above principle is applied to a technique of applying a certain stress change to a structure that is an object of measurement and inspection and detecting a point where the stress change is different from the other as a defect.
- defects include peeling, cracks, internal cracks, and the like.
- a method for detecting the defect for example, a part having a large temperature difference or a part having a small temperature difference is determined and extracted as a defect.
- means for causing a temperature change from the outside to the object is taken.
- the means include means for illuminating the surface of the object with lamp light and means for irradiating laser light.
- Patent Document 1 JP-A-62-98243
- Patent Document 2 Patent No. 3776794
- Patent Document 1 irradiates an object such as an outer wall with laser light, causes a stress change due to expansion due to heat absorption before and after irradiation, and images a temperature difference distribution generated at this time with an infrared camera, thereby causing peeling and the like.
- An apparatus for detecting defects is described.
- Patent Document 1 briefly refers to a method of scanning and irradiating laser light.
- Non-Patent Document 1 describes an apparatus for detecting defects such as internal cracks by heating an object periodically with a heating lamp and measuring a temperature change accompanying a stress caused by heat absorption with an infrared camera. Yes.
- Patent Document 2 discloses an apparatus for detecting defects inside a tunnel wall surface by irradiating a concrete tunnel wall surface, which is an object, with a lamp mounted on a moving body such as a vehicle and taking an image with an infrared line camera. Are listed.
- the apparatus according to Patent Document 1 measures an infrared ray once per point to be measured, there is a problem in the accuracy of measurement and inspection due to an error in measurement values. Further, the apparatus according to Patent Document 2 has a problem in the accuracy of measurement and inspection because the measurement is performed once per measurement point by the movement of the vehicle with respect to the object.
- Non-Patent Document 1 has a non-uniform spatial distribution of the energy of the surface to be measured by heating or illumination as a means for giving temperature change and stress change to the surface to be measured. There are challenges.
- An object of the present invention is to improve the accuracy of measurement of temperature difference near the surface of a structure and the inspection of a state such as a defect or deterioration in relation to measurement and inspection using the infrared ray and the thermoelastic effect. It is to provide technology that can.
- a typical embodiment of the present invention is an infrared inspection apparatus which is an apparatus for measuring an object and inspecting a state such as a defect using infrared rays, and has the following configuration. .
- An infrared inspection apparatus includes a laser unit that irradiates a measurement point on the surface of an object with at least two states of presence or absence of irradiation with the laser beam, and the object with respect to the irradiation of the laser beam.
- An optical system including a scanning mirror for scanning at least the surface in the first direction, an infrared sensor for detecting at least one infrared ray generated from a measurement point on the surface of the object by irradiation with the laser beam, Infrared detection of the infrared sensor is performed when the laser light irradiation is in two states, and a temperature difference that is a difference between infrared detection signals in the two states is measured for each measurement point.
- a control unit that controls the laser beam irradiation of the laser unit, the angle of the scanning mirror, and the infrared detection timing of the infrared sensor, and the temperature difference Value, and based on the angle of the scan mirror, having, an image generator for generating an image including a distribution of the temperature difference of the measurement points of a plurality of each in the region of the surface of the object.
- An infrared inspection apparatus includes a laser unit that irradiates a measurement point on a surface of an object with laser light in at least two states of irradiation and the object with respect to the irradiation of the laser light.
- An optical system including a scanning mirror for scanning the surface of the object in at least the first direction, and detecting infrared rays generated from a measurement point on the surface of the object by irradiation of the laser beam in a line or surface area
- An infrared camera that captures an image; and a first infrared ray that is detected by the infrared camera in the non-irradiation state by controlling the laser beam to the non-irradiation state by the laser unit in image units of the infrared camera.
- An image and a second image in which infrared light is detected by the infrared camera when the laser unit is controlled to be irradiated with the laser beam and the irradiation is performed.
- An image generation unit that generates an image including a temperature difference distribution of a plurality of measurement points in a line or surface area of the surface of the object.
- An infrared inspection apparatus is an infrared inspection apparatus mounted on a moving body, and includes a sensor unit that detects a moving amount or a position of the moving body, and a surface to be measured on a fixed object.
- a laser unit that irradiates a point with laser light in at least two states of irradiation, and at least a first for irradiating a plurality of measured points on the surface of the object with respect to the irradiation of the laser light.
- An optical system including a scanning mirror for scanning in a direction, an infrared sensor that detects at least one infrared ray generated from a measurement point on the surface of the object by irradiation of the laser beam, and whether or not the laser beam is irradiated In the two states, the infrared sensor detects infrared rays in two states, and the angle of the scanning mirror is switched for each of a plurality of measurement points on the surface of the object.
- Detection of the sensor unit Pres / absence of laser light irradiation of the laser unit, angle of the scanning mirror, and detection of infrared light of the infrared sensor so as to measure a temperature difference, which is a difference between infrared detection signals, a plurality of times
- the infrared inspection apparatus further includes a defect extraction unit that determines and extracts a defect or a deteriorated portion using the temperature difference distribution image or the temperature difference distribution. .
- FIG. 3 is a timing chart showing control by the infrared inspection apparatus according to Embodiment 1.
- FIG. 3 is a diagram schematically showing a surface to be measured and a state of scanning in the first embodiment.
- (A) shows the example of defect determination based on the temperature difference data in Embodiment 1
- (b) is a figure which shows the example of defect determination based on the temperature difference data in Embodiment 3.
- FIG. (A) shows the example of the temperature difference image in Embodiment 1
- (b) is a figure which shows the example of the image of a defect extraction result.
- FIG. 10 is a timing diagram illustrating control by the infrared inspection apparatus according to the second embodiment. It is a figure which shows the structure containing the infrared rays inspection apparatus, vehicle, and target object of Embodiment 3 of this invention.
- FIG. 10 is a diagram illustrating a plurality of measurement points that accompany the traveling of a vehicle in a third embodiment.
- FIG. 10 is a timing diagram illustrating control by the infrared inspection apparatus according to the third embodiment.
- the infrared inspection apparatus 1A which is the infrared inspection apparatus of the first embodiment shown in FIG. 1, is based on the control of the angle ⁇ of the scanning mirror 23, and the pulsed laser beam from the pulse laser 2 to the surface 5a to be measured of the object 5 Is applied to the surface to be measured 5a to apply thermal stress due to active temperature change.
- the inspection apparatus 1A detects infrared rays from the measurement point on the measurement target surface 5a by the infrared sensor 3 in synchronization with the presence or absence of laser light irradiation.
- the inspection apparatus 1A generates an image of the temperature difference or temperature change distribution of the surface to be measured 5a, and uses the image to determine the temperature difference or stress fluctuation, thereby causing a state such as a defect or deterioration such as peeling or cracking. Is extracted.
- the inspection apparatus 1A has a configuration suitable for inspecting the vicinity of the surface of a building such as a building, a bridge, and a tunnel as the object 5.
- the inspection apparatus 1A inspects the normal state near the surface of the object 5 and the state of defects, deterioration, etc., extracts a portion determined to have a defect, deterioration, or a sign thereof, and outputs it to the user To do.
- FIG. 1 shows a configuration including an inspection apparatus 1A that is an infrared inspection apparatus according to the first embodiment and an object 5 to be measured and inspected.
- an inspection apparatus 1A that is an infrared inspection apparatus according to the first embodiment
- an object 5 to be measured and inspected As directions on explanation, in Drawing 1, X and Y which are directions which constitute a level surface, and Z which is a perpendicular direction are shown. In FIG. 1 and the like, the actual distance, size, and the like are omitted.
- the object 5 is a fixed structure to be measured and inspected.
- the object 5 is a wall surface of a building or the like made of a material such as concrete.
- the object 5 includes a measured surface 5a and measured points 5b, 5c, and 5d.
- the surface to be measured 5a is a surface in the Y and Z directions.
- the surface of the measurement target surface 5a includes a shape such as unevenness depending on the material and the like.
- the measurement points 5b, 5c, and 5d are examples of points to be measured on the line in the Y direction of the measurement surface 5a.
- the surface to be measured 5a becomes a line to be measured when only scanning and measurement in the Y direction are performed.
- the inspection device 1 ⁇ / b> A is arranged at a predetermined position and orientation with respect to the object 5.
- b ⁇ b> 1 indicates the distance between the end of the inspection apparatus 1 ⁇ / b> A and the measurement target surface 5 a of the object 5.
- the distance b1 is 50 m, for example.
- b2 indicates a possible range of scanning by the scanning mirror. Details of the optical system of the inspection apparatus 1A are designed according to the distance b1, the scanning range b2, and the like. Note that the length of the scanning range b2 is sufficiently smaller than the distance b1.
- the inspection apparatus 1A includes a pulse laser 2, an infrared sensor 3, a collimating lens 21, a dichroic mirror 22, a scanning mirror 23, an objective lens 24, an imaging lens 25, an oscillator 10, a control unit 11A, an image generation unit 12A, and a defect extraction unit 13A. And an input / output unit 14.
- the parts such as the control unit 11A, the image generation unit 12A, the defect extraction unit 13A, and the input / output unit 14 can be configured by, for example, a circuit board including a CPU, a ROM, and a RAM, a PC, and the like, and function by software program processing or the like. realizable.
- the oscillator 10 oscillates the reference clock c0.
- the control unit 11A controls the entire inspection apparatus 1A.
- the control unit 11A controls each unit such as the scanning mirror 23, the pulse laser 2, and the infrared sensor 3 based on the reference clock c0 from the oscillator 10.
- the controller 11A controls the state of the scanning or deflection angle ⁇ of the scanning mirror 23 by the angle control signal c1.
- the control unit 11A controls the presence and absence (ON) and absence (OFF) of oscillation and irradiation of the pulsed laser light from the pulse laser 2 by the control signal c2.
- the control signal c2 is a signal by ON and OFF pulses, for example.
- the control unit 11A reads out and acquires the infrared intensity signal c3 detected by the infrared sensor 3.
- the image generation unit 12A generates an image of a temperature difference distribution corresponding to the area of the measurement target surface 5a of the object 5 using information including the infrared measurement value obtained by the infrared sensor 3 obtained through the control unit 11A. Process.
- the image has information such as a temperature difference measurement value and a display gradation value associated therewith for each point to be measured.
- the image generation unit 12A stores data information including the generated image in a storage device (not shown) in the inspection apparatus 1A.
- the defect extraction unit 13A uses the image of the temperature difference distribution generated by the image generation unit 12A to determine the normal state, the defect, the deterioration, and the like in the region of the image, and is determined to be the defect, the deterioration, or the like. To extract the part. Then, the defect extraction unit 13A generates information such as an image including the defect extraction result and stores it in a storage device (not shown) in the inspection apparatus 1A.
- the defect extraction unit 13A compares the temperature difference of the measurement point with the threshold value using, for example, threshold information of the allowable range as the defect determination process, and if the temperature difference is within the allowable range based on the threshold value, the determination result is obtained. When it is normal and does not fit, the judgment result is regarded as a defect.
- the input / output unit 14 receives an operation for using the function of the inspection apparatus 1A by a user and an operation for setting, and performs processing such as input and output of data information.
- the input / output unit 14 includes an input button, a display device, and the like.
- the input / output unit 14 displays an image of a temperature difference distribution, an image of a defect extraction result, and the like on the screen. Thereby, the user can judge and confirm the state of the defective portion, etc. by looking at the image displayed on the screen, and can easily perform the measurement and inspection work.
- the input / output unit 14 can set setting information such as threshold information of an allowable range for defect determination by the user.
- threshold information of an allowable range may be set in advance in the inspection apparatus 1A.
- the pulse laser 2 is a laser device that oscillates pulsed laser light in response to a control signal c2 from the control unit 11A.
- the pulse laser 2 irradiates the measurement target surface 5a of the object 5 with laser light intermittently. Thereby, thermal stress or energy distribution is given to the measurement surface 5a for measurement and inspection of the temperature difference. Control is performed so as to assume the presence (ON) and absence (OFF) of pulsed laser light irradiation for each measurement point on the measurement target surface 5a.
- the infrared sensor 3 is a point sensor, and in response to the reading and detection control from the control unit 11A, the infrared light corresponding to the measurement point is incident on the sensor surface and detected, and the infrared signal c3. Is output. Infrared intensity correlates with temperature. The temperature difference ( ⁇ T) correlates with the stress fluctuation ( ⁇ ) as shown by the above-described thermoelastic effect equation (1).
- the collimating lens 21 converts incident light into parallel light.
- the dichroic mirror 22 is a wavelength separation mirror.
- the dichroic mirror 22 reflects a component in a predetermined wavelength band of incident light and transmits a component in another wavelength band.
- the scanning mirror 23 has a mechanism that rotates at an angle ⁇ around a rotation axis extending in the Z direction.
- the scanning mirror 23 is deflected or rotated by controlling the angle ⁇ for scanning in the Y direction by the angle control signal c1 from the control unit 11A. Thereby, the scanning mirror 23 irradiates the reflected light through the objective lens 24 so as to scan the region of the line in the Y direction on the measurement target surface 5a of the object 5.
- the objective lens 24 converts incident light into focused light to a measurement point on the measurement target surface 5a that is a focal point.
- the imaging lens 25 forms an image of incident light on the sensor surface of the infrared sensor 3 that is a focal point.
- the inspection apparatus 1A according to the first embodiment has an optical system configuration in which a measurement point on the measurement target surface 5a of the object 5 and a sensor surface of the infrared sensor 3 are combined with the imaging lens 25 and the objective lens 24. It is placed in the relationship of imaging by conjugation.
- the flow of light in the optical system of the inspection apparatus 1A is as follows.
- Light a0 which is pulsed laser light emitted from the pulse laser 2 in the X direction, becomes parallel light a1 by the collimator lens 21.
- the parallel light a1 is reflected by the dichroic mirror 22 in the Y direction.
- the reflected light a2 is reflected in the X direction by the scanning mirror 23 according to the control state of the angle ⁇ .
- the light a3 that has passed through the scanning mirror 23 is emitted from the end of the inspection apparatus 1A to the outside as focused light a4 by the objective lens 24.
- the focused light a4 is condensed and irradiated on the measurement point on the measurement surface 5a of the object 5.
- the focused light a4 is condensed on the measurement point 5b on the measurement surface 5a.
- the measurement point 5 b indicates a reference point that is located in front of the center of the scanning mirror 23 and the principal point of the objective lens 24 in the X direction.
- the temperature rises because it is heated by the irradiated focused light a4, and infrared light having an intensity corresponding to the temperature, particularly far infrared light is generated.
- Light a5 that is infrared light generated on the measurement target surface 5a of the object 5 travels in the same optical path as the focused light a4 in the opposite direction in the X direction, and enters the objective lens 24 from the end of the inspection apparatus 1A.
- the light incident on the objective lens 24 is reflected in the Y direction by the scanning mirror 23, and far-infrared light that is light in a predetermined wavelength band passes through the dichroic mirror 22.
- the light a8 that has passed through the dichroic mirror 22 in the Y direction is incident on the sensor surface of the infrared sensor 3 as the focused light a9 by the imaging lens 25.
- the position where the focused light a4 is irradiated on the measurement target surface 5a is measured in the Y direction from the reference measurement point 5b. It moves to the point 5c and the measurement point 5d.
- the scanning range b2 corresponds to the length between the measured point 5c and the measured point 5d.
- the point to be measured 5c is a limit point of scanning in the positive direction in the Y direction corresponding to a state in which the angle ⁇ is increased to the maximum angle (set to ⁇ 1) in the positive direction.
- the measurement point 5d is a limit point of scanning in the Y direction negative direction corresponding to a state where the angle ⁇ is increased to the maximum angle ( ⁇ 2) in the negative direction.
- several to-be-measured points can be taken between to-be-measured point 5c and to-be-measured point 5d.
- the position of the measurement point to be scanned and irradiated moves in the Y direction.
- the light a5 which is infrared light generated from the measurement target surface 5a, similarly moves in the Y direction.
- the above-described scanning forms a distribution of infrared light on the line in the Y direction of the measurement target surface 5a, that is, a spatial temperature distribution and a temperature difference distribution. Since the infrared sensor 3 is a point sensor that detects at one point, the distribution is detected as an infrared intensity signal c3 in time series.
- the control unit 11A and the image generation unit 12A use the infrared intensity signal c3 read from the infrared sensor 3 and the information on the angle ⁇ at the time of scanning, and the temperature difference in the region of the line in the Y direction of the measurement surface 5a. To understand the distribution of The angle ⁇ and the position of the measurement point have a correspondence relationship.
- a design example of the optical system and the like of the inspection apparatus 1A is as follows.
- the wavelength of the laser beam is designed according to the characteristics of the object 5 and the surrounding environment.
- the material of the object 5 is concrete.
- a YAG solid-state laser (YAG: yttrium, aluminum, garnet) with a wavelength of 1 ⁇ m
- a Yb fiber laser (Yb: ytterbium), an Er fiber laser (Er: Erbium), Tm fiber laser with a wavelength of 2 ⁇ m band (Tm: thulium), etc.
- a YAG solid-state laser is used as the pulse laser 2.
- a YAG solid-state laser can oscillate by an external input pulse.
- the dichroic mirror 22 has a function of reflecting a wavelength of 8 ⁇ m or less and transmitting a wavelength of 8 ⁇ m or more.
- the wavelength 8 ⁇ m at the boundary between reflection and transmission is designed according to the characteristics of the pulse laser 2, the infrared sensor 3, the object 5, and the like.
- Infrared light generated from the surface of the object 5 has various wavelengths, but far-infrared light having a wavelength of 8 ⁇ m or more is suitable for detection because it is less absorbed by the atmosphere.
- a wavelength of 8 ⁇ m is selected as a boundary between transmission and reflection of the dichroic mirror 22 in order to efficiently detect far infrared rays or long wavelength infrared rays, which are infrared rays having a wavelength of 8 ⁇ m or more, with the infrared sensor 3.
- the size of the sensor surface of the infrared sensor 3 is about 1 mm.
- the laser beam irradiation and scanning control of the surface to be measured 5a is controlled only in the Y direction by the angle ⁇ of the scanning mirror 23. Accordingly, it is possible to measure and inspect the temperature difference distribution in the one-dimensional line region in the Y direction of the measurement target surface 5a in one scan. Further, the inspection apparatus 1A may have a mechanism for translating the optical system in the Z direction so that the irradiation position can be translated in the Z direction. Thus, by controlling the repetition of scanning in the Y direction a plurality of times, it is possible to measure and inspect the temperature difference distribution in the two-dimensional surface region.
- the scanning mirror 23 and the control unit 11A in FIG. 1 are not limited to scanning in the Y direction, and may be configured to be able to scan in other directions as follows.
- the inspection apparatus 1A may be configured such that the scanning mirror 23 controls the angle ⁇ for scanning in the Z direction with the rotation axis as the Y direction.
- the inspection apparatus 1A includes a first scanning mirror 23 that can control the scanning angle ⁇ in the Y direction and a second scanning mirror 23 that can control the scanning angle ⁇ in the Z direction. It is good also as a structure provided with both.
- the controller 11A individually controls the two scanning mirrors 23. Thereby, measurement and inspection by scanning in both the Y direction and the Z direction can be performed on the measurement target surface 5a.
- the inspection apparatus 1A may have a configuration in which both the scanning angle ⁇ in the Y direction and the scanning angle ⁇ in the Z direction can be simultaneously controlled as one scanning mirror 23. As a result, it is possible to measure and inspect the temperature difference distribution by freely scanning in the Y direction and the Z direction in the two-dimensional surface area of the measurement target surface 5a.
- FIG. 3 simply shows a state of scanning on the measurement target surface 5a by controlling the angle ⁇ of the scanning mirror 23 in a plane in the Y and Z directions.
- a circle 300 indicates a plurality of measurement points or candidate points.
- Reference numeral 301 denotes scanning in the Y direction by controlling the angle ⁇ of the scanning mirror 23.
- Reference numeral 302 denotes scanning in the Z direction by controlling the angle ⁇ of the scanning mirror 23.
- the left direction in the figure is the Y direction positive direction and the angle ⁇ positive direction
- the right direction in the figure is the Y direction negative direction and the angle ⁇ negative direction.
- how to take angle (theta) etc. is an example, and is not limited.
- the angle ⁇ may be controlled to be deflected from the reference angle ⁇ 0 only in one of the positive direction and the negative direction.
- a line area in the Y direction can be scanned as indicated by 301, and a plurality of measurement points 300 on the line can be measured.
- a region of a line in the Z direction as in 302 can be scanned, and a plurality of measurement points 300 on the line can be measured.
- FIG. 2 shows a timing chart of each signal of control as a control method by the inspection apparatus 1A of the first embodiment.
- (A) shows a reference clock c0 given from the oscillator 10 to the control unit 11A.
- 201 indicates one clock pulse in the reference clock c0.
- the control unit 11A oscillates and irradiates the pulse laser 2 in (b), detects and reads out the infrared sensor 3 in (c), and angle ⁇ of the scanning mirror 23 in (d). Control the timing of switching.
- (B) shows the control of oscillation (irradiation) and irradiation (OFF) of pulsed laser light of the pulse laser 2 and irradiation corresponding to the control signal c2.
- Reference numeral 202 denotes one pulse in the ON state. The OFF state is shown during the ON state pulse 202.
- the control signal c ⁇ b> 2 is turned ON, laser light with a pulse 202 having a short width is emitted by thermal excitation of the pulse laser 2.
- the ON pulse 202 in (b) is emitted synchronously with the ratio of one pulse 202 to the four clock pulses 201 of the reference clock c0 in (a).
- (C) shows detection and readout control of the infrared sensor 3.
- Reference numerals 203 and 204 denote one measurement value detection and readout pulse, respectively.
- the detection or measurement of infrared rays by the infrared sensor 3 in (c) is controlled so as to be performed at a timing synchronized with the non-irradiation (OFF) and presence (ON) states of the pulse laser 2 in (b).
- the controller 11A controls the synchronization by each signal based on the reference clock c0.
- Reference numeral 203 denotes a detection and readout pulse when the laser beam pulse 202 is not irradiated (OFF) in (b), and reference numeral 204 denotes a laser beam pulse irradiation (ON) when (b) is performed (ON). Detection and readout pulses.
- the pulses 203 and 204 in (c) are detected and read out at a rate of once with respect to the two clock pulses 201 of the reference clock c0 in (a).
- 11 A of control parts read the signal c3 of the measured value of an infrared intensity from the infrared sensor 3 according to the said pulses 203 and 204.
- S indicates the measurement value of the infrared sensor 3 corresponding to the timing of the pulses 203 and 204 before and after the laser light irradiation.
- d indicates a temperature difference ( ⁇ T) due to the difference of the measurement value s of the infrared sensor 3.
- the temperature difference d is a difference value between the measured value s when there is no irradiation (OFF) and the measured value s when there is irradiation (ON). For example, the difference between the measured value s1 at the time of the pulse 203 and the measured value s2 at the time of the next pulse 204 is obtained as the temperature difference d1.
- v (v1 to v3, etc.) represents a temperature difference based on an average value of a plurality of temperature differences d (d1 to d4, etc.).
- the average value of the four temperature differences d1 to d4 is the temperature difference v2.
- (D) shows the deflection control of the angle ⁇ of the scanning mirror 23 corresponding to the angle control signal c1.
- the vertical axis is the angle ⁇ .
- Reference numeral 206 denotes a signal and a state in which the angle ⁇ is set to 0 degrees, which is the reference angle ⁇ 0, corresponding to the position of the reference measurement point 5b at time 212 from time t2 to t3.
- four temperature differences d are measured for one measurement point 5b by the measurement values s of four pulses 202 in (b) and eight pulses in (c). Measurement is performed. Then, a temperature difference v2 by an average value of the four temperature differences d (d1 to d4) is obtained.
- the controller 11A controls the angle ⁇ of the scanning mirror 23 in (d) at a timing synchronized with the clock pulse 201 of the reference clock c0 at a rate of once for the four pulses 202 in (b).
- the unit amount ( ⁇ u) is switched to increase or decrease.
- the switching of the angle ⁇ is performed at the timing of one clock pulse 201 in (a) as indicated by t1, t2, and t3.
- the timing of the clock pulse 201 is an intermediate timing between the pulse 204 of (c) corresponding to the ON pulse 202 of (b) and the pulse 203 of (c) corresponding to the OFF state of (b).
- ⁇ u indicates the unit amount of increase / decrease of the angle ⁇ .
- Reference numeral 205 denotes a state in which the angle ⁇ is controlled by an angle ( ⁇ u) smaller by one unit amount in the negative direction with respect to the reference angle ⁇ 0 at a time 211 from time t1 to time t2. In this state, a temperature difference v1 is obtained.
- Reference numeral 207 denotes a state in which the angle ⁇ is controlled by an angle (+ ⁇ u) larger by one unit amount in the positive direction with respect to the reference angle ⁇ 0 at time 213 from time t3 to t4. In this state, a temperature difference v3 is obtained. The same applies to angle states other than those shown in the figure.
- the pulses 203 and 204 in (c) corresponding to two states of ON and OFF of the pulse 202 in (b) are controlled.
- An infrared measurement value s is obtained at the timing.
- 11 A of control parts read the infrared intensity signal c3 corresponding to the measured value s from the infrared sensor 3, and acquire it.
- the image generation unit 12A calculates the temperature difference d from the difference between the measurement values s corresponding to the presence or absence of laser light irradiation.
- the image generation unit 12A calculates a temperature difference v obtained by averaging a plurality of temperature differences d per measurement point corresponding to the state of one angle ⁇ .
- the image generation unit 12A similarly obtains the temperature difference v for each measurement point in the region of the line on the measurement surface 5a. Thereby, the image generation unit 12A generates an image of a temperature difference distribution corresponding to the region of the measurement target surface 5a.
- the image generation unit 12A combines the information of the measurement value s and the temperature difference d and the information of the angle ⁇ of the scanning mirror 23, and grasps the position of the scanning and measurement point on the measurement surface 5a from the angle ⁇ . Generate an image of the temperature difference distribution.
- FIG. 4A shows an example of part of the data of the temperature difference distribution image by the image generation unit 12A and the defect determination processing by the defect extraction unit 13A in the first embodiment.
- the horizontal axis indicates points A to I, which are a plurality of measurement points at positions in the Y direction of the measurement surface 5a.
- the vertical axis indicates the measured value of the temperature difference ( ⁇ T) at the measurement point, in particular, the temperature difference v based on the average value described above.
- 401 indicates an allowable range as setting information for defect determination
- h1 indicates a lower limit threshold value
- h2 indicates an upper limit threshold value.
- points A to D indicated by 402 are within the allowable range 401
- points E to I indicated by 403 are smaller than the threshold value h1 and outside the allowable range 401.
- the defect extraction unit 13A compares the temperature difference value with a threshold value, and determines that the defect is normal if it is within the allowable range 401, and is defective or deteriorated if it is outside the allowable range 401.
- the region 403 including the points E to I determined to be defective, deteriorated, etc. has a small temperature difference and stress fluctuation, so that the state where peeling or the like is occurring in the vicinity of the region is highly likely to occur. Represents. Conversely, when the temperature difference exceeds the threshold value h2, the temperature difference and stress fluctuation are large, indicating that stress concentration is occurring near the area due to cracks or the like, or the possibility of occurrence is high. ing.
- FIG. 5A simply shows an example of the temperature difference distribution image 501 generated by the image generation unit 12A.
- An image 501 shows an image of a temperature difference distribution corresponding to a case where the measured surface 5a of the object 5 is made of concrete tiles or the like.
- an image 501 is generated.
- the actual image has a value of the temperature difference d or a gradation value associated therewith for each pixel corresponding to the measurement point.
- the image generation unit 12A may generate a display image that is easy for the user to visually check by performing display image processing on the measurement value.
- the partial area 503 in the image 501 corresponds to a partial tile, but the temperature difference is smaller than the area around the area 503.
- the region 503 is extracted as a defect when the temperature difference is outside the allowable range 401.
- the defect extraction unit 13A determines and extracts the defect portion by processing such as threshold comparison as shown in FIG. 4A or relative comparison of values in the image.
- FIG. 5B shows an image 502 including a defect portion region 504 determined and extracted by the defect extraction unit 13A based on the image 501 in FIG. 5A.
- the defective portion region 504 corresponds to the region 503.
- the region 504 indicates that stress or stress fluctuation is small. That is, the region 504 indicates that peeling or the like is likely to occur.
- stress concentration occurs, so that the temperature difference becomes larger than the surroundings. In this case, extraction can be performed in the same manner as described above.
- the inspection apparatus 1A has the spatial and temporal uniformity related to heating for measurement and inspection, the measurement of infrared rays and temperature differences a plurality of times per point to be measured, and the pulse laser 2 And measuring the temperature difference before and after the irradiation of the pulsed laser beam by the synchronous control of the infrared sensor 3.
- the first embodiment relates to the measurement and inspection using infrared rays and the thermoelastic effect, etc., and the accuracy of measurement of the temperature difference near the surface of the structure that is the object 5 and the inspection of the state such as defects and deterioration. Accuracy can be improved.
- defects such as defects and deterioration near the surface of the object 5 and signs thereof can be detected at an early stage. For example, measures for maintaining the safety of structures such as buildings, bridges and tunnels can be realized quickly and reliably.
- the inspection apparatus 1A has a plurality of points per measurement point by the infrared sensor 3 while scanning the area of the measurement surface 5a of the object 5 with the focused light a4 of the laser beam by the pulse laser 2 and the scanning mirror 23. Measure the infrared and temperature difference of the times. Then, the inspection apparatus 1A obtains an image of the distribution of the temperature differences v by averaging the measured values of the plurality of temperature differences d. This reduces measurement errors. For example, the measurement error can be reduced to 1 ⁇ 2 by using an average value of four temperature differences d for each point. Thereby, 1 A of inspection apparatuses can measure an infrared rays and a temperature difference with high precision with respect to the prior art example which measures once per point.
- the region of the measurement target surface 5a of the object 5 is scanned spatially and temporally uniformly by the focused light a4 by the irradiation of the pulsed laser beam. Accordingly, the inspection apparatus 1A has higher uniformity in the state of spatial distribution of thermal stress or energy in the area of the surface to be measured 5a than the configuration of the lamp batch irradiation or the like of the prior art example. As a result, the inspection apparatus 1A is more accurate in measuring the temperature difference distribution by the infrared sensor 3 than in the prior art. As a result, the accuracy of extracting defects such as peeling and cracks from the image of the temperature difference distribution on the surface to be measured 5a increases.
- Non-Patent Document 1 measurement is performed with an infrared camera in conjunction with periodic heating by a heating lamp. Therefore, the accuracy of temperature difference measurement is improved as compared with the apparatus according to Patent Document 1, but due to the non-uniformity of the illuminance distribution when the entire surface of the object is illuminated with a heating lamp, uniform stress changes on the surface of the object Can not give. As a result, the accuracy of measurement and defect detection decreases.
- the inspection apparatus 1B which is the infrared inspection apparatus of the second embodiment shown in FIG. 6, is capable of imaging that detects infrared rays in a two-dimensional surface area as a different element from the inspection apparatus 1A of the first embodiment.
- Infrared camera 4 was introduced.
- the inspection apparatus 1B of the second embodiment eliminates the dichroic mirror 22 of FIG. 1 and the imaging lens 25 and the infrared sensor 3 installed in the Y direction, and instead, between the objective lens 24 and the object 5.
- the dichroic mirror 27 was installed in The infrared camera 4 was installed in the Y direction, which is the reflection direction of the dichroic mirror 27, via the telephoto lens 28.
- FIG. 6 shows a configuration including the inspection apparatus 1B and the object 5 according to the second embodiment.
- the inspection apparatus 1B according to the second embodiment includes a pulse laser 2, an infrared camera 4, a collimator lens 21, a reflection mirror 29, a scanning mirror 23B, an objective lens 24, a dichroic mirror 27, a telephoto lens 28, a control unit 11B, and an image generation unit 12B.
- the measured surface 5a of the object 5 includes a surface area in the Y and Z directions.
- R represents an imaging range for a half angle corresponding to the length of the measured point 5b and the measured point 5c.
- the scanning range b2 is 2 ⁇ R.
- L indicates the distance between the center or rotation axis of the scanning mirror 23B and the reference measurement point 5b of the measurement target surface 5a of the object 5.
- the infrared camera 4 enters infrared rays into an imaging lens or a sensor surface and takes an infrared intensity distribution as an image.
- the sensor surface of the infrared camera 4 is a two-dimensional surface in the X and Z directions, and includes an array of a plurality of pixels.
- the pixel size corresponding to the measurement of one point on the sensor surface of the infrared camera 4 is about 10 ⁇ m.
- a read output signal c4 from the infrared camera 4 is a signal of a two-dimensional captured image including an infrared intensity distribution.
- the infrared camera 4 has a configuration capable of controlling imaging and reading in units of images. Therefore, in the second embodiment, the control unit 11B controls the measurement of the temperature difference by infrared rays in correspondence with the reading of the image unit of the infrared camera 4. The control unit 11B reads out and controls the signal c4 for each image from the infrared camera 4.
- the control unit 11B controls the scanning mirror 23B, the pulse laser 2 and the like using the signal c4 read from the infrared camera 4 as a reference clock.
- the controller 11B controls both the angle ⁇ for scanning in the Y direction of the scanning mirror 23B and the angle ⁇ for scanning in the Z direction by the angle control signal c1.
- the control unit 11B controls the pulse laser 2 by the control signal c2 as in the first embodiment.
- the inspection apparatus 1B captures an image when the laser beam from the pulse laser 2 is irradiated (ON) and an image when the laser beam is not irradiated (OFF).
- the image generation unit 12B obtains an infrared intensity signal c4 from the infrared camera 4 from the control unit 11B, and performs processing for generating an image of a temperature difference distribution in the surface area of the measurement target surface 5a.
- the image generation unit 12B generates an image of a temperature difference distribution based on a difference between an image with laser light irradiation (ON) and an image with no laser light irradiation (OFF).
- the defect extraction unit 13B uses the image of the temperature difference distribution to perform processing for determining and extracting a normal state and a state such as a defect and deterioration, and uses the result through the input / output unit 14 Output to the user.
- the reflection mirror 29 is disposed at the position of the dichroic mirror 22 in FIG. 1, and reflects the light a1 from the X direction in the Y direction. Note that the reflection mirror 29 can be omitted when the pulse laser 2 emits light in the Y direction.
- the scanning mirror 23B has a configuration capable of simultaneously controlling both the angle ⁇ for scanning in the Y direction and the angle ⁇ for scanning in the Z direction in accordance with the angle control signal c1 from the control unit 11B.
- the state of scanning of the area of the two-dimensional surface on the measurement target surface 5a is the same as that in FIG.
- the infrared intensity distribution is imaged on the two-dimensional sensor surface of the infrared camera 4 in correspondence with the scanning of the two-dimensional surface on the measurement target surface 5a.
- the dichroic mirror 27 is a wavelength separation mirror having a function of transmitting light having a wavelength of 8 ⁇ m or less and reflecting light having a wavelength of 8 ⁇ m or more, contrary to the dichroic mirror 22 of the first embodiment.
- the dichroic mirror 27 transmits the laser light from the pulse laser 2 and reflects the infrared light from the object 5.
- the telephoto lens 28 is an imaging lens installed together with the infrared camera 4.
- the telephoto lens 28, which is one imaging lens places the measurement point of the object 5 and the imaging lens or sensor surface of the infrared camera 4 in an imaging relationship by conjugation. It is burned.
- the light flow in the optical system of the inspection apparatus 1B of the second embodiment is as follows.
- the light a0 that is pulsed laser light emitted from the pulse laser 2 becomes parallel light a1 through the collimator lens 21, and is reflected by the reflection mirror 29 in the Y direction.
- the reflected light a2 is reflected in the X direction by the scanning mirror 23B according to the control state of the angle ⁇ and the angle ⁇ .
- the light a ⁇ b> 3 reflected by the scanning mirror 23 ⁇ / b> B becomes focused light a ⁇ b> 11 through the objective lens 24 and is incident on the dichroic mirror 27.
- the dichroic mirror 27 transmits light having a wavelength of 8 ⁇ m or less in the focused light a11.
- the focused light a ⁇ b> 12 that has passed through the dichroic mirror 27 is emitted from the end of the inspection apparatus 1 ⁇ / b> B to the outside, and is irradiated on the measurement point on the measurement surface 5 a of the object 5.
- the infrared light a13 generated from the measurement point on the measurement target surface 5a returns along the optical path in the X direction, is incident from the end of the inspection apparatus 1B, and far-infrared light having a wavelength of 8 ⁇ m or more is emitted from the dichroic mirror 27. Reflected in the Y direction.
- the light a14 reflected by the dichroic mirror 27 enters the telephoto lens 28, and the light a15 via the telephoto lens 28 forms an image on the imaging lens or sensor surface of the infrared camera 4.
- the infrared camera 4 picks up the infrared intensity of the area of the surface to be measured 5a.
- the scanning range b2 of the measurement surface 5a of the object 5 is determined by the size of the sensor surface of the infrared camera 4 and the magnification of the telephoto lens 28.
- the maximum deflection angle (referred to as ⁇ max) of the angle ⁇ of the scanning mirror 23B is determined by the following formula (2) so as to match the imaging range R for a half angle. Since R / L is sufficiently small, the angle ⁇ max can be obtained by R / 2L.
- the pixel size of the sensor surface of the infrared camera 4 in the second embodiment is about 10 ⁇ m, and the sensor surface size of the infrared sensor 3 in the first embodiment is about 1 mm.
- the pixel size of the second embodiment is about 1/100 of the size of the sensor surface of the first embodiment. Therefore, when the scanning range b2 is constant, the use of the infrared camera 4 can provide a spatial resolution that is 100 times as fine as that of the first embodiment. That is, according to the second embodiment, it is possible to extract a smaller defect.
- FIG. 7 shows a timing chart of control in the inspection apparatus 1B of the second embodiment.
- F ⁇ b> 1 and F ⁇ b> 2 indicate times corresponding to capturing one image by the infrared camera 4.
- FIG. 7 for simplification of description, regarding the scanning and imaging of one image on the measurement target surface 5a, measurement of six pixels corresponding to six measurement points by scanning one line in the Y direction is performed. Only the part is shown. A plurality of other lines in the Y direction and the Z direction in the surface area are similarly subjected to scanning and imaging control, whereby a captured image of the two-dimensional surface area is obtained.
- (A) shows a pixel detection and readout clock corresponding to the detection and readout signal c4 of the infrared camera 4, which is a reference for control.
- Reference numeral 701 denotes one clock pulse corresponding to detection and readout of one pixel.
- the readout clock 701 that is the pixel accumulation time of the infrared camera 4 is always kept constant. Thereby, the spatial uniformity of the scanning and irradiation of the laser beam on the measurement target surface 5a is ensured.
- the inspection apparatus 1B uses the clock of the infrared camera 4 of (a) as a reference clock for overall control.
- (B) shows a double wave clock which is a clock obtained by doubling the frequency of the clock of the infrared camera 4 of (a).
- the control unit 11B internally generates a clock pulse 702 of (b) as a harmonic wave of the clock pulse 701 of (a).
- the double-wave clock pulse 702 in (b) gives the switching timing of the irradiation control signal 703 in (c) and the control signal 705 for controlling the angle ⁇ of the scanning mirror 23B in (e).
- (C) is an irradiation control signal 703 for controlling the ON and OFF states of irradiation of the pulse laser 2 of (d) in units of images.
- the controller 11B Based on the signals (a) and (b), the controller 11B internally generates an irradiation control signal 703 (c).
- the signal 703 is included in the control signal c2.
- the signal 703 is turned off at the time corresponding to the first image capturing indicated by F1 and time t1 to t2, and is turned on at the time corresponding to the second image capturing indicated by F2 and time t2 to t3. Put into a state.
- the laser light irradiation of (d) is not turned on and off.
- the next ON state of F2 during the detection and readout of all pixels of the image picked up by the infrared camera 4, repetition (ON) and non-OFF (OFF) of laser light irradiation of (d) is performed.
- (D) shows control signals for turning on and off the irradiation of the pulse laser 2.
- Reference numeral 704 denotes a pulse with irradiation (ON).
- the pulse 704 in (d) is emitted in synchronization with the clock pulse 701 in (a) only when the irradiation control signal 703 in (c) is on.
- the example of (d) shows the case of only six pulses 704 corresponding to the measurement of six measurement points by scanning one line in the Y direction.
- (E) shows a signal 705 for controlling the angle ⁇ of the scanning mirror 23B.
- the signal 705 in (e) is controlled in synchronism so that the angle is switched at a timing shifted by a half cycle with respect to the readout clock 701 in (a) and at the timing of the double-frequency clock pulse 702 in (b).
- the In the example of (e), switching of six angle states is shown corresponding to six measurement points of one line in the Y direction.
- the temperature difference is measured using temporally separated measurement points between the preceding and succeeding images, such as F1 and F2, corresponding to the on / off states of laser light irradiation. . S1 etc. in (a) show the measured value of the pixel corresponding to the measurement point by the detection at the timing of the clock pulse 701 of the infrared camera 4.
- the measurement value s1 in the F1 image and the measurement value s1 in the F2 image correspond to the position in the captured image and the position of the measurement point in the measurement target surface 5a.
- the pixel measurement value s1 at the time of the first clock pulse 701 of F1 in the off state and the corresponding first value of F2 in the on state The difference from the measured value s1 of the pixel at the time of the clock pulse 701 is the temperature difference d1 ( ⁇ T) at the measurement point of the pixel.
- a temperature difference is obtained for each pixel at the measurement point according to the angular state of (e).
- the scanning and measurement of the two-dimensional surface area by controlling the angle ⁇ and the angle ⁇ are as follows, for example.
- a scan including, for example, six measurement points on one line in the first Y direction in the surface area of the scan range b2 is performed in the same manner as in FIG.
- the angle ⁇ in the Z direction is increased or decreased by a predetermined unit amount, and scanning of one line in the next Y direction is similarly performed.
- all the lines in the Y direction of the scanning range b2 are scanned while shifting the angle ⁇ in the Z direction.
- all the measurement points and pixels in the two-dimensional surface area are measured within the time corresponding to one image.
- the measurement in units of images is performed according to the irradiation OFF and ON control in (c) as shown in F1 and F2 in FIG.
- the image generation unit 12B generates an image of the distribution of the temperature difference d ( ⁇ T) based on the difference between these two sets of images and the difference between the measured values between the pixels. Then, the defect extraction unit 13B performs defect determination processing from the image of the temperature difference distribution, extracts the defect portion, and outputs an image including the result, as in the first embodiment.
- the image unit control such as F1 and F2 in FIG. 7 is repeated a plurality of times in the same manner, so that a plurality of measurement values are obtained for each point to be measured, and the average value thereof is obtained.
- a temperature difference v may be obtained.
- the inspection apparatus 1B of the second embodiment spatial and temporal uniformity related to heating for measurement and inspection, measurement of infrared rays and temperature differences multiple times per point to be measured, pulse It has a configuration such as measurement of a temperature difference before and after irradiation of pulsed laser light by synchronous control of the laser 2 and the infrared camera 4.
- the second embodiment is similar to the first embodiment in terms of the measurement accuracy and the defect of the temperature difference in the vicinity of the surface of the structure that is the object 5 with respect to measurement and inspection using infrared rays and thermoelastic effects. It is possible to improve the accuracy of inspection of conditions such as deterioration and deterioration.
- the configuration including the scanning mirror 23B performs scanning by irradiating a uniform laser beam in a two-dimensional surface area of the surface to be measured 5a, and the thermal stress or energy spatially on the surface to be measured 5a. High uniformity of distribution. Therefore, the temperature difference can be measured with high accuracy. Further, in the second embodiment, the spatial resolution can be increased 100 times as compared with the first embodiment by the configuration including the infrared camera 4 as described above. Thereby, defect extraction can be performed with high accuracy and a state such as a fine crack can be easily detected.
- the scanning range by the laser light may be a one-dimensional line region such as the Y direction or the Z direction
- the imaging range by the infrared camera 4 may be a one-dimensional line region.
- An inspection apparatus 1C which is an infrared inspection apparatus of the third embodiment shown in FIG. 8, is the same as that of the first embodiment in terms of elements such as an optical system, but is an in-vehicle inspection apparatus as a different configuration.
- the inspection apparatus 1 ⁇ / b> C measures and inspects a plurality of measurement points on the measurement target surface 5 a of the target object 5 while moving as the vehicle 6 travels. During the movement, the inspection apparatus 1C rotates or deflects the scanning mirror 23C so that measurement is performed a plurality of times per point with respect to the measurement point at a fixed position without moving the laser irradiation point. Is controlled.
- FIG. 8 shows a configuration including the inspection device 1 ⁇ / b> C according to the third embodiment, the vehicle 6 on which the inspection device 1 ⁇ / b> C is mounted, and the object 5.
- the inspection device 1 ⁇ / b> C is mounted on the vehicle body of the vehicle 6.
- at least one movement amount sensor 31 is attached to the wheel 6a.
- the vehicle 6 may be another moving body.
- the inspection apparatus 1C according to Embodiment 3 may be viewed as an inspection apparatus or an inspection system as a whole including the vehicle 6 and the inspection apparatus 1C.
- the inspection apparatus 1C includes a pulse laser 2, an infrared sensor 3, a collimating lens 21, a dichroic mirror 22, a scanning mirror 23C, an objective lens 24, an imaging lens 25, a movement amount sensor 31, a control unit 11C, and image generation. 12C, a defect extraction unit 13C, and an input / output unit 14.
- the movement amount sensor 31 is a sensor that detects the movement amount of the vehicle 6 in the Y direction.
- the movement amount sensor 31 generates a pulse signal c6 in response to detection of the movement amount of the vehicle 6 and supplies the pulse signal c6 to the control unit 11C.
- Various means can be applied as the movement amount sensor 31, but a rotary encoder is used in the third embodiment.
- the amount of movement in the Y direction due to the rotation of the wheel 6a is calculated by the rotary encoder.
- the position of the vehicle 6 may be grasped using GPS or the like.
- the controller 11C controls the whole including the scanning mirror 23C, the pulse laser 2, and the infrared sensor 3 using the pulse signal c6 of the movement amount sensor 31 as a reference clock.
- the scanning mirror 23C is configured to be able to control the angle ⁇ for scanning in the Y direction in accordance with an angle control signal c1 from the control unit 11C.
- A0 indicates an optical path that is emitted straight in the X direction with respect to the reference measurement point 5b in a state where the scanning mirror 23C is at the reference angle ⁇ 0.
- FIG. 9 schematically shows a state of measuring a plurality of measurement points 5b on a line in the Y direction of the measurement target surface 5a accompanying the movement of the vehicle 6 in the inspection apparatus 1C of the third embodiment.
- Examples of a plurality of measurement points 5b that are present in the Y direction on the measurement target surface 5a are shown as points P1, P2,.
- the positions of the vehicle 6 due to movement in the Y direction are indicated as Y1, Y2,.
- the position Y1 corresponds to the position of the point P1.
- a plurality of measurement points 5b ⁇ P1, P2,... ⁇ With a predetermined interval on the line in the Y direction of the measurement surface 5a are objects to be measured and inspected.
- k1 represents the distance between the end of the inspection device 1C on the side surface of the vehicle 6 and the measured surface 5a.
- k2 indicates an interval between adjacent measurement points 5b on the line in the Y direction of the measurement surface 5a.
- the laser beam is irradiated a plurality of times by switching the state of the angle ⁇ of the scanning mirror 23C with respect to the one point to be measured. Control to measure the difference.
- the temperature difference is measured five times depending on whether or not the laser beam is irradiated five times as in A11 to A15.
- A11 is the optical path when the angle ⁇ is the maximum positive angle ( ⁇ a)
- A13 is the optical path when the angle ⁇ is the reference angle ⁇ 0
- A15 is the maximum negative direction angle ( ⁇ ).
- the optical path in the state of ⁇ b) is shown.
- the temperature difference is measured a plurality of times for the other points P2 and the like.
- FIG. 10 shows a timing chart of the control by the inspection apparatus 1C of the third embodiment.
- the times indicated by E1 and E2 indicate the times of multiple measurements related to one measured point 5b, respectively.
- (A) shows the pulse 1001 of the movement amount sensor 31 corresponding to the signal c6.
- the control unit 11C uses the pulse 1001 of the movement amount sensor 31 of (a) as a reference clock, and (b) oscillation and irradiation presence / absence of the pulse laser 2, (c) detection and readout of the infrared sensor 3, (d) The switching of the angle ⁇ of the scanning mirror 23C is controlled.
- the pulses 1001 of the movement amount sensor 31 in FIG. 10A are shown at regular intervals, but in actuality, they occur at irregular intervals according to the speed change of the vehicle 6.
- (B) shows control of the oscillation and irradiation (ON) and absence (OFF) of the pulse laser 2.
- Reference numeral 1002 denotes a pulse in an ON state.
- the control pulse 1002 of the pulse laser 2 in (b) is controlled to synchronize with the third pulse 1001 in (a).
- (C) shows detection and readout control of the infrared sensor 3.
- Reference numeral 1003 denotes a pulse corresponding to the OFF state of (b)
- reference numeral 1004 denotes a pulse corresponding to the ON state pulse 1002 of (b).
- the control pulses 1003 and 1004 of the infrared sensor 3 in (c) are controlled so as to be synchronized with the first and third pulses 1001 in (a).
- the infrared sensor 3 continuously detects the infrared rays generated in the two states of non-irradiation (OFF) and existence (ON) of the pulse laser 2.
- (D) shows a signal 1005 for controlling the angle ⁇ of the scanning mirror 23C.
- the signal 1005 is included in the angle control signal c1.
- the signal 1005 for controlling the angle ⁇ of the scanning mirror 23C in (d) is controlled so as to be synchronized with the second pulse 1001 in (a).
- the scanning angle ⁇ is switched in five states between the maximum ( ⁇ a) and the minimum ( ⁇ b) for one point to be measured 5b, for example, the point P1.
- the scanning angle ⁇ is switched in five states for one point of the next measured point 5b in the Y direction, for example, the point P2.
- Reference numeral 1010 denotes a unit amount for increasing or decreasing the angle ⁇ .
- the focused light a4 that is the irradiation light of the pulse laser 2 in FIG. 8 is traveled for a certain period while the vehicle 6 is traveling, and the same measured point 5b on the measured surface 5a of the object 5.
- the scanning is controlled so as to continue irradiation. For example, at the time E1, the focused light a4 by the five pulses 1002 of (b) is irradiated to the point P1, and a state of presence / absence of five irradiations occurs. Then, in the infrared sensor 3 of (c), five temperature differences d1 to d5 are obtained from ten measured values s1 to s10, and a temperature difference v1 of the average values thereof is obtained.
- the image generation unit 12C uses the signal c6 of the movement amount sensor 31 and the detection and readout signal c3 of the infrared sensor 3 for a plurality of measurement points 5b on the line of the measurement target surface 5a, for example, the points P1 and P2. Then, the process of calculating the temperature difference distribution is performed.
- the image generation unit 12C grasps the position of the measurement target point 5b from the movement amount detected by the movement amount sensor 31 or the position information of the vehicle 6 that can be calculated from the movement amount.
- the image generation unit 12C calculates a temperature difference at the measurement point 5b for each measurement point 5b on the measurement target surface 5a from the difference between the measurement values obtained by the infrared sensor 3 when the laser light is irradiated or not.
- a plurality of temperature differences are calculated from the values, and a temperature difference based on an average value thereof is calculated. Then, the image generation unit 12C generates an image, a graph, or the like including a temperature difference distribution at the plurality of measurement points 5b on the measurement target surface 5a.
- FIG. 4B shows an example of partial data of the temperature difference distribution by the image generation unit 12C and the defect determination processing by the defect extraction unit 13C in the third embodiment.
- Reference numeral 411 indicates an allowable range as setting information for defect determination.
- a point D indicated by 412 is smaller than the threshold value h1 and outside the allowable range 411.
- a point F indicated by 413 is larger than the threshold value h2 and outside the allowable range 411.
- the defect extraction unit 13 ⁇ / b> C compares the temperature difference value with a threshold value, and determines that the defect or deterioration is present if it is outside the allowable range 411.
- the point D determined to be defective indicates that there is a high possibility of peeling near the point because the temperature difference and stress fluctuation are smaller than the threshold value, and there is a high possibility of cracking near the point F. Represents.
- the inspection apparatus 1 ⁇ / b> C has a configuration that controls the angle ⁇ of the scanning mirror 23 ⁇ / b> C while moving with the vehicle 6 and grasping the movement amount with the movement amount sensor 31.
- the temperature difference is measured a plurality of times for each measurement point 5b on the measurement target surface 5a of the fixed object 5.
- the measurement is performed once per one point to be measured 5b.
- the third embodiment performs measurement a plurality of times per point, the temperature difference at the measurement point can be measured with higher accuracy than when the deflection control by the scanning mirror 23 is not performed.
- the third embodiment it is suitable for an application in which the surface of the object 5 is observed at a fixed point, and a structure such as a tunnel wall surface can be efficiently measured and inspected while moving by the vehicle 6.
- defect extraction unit is provided in the inspection apparatus, but when there is no need to perform defect extraction in real time or when the amount of data is large and processing requires time,
- the defect extraction unit may be provided outside the inspection apparatus.
- the present invention is applicable to a technique for inspecting the state of defects, deterioration, etc. for various structures including social infrastructure such as buildings, bridges, and tunnels.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Radiation Pyrometers (AREA)
Abstract
A technology is provided that is capable of enhancing, in measurements and inspections using infrared radiation, the accuracy of temperature-difference measurements near the surface of a structure and the accuracy of inspections of the status of defects, deterioration, and the like. An inspection device (1A) has a pulsed laser (2) for irradiating a pulsed laser onto a subject (5); a scanning mirror (23) for scanning the subject (5); an infrared sensor (3) for detecting infrared radiation originating from the subject (5); a control unit (11A) for controlling the irradiation of the pulsed laser (2), the angle of the scanning mirror (23), and the detection of the infrared sensor (3) so that the temperature variation corresponding to the irradiation and non-irradiation of the laser light is measured multiple times for each measured point; an image generation unit (12A) for generating an image including the temperature difference distribution of the area of the subject (5) on the basis of the measured temperature difference values and the scanning mirror angles; and a defect extraction unit (13A) for identifying and extracting defective or degraded portions using the image.
Description
本発明は、赤外線を用いた計測及び検査の技術に関する。また本発明は、赤外線の検出により構造物等の対象物の表面や内部における温度または応力の状態を計測し、欠陥や劣化等の状態を検査する装置に関する。
The present invention relates to a measurement and inspection technique using infrared rays. The present invention also relates to an apparatus for measuring the state of temperature or stress on the surface or inside of an object such as a structure by detecting infrared rays, and inspecting a state such as a defect or deterioration.
ビル、橋梁、及びトンネル等の社会インフラの構造物の検査用に好適な技術として、赤外線センサ等を用いた検査技術がある。この技術は、構造物の表面から発せられる赤外線の検出により、構造物の表面付近の温度差または応力変動の状態を計測及び検査する。この技術は、応力に変化がある場合には温度にも変化が現れる現象、言い換えると、応力変化と温度差が相関する原理を利用している。当該現象は、一般的に熱弾性効果と呼ばれ、下記の式(1)で表される。式(1)で、ΔTは温度変化、Kは熱弾性係数、Tは絶対温度、Δσは対象物の主応力和の変動である。
There is an inspection technique using an infrared sensor or the like as a technique suitable for inspecting structures of social infrastructure such as buildings, bridges, and tunnels. This technique measures and inspects the temperature difference or stress fluctuation state near the surface of the structure by detecting infrared rays emitted from the surface of the structure. This technique uses a phenomenon in which a change in temperature occurs when there is a change in stress, in other words, a principle that a stress change and a temperature difference are correlated. This phenomenon is generally called a thermoelastic effect and is expressed by the following formula (1). In Expression (1), ΔT is a temperature change, K is a thermoelastic coefficient, T is an absolute temperature, and Δσ is a variation of the main stress sum of the object.
ΔT=-K×T×Δσ ・・・式(1)
ΔT = −K × T × Δσ Equation (1)
上記原理は、計測及び検査の対象物である構造物に対して一定の応力変化を与えて当該応力変化が他とは異なる箇所を欠陥として検出する手法に応用されている。当該欠陥は、剥がれ、ひび、内部の割れ、等である。当該欠陥の検出の手法としては、例えば局所的に温度差が大きい箇所や小さい箇所を欠陥として判定及び抽出する。
The above principle is applied to a technique of applying a certain stress change to a structure that is an object of measurement and inspection and detecting a point where the stress change is different from the other as a defect. Such defects include peeling, cracks, internal cracks, and the like. As a method for detecting the defect, for example, a part having a large temperature difference or a part having a small temperature difference is determined and extracted as a defect.
上記手法による計測及び検査においては、アクティブに応力変化を生じさせるために、対象物に対して外部から温度変化を生じさせる手段が講じられる。当該手段として、対象物の表面に対してランプ光を照明する手段や、レーザ光を照射する手段が挙げられる。
In the measurement and inspection by the above-mentioned method, in order to generate a stress change actively, means for causing a temperature change from the outside to the object is taken. Examples of the means include means for illuminating the surface of the object with lamp light and means for irradiating laser light.
上記赤外線及び熱弾性効果等を用いた計測及び検査に関する先行技術例として、特開昭62-98243号公報(特許文献1)、非特許文献1、及び特許第3776794号(特許文献2)が挙げられる。
As prior art examples related to measurement and inspection using the infrared and thermoelastic effects, there are JP-A-62-98243 (Patent Document 1), Non-Patent Document 1, and Patent No. 3776794 (Patent Document 2). It is done.
特許文献1は、外壁等の対象物にレーザ光を照射し、照射前後で熱吸収に伴う膨張により応力変化を生じさせ、この時に生じる温度差分布を赤外線カメラで撮像することにより、剥がれ等の欠陥を検出する装置について記載されている。また特許文献1は、レーザ光を走査して照射する方法について簡単に言及している。
Patent Document 1 irradiates an object such as an outer wall with laser light, causes a stress change due to expansion due to heat absorption before and after irradiation, and images a temperature difference distribution generated at this time with an infrared camera, thereby causing peeling and the like. An apparatus for detecting defects is described. Patent Document 1 briefly refers to a method of scanning and irradiating laser light.
非特許文献1は、加熱ランプにより周期的に対象を加熱し、熱吸収で生じた応力に伴う温度変化を赤外線カメラで計測することにより、内部の割れ等の欠陥を検出する装置が記載されている。
Non-Patent Document 1 describes an apparatus for detecting defects such as internal cracks by heating an object periodically with a heating lamp and measuring a temperature change accompanying a stress caused by heat absorption with an infrared camera. Yes.
特許文献2は、対象物であるコンクリートのトンネル壁面に対し、車両等の移動体に搭載されたランプで照射し、赤外線ラインカメラで撮像することにより、トンネル壁面の内部の欠陥を検出する装置が記載されている。
Patent Document 2 discloses an apparatus for detecting defects inside a tunnel wall surface by irradiating a concrete tunnel wall surface, which is an object, with a lamp mounted on a moving body such as a vehicle and taking an image with an infrared line camera. Are listed.
上記赤外線及び熱弾性効果等を用いた計測及び検査に関する先行技術例では、構造物の表面付近の温度差の計測の精度、及び欠陥や劣化等の状態の検査の精度に関して課題がある。
In the prior art examples related to measurement and inspection using infrared rays and thermoelastic effects, there are problems regarding the accuracy of temperature difference measurement near the surface of the structure and the accuracy of inspection of states such as defects and deterioration.
特許文献1による装置は、被計測点1点あたり1回の赤外線の計測であるため、計測値の誤差などにより、計測及び検査の精度に課題がある。また特許文献2による装置は、対象物に対する車両の移動により、被計測点1点あたり1回の計測になるので、計測及び検査の精度に課題がある。
Since the apparatus according to Patent Document 1 measures an infrared ray once per point to be measured, there is a problem in the accuracy of measurement and inspection due to an error in measurement values. Further, the apparatus according to Patent Document 2 has a problem in the accuracy of measurement and inspection because the measurement is performed once per measurement point by the movement of the vehicle with respect to the object.
また非特許文献1による装置は、被計測面に温度変化及び応力変化を与える手段として、加熱ないし照明による被計測面のエネルギの空間的な分布が不均一であるため、計測及び検査の精度に課題がある。
In addition, the apparatus according to Non-Patent Document 1 has a non-uniform spatial distribution of the energy of the surface to be measured by heating or illumination as a means for giving temperature change and stress change to the surface to be measured. There are challenges.
本発明の目的は、上記赤外線及び熱弾性効果等を用いた計測及び検査に関して、構造物の表面付近における温度差の計測の精度、及び欠陥や劣化等の状態の検査の精度を向上させることができる技術を提供することである。
An object of the present invention is to improve the accuracy of measurement of temperature difference near the surface of a structure and the inspection of a state such as a defect or deterioration in relation to measurement and inspection using the infrared ray and the thermoelastic effect. It is to provide technology that can.
本発明のうち代表的な実施の形態は、赤外線を用いて対象物の計測及び欠陥等の状態の検査を行う装置である赤外線検査装置であって、以下に示す構成を有することを特徴とする。
A typical embodiment of the present invention is an infrared inspection apparatus which is an apparatus for measuring an object and inspecting a state such as a defect using infrared rays, and has the following configuration. .
(1) 一実施の形態の赤外線検査装置は、対象物の表面の被計測点に対してレーザ光を少なくとも照射有無の2つの状態で照射するレーザ部と、前記レーザ光の照射に関して前記対象物の表面を少なくとも第1方向に走査するための走査ミラーを含む光学系と、前記レーザ光の照射により前記対象物の表面の被計測点から生じる赤外線を、少なくとも1点で検出する赤外線センサと、前記レーザ光の照射有無の2つの状態の時に前記赤外線センサの赤外線の検出を行い、かつ前記被計測点ごとに前記2つの状態の時の赤外線の検出の信号の差分である温度差の計測を複数回行うように、前記レーザ部のレーザ光の照射有無、前記走査ミラーの角度、及び前記赤外線センサの赤外線の検出のタイミングを制御する制御部と、前記温度差の計測値、及び前記走査ミラーの角度に基づき、前記対象物の表面の領域における複数の各々の被計測点の温度差の分布を含む画像を生成する画像生成部と、を有する。
(1) An infrared inspection apparatus according to an embodiment includes a laser unit that irradiates a measurement point on the surface of an object with at least two states of presence or absence of irradiation with the laser beam, and the object with respect to the irradiation of the laser beam. An optical system including a scanning mirror for scanning at least the surface in the first direction, an infrared sensor for detecting at least one infrared ray generated from a measurement point on the surface of the object by irradiation with the laser beam, Infrared detection of the infrared sensor is performed when the laser light irradiation is in two states, and a temperature difference that is a difference between infrared detection signals in the two states is measured for each measurement point. A control unit that controls the laser beam irradiation of the laser unit, the angle of the scanning mirror, and the infrared detection timing of the infrared sensor, and the temperature difference Value, and based on the angle of the scan mirror, having, an image generator for generating an image including a distribution of the temperature difference of the measurement points of a plurality of each in the region of the surface of the object.
(2) 一実施の形態の赤外線検査装置は、対象物の表面の被計測点に対してレーザ光を少なくとも照射有無の2つの状態で照射するレーザ部と、前記レーザ光の照射に関して前記対象物の表面を少なくとも第1方向に走査するための走査ミラーを含む光学系と、前記レーザ光の照射により前記対象物の表面の被計測点から生じる赤外線を、線または面の領域で検出することにより画像を撮像する赤外線カメラと、前記赤外線カメラの画像単位で、前記レーザ部により前記レーザ光を照射無しの状態に制御して前記照射無しの状態の時に前記赤外線カメラで赤外線を検出する第1の画像と、前記レーザ部により前記レーザ光を照射有りの状態に制御して前記照射有りの状態の時に前記赤外線カメラで赤外線を検出する第2の画像との2つの状態の画像を撮像するように、前記レーザ部のレーザ光の照射有無、前記走査ミラーの角度、及び前記赤外線カメラの赤外線の検出のタイミングを制御する制御部と、前記第1の画像の前記照射無しの状態の時の前記赤外線の検出による計測値と、前記第2の画像の前記照射有りの状態の時の前記赤外線の検出による計測値との差分による温度差の計測値に基づき、前記対象物の表面の線または面の領域における複数の被計測点の温度差の分布を含む画像を生成する画像生成部と、を有する。
(2) An infrared inspection apparatus according to an embodiment includes a laser unit that irradiates a measurement point on a surface of an object with laser light in at least two states of irradiation and the object with respect to the irradiation of the laser light. An optical system including a scanning mirror for scanning the surface of the object in at least the first direction, and detecting infrared rays generated from a measurement point on the surface of the object by irradiation of the laser beam in a line or surface area An infrared camera that captures an image; and a first infrared ray that is detected by the infrared camera in the non-irradiation state by controlling the laser beam to the non-irradiation state by the laser unit in image units of the infrared camera. An image and a second image in which infrared light is detected by the infrared camera when the laser unit is controlled to be irradiated with the laser beam and the irradiation is performed. A control unit for controlling the presence or absence of laser light irradiation of the laser unit, the angle of the scanning mirror, and the detection timing of infrared rays of the infrared camera so as to capture an image of the state, and the irradiation of the first image Based on the measured value of the temperature difference due to the difference between the measured value by the detection of the infrared when there is no state and the measured value by the detection of the infrared when the state of the second image is with the irradiation An image generation unit that generates an image including a temperature difference distribution of a plurality of measurement points in a line or surface area of the surface of the object.
(3) 一実施の形態の赤外線検査装置は、移動体に搭載される赤外線検査装置であって、前記移動体の移動量または位置を検出するセンサ部と、固定の対象物の表面の被計測点に対してレーザ光を少なくとも照射有無の2つの状態で照射するレーザ部と、前記レーザ光の照射に関して前記対象物の表面の複数の各々の被計測点に対して照射するために少なくとも第1方向に走査するための走査ミラーを含む光学系と、前記レーザ光の照射により前記対象物の表面の被計測点から生じる赤外線を少なくとも1点で検出する赤外線センサと、前記レーザ光の照射有無の2つの状態の時に前記赤外線センサの赤外線の検出を行い、かつ前記対象物の表面の複数の各々の被計測点ごとに前記走査ミラーの角度を切り替えながら前記2つの状態の時の赤外線の検出の信号の差分である温度差の計測を複数回行うように、前記センサ部の検出、前記レーザ部のレーザ光の照射有無、前記走査ミラーの角度、及び前記赤外線センサの赤外線の検出のタイミングを制御する制御部と、前記センサ部の検出情報と、前記温度差の計測値とに基づき、前記対象物の表面の複数の各々の被計測点に関する温度差の分布を算出する算出部と、を有する。
(3) An infrared inspection apparatus according to an embodiment is an infrared inspection apparatus mounted on a moving body, and includes a sensor unit that detects a moving amount or a position of the moving body, and a surface to be measured on a fixed object. A laser unit that irradiates a point with laser light in at least two states of irradiation, and at least a first for irradiating a plurality of measured points on the surface of the object with respect to the irradiation of the laser light. An optical system including a scanning mirror for scanning in a direction, an infrared sensor that detects at least one infrared ray generated from a measurement point on the surface of the object by irradiation of the laser beam, and whether or not the laser beam is irradiated In the two states, the infrared sensor detects infrared rays in two states, and the angle of the scanning mirror is switched for each of a plurality of measurement points on the surface of the object. Detection of the sensor unit, presence / absence of laser light irradiation of the laser unit, angle of the scanning mirror, and detection of infrared light of the infrared sensor so as to measure a temperature difference, which is a difference between infrared detection signals, a plurality of times A calculation unit for calculating a temperature difference distribution for each of a plurality of measurement points on the surface of the object based on a control unit that controls the timing of the sensor, a detection information of the sensor unit, and a measurement value of the temperature difference And having.
(4) 上記(1)~(3)の赤外線検査装置は、更に、前記温度差の分布の画像または温度差の分布を用いて欠陥または劣化の部分を判定して抽出する欠陥抽出部を有する。
(4) The infrared inspection apparatus according to (1) to (3) further includes a defect extraction unit that determines and extracts a defect or a deteriorated portion using the temperature difference distribution image or the temperature difference distribution. .
本発明のうち代表的な実施の形態によれば、赤外線及び熱弾性効果等を用いた計測及び検査に関して、構造物の表面付近における温度差の計測の精度、及び欠陥や劣化等の状態の検査の精度を向上させることができる。
According to a typical embodiment of the present invention, with respect to measurement and inspection using infrared rays and thermoelastic effects, etc., accuracy of temperature difference measurement near the surface of the structure, and inspection of states such as defects and deterioration Accuracy can be improved.
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお実施の形態を説明するための全図において同一部には原則として同一符号を付しその繰り返しの説明は省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
<実施の形態1>
図1~図5等を用いて、実施の形態1の赤外線検査装置について説明する。図1に示す実施の形態1の赤外線検査装置である検査装置1Aは、走査ミラー23の角度θの制御に基づき、パルスレーザ2から対象物5の被計測面5aに対してパルス状のレーザ光を照射して走査することにより被計測面5aにアクティブな温度変化による熱応力を与える。検査装置1Aは、レーザ光の照射有無の時に同期させて赤外線センサ3により被計測面5aの被計測点からの赤外線を検出する。これにより検査装置1Aは、被計測面5aの温度差ないし温度変化の分布の画像を生成し、当該画像を用いて温度差または応力変動の判定により、剥がれやひび等の欠陥や劣化等の状態を判定して抽出する。 <Embodiment 1>
The infrared inspection apparatus according to the first embodiment will be described with reference to FIGS. The inspection apparatus 1A, which is the infrared inspection apparatus of the first embodiment shown in FIG. 1, is based on the control of the angle θ of thescanning mirror 23, and the pulsed laser beam from the pulse laser 2 to the surface 5a to be measured of the object 5 Is applied to the surface to be measured 5a to apply thermal stress due to active temperature change. The inspection apparatus 1A detects infrared rays from the measurement point on the measurement target surface 5a by the infrared sensor 3 in synchronization with the presence or absence of laser light irradiation. As a result, the inspection apparatus 1A generates an image of the temperature difference or temperature change distribution of the surface to be measured 5a, and uses the image to determine the temperature difference or stress fluctuation, thereby causing a state such as a defect or deterioration such as peeling or cracking. Is extracted.
図1~図5等を用いて、実施の形態1の赤外線検査装置について説明する。図1に示す実施の形態1の赤外線検査装置である検査装置1Aは、走査ミラー23の角度θの制御に基づき、パルスレーザ2から対象物5の被計測面5aに対してパルス状のレーザ光を照射して走査することにより被計測面5aにアクティブな温度変化による熱応力を与える。検査装置1Aは、レーザ光の照射有無の時に同期させて赤外線センサ3により被計測面5aの被計測点からの赤外線を検出する。これにより検査装置1Aは、被計測面5aの温度差ないし温度変化の分布の画像を生成し、当該画像を用いて温度差または応力変動の判定により、剥がれやひび等の欠陥や劣化等の状態を判定して抽出する。 <
The infrared inspection apparatus according to the first embodiment will be described with reference to FIGS. The inspection apparatus 1A, which is the infrared inspection apparatus of the first embodiment shown in FIG. 1, is based on the control of the angle θ of the
実施の形態1の検査装置1Aは、対象物5として、ビル、橋梁、及びトンネル等の建造物の表面付近の検査用に好適な構成を有する。検査装置1Aは、機能として、対象物5の表面付近の正常及び欠陥や劣化等の状態を検査し、欠陥や劣化またはその予兆があると判定される部分を抽出し、利用者に対して出力する。
The inspection apparatus 1A according to the first embodiment has a configuration suitable for inspecting the vicinity of the surface of a building such as a building, a bridge, and a tunnel as the object 5. The inspection apparatus 1A, as a function, inspects the normal state near the surface of the object 5 and the state of defects, deterioration, etc., extracts a portion determined to have a defect, deterioration, or a sign thereof, and outputs it to the user To do.
[赤外線検査装置]
図1は、実施の形態1の赤外線検査装置である検査装置1Aとその計測及び検査の対象物5とを含む構成を示す。説明上の方向として、図1では、水平面を構成する方向であるX,Yと、鉛直方向であるZとを示す。なお図1等は、実際の距離やサイズ等を捨象して図示している。 [Infrared inspection equipment]
FIG. 1 shows a configuration including an inspection apparatus 1A that is an infrared inspection apparatus according to the first embodiment and anobject 5 to be measured and inspected. As directions on explanation, in Drawing 1, X and Y which are directions which constitute a level surface, and Z which is a perpendicular direction are shown. In FIG. 1 and the like, the actual distance, size, and the like are omitted.
図1は、実施の形態1の赤外線検査装置である検査装置1Aとその計測及び検査の対象物5とを含む構成を示す。説明上の方向として、図1では、水平面を構成する方向であるX,Yと、鉛直方向であるZとを示す。なお図1等は、実際の距離やサイズ等を捨象して図示している。 [Infrared inspection equipment]
FIG. 1 shows a configuration including an inspection apparatus 1A that is an infrared inspection apparatus according to the first embodiment and an
対象物5は、計測及び検査の対象となる固定的な構造物であり、一例として、コンクリート等の材質によるビル等の壁面である。対象物5は、被計測面5a及び被計測点5b,5c,5dを含む。被計測面5aは、Y,Z方向による面である。被計測面5aの表面は、材質などに応じて凹凸等の形状を含む。被計測点5b,5c,5dは、被計測面5aのY方向の線上における、計測の対象となる点の例である。被計測面5aは、Y方向の走査及び計測のみの場合は、被計測線となる。
The object 5 is a fixed structure to be measured and inspected. For example, the object 5 is a wall surface of a building or the like made of a material such as concrete. The object 5 includes a measured surface 5a and measured points 5b, 5c, and 5d. The surface to be measured 5a is a surface in the Y and Z directions. The surface of the measurement target surface 5a includes a shape such as unevenness depending on the material and the like. The measurement points 5b, 5c, and 5d are examples of points to be measured on the line in the Y direction of the measurement surface 5a. The surface to be measured 5a becomes a line to be measured when only scanning and measurement in the Y direction are performed.
検査装置1Aは、対象物5に対して所定の位置及び向きで配置される。b1は、検査装置1Aの端部と対象物5の被計測面5aとの距離を示す。距離b1は、例えば50mである。b2は、走査ミラーによる走査の可能な範囲を示す。検査装置1Aの光学系の詳細は距離b1及び走査範囲b2等に応じて設計される。なお距離b1に対して走査範囲b2の長さの方が十分に小さい。
The inspection device 1 </ b> A is arranged at a predetermined position and orientation with respect to the object 5. b <b> 1 indicates the distance between the end of the inspection apparatus 1 </ b> A and the measurement target surface 5 a of the object 5. The distance b1 is 50 m, for example. b2 indicates a possible range of scanning by the scanning mirror. Details of the optical system of the inspection apparatus 1A are designed according to the distance b1, the scanning range b2, and the like. Note that the length of the scanning range b2 is sufficiently smaller than the distance b1.
検査装置1Aは、パルスレーザ2、赤外線センサ3、コリメートレンズ21、ダイクロイックミラー22、走査ミラー23、対物レンズ24、結像レンズ25、発振器10、制御部11A、画像生成部12A、欠陥抽出部13A、及び入出力部14を有する。
The inspection apparatus 1A includes a pulse laser 2, an infrared sensor 3, a collimating lens 21, a dichroic mirror 22, a scanning mirror 23, an objective lens 24, an imaging lens 25, an oscillator 10, a control unit 11A, an image generation unit 12A, and a defect extraction unit 13A. And an input / output unit 14.
制御部11A、画像生成部12A、欠陥抽出部13A、及び入出力部14等の部位は、例えばCPU、ROM、及びRAM等を含む回路基板やPC等により構成でき、ソフトウェアプログラム処理等により機能を実現できる。
The parts such as the control unit 11A, the image generation unit 12A, the defect extraction unit 13A, and the input / output unit 14 can be configured by, for example, a circuit board including a CPU, a ROM, and a RAM, a PC, and the like, and function by software program processing or the like. realizable.
発振器10は、基準クロックc0を発振する。制御部11Aは、検査装置1Aの全体を制御する。制御部11Aは、発振器10からの基準クロックc0に基づき、走査ミラー23、パルスレーザ2、赤外線センサ3等の各部を制御する。制御部11Aは、角度制御信号c1により、走査ミラー23の走査ないし偏向の角度θの状態を制御する。制御部11Aは、制御信号c2により、パルスレーザ2からのパルス状のレーザ光の発振及び照射の有り(ON)及び無し(OFF)を制御する。制御信号c2は例えばON及びOFFのパルスによる信号である。制御部11Aは、赤外線センサ3により検出される赤外線の強度の信号c3を読み出し制御して取得する。
The oscillator 10 oscillates the reference clock c0. The control unit 11A controls the entire inspection apparatus 1A. The control unit 11A controls each unit such as the scanning mirror 23, the pulse laser 2, and the infrared sensor 3 based on the reference clock c0 from the oscillator 10. The controller 11A controls the state of the scanning or deflection angle θ of the scanning mirror 23 by the angle control signal c1. The control unit 11A controls the presence and absence (ON) and absence (OFF) of oscillation and irradiation of the pulsed laser light from the pulse laser 2 by the control signal c2. The control signal c2 is a signal by ON and OFF pulses, for example. The control unit 11A reads out and acquires the infrared intensity signal c3 detected by the infrared sensor 3.
画像生成部12Aは、制御部11Aを通じて得られる、赤外線センサ3による赤外線の計測値を含む情報を用いて、対象物5の被計測面5aの領域に対応した温度差の分布の画像を生成する処理を行う。当該画像は、被計測点1点ごとに、温度差の計測値及びそれに対応付けられた表示用の階調値などの情報を持つ。画像生成部12Aは、生成した画像を含むデータ情報を検査装置1A内の図示しない記憶装置に記憶する。
The image generation unit 12A generates an image of a temperature difference distribution corresponding to the area of the measurement target surface 5a of the object 5 using information including the infrared measurement value obtained by the infrared sensor 3 obtained through the control unit 11A. Process. The image has information such as a temperature difference measurement value and a display gradation value associated therewith for each point to be measured. The image generation unit 12A stores data information including the generated image in a storage device (not shown) in the inspection apparatus 1A.
欠陥抽出部13Aは、画像生成部12Aにより生成された温度差の分布の画像を用いて、当該画像の領域の中における正常及び欠陥や劣化等の状態を判定し、欠陥や劣化等と判定される部分を抽出する。そして欠陥抽出部13Aは、欠陥抽出結果を含む画像などの情報を生成し、検査装置1A内の図示しない記憶装置に記憶する。
The defect extraction unit 13A uses the image of the temperature difference distribution generated by the image generation unit 12A to determine the normal state, the defect, the deterioration, and the like in the region of the image, and is determined to be the defect, the deterioration, or the like. To extract the part. Then, the defect extraction unit 13A generates information such as an image including the defect extraction result and stores it in a storage device (not shown) in the inspection apparatus 1A.
欠陥抽出部13Aは、欠陥判定処理としては、例えば許容範囲の閾値情報を用いて、被計測点の温度差と閾値とを比較し、温度差が閾値による許容範囲内に収まる場合は判定結果を正常とし、収まらない場合は判定結果を欠陥とする。
The defect extraction unit 13A compares the temperature difference of the measurement point with the threshold value using, for example, threshold information of the allowable range as the defect determination process, and if the temperature difference is within the allowable range based on the threshold value, the determination result is obtained. When it is normal and does not fit, the judgment result is regarded as a defect.
入出力部14は、利用者による検査装置1Aの機能の利用のための操作や、設定の操作を受け付け、データ情報の入力及び出力等の処理を行う。入出力部14は、入力ボタンや表示器などを含む。入出力部14は、表示器を備える場合、その画面に、温度差の分布の画像や、欠陥抽出結果の画像などを表示する。これにより、利用者は、画面に表示された画像を見て、欠陥部分などの状態の判断や確認ができ、計測及び検査の作業を容易にできる。
The input / output unit 14 receives an operation for using the function of the inspection apparatus 1A by a user and an operation for setting, and performs processing such as input and output of data information. The input / output unit 14 includes an input button, a display device, and the like. When the input / output unit 14 includes a display, the input / output unit 14 displays an image of a temperature difference distribution, an image of a defect extraction result, and the like on the screen. Thereby, the user can judge and confirm the state of the defective portion, etc. by looking at the image displayed on the screen, and can easily perform the measurement and inspection work.
また入出力部14は、欠陥判定のための許容範囲の閾値情報などの設定情報を利用者により設定可能である。あるいは、検査装置1A内に予め許容範囲の閾値情報が設定されていてもよい。
Further, the input / output unit 14 can set setting information such as threshold information of an allowable range for defect determination by the user. Alternatively, threshold information of an allowable range may be set in advance in the inspection apparatus 1A.
パルスレーザ2は、制御部11Aからの制御信号c2に応じて、パルス状のレーザ光を発振するレーザ装置である。パルスレーザ2は、対象物5の被計測面5aに対して間欠的にレーザ光を照射する。これにより、温度差の計測及び検査用に、被計測面5aに熱応力ないしエネルギの分布を与える。被計測面5aの被計測点ごとに、パルス状のレーザ光の照射の有り(ON)及び無し(OFF)の状態をとるように制御される。
The pulse laser 2 is a laser device that oscillates pulsed laser light in response to a control signal c2 from the control unit 11A. The pulse laser 2 irradiates the measurement target surface 5a of the object 5 with laser light intermittently. Thereby, thermal stress or energy distribution is given to the measurement surface 5a for measurement and inspection of the temperature difference. Control is performed so as to assume the presence (ON) and absence (OFF) of pulsed laser light irradiation for each measurement point on the measurement target surface 5a.
赤外線センサ3は、ポイントセンサであり、制御部11Aからの読み出し及び検出の制御に応じて、被計測点に対応する赤外線の光をセンサ面に入射して検出し、当該赤外線の強度の信号c3を出力する。赤外線の強度は、温度と相関する。温度差(ΔT)は、前述の熱弾性効果の式(1)で示すように、応力変動(Δσ)と相関する。
The infrared sensor 3 is a point sensor, and in response to the reading and detection control from the control unit 11A, the infrared light corresponding to the measurement point is incident on the sensor surface and detected, and the infrared signal c3. Is output. Infrared intensity correlates with temperature. The temperature difference (ΔT) correlates with the stress fluctuation (Δσ) as shown by the above-described thermoelastic effect equation (1).
コリメートレンズ21は、入射光を平行光に変換する。ダイクロイックミラー22は、波長分離ミラーである。ダイクロイックミラー22は、入射光の所定の波長帯域の成分を反射し、他の波長帯域の成分を透過する。
The collimating lens 21 converts incident light into parallel light. The dichroic mirror 22 is a wavelength separation mirror. The dichroic mirror 22 reflects a component in a predetermined wavelength band of incident light and transmits a component in another wavelength band.
走査ミラー23は、Z方向に延在する回転軸周りに角度θで回転する機構を有する。走査ミラー23は、制御部11Aからの角度制御信号c1により、Y方向の走査のための角度θが制御されることにより偏向ないし回転する。これにより、走査ミラー23は、反射光を、対物レンズ24を介して、対象物5の被計測面5aでY方向へ線の領域を走査するように照射する。
The scanning mirror 23 has a mechanism that rotates at an angle θ around a rotation axis extending in the Z direction. The scanning mirror 23 is deflected or rotated by controlling the angle θ for scanning in the Y direction by the angle control signal c1 from the control unit 11A. Thereby, the scanning mirror 23 irradiates the reflected light through the objective lens 24 so as to scan the region of the line in the Y direction on the measurement target surface 5a of the object 5.
対物レンズ24は、入射光を焦点である被計測面5aの被計測点への集束光に変換する。結像レンズ25は、入射光を焦点である赤外線センサ3のセンサ面へ結像する。実施の形態1の検査装置1Aは、光学系の構成として、結像レンズ25と対物レンズ24との組み合わせで、対象物5の被計測面5aの被計測点と赤外線センサ3のセンサ面とが共役による結像の関係に置かれる。
The objective lens 24 converts incident light into focused light to a measurement point on the measurement target surface 5a that is a focal point. The imaging lens 25 forms an image of incident light on the sensor surface of the infrared sensor 3 that is a focal point. The inspection apparatus 1A according to the first embodiment has an optical system configuration in which a measurement point on the measurement target surface 5a of the object 5 and a sensor surface of the infrared sensor 3 are combined with the imaging lens 25 and the objective lens 24. It is placed in the relationship of imaging by conjugation.
[光学系]
検査装置1Aの光学系における光の流れは以下である。パルスレーザ2からX方向へ出射されたパルス状のレーザ光である光a0は、コリメートレンズ21により平行光a1となる。平行光a1は、ダイクロイックミラー22でY方向へ反射される。反射光a2は、走査ミラー23で角度θの制御状態に応じてX方向へ反射される。走査ミラー23を介した光a3は、対物レンズ24により、集束光a4として検査装置1Aの端部から外部へ出射される。 [Optical system]
The flow of light in the optical system of the inspection apparatus 1A is as follows. Light a0, which is pulsed laser light emitted from thepulse laser 2 in the X direction, becomes parallel light a1 by the collimator lens 21. The parallel light a1 is reflected by the dichroic mirror 22 in the Y direction. The reflected light a2 is reflected in the X direction by the scanning mirror 23 according to the control state of the angle θ. The light a3 that has passed through the scanning mirror 23 is emitted from the end of the inspection apparatus 1A to the outside as focused light a4 by the objective lens 24.
検査装置1Aの光学系における光の流れは以下である。パルスレーザ2からX方向へ出射されたパルス状のレーザ光である光a0は、コリメートレンズ21により平行光a1となる。平行光a1は、ダイクロイックミラー22でY方向へ反射される。反射光a2は、走査ミラー23で角度θの制御状態に応じてX方向へ反射される。走査ミラー23を介した光a3は、対物レンズ24により、集束光a4として検査装置1Aの端部から外部へ出射される。 [Optical system]
The flow of light in the optical system of the inspection apparatus 1A is as follows. Light a0, which is pulsed laser light emitted from the
集束光a4は、対象物5の被計測面5a上の被計測点に集光及び照射される。例えば走査ミラー23の角度θの制御状態として、図1に示す状態を基準角度θ0=0度の状態とする。この基準の状態の場合、集束光a4は、被計測面5a上の被計測点5bに集光される。被計測点5bは、走査ミラー23の中心及び対物レンズ24の主点に対してX方向で真正面の位置にある基準点を示す。
The focused light a4 is condensed and irradiated on the measurement point on the measurement surface 5a of the object 5. For example, as a control state of the angle θ of the scanning mirror 23, the state shown in FIG. 1 is set to a state where the reference angle θ0 = 0 degrees. In the case of this reference state, the focused light a4 is condensed on the measurement point 5b on the measurement surface 5a. The measurement point 5 b indicates a reference point that is located in front of the center of the scanning mirror 23 and the principal point of the objective lens 24 in the X direction.
対象物5の被計測面5aの被計測点5bの付近は、照射された集束光a4により熱せられるため温度が上昇し、当該温度に応じた強度の赤外光、特に遠赤外光を発生する。対象物5の被計測面5aで発生した赤外光である光a5は、集束光a4と同一の光路をX方向逆向きに進み、検査装置1Aの端部から対物レンズ24に入射される。対物レンズ24に入射された光は、走査ミラー23でY方向へ反射され、所定の波長帯域の光である遠赤外光がダイクロイックミラー22を透過する。Y方向においてダイクロイックミラー22を透過後の光a8は、結像レンズ25により赤外線センサ3のセンサ面に集束光a9として入射する。
In the vicinity of the measurement point 5b of the measurement surface 5a of the object 5, the temperature rises because it is heated by the irradiated focused light a4, and infrared light having an intensity corresponding to the temperature, particularly far infrared light is generated. To do. Light a5 that is infrared light generated on the measurement target surface 5a of the object 5 travels in the same optical path as the focused light a4 in the opposite direction in the X direction, and enters the objective lens 24 from the end of the inspection apparatus 1A. The light incident on the objective lens 24 is reflected in the Y direction by the scanning mirror 23, and far-infrared light that is light in a predetermined wavelength band passes through the dichroic mirror 22. The light a8 that has passed through the dichroic mirror 22 in the Y direction is incident on the sensor surface of the infrared sensor 3 as the focused light a9 by the imaging lens 25.
上記走査の制御として、走査ミラー23の角度θを基準角度θ0に対し増減させることにより、被計測面5aにおける集束光a4が照射される位置は、基準の被計測点5bからY方向で被計測点5cや被計測点5dへ移動する。走査範囲b2は、被計測点5cと被計測点5dとの間の長さに対応する。被計測点5cは、角度θを正方向で最大角度(θ1とする)に増加させた状態に対応するY方向正方向の走査の限界の点とする。被計測点5dは、角度θを負方向で最大角度(θ2とする)に増加させた状態に対応するY方向負方向の走査の限界の点とする。なお角度θの制御に応じて、被計測点5cと被計測点5dとの間に複数の被計測点をとることができる。
As the above-described scanning control, by increasing or decreasing the angle θ of the scanning mirror 23 with respect to the reference angle θ0, the position where the focused light a4 is irradiated on the measurement target surface 5a is measured in the Y direction from the reference measurement point 5b. It moves to the point 5c and the measurement point 5d. The scanning range b2 corresponds to the length between the measured point 5c and the measured point 5d. The point to be measured 5c is a limit point of scanning in the positive direction in the Y direction corresponding to a state in which the angle θ is increased to the maximum angle (set to θ1) in the positive direction. The measurement point 5d is a limit point of scanning in the Y direction negative direction corresponding to a state where the angle θ is increased to the maximum angle (θ2) in the negative direction. In addition, according to control of angle (theta), several to-be-measured points can be taken between to-be-measured point 5c and to-be-measured point 5d.
上記被計測面5aに対するレーザ光に基づく集束光a4の照射によるY方向の走査の際、走査及び照射される被計測点の位置がY方向で移動する。それと共に、被計測面5aから発生する赤外光である光a5は、同様にY方向で移動する。そのため、上記走査により、被計測面5aのY方向の線上における赤外光の分布、即ち、空間的な温度分布及び温度差分布が構成される。赤外線センサ3は、1点で検出するポイントセンサであるため、当該分布を時系列上の赤外線の強度の信号c3として検出する。制御部11A及び画像生成部12Aは、赤外線センサ3から読み出される赤外線の強度の信号c3と、走査時の角度θの情報とを用いて、被計測面5aのY方向の線の領域における温度差の分布を把握する。角度θと被計測点の位置とが対応関係を持つ。
When performing scanning in the Y direction by irradiation of the focused light a4 based on the laser light on the surface to be measured 5a, the position of the measurement point to be scanned and irradiated moves in the Y direction. At the same time, the light a5, which is infrared light generated from the measurement target surface 5a, similarly moves in the Y direction. For this reason, the above-described scanning forms a distribution of infrared light on the line in the Y direction of the measurement target surface 5a, that is, a spatial temperature distribution and a temperature difference distribution. Since the infrared sensor 3 is a point sensor that detects at one point, the distribution is detected as an infrared intensity signal c3 in time series. The control unit 11A and the image generation unit 12A use the infrared intensity signal c3 read from the infrared sensor 3 and the information on the angle θ at the time of scanning, and the temperature difference in the region of the line in the Y direction of the measurement surface 5a. To understand the distribution of The angle θ and the position of the measurement point have a correspondence relationship.
[設計例]
検査装置1Aの光学系等の設計例は以下である。パルスレーザ2は、対象物5や周囲環境の特性などに応じて、レーザ光の波長などが設計される。本例では、対象物5の材質がコンクリートである。コンクリートの場合、レーザ光の比較的吸収の大きい波長として、1μm帯、波長1.5μm帯、波長2μm帯などがある。これに対応して、パルスレーザ2として、波長1μm帯のYAG固体レーザ(YAG:イットリウム・アルミニウム・ガーネット)や、Ybファイバレーザ(Yb:イッテルビウム)、波長1.5μm帯のErファイバレーザ(Er:エルビウム)、波長2μm帯のTmファイバレーザ(Tm:ツリウム)、等が候補となる。実施の形態1では、パルスレーザ2としてYAG固体レーザを使用する。YAG固体レーザは、外部からの入力パルスによって発振可能である。 [Design example]
A design example of the optical system and the like of the inspection apparatus 1A is as follows. In thepulse laser 2, the wavelength of the laser beam is designed according to the characteristics of the object 5 and the surrounding environment. In this example, the material of the object 5 is concrete. In the case of concrete, there are a 1 μm band, a wavelength of 1.5 μm band, a wavelength of 2 μm band, and the like as wavelengths with relatively large absorption of laser light. Correspondingly, as the pulse laser 2, a YAG solid-state laser (YAG: yttrium, aluminum, garnet) with a wavelength of 1 μm, a Yb fiber laser (Yb: ytterbium), an Er fiber laser (Er: Erbium), Tm fiber laser with a wavelength of 2 μm band (Tm: thulium), etc. are candidates. In the first embodiment, a YAG solid-state laser is used as the pulse laser 2. A YAG solid-state laser can oscillate by an external input pulse.
検査装置1Aの光学系等の設計例は以下である。パルスレーザ2は、対象物5や周囲環境の特性などに応じて、レーザ光の波長などが設計される。本例では、対象物5の材質がコンクリートである。コンクリートの場合、レーザ光の比較的吸収の大きい波長として、1μm帯、波長1.5μm帯、波長2μm帯などがある。これに対応して、パルスレーザ2として、波長1μm帯のYAG固体レーザ(YAG:イットリウム・アルミニウム・ガーネット)や、Ybファイバレーザ(Yb:イッテルビウム)、波長1.5μm帯のErファイバレーザ(Er:エルビウム)、波長2μm帯のTmファイバレーザ(Tm:ツリウム)、等が候補となる。実施の形態1では、パルスレーザ2としてYAG固体レーザを使用する。YAG固体レーザは、外部からの入力パルスによって発振可能である。 [Design example]
A design example of the optical system and the like of the inspection apparatus 1A is as follows. In the
ダイクロイックミラー22は、本例では波長8μm以下を反射し、波長8μm以上を透過する機能を持つ。この反射と透過の境界の波長8μmは、パルスレーザ2、赤外線センサ3、及び対象物5などの特性に応じて設計される。
In this example, the dichroic mirror 22 has a function of reflecting a wavelength of 8 μm or less and transmitting a wavelength of 8 μm or more. The wavelength 8 μm at the boundary between reflection and transmission is designed according to the characteristics of the pulse laser 2, the infrared sensor 3, the object 5, and the like.
対象物5の表面から発生する赤外光は、様々な波長を持つが、波長8μm以上の遠赤外光は、大気による吸収が少ないので検出に好適である。実施の形態1では、波長8μm以上の赤外線である遠赤外線ないし長波長赤外線を、赤外線センサ3で効率的に検出するため、ダイクロイックミラー22の透過及び反射の境界として波長8μmを選択している。
Infrared light generated from the surface of the object 5 has various wavelengths, but far-infrared light having a wavelength of 8 μm or more is suitable for detection because it is less absorbed by the atmosphere. In the first embodiment, a wavelength of 8 μm is selected as a boundary between transmission and reflection of the dichroic mirror 22 in order to efficiently detect far infrared rays or long wavelength infrared rays, which are infrared rays having a wavelength of 8 μm or more, with the infrared sensor 3.
距離b1及び走査範囲b2等の設計に応じて、赤外線センサ3のセンサ面のサイズは、1mm程度である。
Depending on the design of the distance b1 and the scanning range b2, the size of the sensor surface of the infrared sensor 3 is about 1 mm.
[走査及び変形例]
図1に示す実施の形態1の検査装置1Aの構成では、被計測面5aのレーザ光の照射及び走査の制御は、走査ミラー23の角度θによりY方向の走査のみ制御される。これにより、1回の走査で被計測面5aのY方向の1次元の線の領域における温度差の分布を計測及び検査できる。更に、検査装置1Aは、光学系をZ方向で平行移動させる機構を持たせ、これにより照射位置をZ方向へ平行移動可能としてもよい。これにより複数回のY方向の走査の繰り返しを制御することにより、2次元の面の領域における温度差の分布を計測及び検査できる。 [Scanning and Modification]
In the configuration of the inspection apparatus 1A according to the first embodiment shown in FIG. 1, the laser beam irradiation and scanning control of the surface to be measured 5a is controlled only in the Y direction by the angle θ of thescanning mirror 23. Accordingly, it is possible to measure and inspect the temperature difference distribution in the one-dimensional line region in the Y direction of the measurement target surface 5a in one scan. Further, the inspection apparatus 1A may have a mechanism for translating the optical system in the Z direction so that the irradiation position can be translated in the Z direction. Thus, by controlling the repetition of scanning in the Y direction a plurality of times, it is possible to measure and inspect the temperature difference distribution in the two-dimensional surface region.
図1に示す実施の形態1の検査装置1Aの構成では、被計測面5aのレーザ光の照射及び走査の制御は、走査ミラー23の角度θによりY方向の走査のみ制御される。これにより、1回の走査で被計測面5aのY方向の1次元の線の領域における温度差の分布を計測及び検査できる。更に、検査装置1Aは、光学系をZ方向で平行移動させる機構を持たせ、これにより照射位置をZ方向へ平行移動可能としてもよい。これにより複数回のY方向の走査の繰り返しを制御することにより、2次元の面の領域における温度差の分布を計測及び検査できる。 [Scanning and Modification]
In the configuration of the inspection apparatus 1A according to the first embodiment shown in FIG. 1, the laser beam irradiation and scanning control of the surface to be measured 5a is controlled only in the Y direction by the angle θ of the
実施の形態1の変形例として、図1の走査ミラー23及び制御部11Aは、Y方向の走査に限らず、以下のように、他の方向での走査が可能な構成としてもよい。実施の形態1の第1の変形例として、検査装置1Aは、走査ミラー23が、回転軸をY方向として、Z方向の走査のための角度φが制御される構成としてもよい。
As a modification of the first embodiment, the scanning mirror 23 and the control unit 11A in FIG. 1 are not limited to scanning in the Y direction, and may be configured to be able to scan in other directions as follows. As a first modification of the first embodiment, the inspection apparatus 1A may be configured such that the scanning mirror 23 controls the angle φ for scanning in the Z direction with the rotation axis as the Y direction.
第2の変形例として、検査装置1Aは、Y方向の走査の角度θが制御可能な第1の走査ミラー23と、Z方向の走査の角度φが制御可能な第2の走査ミラー23との両方を備えた構成としてもよい。制御部11Aは、上記2つの走査ミラー23を個別的に制御する。これにより被計測面5aでY方向及びZ方向の両方の走査による計測及び検査ができる。
As a second modification, the inspection apparatus 1A includes a first scanning mirror 23 that can control the scanning angle θ in the Y direction and a second scanning mirror 23 that can control the scanning angle φ in the Z direction. It is good also as a structure provided with both. The controller 11A individually controls the two scanning mirrors 23. Thereby, measurement and inspection by scanning in both the Y direction and the Z direction can be performed on the measurement target surface 5a.
第3の変形例として、検査装置1Aは、1つの走査ミラー23として、Y方向の走査の角度θとZ方向の走査の角度φとの両方を同時に制御可能な構成としてもよい。これにより、被計測面5aで2次元の面の領域でのY方向及びZ方向の自在な走査による温度差の分布の計測及び検査ができる。
As a third modification, the inspection apparatus 1A may have a configuration in which both the scanning angle θ in the Y direction and the scanning angle φ in the Z direction can be simultaneously controlled as one scanning mirror 23. As a result, it is possible to measure and inspect the temperature difference distribution by freely scanning in the Y direction and the Z direction in the two-dimensional surface area of the measurement target surface 5a.
[走査及び被計測面]
図3は、補足として、走査ミラー23の角度θ等の制御による被計測面5aでの走査の様子について、Y,Z方向の平面で簡略的に示す。被計測面5aにおいて、300の丸印は、複数の各々の被計測点またはその候補の点を示す。301は、走査ミラー23の角度θの制御によるY方向の走査を示す。302は、走査ミラー23の角度φの制御によるZ方向の走査を示す。被計測点5bは、基準角度θ0=0度の状態に対応した基準点を示す。なお図示左方向をY方向正方向、角度θ正方向とし、図示右方向をY方向負方向、角度θ負方向としている。なお角度θ等の取り方は一例であって限定しない。例えば角度θを基準角度θ0から正方向または負方向の一方のみに偏向するように制御してもよい。 [Scanning and measurement surface]
As a supplement, FIG. 3 simply shows a state of scanning on themeasurement target surface 5a by controlling the angle θ of the scanning mirror 23 in a plane in the Y and Z directions. In the measurement target surface 5a, a circle 300 indicates a plurality of measurement points or candidate points. Reference numeral 301 denotes scanning in the Y direction by controlling the angle θ of the scanning mirror 23. Reference numeral 302 denotes scanning in the Z direction by controlling the angle φ of the scanning mirror 23. The measurement point 5b indicates a reference point corresponding to a state where the reference angle θ0 = 0 degrees. The left direction in the figure is the Y direction positive direction and the angle θ positive direction, and the right direction in the figure is the Y direction negative direction and the angle θ negative direction. In addition, how to take angle (theta) etc. is an example, and is not limited. For example, the angle θ may be controlled to be deflected from the reference angle θ0 only in one of the positive direction and the negative direction.
図3は、補足として、走査ミラー23の角度θ等の制御による被計測面5aでの走査の様子について、Y,Z方向の平面で簡略的に示す。被計測面5aにおいて、300の丸印は、複数の各々の被計測点またはその候補の点を示す。301は、走査ミラー23の角度θの制御によるY方向の走査を示す。302は、走査ミラー23の角度φの制御によるZ方向の走査を示す。被計測点5bは、基準角度θ0=0度の状態に対応した基準点を示す。なお図示左方向をY方向正方向、角度θ正方向とし、図示右方向をY方向負方向、角度θ負方向としている。なお角度θ等の取り方は一例であって限定しない。例えば角度θを基準角度θ0から正方向または負方向の一方のみに偏向するように制御してもよい。 [Scanning and measurement surface]
As a supplement, FIG. 3 simply shows a state of scanning on the
走査ミラー23の角度θの制御により、301のようにY方向の線の領域を走査し、当該線上にある複数の被計測点300を計測できる。同様に、走査ミラー23の角度φの制御により、302のようにZ方向の線の領域を走査し、当該線上にある複数の被計測点300を計測できる。
By controlling the angle θ of the scanning mirror 23, a line area in the Y direction can be scanned as indicated by 301, and a plurality of measurement points 300 on the line can be measured. Similarly, by controlling the angle φ of the scanning mirror 23, a region of a line in the Z direction as in 302 can be scanned, and a plurality of measurement points 300 on the line can be measured.
[制御方式]
図2は、実施の形態1の検査装置1Aによる制御方式として、制御の各信号のタイミング図を示す。 [control method]
FIG. 2 shows a timing chart of each signal of control as a control method by the inspection apparatus 1A of the first embodiment.
図2は、実施の形態1の検査装置1Aによる制御方式として、制御の各信号のタイミング図を示す。 [control method]
FIG. 2 shows a timing chart of each signal of control as a control method by the inspection apparatus 1A of the first embodiment.
(a)は、発振器10から制御部11Aへ与えられる基準クロックc0を示す。201は基準クロックc0における1クロックパルスを示す。制御部11Aは、(a)の基準クロックc0に基づき、(b)のパルスレーザ2の発振及び照射、(c)の赤外線センサ3の検出及び読み出し、及び(d)の走査ミラー23の角度θの切り替えのタイミングを制御する。
(A) shows a reference clock c0 given from the oscillator 10 to the control unit 11A. 201 indicates one clock pulse in the reference clock c0. Based on the reference clock c0 in (a), the control unit 11A oscillates and irradiates the pulse laser 2 in (b), detects and reads out the infrared sensor 3 in (c), and angle θ of the scanning mirror 23 in (d). Control the timing of switching.
(b)は、制御信号c2に対応する、パルスレーザ2のパルス状のレーザ光の発振及び照射の有り(ON)及び無し(OFF)の制御を示す。202はON状態の1パルスを示す。ON状態のパルス202の間はOFF状態を示す。制御信号c2のON時には、パルスレーザ2の熱励起により、短い幅のパルス202によるレーザ光が出射される。(b)のONのパルス202は、(a)の基準クロックc0の4回のクロックパルス201に対して1回のパルス202の割合で同期して出射される。
(B) shows the control of oscillation (irradiation) and irradiation (OFF) of pulsed laser light of the pulse laser 2 and irradiation corresponding to the control signal c2. Reference numeral 202 denotes one pulse in the ON state. The OFF state is shown during the ON state pulse 202. When the control signal c <b> 2 is turned ON, laser light with a pulse 202 having a short width is emitted by thermal excitation of the pulse laser 2. The ON pulse 202 in (b) is emitted synchronously with the ratio of one pulse 202 to the four clock pulses 201 of the reference clock c0 in (a).
(c)は、赤外線センサ3の検出及び読み出しの制御を示す。203及び204は、それぞれ1つの計測値の検出及び読み出しのパルスを示す。(c)の赤外線センサ3の赤外線の検出ないし計測は、(b)のパルスレーザ2の照射の無し(OFF)及び有り(ON)の状態に同期したタイミングで行われるように制御される。制御部11Aは、基準クロックc0に基づく各信号により当該同期を制御する。
(C) shows detection and readout control of the infrared sensor 3. Reference numerals 203 and 204 denote one measurement value detection and readout pulse, respectively. The detection or measurement of infrared rays by the infrared sensor 3 in (c) is controlled so as to be performed at a timing synchronized with the non-irradiation (OFF) and presence (ON) states of the pulse laser 2 in (b). The controller 11A controls the synchronization by each signal based on the reference clock c0.
203は、(b)のレーザ光のパルス202の照射無し(OFF)の時の検出及び読み出しのパルスであり、204は、(b)のレーザ光のパルス202の照射有り(ON)の時の検出及び読み出しのパルスである。(c)のパルス203及び204は、(a)の基準クロックc0の2回のクロックパルス201に対して1回の割合で検出及び読み出しが行われる。制御部11Aは、赤外線センサ3から当該パルス203及び204に従い、赤外線の強度の計測値の信号c3を読み出す。
Reference numeral 203 denotes a detection and readout pulse when the laser beam pulse 202 is not irradiated (OFF) in (b), and reference numeral 204 denotes a laser beam pulse irradiation (ON) when (b) is performed (ON). Detection and readout pulses. The pulses 203 and 204 in (c) are detected and read out at a rate of once with respect to the two clock pulses 201 of the reference clock c0 in (a). 11 A of control parts read the signal c3 of the measured value of an infrared intensity from the infrared sensor 3 according to the said pulses 203 and 204. FIG.
s(s1~s8等)は、レーザ光の照射の前後のパルス203及び204のタイミングに対応した赤外線センサ3の計測値を示す。d(d1~d4等)は、赤外線センサ3の計測値sの差分による温度差(ΔT)を示す。温度差dは、照射無し(OFF)の時の計測値sと、照射有り(ON)の時の計測値sとの差分値である。例えばパルス203の時の計測値s1と、次のパルス204の時の計測値s2との差分が、温度差d1として得られる。v(v1~v3等)は、複数の温度差d(d1~d4等)の平均値による温度差を示す。例えば、4個の温度差d1~d4の平均値が温度差v2である。
S (s1 to s8, etc.) indicates the measurement value of the infrared sensor 3 corresponding to the timing of the pulses 203 and 204 before and after the laser light irradiation. d (d1 to d4, etc.) indicates a temperature difference (ΔT) due to the difference of the measurement value s of the infrared sensor 3. The temperature difference d is a difference value between the measured value s when there is no irradiation (OFF) and the measured value s when there is irradiation (ON). For example, the difference between the measured value s1 at the time of the pulse 203 and the measured value s2 at the time of the next pulse 204 is obtained as the temperature difference d1. v (v1 to v3, etc.) represents a temperature difference based on an average value of a plurality of temperature differences d (d1 to d4, etc.). For example, the average value of the four temperature differences d1 to d4 is the temperature difference v2.
(d)は、角度制御信号c1に対応する、走査ミラー23の角度θの偏向の制御を示す。縦軸は角度θである。206は、時刻t2~t3の時間212において、基準の被計測点5bの位置に対応させて、角度θを基準角度θ0である0度にする信号及び状態を示す。1つの角度θの状態及び時間において、1つの被計測点5bについて、(b)の4回のパルス202、及び(c)の8回のパルスの計測値sにより、4回の温度差dの計測が行われる。そして4個の温度差d(d1~d4)の平均値による温度差v2が得られる。
(D) shows the deflection control of the angle θ of the scanning mirror 23 corresponding to the angle control signal c1. The vertical axis is the angle θ. Reference numeral 206 denotes a signal and a state in which the angle θ is set to 0 degrees, which is the reference angle θ0, corresponding to the position of the reference measurement point 5b at time 212 from time t2 to t3. In the state and time of one angle θ, four temperature differences d are measured for one measurement point 5b by the measurement values s of four pulses 202 in (b) and eight pulses in (c). Measurement is performed. Then, a temperature difference v2 by an average value of the four temperature differences d (d1 to d4) is obtained.
制御部11Aは、(d)の走査ミラー23の角度θの制御として、(b)の4回のパルス202に対して1回の割合で、基準クロックc0のクロックパルス201に同期させたタイミングで、単位量(θu)を増減するように切り替える。この角度θの切り替えは、t1,t2,t3で示すように、(a)の1つのクロックパルス201のタイミングで行われる。このクロックパルス201のタイミングは、(b)のONのパルス202に対応した(c)のパルス204と、(b)のOFF状態に対応した(c)のパルス203との中間のタイミングである。
The controller 11A controls the angle θ of the scanning mirror 23 in (d) at a timing synchronized with the clock pulse 201 of the reference clock c0 at a rate of once for the four pulses 202 in (b). The unit amount (θu) is switched to increase or decrease. The switching of the angle θ is performed at the timing of one clock pulse 201 in (a) as indicated by t1, t2, and t3. The timing of the clock pulse 201 is an intermediate timing between the pulse 204 of (c) corresponding to the ON pulse 202 of (b) and the pulse 203 of (c) corresponding to the OFF state of (b).
θuは、角度θの増減の単位量を示す。205は、時刻t1~t2の時間211で、角度θを基準角度θ0に対して負方向で1単位量小さい角度(-θu)で制御する状態を示す。この状態では、温度差v1が得られる。207は、時刻t3~t4の時間213で、角度θを基準角度θ0に対して正方向で1単位量大きい角度(+θu)で制御する状態を示す。この状態では、温度差v3が得られる。図示する以外の角度状態についても同様である。
Θu indicates the unit amount of increase / decrease of the angle θ. Reference numeral 205 denotes a state in which the angle θ is controlled by an angle (−θu) smaller by one unit amount in the negative direction with respect to the reference angle θ0 at a time 211 from time t1 to time t2. In this state, a temperature difference v1 is obtained. Reference numeral 207 denotes a state in which the angle θ is controlled by an angle (+ θu) larger by one unit amount in the positive direction with respect to the reference angle θ0 at time 213 from time t3 to t4. In this state, a temperature difference v3 is obtained. The same applies to angle states other than those shown in the figure.
制御部11Aによる(b)のパルスレーザ2及び(c)の赤外線センサ3の制御により、(b)のパルス202のON及びOFFの2つの状態に対応した、(c)のパルス203及び204のタイミングで、赤外線の計測値sが得られる。制御部11Aは、計測値sに対応する赤外線の強度の信号c3を赤外線センサ3から読み出して取得する。
By controlling the pulse laser 2 in (b) and the infrared sensor 3 in (c) by the control unit 11A, the pulses 203 and 204 in (c) corresponding to two states of ON and OFF of the pulse 202 in (b) are controlled. An infrared measurement value s is obtained at the timing. 11 A of control parts read the infrared intensity signal c3 corresponding to the measured value s from the infrared sensor 3, and acquire it.
画像生成部12Aは、レーザ光の照射の有無の状態に対応する計測値sの差分から温度差dを算出する。画像生成部12Aは、1つの角度θの状態に対応した被計測点1点あたり複数の温度差dを平均化した温度差vを算出する。画像生成部12Aは、被計測面5aにおける線の領域で被計測点ごとの温度差vを同様に得る。これにより、画像生成部12Aは、被計測面5aの領域に対応した温度差の分布の画像を生成する。画像生成部12Aは、上記計測値s及び温度差dの情報と、走査ミラー23の角度θの情報とを組み合わせて、角度θから被計測面5aでの走査及び被計測点の位置を把握し、温度差の分布の画像を生成する。
The image generation unit 12A calculates the temperature difference d from the difference between the measurement values s corresponding to the presence or absence of laser light irradiation. The image generation unit 12A calculates a temperature difference v obtained by averaging a plurality of temperature differences d per measurement point corresponding to the state of one angle θ. The image generation unit 12A similarly obtains the temperature difference v for each measurement point in the region of the line on the measurement surface 5a. Thereby, the image generation unit 12A generates an image of a temperature difference distribution corresponding to the region of the measurement target surface 5a. The image generation unit 12A combines the information of the measurement value s and the temperature difference d and the information of the angle θ of the scanning mirror 23, and grasps the position of the scanning and measurement point on the measurement surface 5a from the angle θ. Generate an image of the temperature difference distribution.
[温度差画像及び欠陥判定]
図4(a)は、実施の形態1における画像生成部12Aによる温度差の分布の画像のうちの一部のデータ、及び欠陥抽出部13Aによる欠陥判定処理の例を示す。温度差のデータにおいて、横軸は、被計測面5aのY方向の位置における複数の被計測点である点A~点I等を示す。縦軸は、被計測点における温度差(ΔT)の計測値、特に前述の平均値による温度差vを示す。 [Temperature difference image and defect determination]
FIG. 4A shows an example of part of the data of the temperature difference distribution image by theimage generation unit 12A and the defect determination processing by the defect extraction unit 13A in the first embodiment. In the temperature difference data, the horizontal axis indicates points A to I, which are a plurality of measurement points at positions in the Y direction of the measurement surface 5a. The vertical axis indicates the measured value of the temperature difference (ΔT) at the measurement point, in particular, the temperature difference v based on the average value described above.
図4(a)は、実施の形態1における画像生成部12Aによる温度差の分布の画像のうちの一部のデータ、及び欠陥抽出部13Aによる欠陥判定処理の例を示す。温度差のデータにおいて、横軸は、被計測面5aのY方向の位置における複数の被計測点である点A~点I等を示す。縦軸は、被計測点における温度差(ΔT)の計測値、特に前述の平均値による温度差vを示す。 [Temperature difference image and defect determination]
FIG. 4A shows an example of part of the data of the temperature difference distribution image by the
401は、欠陥判定のための設定情報として、許容範囲を示し、h1は下限の閾値、h2は上限の閾値を示す。例えば402で示す点A~点Dは、許容範囲401内に収まっており、403で示す点E~点Iは、閾値h1より小さく許容範囲401外になっている。欠陥抽出部13Aは、上記温度差の値と閾値とを比較し、許容範囲401内であれば正常、許容範囲401外であれば欠陥や劣化等と判定する。
401 indicates an allowable range as setting information for defect determination, h1 indicates a lower limit threshold value, and h2 indicates an upper limit threshold value. For example, points A to D indicated by 402 are within the allowable range 401, and points E to I indicated by 403 are smaller than the threshold value h1 and outside the allowable range 401. The defect extraction unit 13A compares the temperature difference value with a threshold value, and determines that the defect is normal if it is within the allowable range 401, and is defective or deteriorated if it is outside the allowable range 401.
欠陥や劣化等と判定された点E~点Iを含む403の領域は、温度差及び応力変動が小さいので、当該領域付近で剥がれ等が発生している状態または発生の可能性が高いことを表している。逆に、温度差が閾値h2を超える状態になった場合、温度差及び応力変動が大きいので、当該領域付近でひび等で応力集中が発生している状態または発生の可能性が高いことを表している。
The region 403 including the points E to I determined to be defective, deteriorated, etc. has a small temperature difference and stress fluctuation, so that the state where peeling or the like is occurring in the vicinity of the region is highly likely to occur. Represents. Conversely, when the temperature difference exceeds the threshold value h2, the temperature difference and stress fluctuation are large, indicating that stress concentration is occurring near the area due to cracks or the like, or the possibility of occurrence is high. ing.
図5(a)は、画像生成部12Aで生成された温度差の分布の画像501の例を簡略的に示す。画像501は、対象物5の被計測面5aがコンクリートのタイル等で構成されている場合に対応した温度差の分布の画像を示す。例えばY,Z方向の被計測面5aに対し、検査装置1Aの位置によりZ方向の位置を変えながら、前述のY方向の走査を複数回同様に繰り返すことで、Y,Z方向の2次元の画像501を生成した例である。なお実際の画像は、被計測点に対応した画素ごとに温度差dの値またはそれに対応付けられた階調値などを持つ。なお画像生成部12Aは、計測値に対して表示用の画像処理を行うことにより、利用者が目視確認しやすい表示用の画像を生成してもよい。
FIG. 5A simply shows an example of the temperature difference distribution image 501 generated by the image generation unit 12A. An image 501 shows an image of a temperature difference distribution corresponding to a case where the measured surface 5a of the object 5 is made of concrete tiles or the like. For example, by repeating the above-described Y-direction scanning a plurality of times in the same manner while changing the position in the Z-direction depending on the position of the inspection apparatus 1A on the surface to be measured 5a in the Y- and Z-directions, In this example, an image 501 is generated. Note that the actual image has a value of the temperature difference d or a gradation value associated therewith for each pixel corresponding to the measurement point. The image generation unit 12A may generate a display image that is easy for the user to visually check by performing display image processing on the measurement value.
画像501の中の一部の領域503は、一部のタイルに対応するが、当該領域503の周辺の領域よりも温度差が小さい。これにより、図4(a)の例のように、当該領域503は、温度差が許容範囲401外になることで、欠陥として抽出される。欠陥抽出部13Aは、図4(a)のような閾値比較や、画像内の値の相対的な比較などの処理により、欠陥部分を判定及び抽出する。
The partial area 503 in the image 501 corresponds to a partial tile, but the temperature difference is smaller than the area around the area 503. As a result, as in the example of FIG. 4A, the region 503 is extracted as a defect when the temperature difference is outside the allowable range 401. The defect extraction unit 13A determines and extracts the defect portion by processing such as threshold comparison as shown in FIG. 4A or relative comparison of values in the image.
図5(b)の画像502は、図5(a)の画像501に基づき、欠陥抽出部13Aにより判定及び抽出された欠陥部分の領域504を含む画像502を示す。欠陥部分の領域504は、領域503と対応している。この場合、温度差(ΔT)と応力(Δσ)の関係から、領域504では応力ないし応力変動が小さいことを示している。即ち、当該領域504は剥がれ等が発生しやすいことを示している。逆に、ひび等の場合、応力集中が起きるため、温度差は周辺よりも大きくなる。この場合も上記同様に抽出が可能である。
5B shows an image 502 including a defect portion region 504 determined and extracted by the defect extraction unit 13A based on the image 501 in FIG. 5A. The defective portion region 504 corresponds to the region 503. In this case, from the relationship between the temperature difference (ΔT) and the stress (Δσ), the region 504 indicates that stress or stress fluctuation is small. That is, the region 504 indicates that peeling or the like is likely to occur. On the other hand, in the case of a crack or the like, stress concentration occurs, so that the temperature difference becomes larger than the surroundings. In this case, extraction can be performed in the same manner as described above.
[効果等]
以上のように、実施の形態1の検査装置1Aは、計測及び検査用の加熱に関する空間的及び時間的な均一性、被計測点1点あたり複数回の赤外線及び温度差の計測、パルスレーザ2と赤外線センサ3の同期制御によるパルス状のレーザ光の照射の前後の温度差の計測、等の構成を有する。これにより実施の形態1は、赤外線及び熱弾性効果等を用いた計測及び検査に関して、対象物5である構造物の表面付近における温度差の計測の精度、及び欠陥や劣化等の状態の検査の精度を向上させることができる。これにより、対象物5の表面付近の欠陥や劣化等の状態やその予兆を早期に検出できる。例えばビルや橋梁やトンネル等の構造物の安全性維持のための施策を早期に確実に実現可能となる。 [Effects]
As described above, the inspection apparatus 1A according to the first embodiment has the spatial and temporal uniformity related to heating for measurement and inspection, the measurement of infrared rays and temperature differences a plurality of times per point to be measured, and thepulse laser 2 And measuring the temperature difference before and after the irradiation of the pulsed laser beam by the synchronous control of the infrared sensor 3. Thus, the first embodiment relates to the measurement and inspection using infrared rays and the thermoelastic effect, etc., and the accuracy of measurement of the temperature difference near the surface of the structure that is the object 5 and the inspection of the state such as defects and deterioration. Accuracy can be improved. As a result, defects such as defects and deterioration near the surface of the object 5 and signs thereof can be detected at an early stage. For example, measures for maintaining the safety of structures such as buildings, bridges and tunnels can be realized quickly and reliably.
以上のように、実施の形態1の検査装置1Aは、計測及び検査用の加熱に関する空間的及び時間的な均一性、被計測点1点あたり複数回の赤外線及び温度差の計測、パルスレーザ2と赤外線センサ3の同期制御によるパルス状のレーザ光の照射の前後の温度差の計測、等の構成を有する。これにより実施の形態1は、赤外線及び熱弾性効果等を用いた計測及び検査に関して、対象物5である構造物の表面付近における温度差の計測の精度、及び欠陥や劣化等の状態の検査の精度を向上させることができる。これにより、対象物5の表面付近の欠陥や劣化等の状態やその予兆を早期に検出できる。例えばビルや橋梁やトンネル等の構造物の安全性維持のための施策を早期に確実に実現可能となる。 [Effects]
As described above, the inspection apparatus 1A according to the first embodiment has the spatial and temporal uniformity related to heating for measurement and inspection, the measurement of infrared rays and temperature differences a plurality of times per point to be measured, and the
実施の形態1の検査装置1Aは、パルスレーザ2及び走査ミラー23により対象物5の被計測面5aの領域をレーザ光の集束光a4で走査しながら赤外線センサ3により被計測点1点あたり複数回の赤外線及び温度差を計測する。そして検査装置1Aは、これら複数の温度差dの計測値の平均化による温度差vの分布の画像を得る。これにより計測の誤差が低減される。例えば1点ごとに4個の温度差dの平均値を用いることで、計測誤差を1/2に減少できる。これにより、検査装置1Aは、1点あたり1回の計測を行う先行技術例に対して、赤外線及び温度差の計測を高精度にできる。
The inspection apparatus 1A according to the first embodiment has a plurality of points per measurement point by the infrared sensor 3 while scanning the area of the measurement surface 5a of the object 5 with the focused light a4 of the laser beam by the pulse laser 2 and the scanning mirror 23. Measure the infrared and temperature difference of the times. Then, the inspection apparatus 1A obtains an image of the distribution of the temperature differences v by averaging the measured values of the plurality of temperature differences d. This reduces measurement errors. For example, the measurement error can be reduced to ½ by using an average value of four temperature differences d for each point. Thereby, 1 A of inspection apparatuses can measure an infrared rays and a temperature difference with high precision with respect to the prior art example which measures once per point.
また実施の形態1の検査装置1Aは、パルス状のレーザ光の照射による集束光a4によって対象物5の被計測面5aの領域が空間的及び時間的に均一に走査される。よって、検査装置1Aは、先行技術例のランプ一括照射などの構成に比べ、被計測面5aの領域における熱応力ないしエネルギの空間的な分布の状態における均一性が高くなる。これにより検査装置1Aは、先行技術例に比べ、赤外線センサ3による温度差の分布の計測の精度が高くなる。その結果、被計測面5aの温度差の分布の画像からの剥がれやひび等の欠陥抽出の精度が高くなる。
Further, in the inspection apparatus 1A of the first embodiment, the region of the measurement target surface 5a of the object 5 is scanned spatially and temporally uniformly by the focused light a4 by the irradiation of the pulsed laser beam. Accordingly, the inspection apparatus 1A has higher uniformity in the state of spatial distribution of thermal stress or energy in the area of the surface to be measured 5a than the configuration of the lamp batch irradiation or the like of the prior art example. As a result, the inspection apparatus 1A is more accurate in measuring the temperature difference distribution by the infrared sensor 3 than in the prior art. As a result, the accuracy of extracting defects such as peeling and cracks from the image of the temperature difference distribution on the surface to be measured 5a increases.
なお実施の形態1に対して前述の先行技術例による構成と比較すると以下である。特許文献1による装置では、1点あたり1回のレーザ照射の前後の温度差の計測では誤差が生じる。またレーザによる被計測面の走査の前後に温度を計測することを考えた場合、走査の開始点と終了点とでは時間差がある。そのため、走査の間の熱拡散により、走査の開始点と終了点とでは、応力変化量が異なる。この結果、赤外線の検出時には、走査の開始点と終了点とでは、温度の傾斜が誤差として生じる。これにより温度差に基づき欠陥を検出する際の精度が低下する。
The following is a comparison of the first embodiment with the configuration according to the prior art example described above. In the apparatus according to Patent Document 1, an error occurs in the measurement of the temperature difference before and after one laser irradiation per point. Further, when considering the temperature measurement before and after scanning the surface to be measured by the laser, there is a time difference between the start point and the end point of the scan. For this reason, the amount of change in stress differs between the start point and end point of scanning due to thermal diffusion during scanning. As a result, when infrared rays are detected, a temperature gradient occurs as an error between the start point and the end point of scanning. Thereby, the precision at the time of detecting a defect based on a temperature difference falls.
また特許文献2による装置では、車両の走行時における対象物の被計測点に対するランプ照射が1回だけになるので、1点あたり1回の計測になる。これにより上記同様に温度差の計測に誤差が生じ、精度が低下する。
Further, in the apparatus according to Patent Document 2, since the lamp irradiation is performed only once on the measurement target point of the object when the vehicle is traveling, the measurement is performed once per point. As a result, an error occurs in the measurement of the temperature difference in the same manner as described above, and the accuracy decreases.
非特許文献1による装置では、加熱ランプによる周期的加熱と連動して赤外線カメラで計測する。そのため、特許文献1による装置に比べ、温度差の計測の精度は向上するが、加熱ランプで対象物の全面を照明する時の照度分布の不均一性により、対象物の面に均一な応力変化を与えることはできない。この結果、計測及び欠陥検出の精度が低下する。
In the apparatus according to Non-Patent Document 1, measurement is performed with an infrared camera in conjunction with periodic heating by a heating lamp. Therefore, the accuracy of temperature difference measurement is improved as compared with the apparatus according to Patent Document 1, but due to the non-uniformity of the illuminance distribution when the entire surface of the object is illuminated with a heating lamp, uniform stress changes on the surface of the object Can not give. As a result, the accuracy of measurement and defect detection decreases.
<実施の形態2>
次に、図6~図7を用いて、実施の形態2の赤外線検査装置について説明する。図6に示す実施の形態2の赤外線検査装置である検査装置1Bは、前述の実施の形態1の検査装置1Aに対して異なる要素として、2次元の面の領域で赤外線を検出する撮像が可能な赤外線カメラ4を導入した。実施の形態2の検査装置1Bは、前述の図1のダイクロイックミラー22とそのY方向に設置された結像レンズ25及び赤外線センサ3を無くし、代わりに、対物レンズ24と対象物5との間にダイクロイックミラー27を設置した。そしてダイクロイックミラー27の反射方向であるY方向に望遠レンズ28を介して赤外線カメラ4を設置した。 <Embodiment 2>
Next, an infrared inspection apparatus according to the second embodiment will be described with reference to FIGS. The inspection apparatus 1B, which is the infrared inspection apparatus of the second embodiment shown in FIG. 6, is capable of imaging that detects infrared rays in a two-dimensional surface area as a different element from the inspection apparatus 1A of the first embodiment.Infrared camera 4 was introduced. The inspection apparatus 1B of the second embodiment eliminates the dichroic mirror 22 of FIG. 1 and the imaging lens 25 and the infrared sensor 3 installed in the Y direction, and instead, between the objective lens 24 and the object 5. The dichroic mirror 27 was installed in The infrared camera 4 was installed in the Y direction, which is the reflection direction of the dichroic mirror 27, via the telephoto lens 28.
次に、図6~図7を用いて、実施の形態2の赤外線検査装置について説明する。図6に示す実施の形態2の赤外線検査装置である検査装置1Bは、前述の実施の形態1の検査装置1Aに対して異なる要素として、2次元の面の領域で赤外線を検出する撮像が可能な赤外線カメラ4を導入した。実施の形態2の検査装置1Bは、前述の図1のダイクロイックミラー22とそのY方向に設置された結像レンズ25及び赤外線センサ3を無くし、代わりに、対物レンズ24と対象物5との間にダイクロイックミラー27を設置した。そしてダイクロイックミラー27の反射方向であるY方向に望遠レンズ28を介して赤外線カメラ4を設置した。 <
Next, an infrared inspection apparatus according to the second embodiment will be described with reference to FIGS. The inspection apparatus 1B, which is the infrared inspection apparatus of the second embodiment shown in FIG. 6, is capable of imaging that detects infrared rays in a two-dimensional surface area as a different element from the inspection apparatus 1A of the first embodiment.
[赤外線検査装置]
図6は、実施の形態2の検査装置1B及び対象物5を含む構成を示す。実施の形態2の検査装置1Bは、パルスレーザ2、赤外線カメラ4、コリメートレンズ21、反射ミラー29、走査ミラー23B、対物レンズ24、ダイクロイックミラー27、望遠レンズ28、制御部11B、画像生成部12B、欠陥抽出部13B、及び入出力部14を有する。 [Infrared inspection equipment]
FIG. 6 shows a configuration including the inspection apparatus 1B and theobject 5 according to the second embodiment. The inspection apparatus 1B according to the second embodiment includes a pulse laser 2, an infrared camera 4, a collimator lens 21, a reflection mirror 29, a scanning mirror 23B, an objective lens 24, a dichroic mirror 27, a telephoto lens 28, a control unit 11B, and an image generation unit 12B. A defect extraction unit 13B and an input / output unit 14.
図6は、実施の形態2の検査装置1B及び対象物5を含む構成を示す。実施の形態2の検査装置1Bは、パルスレーザ2、赤外線カメラ4、コリメートレンズ21、反射ミラー29、走査ミラー23B、対物レンズ24、ダイクロイックミラー27、望遠レンズ28、制御部11B、画像生成部12B、欠陥抽出部13B、及び入出力部14を有する。 [Infrared inspection equipment]
FIG. 6 shows a configuration including the inspection apparatus 1B and the
対象物5の被計測面5aは、Y,Z方向による面の領域を含む。Rは、被計測点5bと被計測点5cとの長さに対応する、半角分の撮像範囲を示す。走査範囲b2は、2×Rである。Lは、走査ミラー23Bの中心ないし回転軸と、対象物5の被計測面5aの基準の被計測点5bとの距離を示す。
The measured surface 5a of the object 5 includes a surface area in the Y and Z directions. R represents an imaging range for a half angle corresponding to the length of the measured point 5b and the measured point 5c. The scanning range b2 is 2 × R. L indicates the distance between the center or rotation axis of the scanning mirror 23B and the reference measurement point 5b of the measurement target surface 5a of the object 5.
赤外線カメラ4は、撮像レンズないしセンサ面に赤外線を入射して赤外線の強度の分布を画像として撮像する。赤外線カメラ4のセンサ面は、X,Z方向による2次元の面であり、複数の画素の配列を含む。赤外線カメラ4のセンサ面における1点の計測に対応する画素のサイズは10μm程度である。赤外線カメラ4からの読み出し出力の信号c4は、赤外線の強度の分布を含む2次元の撮像の画像の信号である。
The infrared camera 4 enters infrared rays into an imaging lens or a sensor surface and takes an infrared intensity distribution as an image. The sensor surface of the infrared camera 4 is a two-dimensional surface in the X and Z directions, and includes an array of a plurality of pixels. The pixel size corresponding to the measurement of one point on the sensor surface of the infrared camera 4 is about 10 μm. A read output signal c4 from the infrared camera 4 is a signal of a two-dimensional captured image including an infrared intensity distribution.
赤外線カメラ4は、画像単位で撮像及び読み出しが制御可能な構成である。そのため、実施の形態2では、制御部11Bにより、赤外線カメラ4の画像単位の読み出しに対応させて、赤外線による温度差の計測を制御する。制御部11Bは、赤外線カメラ4から、当該画像ごとの信号c4を読み出し制御する。
The infrared camera 4 has a configuration capable of controlling imaging and reading in units of images. Therefore, in the second embodiment, the control unit 11B controls the measurement of the temperature difference by infrared rays in correspondence with the reading of the image unit of the infrared camera 4. The control unit 11B reads out and controls the signal c4 for each image from the infrared camera 4.
制御部11Bは、赤外線カメラ4からの読み出しの信号c4を基準クロックとして用いて、走査ミラー23B、及びパルスレーザ2等を制御する。制御部11Bは、角度制御信号c1により、走査ミラー23BのY方向の走査のための角度θ、及びZ方向の走査のための角度φの両方を制御する。制御部11Bは、制御信号c2により、実施の形態1と同様にパルスレーザ2を制御する。制御部11Bからの走査ミラー23B及びパルスレーザ2の制御により、被計測面5aにおける2次元の面の領域が走査され、熱応力が与えられる。検査装置1Bは、制御部11Bの制御に基づき、パルスレーザ2からのレーザ光の照射有り(ON)の時の画像と、照射無し(OFF)の時の画像とを撮像する。
The control unit 11B controls the scanning mirror 23B, the pulse laser 2 and the like using the signal c4 read from the infrared camera 4 as a reference clock. The controller 11B controls both the angle θ for scanning in the Y direction of the scanning mirror 23B and the angle φ for scanning in the Z direction by the angle control signal c1. The control unit 11B controls the pulse laser 2 by the control signal c2 as in the first embodiment. By controlling the scanning mirror 23B and the pulse laser 2 from the control unit 11B, a two-dimensional surface area of the measurement target surface 5a is scanned, and thermal stress is applied. Based on the control of the control unit 11B, the inspection apparatus 1B captures an image when the laser beam from the pulse laser 2 is irradiated (ON) and an image when the laser beam is not irradiated (OFF).
画像生成部12Bは、制御部11Bから、赤外線カメラ4からの赤外線の強度の信号c4を得て、被計測面5aの面の領域における温度差の分布の画像を生成する処理を行う。画像生成部12Bは、レーザ光の照射有り(ON)の時の画像と、照射無し(OFF)の時の画像との差分により、温度差の分布の画像を生成する。
The image generation unit 12B obtains an infrared intensity signal c4 from the infrared camera 4 from the control unit 11B, and performs processing for generating an image of a temperature difference distribution in the surface area of the measurement target surface 5a. The image generation unit 12B generates an image of a temperature difference distribution based on a difference between an image with laser light irradiation (ON) and an image with no laser light irradiation (OFF).
欠陥抽出部13Bは、実施の形態1と同様に、温度差の分布の画像を用いて、正常及び欠陥や劣化等の状態を判定し抽出する処理を行い、その結果を入出力部14を通じて利用者に対して出力する。
As in the first embodiment, the defect extraction unit 13B uses the image of the temperature difference distribution to perform processing for determining and extracting a normal state and a state such as a defect and deterioration, and uses the result through the input / output unit 14 Output to the user.
反射ミラー29は、図1のダイクロイックミラー22の位置に配置され、X方向からの光a1をY方向へ反射する。なおパルスレーザ2からY方向へ出射する配置とする場合は反射ミラー29を省略できる。
The reflection mirror 29 is disposed at the position of the dichroic mirror 22 in FIG. 1, and reflects the light a1 from the X direction in the Y direction. Note that the reflection mirror 29 can be omitted when the pulse laser 2 emits light in the Y direction.
走査ミラー23Bは、制御部11Bからの角度制御信号c1に従い、Y方向の走査のための角度θと、Z方向の走査のための角度φとの両方が同時に制御可能な構成である。被計測面5aにおける2次元の面の領域の走査の様子は、前述の図3と同様である。実施の形態2では、被計測面5aにおける2次元の面の走査に対応させて、赤外線カメラ4の2次元のセンサ面において赤外線の強度の分布を撮像する。
The scanning mirror 23B has a configuration capable of simultaneously controlling both the angle θ for scanning in the Y direction and the angle φ for scanning in the Z direction in accordance with the angle control signal c1 from the control unit 11B. The state of scanning of the area of the two-dimensional surface on the measurement target surface 5a is the same as that in FIG. In the second embodiment, the infrared intensity distribution is imaged on the two-dimensional sensor surface of the infrared camera 4 in correspondence with the scanning of the two-dimensional surface on the measurement target surface 5a.
ダイクロイックミラー27は、実施の形態1のダイクロイックミラー22とは逆に、波長8μm以下の光を透過し、波長8μm以上の光を反射する機能を持つ波長分離ミラーである。ダイクロイックミラー27により、パルスレーザ2からのレーザ光を透過し、対象物5からの赤外線の光を反射する。
The dichroic mirror 27 is a wavelength separation mirror having a function of transmitting light having a wavelength of 8 μm or less and reflecting light having a wavelength of 8 μm or more, contrary to the dichroic mirror 22 of the first embodiment. The dichroic mirror 27 transmits the laser light from the pulse laser 2 and reflects the infrared light from the object 5.
望遠レンズ28は、赤外線カメラ4と共に設置される結像レンズである。実施の形態2の光学系の構成では、1つの結像レンズである望遠レンズ28により、対象物5の被計測点と赤外線カメラ4の撮像レンズないしセンサ面とが共役による結像の関係に置かれる。
The telephoto lens 28 is an imaging lens installed together with the infrared camera 4. In the configuration of the optical system according to Embodiment 2, the telephoto lens 28, which is one imaging lens, places the measurement point of the object 5 and the imaging lens or sensor surface of the infrared camera 4 in an imaging relationship by conjugation. It is burned.
実施の形態2の検査装置1Bの光学系における光の流れは以下である。パルスレーザ2から出射されたパルス状のレーザ光である光a0は、コリメートレンズ21を介して平行光a1となり、反射ミラー29でY方向へ反射される。反射光a2は、走査ミラー23Bにおいて角度θ及び角度φの制御状態に応じてX方向へ反射される。走査ミラー23Bで反射された光a3は、対物レンズ24を介して集束光a11となり、ダイクロイックミラー27へ入射される。
The light flow in the optical system of the inspection apparatus 1B of the second embodiment is as follows. The light a0 that is pulsed laser light emitted from the pulse laser 2 becomes parallel light a1 through the collimator lens 21, and is reflected by the reflection mirror 29 in the Y direction. The reflected light a2 is reflected in the X direction by the scanning mirror 23B according to the control state of the angle θ and the angle φ. The light a <b> 3 reflected by the scanning mirror 23 </ b> B becomes focused light a <b> 11 through the objective lens 24 and is incident on the dichroic mirror 27.
ダイクロイックミラー27は、集束光a11における波長8μm以下の光を透過する。ダイクロイックミラー27を透過した集束光a12は、検査装置1Bの端部から外部へ出射され、対象物5の被計測面5aの被計測点に照射される。被計測面5aの被計測点から生じた赤外線の光a13は、X方向の光路を戻り、検査装置1Bの端部から入射され、ダイクロイックミラー27で波長8μm以上の光である遠赤外光がY方向へ反射される。
The dichroic mirror 27 transmits light having a wavelength of 8 μm or less in the focused light a11. The focused light a <b> 12 that has passed through the dichroic mirror 27 is emitted from the end of the inspection apparatus 1 </ b> B to the outside, and is irradiated on the measurement point on the measurement surface 5 a of the object 5. The infrared light a13 generated from the measurement point on the measurement target surface 5a returns along the optical path in the X direction, is incident from the end of the inspection apparatus 1B, and far-infrared light having a wavelength of 8 μm or more is emitted from the dichroic mirror 27. Reflected in the Y direction.
ダイクロイックミラー27で反射された光a14は、望遠レンズ28に入射され、望遠レンズ28を介した光a15は、赤外線カメラ4の撮像レンズないしセンサ面に結像される。そして赤外線カメラ4により被計測面5aの面の領域の赤外線の強度が撮像される。
The light a14 reflected by the dichroic mirror 27 enters the telephoto lens 28, and the light a15 via the telephoto lens 28 forms an image on the imaging lens or sensor surface of the infrared camera 4. The infrared camera 4 picks up the infrared intensity of the area of the surface to be measured 5a.
対象物5の被計測面5aにおける走査範囲b2は、赤外線カメラ4のセンサ面の大きさと望遠レンズ28の倍率とで決まる。走査ミラー23Bの角度θの最大偏向角度(θmaxとする)は、半角分の撮像範囲Rと合うように、下記の式(2)で決まる。R/Lは十分に小さいので、角度θmaxは、R/2Lで求められる。
The scanning range b2 of the measurement surface 5a of the object 5 is determined by the size of the sensor surface of the infrared camera 4 and the magnification of the telephoto lens 28. The maximum deflection angle (referred to as θmax) of the angle θ of the scanning mirror 23B is determined by the following formula (2) so as to match the imaging range R for a half angle. Since R / L is sufficiently small, the angle θmax can be obtained by R / 2L.
θmax=(1/2)×arctan(R/L)≒R/2L ・・・式(2)
Θmax = (1/2) × arctan (R / L) ≈R / 2L (2)
実施の形態2での赤外線カメラ4のセンサ面の画素のサイズは10μm程度であり、実施の形態1の赤外線センサ3のセンサ面のサイズは1mm程度である。実施の形態2の画素のサイズは、実施の形態1のセンサ面のサイズに比べて約1/100の細かさである。従って、走査範囲b2が一定である場合、赤外線カメラ4の使用により、実施の形態1に比べ、100倍の精緻な空間分解能が得られる。即ち、実施の形態2によれば、より微小な欠陥を抽出可能である。
The pixel size of the sensor surface of the infrared camera 4 in the second embodiment is about 10 μm, and the sensor surface size of the infrared sensor 3 in the first embodiment is about 1 mm. The pixel size of the second embodiment is about 1/100 of the size of the sensor surface of the first embodiment. Therefore, when the scanning range b2 is constant, the use of the infrared camera 4 can provide a spatial resolution that is 100 times as fine as that of the first embodiment. That is, according to the second embodiment, it is possible to extract a smaller defect.
[制御方式]
図7は、実施の形態2の検査装置1Bにおける制御のタイミング図を示す。F1,F2は、それぞれ赤外線カメラ4による1画像の撮像に対応した時間を示す。なお図7では、説明を簡単にするため、被計測面5aにおける1画像の走査及び撮像に関して、Y方向の1つの線の走査による6個の被計測点に対応した6個の画素の計測の部分のみを示す。当該面の領域内におけるY方向及びZ方向の他の複数の線についても同様に繰り返して走査及び撮像の制御が行われることにより、2次元の面の領域の撮像の画像が得られる。 [control method]
FIG. 7 shows a timing chart of control in the inspection apparatus 1B of the second embodiment. F <b> 1 and F <b> 2 indicate times corresponding to capturing one image by theinfrared camera 4. In FIG. 7, for simplification of description, regarding the scanning and imaging of one image on the measurement target surface 5a, measurement of six pixels corresponding to six measurement points by scanning one line in the Y direction is performed. Only the part is shown. A plurality of other lines in the Y direction and the Z direction in the surface area are similarly subjected to scanning and imaging control, whereby a captured image of the two-dimensional surface area is obtained.
図7は、実施の形態2の検査装置1Bにおける制御のタイミング図を示す。F1,F2は、それぞれ赤外線カメラ4による1画像の撮像に対応した時間を示す。なお図7では、説明を簡単にするため、被計測面5aにおける1画像の走査及び撮像に関して、Y方向の1つの線の走査による6個の被計測点に対応した6個の画素の計測の部分のみを示す。当該面の領域内におけるY方向及びZ方向の他の複数の線についても同様に繰り返して走査及び撮像の制御が行われることにより、2次元の面の領域の撮像の画像が得られる。 [control method]
FIG. 7 shows a timing chart of control in the inspection apparatus 1B of the second embodiment. F <b> 1 and F <b> 2 indicate times corresponding to capturing one image by the
(a)は、制御の基準となる、赤外線カメラ4の検出及び読み出しの信号c4に対応した、画素の検出及び読み出しのクロックを示す。701は、1画素の検出及び読み出しに対応する1クロックパルスを示す。実施の形態2では、赤外線カメラ4の撮像の画像の各画素の感度を一定にする必要があるため、赤外線カメラ4の画素蓄積時間となる読み出しのクロック701を常に一定とする。これにより、被計測面5aのレーザ光の走査及び照射の空間的な均一性を確保する。これに対応して、検査装置1Bは、(a)の赤外線カメラ4のクロックを、全体の制御の基準クロックとして用いる。
(A) shows a pixel detection and readout clock corresponding to the detection and readout signal c4 of the infrared camera 4, which is a reference for control. Reference numeral 701 denotes one clock pulse corresponding to detection and readout of one pixel. In the second embodiment, since it is necessary to make the sensitivity of each pixel of the image captured by the infrared camera 4 constant, the readout clock 701 that is the pixel accumulation time of the infrared camera 4 is always kept constant. Thereby, the spatial uniformity of the scanning and irradiation of the laser beam on the measurement target surface 5a is ensured. In response to this, the inspection apparatus 1B uses the clock of the infrared camera 4 of (a) as a reference clock for overall control.
(b)は、(a)の赤外線カメラ4のクロックの周波数を倍にしたクロックである倍波クロックを示す。制御部11Bは、内部で、(a)のクロックパルス701の倍波として(b)のクロックパルス702を生成する。(b)の倍波のクロックパルス702は、(c)の照射制御の信号703、及び(e)の走査ミラー23Bの角度θの制御の信号705の切り替えのタイミングを与える。
(B) shows a double wave clock which is a clock obtained by doubling the frequency of the clock of the infrared camera 4 of (a). The control unit 11B internally generates a clock pulse 702 of (b) as a harmonic wave of the clock pulse 701 of (a). The double-wave clock pulse 702 in (b) gives the switching timing of the irradiation control signal 703 in (c) and the control signal 705 for controlling the angle θ of the scanning mirror 23B in (e).
(c)は、(d)のパルスレーザ2の照射のON及びOFFの状態を画像単位で制御するための照射制御の信号703である。制御部11Bは、(a),(b)の信号に基づき、内部で(c)の照射制御の信号703を生成する。信号703は、制御信号c2に含まれる。信号703は、F1及び時刻t1~t2で示す、第1の画像の撮像に対応する時間ではオフ状態にされ、F2及び時刻t2~t3で示す、第2の画像の撮像に対応する時間ではオン状態にされる。F1のオフ状態では、赤外線カメラ4の撮像の全画素の検出及び読み出しの間、(d)のレーザ光の照射のON及びOFFは行われない。次のF2のオン状態では、赤外線カメラ4の撮像の全画素の検出及び読み出しの間、(d)のレーザ光の照射の有り(ON)及び無し(OFF)の繰り返しが行われる。
(C) is an irradiation control signal 703 for controlling the ON and OFF states of irradiation of the pulse laser 2 of (d) in units of images. Based on the signals (a) and (b), the controller 11B internally generates an irradiation control signal 703 (c). The signal 703 is included in the control signal c2. The signal 703 is turned off at the time corresponding to the first image capturing indicated by F1 and time t1 to t2, and is turned on at the time corresponding to the second image capturing indicated by F2 and time t2 to t3. Put into a state. In the off state of F1, during the detection and readout of all pixels of the image picked up by the infrared camera 4, the laser light irradiation of (d) is not turned on and off. In the next ON state of F2, during the detection and readout of all pixels of the image picked up by the infrared camera 4, repetition (ON) and non-OFF (OFF) of laser light irradiation of (d) is performed.
(d)は、パルスレーザ2の照射のON及びOFFの制御信号を示す。704は、照射有り(ON)の状態のパルスを示す。(d)のパルス704は、(c)の照射制御の信号703がオン状態の時のみ、(a)のクロックパルス701と同期させて出射される。(d)の例ではY方向の1つの線の走査による6個の被計測点の計測に対応した6個のパルス704のみの場合を示す。
(D) shows control signals for turning on and off the irradiation of the pulse laser 2. Reference numeral 704 denotes a pulse with irradiation (ON). The pulse 704 in (d) is emitted in synchronization with the clock pulse 701 in (a) only when the irradiation control signal 703 in (c) is on. The example of (d) shows the case of only six pulses 704 corresponding to the measurement of six measurement points by scanning one line in the Y direction.
(e)は、走査ミラー23Bの角度θの制御の信号705を示す。(e)の信号705は、(a)の読み出しのクロック701に対して半周期ずれたタイミングで、かつ(b)の倍波のクロックパルス702のタイミングで角度を切り替えるように同期させて制御される。(e)の例では、Y方向の1つの線の6個の被計測点に対応して6つの角度状態の切り替えを示す。
(E) shows a signal 705 for controlling the angle θ of the scanning mirror 23B. The signal 705 in (e) is controlled in synchronism so that the angle is switched at a timing shifted by a half cycle with respect to the readout clock 701 in (a) and at the timing of the double-frequency clock pulse 702 in (b). The In the example of (e), switching of six angle states is shown corresponding to six measurement points of one line in the Y direction.
実施の形態2の検査装置1Bでは、温度差の計測は、レーザ光の照射のオン及びオフ状態に対応した、F1,F2のような前後の画像間における時間的に離れた計測点を使用する。(a)におけるs1等は、赤外線カメラ4のクロックパルス701のタイミングでの検出による被計測点に対応した画素の計測値を示す。例えばF1の画像内の計測値s1とF2の画像内の計測値s1とは、撮像の画像内の位置、及び被計測面5a内の被計測点の位置において対応する。(a)の各クロックパルス701での計測値を用いて、例えば、オフ状態のF1の1番目のクロックパルス701の時の画素の計測値s1と、それに対応した、オン状態のF2の1番目のクロックパルス701の時の画素の計測値s1との差分が、当該画素の被計測点での温度差d1(ΔT)である。同様に、(e)の角度状態に応じた被計測点の画素ごとに温度差が得られる。
In the inspection apparatus 1B according to the second embodiment, the temperature difference is measured using temporally separated measurement points between the preceding and succeeding images, such as F1 and F2, corresponding to the on / off states of laser light irradiation. . S1 etc. in (a) show the measured value of the pixel corresponding to the measurement point by the detection at the timing of the clock pulse 701 of the infrared camera 4. For example, the measurement value s1 in the F1 image and the measurement value s1 in the F2 image correspond to the position in the captured image and the position of the measurement point in the measurement target surface 5a. Using the measurement value at each clock pulse 701 in (a), for example, the pixel measurement value s1 at the time of the first clock pulse 701 of F1 in the off state and the corresponding first value of F2 in the on state The difference from the measured value s1 of the pixel at the time of the clock pulse 701 is the temperature difference d1 (ΔT) at the measurement point of the pixel. Similarly, a temperature difference is obtained for each pixel at the measurement point according to the angular state of (e).
角度θ及び角度φの制御による2次元の面の領域の走査及び計測は、例えば以下のようになる。まず走査範囲b2の面の領域における最初のY方向の1つの線における例えば6個の被計測点を含む走査が図7と同様に行われる。続いて、Z方向の角度φを所定単位量増減し、次のY方向の1つの線の走査が同様に行われる。同様に、Z方向で角度φをずらしながら、走査範囲b2のすべてのY方向の線が走査される。これにより1つの画像に対応する時間内において、2次元の面の領域のすべての被計測点及び画素が計測される。上記画像単位の計測が、図7のF1,F2のように、(c)の照射のオフ及びオンの制御に応じて行われる。
The scanning and measurement of the two-dimensional surface area by controlling the angle θ and the angle φ are as follows, for example. First, a scan including, for example, six measurement points on one line in the first Y direction in the surface area of the scan range b2 is performed in the same manner as in FIG. Subsequently, the angle φ in the Z direction is increased or decreased by a predetermined unit amount, and scanning of one line in the next Y direction is similarly performed. Similarly, all the lines in the Y direction of the scanning range b2 are scanned while shifting the angle φ in the Z direction. Thus, all the measurement points and pixels in the two-dimensional surface area are measured within the time corresponding to one image. The measurement in units of images is performed according to the irradiation OFF and ON control in (c) as shown in F1 and F2 in FIG.
上記図7のF1,F2のような制御により、レーザ光の照射有無に応じた2つ1組の画像が時間的に前後に分けて撮像される。画像生成部12Bは、これらの2つ1組の画像の差分、各々の画素間の計測値の差分により、温度差d(ΔT)の分布の画像を生成する。そして欠陥抽出部13Bは、温度差の分布の画像の中から、実施の形態1と同様に、欠陥判定処理を行って欠陥部分を抽出し、その結果を含む画像を出力する。
7 A pair of images corresponding to the presence / absence of laser light irradiation are captured in front and back in time by control like F1 and F2 in FIG. The image generation unit 12B generates an image of the distribution of the temperature difference d (ΔT) based on the difference between these two sets of images and the difference between the measured values between the pixels. Then, the defect extraction unit 13B performs defect determination processing from the image of the temperature difference distribution, extracts the defect portion, and outputs an image including the result, as in the first embodiment.
更に、実施の形態2において、図7のF1,F2のような画像単位の制御を複数回同様に繰り返すことにより、被計測点1点につき複数回の計測値を得て、それらの平均値による温度差vを得るようにしてもよい。
Further, in the second embodiment, the image unit control such as F1 and F2 in FIG. 7 is repeated a plurality of times in the same manner, so that a plurality of measurement values are obtained for each point to be measured, and the average value thereof is obtained. A temperature difference v may be obtained.
[効果等]
以上のように、実施の形態2の検査装置1Bによれば、計測及び検査用の加熱に関する空間的及び時間的な均一性、被計測点1点あたり複数回の赤外線及び温度差の計測、パルスレーザ2と赤外線カメラ4の同期制御によるパルス状のレーザ光の照射の前後の温度差の計測、等の構成を有する。これにより実施の形態2は、実施の形態1と同様に、赤外線及び熱弾性効果等を用いた計測及び検査に関して、対象物5である構造物の表面付近における温度差の計測の精度、及び欠陥や劣化等の状態の検査の精度を向上させることができる。 [Effects]
As described above, according to the inspection apparatus 1B of the second embodiment, spatial and temporal uniformity related to heating for measurement and inspection, measurement of infrared rays and temperature differences multiple times per point to be measured, pulse It has a configuration such as measurement of a temperature difference before and after irradiation of pulsed laser light by synchronous control of thelaser 2 and the infrared camera 4. As a result, the second embodiment is similar to the first embodiment in terms of the measurement accuracy and the defect of the temperature difference in the vicinity of the surface of the structure that is the object 5 with respect to measurement and inspection using infrared rays and thermoelastic effects. It is possible to improve the accuracy of inspection of conditions such as deterioration and deterioration.
以上のように、実施の形態2の検査装置1Bによれば、計測及び検査用の加熱に関する空間的及び時間的な均一性、被計測点1点あたり複数回の赤外線及び温度差の計測、パルスレーザ2と赤外線カメラ4の同期制御によるパルス状のレーザ光の照射の前後の温度差の計測、等の構成を有する。これにより実施の形態2は、実施の形態1と同様に、赤外線及び熱弾性効果等を用いた計測及び検査に関して、対象物5である構造物の表面付近における温度差の計測の精度、及び欠陥や劣化等の状態の検査の精度を向上させることができる。 [Effects]
As described above, according to the inspection apparatus 1B of the second embodiment, spatial and temporal uniformity related to heating for measurement and inspection, measurement of infrared rays and temperature differences multiple times per point to be measured, pulse It has a configuration such as measurement of a temperature difference before and after irradiation of pulsed laser light by synchronous control of the
実施の形態2は、走査ミラー23Bを含む構成により、被計測面5aにおける2次元の面の領域で均一なレーザ光の照射による走査を行い、被計測面5aにおける熱応力ないしエネルギの空間的な分布の状態の均一性が高い。よって、温度差の計測を高精度にできる。また実施の形態2は、赤外線カメラ4を含む構成により、前述のように、実施の形態1に比べて、空間分解能を100倍に高くできる。これにより、欠陥抽出を高精度にでき、より微小なひび等の状態を検出しやすい。
In the second embodiment, the configuration including the scanning mirror 23B performs scanning by irradiating a uniform laser beam in a two-dimensional surface area of the surface to be measured 5a, and the thermal stress or energy spatially on the surface to be measured 5a. High uniformity of distribution. Therefore, the temperature difference can be measured with high accuracy. Further, in the second embodiment, the spatial resolution can be increased 100 times as compared with the first embodiment by the configuration including the infrared camera 4 as described above. Thereby, defect extraction can be performed with high accuracy and a state such as a fine crack can be easily detected.
実施の形態2の変形例として、レーザ光による走査の範囲をY方向またはZ方向などの1次元の線の領域とし、赤外線カメラ4による撮像の範囲を1次元の線の領域としてもよい。
As a modification of the second embodiment, the scanning range by the laser light may be a one-dimensional line region such as the Y direction or the Z direction, and the imaging range by the infrared camera 4 may be a one-dimensional line region.
<実施の形態3>
次に、図8~図10を用いて、実施の形態3の赤外線検査装置について説明する。図8に示す実施の形態3の赤外線検査装置である検査装置1Cは、光学系などの要素については実施の形態1と同様であるが、異なる構成として車載の検査装置である。検査装置1Cは、車両6の走行に伴い移動しながら、対象物5の被計測面5aの複数の被計測点を計測及び検査する。検査装置1Cは、移動中、固定の位置の被計測点に対して、レーザ光の照射の箇所が移動せずに1点あたり複数回の計測がされるように、走査ミラー23Cの回転ないし偏向の角度θを制御する。 <Embodiment 3>
Next, an infrared inspection apparatus according to the third embodiment will be described with reference to FIGS. Aninspection apparatus 1C, which is an infrared inspection apparatus of the third embodiment shown in FIG. 8, is the same as that of the first embodiment in terms of elements such as an optical system, but is an in-vehicle inspection apparatus as a different configuration. The inspection apparatus 1 </ b> C measures and inspects a plurality of measurement points on the measurement target surface 5 a of the target object 5 while moving as the vehicle 6 travels. During the movement, the inspection apparatus 1C rotates or deflects the scanning mirror 23C so that measurement is performed a plurality of times per point with respect to the measurement point at a fixed position without moving the laser irradiation point. Is controlled.
次に、図8~図10を用いて、実施の形態3の赤外線検査装置について説明する。図8に示す実施の形態3の赤外線検査装置である検査装置1Cは、光学系などの要素については実施の形態1と同様であるが、異なる構成として車載の検査装置である。検査装置1Cは、車両6の走行に伴い移動しながら、対象物5の被計測面5aの複数の被計測点を計測及び検査する。検査装置1Cは、移動中、固定の位置の被計測点に対して、レーザ光の照射の箇所が移動せずに1点あたり複数回の計測がされるように、走査ミラー23Cの回転ないし偏向の角度θを制御する。 <
Next, an infrared inspection apparatus according to the third embodiment will be described with reference to FIGS. An
[赤外線検査装置]
図8は、実施の形態3の検査装置1C、それを搭載する車両6、及び対象物5を含む構成を示す。検査装置1Cは、車両6の車体に搭載される。車両6は、車輪6aに、少なくとも1つの移動量センサ31が取り付けられている。なお車両6は、他の移動体としてもよい。実施の形態3の検査装置1Cは、車両6と検査装置1Cとを含む全体を検査装置ないし検査システムとして捉えてもよい。 [Infrared inspection equipment]
FIG. 8 shows a configuration including theinspection device 1 </ b> C according to the third embodiment, the vehicle 6 on which the inspection device 1 </ b> C is mounted, and the object 5. The inspection device 1 </ b> C is mounted on the vehicle body of the vehicle 6. In the vehicle 6, at least one movement amount sensor 31 is attached to the wheel 6a. The vehicle 6 may be another moving body. The inspection apparatus 1C according to Embodiment 3 may be viewed as an inspection apparatus or an inspection system as a whole including the vehicle 6 and the inspection apparatus 1C.
図8は、実施の形態3の検査装置1C、それを搭載する車両6、及び対象物5を含む構成を示す。検査装置1Cは、車両6の車体に搭載される。車両6は、車輪6aに、少なくとも1つの移動量センサ31が取り付けられている。なお車両6は、他の移動体としてもよい。実施の形態3の検査装置1Cは、車両6と検査装置1Cとを含む全体を検査装置ないし検査システムとして捉えてもよい。 [Infrared inspection equipment]
FIG. 8 shows a configuration including the
実施の形態3の検査装置1Cは、パルスレーザ2、赤外線センサ3、コリメートレンズ21、ダイクロイックミラー22、走査ミラー23C、対物レンズ24、結像レンズ25、移動量センサ31、制御部11C、画像生成部12C、欠陥抽出部13C、及び入出力部14を有する。
The inspection apparatus 1C according to the third embodiment includes a pulse laser 2, an infrared sensor 3, a collimating lens 21, a dichroic mirror 22, a scanning mirror 23C, an objective lens 24, an imaging lens 25, a movement amount sensor 31, a control unit 11C, and image generation. 12C, a defect extraction unit 13C, and an input / output unit 14.
移動量センサ31は、車両6のY方向の移動量を検出するセンサである。移動量センサ31は、車両6の移動量の検出に応じてパルスの信号c6を発生させて制御部11Cへ与える。移動量センサ31としては、各種の手段が適用可能であるが、実施の形態3ではロータリエンコーダを用いる。ロータリエンコーダにより、車輪6aの回転によるY方向の移動量を算出する。移動量センサ31の他の手段として、GPS等を用いて車両6の位置を把握してもよい。
The movement amount sensor 31 is a sensor that detects the movement amount of the vehicle 6 in the Y direction. The movement amount sensor 31 generates a pulse signal c6 in response to detection of the movement amount of the vehicle 6 and supplies the pulse signal c6 to the control unit 11C. Various means can be applied as the movement amount sensor 31, but a rotary encoder is used in the third embodiment. The amount of movement in the Y direction due to the rotation of the wheel 6a is calculated by the rotary encoder. As another means of the movement amount sensor 31, the position of the vehicle 6 may be grasped using GPS or the like.
実施の形態3では、制御部11Cは、移動量センサ31のパルスの信号c6を基準クロックとして用いて、走査ミラー23C、パルスレーザ2、及び赤外線センサ3を含む全体を制御する。
In the third embodiment, the controller 11C controls the whole including the scanning mirror 23C, the pulse laser 2, and the infrared sensor 3 using the pulse signal c6 of the movement amount sensor 31 as a reference clock.
走査ミラー23Cは、制御部11Cからの角度制御信号c1に従い、Y方向の走査のための角度θが制御可能な構成である。A0は、走査ミラー23Cが基準の角度θ0の状態で、基準の被計測点5bに対してX方向に真っ直ぐに出射する光路を示す。
The scanning mirror 23C is configured to be able to control the angle θ for scanning in the Y direction in accordance with an angle control signal c1 from the control unit 11C. A0 indicates an optical path that is emitted straight in the X direction with respect to the reference measurement point 5b in a state where the scanning mirror 23C is at the reference angle θ0.
[被計測点]
図9は、実施の形態3の検査装置1Cにおける車両6の移動に伴う被計測面5aのY方向の線上の複数の被計測点5bを計測する様子を概略的に示す。被計測面5aのY方向の線の領域において、飛び飛びに存在する複数の被計測点5bの例を、点P1,P2,……として示す。また車両6のY方向への移動による位置をY1,Y2,……として示す。例えば位置Y1は点P1の位置に対応する。 [Measured point]
FIG. 9 schematically shows a state of measuring a plurality ofmeasurement points 5b on a line in the Y direction of the measurement target surface 5a accompanying the movement of the vehicle 6 in the inspection apparatus 1C of the third embodiment. Examples of a plurality of measurement points 5b that are present in the Y direction on the measurement target surface 5a are shown as points P1, P2,. The positions of the vehicle 6 due to movement in the Y direction are indicated as Y1, Y2,. For example, the position Y1 corresponds to the position of the point P1.
図9は、実施の形態3の検査装置1Cにおける車両6の移動に伴う被計測面5aのY方向の線上の複数の被計測点5bを計測する様子を概略的に示す。被計測面5aのY方向の線の領域において、飛び飛びに存在する複数の被計測点5bの例を、点P1,P2,……として示す。また車両6のY方向への移動による位置をY1,Y2,……として示す。例えば位置Y1は点P1の位置に対応する。 [Measured point]
FIG. 9 schematically shows a state of measuring a plurality of
実施の形態3では、図9のように、被計測面5aのY方向の線上における所定の間隔の複数の被計測点5b{P1,P2,……}が計測及び検査の対象である。k1は、車両6の側面の検査装置1Cの端部と被計測面5aとの距離を示す。k2は、被計測面5aのY方向の線上の隣り合う被計測点5bの間隔を示す。
In the third embodiment, as shown in FIG. 9, a plurality of measurement points 5b {P1, P2,...} With a predetermined interval on the line in the Y direction of the measurement surface 5a are objects to be measured and inspected. k1 represents the distance between the end of the inspection device 1C on the side surface of the vehicle 6 and the measured surface 5a. k2 indicates an interval between adjacent measurement points 5b on the line in the Y direction of the measurement surface 5a.
検査装置1Cは、移動中に被計測点5bの1点を計測する際、当該1点に対して、走査ミラー23Cの角度θの状態の切り替えにより、レーザ光が複数回照射され複数回の温度差の計測を行うように制御する。例えば点P1に対し、A11~A15のように、5回のレーザ光の照射有無による5回の温度差の計測が行われる。A11は、角度θが正方向最大角度(θaとする)の状態の時の光路、A13は、角度θが基準の角度θ0の状態の時の光路、A15は、角度θが負方向最大角度(θbとする)の状態の時の光路を示す。他の点P2等に対しても同様に、複数回の温度差の計測が行われる。
When the inspection apparatus 1C measures one point to be measured 5b during movement, the laser beam is irradiated a plurality of times by switching the state of the angle θ of the scanning mirror 23C with respect to the one point to be measured. Control to measure the difference. For example, for the point P1, the temperature difference is measured five times depending on whether or not the laser beam is irradiated five times as in A11 to A15. A11 is the optical path when the angle θ is the maximum positive angle (θa), A13 is the optical path when the angle θ is the reference angle θ0, and A15 is the maximum negative direction angle (θ). The optical path in the state of θb) is shown. Similarly, the temperature difference is measured a plurality of times for the other points P2 and the like.
[制御方式]
図10は、実施の形態3の検査装置1Cによる制御のタイミング図を示す。E1,E2に示す時間は、それぞれ、1つの被計測点5bに関する複数回の計測の時間を示す。 [control method]
FIG. 10 shows a timing chart of the control by theinspection apparatus 1C of the third embodiment. The times indicated by E1 and E2 indicate the times of multiple measurements related to one measured point 5b, respectively.
図10は、実施の形態3の検査装置1Cによる制御のタイミング図を示す。E1,E2に示す時間は、それぞれ、1つの被計測点5bに関する複数回の計測の時間を示す。 [control method]
FIG. 10 shows a timing chart of the control by the
(a)は、信号c6に対応する移動量センサ31のパルス1001を示す。制御部11Cは、(a)の移動量センサ31のパルス1001を基準のクロックとして、(b)のパルスレーザ2の発振及び照射有無、(c)の赤外線センサ3の検出及び読み出し、(d)の走査ミラー23Cの角度θの切り替えを制御する。なお図10では(a)の移動量センサ31のパルス1001を等間隔に示しているが、実際には車両6の速度変化に応じて不等間隔に発生する。
(A) shows the pulse 1001 of the movement amount sensor 31 corresponding to the signal c6. The control unit 11C uses the pulse 1001 of the movement amount sensor 31 of (a) as a reference clock, and (b) oscillation and irradiation presence / absence of the pulse laser 2, (c) detection and readout of the infrared sensor 3, (d) The switching of the angle θ of the scanning mirror 23C is controlled. In FIG. 10, the pulses 1001 of the movement amount sensor 31 in FIG. 10A are shown at regular intervals, but in actuality, they occur at irregular intervals according to the speed change of the vehicle 6.
(b)は、パルスレーザ2の発振及び照射の有り(ON)及び無し(OFF)の制御を示す。1002はON状態のパルスを示す。(b)のパルスレーザ2の制御のパルス1002は、(a)の3番目のパルス1001と同期するように制御される。
(B) shows control of the oscillation and irradiation (ON) and absence (OFF) of the pulse laser 2. Reference numeral 1002 denotes a pulse in an ON state. The control pulse 1002 of the pulse laser 2 in (b) is controlled to synchronize with the third pulse 1001 in (a).
(c)は、赤外線センサ3の検出及び読み出しの制御を示す。1003は、(b)のOFF状態の時に対応したパルス、1004は、(b)のON状態のパルス1002の時に対応したパルスを示す。(c)の赤外線センサ3の制御のパルス1003及び1004は、(a)の1番目及び3番目のパルス1001と同期するように制御される。赤外線センサ3は、実施の形態1と同様に、パルスレーザ2の照射の無し(OFF)及び有り(ON)の2通りの状態の時に発生する赤外線を時間的に連続して検出する。
(C) shows detection and readout control of the infrared sensor 3. Reference numeral 1003 denotes a pulse corresponding to the OFF state of (b), and reference numeral 1004 denotes a pulse corresponding to the ON state pulse 1002 of (b). The control pulses 1003 and 1004 of the infrared sensor 3 in (c) are controlled so as to be synchronized with the first and third pulses 1001 in (a). As in the first embodiment, the infrared sensor 3 continuously detects the infrared rays generated in the two states of non-irradiation (OFF) and existence (ON) of the pulse laser 2.
(d)は、走査ミラー23Cの角度θの制御の信号1005を示す。信号1005は、角度制御信号c1に含まれる。(d)の走査ミラー23Cの角度θの制御の信号1005は、(a)の2番目のパルス1001と同期するように制御される。時刻t1~t2で示すE1の時間では、被計測点5bの1点、例えば点P1について、走査の角度θを最大(θa)と最小(θb)との間の5つの状態で切り替えている。次の時刻t3~t4で示すE2の時間では、同様に、Y方向の次の被計測点5bの1点、例えば点P2について、走査の角度θを5つの状態で切り替えている。1010は角度θの増減の単位量を示す。
(D) shows a signal 1005 for controlling the angle θ of the scanning mirror 23C. The signal 1005 is included in the angle control signal c1. The signal 1005 for controlling the angle θ of the scanning mirror 23C in (d) is controlled so as to be synchronized with the second pulse 1001 in (a). During the time E1 indicated by the times t1 to t2, the scanning angle θ is switched in five states between the maximum (θa) and the minimum (θb) for one point to be measured 5b, for example, the point P1. Similarly, at the time E2 indicated by the next times t3 to t4, the scanning angle θ is switched in five states for one point of the next measured point 5b in the Y direction, for example, the point P2. Reference numeral 1010 denotes a unit amount for increasing or decreasing the angle θ.
上記図10のような制御により、車両6の走行中、図8のパルスレーザ2の照射光である集束光a4は、一定期間、対象物5の被計測面5a上の同一の被計測点5bを照射し続けるように走査が制御される。例えばE1の時間では、(b)の5回のパルス1002による集束光a4が点P1に対して照射され、5回の照射有無の状態が発生する。そして、(c)の赤外線センサ3で、s1~s10の10個の計測値により、d1~d5の5個の温度差が得られ、それらの平均値の温度差v1が得られる。
By the control as shown in FIG. 10, the focused light a4 that is the irradiation light of the pulse laser 2 in FIG. 8 is traveled for a certain period while the vehicle 6 is traveling, and the same measured point 5b on the measured surface 5a of the object 5. The scanning is controlled so as to continue irradiation. For example, at the time E1, the focused light a4 by the five pulses 1002 of (b) is irradiated to the point P1, and a state of presence / absence of five irradiations occurs. Then, in the infrared sensor 3 of (c), five temperature differences d1 to d5 are obtained from ten measured values s1 to s10, and a temperature difference v1 of the average values thereof is obtained.
画像生成部12Cは、被計測面5aの線上の複数の被計測点5b、例えば点P1,P2等について、移動量センサ31の信号c6と、赤外線センサ3の検出及び読み出しの信号c3とを用いて、温度差の分布を算出する処理を行う。画像生成部12Cは、移動量センサ31により検出する移動量、または当該移動量から算出できる車両6の位置情報から、被計測点5bの位置を把握する。画像生成部12Cは、被計測面5aの被計測点5bごとに、レーザ光の照射有無の時の赤外線センサ3による計測値の差分から、被計測点5bの温度差を算出し、複数の計測値から複数個の温度差を算出し、それらの平均値による温度差を算出する。そして、画像生成部12Cは、被計測面5aの複数の被計測点5bにおける温度差の分布を含む画像やグラフ等を生成する。
The image generation unit 12C uses the signal c6 of the movement amount sensor 31 and the detection and readout signal c3 of the infrared sensor 3 for a plurality of measurement points 5b on the line of the measurement target surface 5a, for example, the points P1 and P2. Then, the process of calculating the temperature difference distribution is performed. The image generation unit 12C grasps the position of the measurement target point 5b from the movement amount detected by the movement amount sensor 31 or the position information of the vehicle 6 that can be calculated from the movement amount. The image generation unit 12C calculates a temperature difference at the measurement point 5b for each measurement point 5b on the measurement target surface 5a from the difference between the measurement values obtained by the infrared sensor 3 when the laser light is irradiated or not. A plurality of temperature differences are calculated from the values, and a temperature difference based on an average value thereof is calculated. Then, the image generation unit 12C generates an image, a graph, or the like including a temperature difference distribution at the plurality of measurement points 5b on the measurement target surface 5a.
図4(b)は、実施の形態3における画像生成部12Cによる温度差の分布のうちの一部のデータ、及び欠陥抽出部13Cによる欠陥判定処理の例を示す。411は、欠陥判定のための設定情報として、許容範囲を示す。412で示す点Dは、閾値h1より小さく許容範囲411外になっている。413で示す点Fは、閾値h2より大きく許容範囲411外になっている。欠陥抽出部13Cは、上記温度差の値と閾値とを比較し、許容範囲411外であれば欠陥や劣化等と判定する。欠陥と判定された点Dは、温度差及び応力変動が閾値よりも小さいので、当該点の付近で剥がれ等の可能性が高いことを表し、点Fの付近はひび等の可能性が高いことを表している。
FIG. 4B shows an example of partial data of the temperature difference distribution by the image generation unit 12C and the defect determination processing by the defect extraction unit 13C in the third embodiment. Reference numeral 411 indicates an allowable range as setting information for defect determination. A point D indicated by 412 is smaller than the threshold value h1 and outside the allowable range 411. A point F indicated by 413 is larger than the threshold value h2 and outside the allowable range 411. The defect extraction unit 13 </ b> C compares the temperature difference value with a threshold value, and determines that the defect or deterioration is present if it is outside the allowable range 411. The point D determined to be defective indicates that there is a high possibility of peeling near the point because the temperature difference and stress fluctuation are smaller than the threshold value, and there is a high possibility of cracking near the point F. Represents.
[効果等]
以上のように、実施の形態3の検査装置1Cは、車両6で移動しながら、移動量センサ31で移動量を把握しつつ、走査ミラー23Cの角度θを制御する構成を有する。これにより実施の形態3は、固定の対象物5の被計測面5a上の複数の被計測点5bについて、1点あたり複数回温度差を計測する。当該走査ミラー23による偏向の制御を行わない場合、被計測点5bの1点あたり1回の計測になってしまう。これに対して実施の形態3は、1点あたり複数回の計測を行うことから、当該走査ミラー23による偏向の制御を行わない場合などに比べ、被計測点の温度差を高精度に計測できる。その結果、対象物5における剥がれやひび等の欠陥やその予兆を高精度に検出できる。実施の形態3によれば、対象物5の表面を定点観測するような用途に好適であり、車両6で移動しながらトンネル壁面等の構造物を効率的に計測及び検査できる。 [Effects]
As described above, theinspection apparatus 1 </ b> C according to the third embodiment has a configuration that controls the angle θ of the scanning mirror 23 </ b> C while moving with the vehicle 6 and grasping the movement amount with the movement amount sensor 31. Thus, in the third embodiment, the temperature difference is measured a plurality of times for each measurement point 5b on the measurement target surface 5a of the fixed object 5. When the deflection control by the scanning mirror 23 is not performed, the measurement is performed once per one point to be measured 5b. On the other hand, since the third embodiment performs measurement a plurality of times per point, the temperature difference at the measurement point can be measured with higher accuracy than when the deflection control by the scanning mirror 23 is not performed. . As a result, it is possible to detect defects such as peeling and cracks in the target object 5 and signs thereof with high accuracy. According to the third embodiment, it is suitable for an application in which the surface of the object 5 is observed at a fixed point, and a structure such as a tunnel wall surface can be efficiently measured and inspected while moving by the vehicle 6.
以上のように、実施の形態3の検査装置1Cは、車両6で移動しながら、移動量センサ31で移動量を把握しつつ、走査ミラー23Cの角度θを制御する構成を有する。これにより実施の形態3は、固定の対象物5の被計測面5a上の複数の被計測点5bについて、1点あたり複数回温度差を計測する。当該走査ミラー23による偏向の制御を行わない場合、被計測点5bの1点あたり1回の計測になってしまう。これに対して実施の形態3は、1点あたり複数回の計測を行うことから、当該走査ミラー23による偏向の制御を行わない場合などに比べ、被計測点の温度差を高精度に計測できる。その結果、対象物5における剥がれやひび等の欠陥やその予兆を高精度に検出できる。実施の形態3によれば、対象物5の表面を定点観測するような用途に好適であり、車両6で移動しながらトンネル壁面等の構造物を効率的に計測及び検査できる。 [Effects]
As described above, the
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前述の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say.
本実施の形態では、欠陥抽出部を検査装置内に設けた場合で説明したが、欠陥抽出をリアルタイムで行う必要が無い場合や、データの容量が多く処理に時間が必要な場合などには、欠陥抽出部を検査装置の外に設けてもよい。
In the present embodiment, the case where the defect extraction unit is provided in the inspection apparatus has been described, but when there is no need to perform defect extraction in real time or when the amount of data is large and processing requires time, The defect extraction unit may be provided outside the inspection apparatus.
本発明は、ビル、橋梁、及びトンネル等の社会インフラを含む各種の構造物を対象として、欠陥や劣化等の状態を検査する技術などに利用可能である。
The present invention is applicable to a technique for inspecting the state of defects, deterioration, etc. for various structures including social infrastructure such as buildings, bridges, and tunnels.
1A,1B,1C…検査装置、2…パルスレーザ、3…赤外線センサ、4…赤外線カメラ、5…対象物、5a…被計測面、5b,5c,5d…被計測点、6…車両、10…発振器、11A,11B,11C…制御部、12A,12B,12C…画像生成部、13A,13B,13C…欠陥抽出部、14…入出力部、21…コリメートレンズ、22,27…ダイクロイックミラー、23,23B,23C…走査ミラー、24…対物レンズ、25…結像レンズ、28…望遠レンズ、29…反射ミラー、31…移動量センサ。
DESCRIPTION OF SYMBOLS 1A, 1B, 1C ... Inspection apparatus, 2 ... Pulse laser, 3 ... Infrared sensor, 4 ... Infrared camera, 5 ... Object, 5a ... Measuring surface, 5b, 5c, 5d ... Measuring point, 6 ... Vehicle, 10 ... oscillator, 11A, 11B, 11C ... control unit, 12A, 12B, 12C ... image generation unit, 13A, 13B, 13C ... defect extraction unit, 14 ... input / output unit, 21 ... collimating lens, 22, 27 ... dichroic mirror, 23, 23B, 23C ... scanning mirror, 24 ... objective lens, 25 ... imaging lens, 28 ... telephoto lens, 29 ... reflection mirror, 31 ... movement amount sensor.
Claims (11)
- 対象物の表面の被計測点に対してレーザ光を少なくとも照射有無の2つの状態で照射するレーザ部と、
前記レーザ光の照射に関して前記対象物の表面を少なくとも第1方向に走査するための走査ミラーを含む光学系と、
前記レーザ光の照射により前記対象物の表面の被計測点から生じる赤外線を少なくとも1点で検出する赤外線センサと、
前記レーザ光の照射有無の2つの状態の時に前記赤外線センサの赤外線の検出を行い、かつ前記被計測点ごとに前記2つの状態の時の赤外線の検出の信号の差分である温度差の計測を複数回行うように、前記レーザ部のレーザ光の照射有無、前記走査ミラーの角度、及び前記赤外線センサの赤外線の検出のタイミングを制御する制御部と、
前記温度差の計測値、及び前記走査ミラーの角度に基づき、前記対象物の表面の領域における複数の各々の被計測点の温度差の分布を含む画像を生成する画像生成部と、
を有する、赤外線検査装置。 A laser unit that irradiates the measurement point on the surface of the object with laser light in at least two states of irradiation;
An optical system including a scanning mirror for scanning the surface of the object in at least a first direction with respect to the irradiation of the laser light;
An infrared sensor for detecting at least one infrared ray generated from a measurement point on the surface of the object by irradiation with the laser beam;
Infrared detection of the infrared sensor is performed when the laser light irradiation is in two states, and a temperature difference that is a difference between infrared detection signals in the two states is measured for each measurement point. A control unit for controlling the presence or absence of laser light irradiation of the laser unit, the angle of the scanning mirror, and the detection timing of infrared rays of the infrared sensor so as to be performed a plurality of times;
An image generation unit that generates an image including a temperature difference distribution of each of a plurality of measurement points in a region of the surface of the object based on the measured value of the temperature difference and the angle of the scanning mirror;
An infrared inspection apparatus. - 請求項1記載の赤外線検査装置において、
基準クロックを発生する発振部と、
前記対象物の被計測点に前記レーザ光を集光する対物レンズと、
前記対物レンズとの組合せで前記赤外線センサと前記対象物の被計測点とを共役の関係に結像する結像レンズと、
前記対象物へ照射するためのレーザ光と前記対象物からの赤外線とを波長分離する波長分離ミラーと、
を有し、
前記制御部は、前記基準クロックに基づき、前記レーザ部のレーザ光の照射有無、前記走査ミラーの角度、及び前記赤外線センサの赤外線の検出のタイミングを制御する、赤外線検査装置。 The infrared inspection apparatus according to claim 1,
An oscillator that generates a reference clock; and
An objective lens for condensing the laser beam at a measurement point of the object;
An imaging lens that forms an image of the infrared sensor and the measurement point of the object in a conjugate relationship in combination with the objective lens;
A wavelength separation mirror for wavelength-separating laser light for irradiating the object and infrared light from the object;
Have
The said control part is an infrared rays inspection apparatus which controls the detection timing of the infrared rays of the infrared sensor of the said laser beam irradiation angle, the said scanning mirror, and the said infrared sensor based on the said reference clock. - 請求項1記載の赤外線検査装置において、
前記走査ミラーは、前記レーザ光の照射に関して前記対象物の表面を第1方向に走査するための第1の角度、及び第2方向に走査するための第2の角度が制御され、
前記画像生成部は、前記対象物の表面の2次元の面の領域における複数の被計測点の温度差の分布を含む画像を生成する、赤外線検査装置。 The infrared inspection apparatus according to claim 1,
The scanning mirror has a first angle for scanning the surface of the object in the first direction and a second angle for scanning in the second direction with respect to the irradiation of the laser light,
The said image generation part is an infrared rays inspection apparatus which produces | generates the image containing distribution of the temperature difference of the several to-be-measured point in the area | region of the two-dimensional surface of the surface of the said target object. - 請求項1~3のいずれか一項に記載の赤外線検査装置において、
更に、前記温度差の分布の画像を用いて欠陥または劣化の部分を判定して抽出する欠陥抽出部を有する、赤外線検査装置。 In the infrared inspection apparatus according to any one of claims 1 to 3,
The infrared inspection apparatus further includes a defect extraction unit that determines and extracts a defect or a deteriorated portion using an image of the temperature difference distribution. - 対象物の表面の被計測点に対してレーザ光を少なくとも照射有無の2つの状態で照射するレーザ部と、
前記レーザ光の照射に関して前記対象物の表面を少なくとも第1方向に走査するための走査ミラーを含む光学系と、
前記レーザ光の照射により前記対象物の表面の被計測点から生じる赤外線を、線または面の領域で検出することにより画像を撮像する赤外線カメラと、
前記赤外線カメラの画像単位で、前記レーザ部により前記レーザ光を照射無しの状態に制御して前記照射無しの状態の時に前記赤外線カメラで赤外線を検出する第1の画像と、前記レーザ部により前記レーザ光を照射有りの状態に制御して前記照射有りの状態の時に前記赤外線カメラで赤外線を検出する第2の画像との2つの状態の画像を撮像するように、前記レーザ部のレーザ光の照射有無、前記走査ミラーの角度、及び前記赤外線カメラの赤外線の検出のタイミングを制御する制御部と、
前記第1の画像の前記照射無しの状態の時の前記赤外線の検出による計測値と、前記第2の画像の前記照射有りの状態の時の前記赤外線の検出による計測値との差分による温度差の計測値に基づき、前記対象物の表面の線または面の領域における複数の被計測点の温度差の分布を含む画像を生成する画像生成部と、
を有する、赤外線検査装置。 A laser unit that irradiates the measurement point on the surface of the object with laser light in at least two states of irradiation;
An optical system including a scanning mirror for scanning the surface of the object in at least a first direction with respect to the irradiation of the laser light;
An infrared camera that captures an image by detecting an infrared ray generated from a measurement point on the surface of the object by irradiation of the laser beam in a region of a line or a surface;
In a unit of image of the infrared camera, the laser unit controls the laser beam to be in a non-irradiation state, and the infrared camera detects the infrared ray in the non-irradiation state. The laser beam of the laser unit is controlled so as to capture an image in two states, a second image in which infrared light is detected by the infrared camera when the laser light is controlled to be in a state with irradiation. A control unit that controls the presence or absence of irradiation, the angle of the scanning mirror, and the timing of infrared detection of the infrared camera;
Temperature difference due to difference between a measurement value obtained by detecting the infrared ray when the first image is not irradiated and a measurement value obtained by detecting the infrared ray when the second image is irradiated An image generation unit that generates an image including a distribution of temperature differences of a plurality of measurement points in a line or surface area of the surface of the object based on the measured value;
An infrared inspection apparatus. - 請求項5記載の赤外線検査装置において、
前記対象物の被計測点に前記レーザ光を集光する対物レンズと、
前記赤外線カメラと前記対象物の被計測点とを共役の関係に結像する結像レンズと、
前記対象物へ照射するためのレーザ光と前記対象物からの赤外線とを波長分離する波長分離ミラーと、
を有し、
前記制御部は、前記赤外線カメラからの画像単位の読み出しの信号を基準として、前記レーザ部のレーザ光の照射有無、前記走査ミラーの角度、及び前記赤外線カメラの赤外線の検出のタイミングを制御する、赤外線検査装置。 The infrared inspection apparatus according to claim 5,
An objective lens for condensing the laser beam at a measurement point of the object;
An imaging lens for imaging the infrared camera and the measurement point of the object in a conjugate relationship;
A wavelength separation mirror for wavelength-separating laser light for irradiating the object and infrared light from the object;
Have
The control unit controls the presence / absence of laser light irradiation of the laser unit, the angle of the scanning mirror, and the detection timing of infrared light of the infrared camera, based on the readout signal of the image unit from the infrared camera. Infrared inspection device. - 請求項5記載の赤外線検査装置において、
前記走査ミラーは、前記レーザ光の照射に関して前記対象物の表面を第1方向に走査するための第1の角度、及び第2方向に走査するための第2の角度が制御され、
前記画像生成部は、前記対象物の表面の2次元の面の領域における複数の被計測点の温度差の分布を含む画像を生成する、赤外線検査装置。 The infrared inspection apparatus according to claim 5,
The scanning mirror has a first angle for scanning the surface of the object in the first direction and a second angle for scanning in the second direction with respect to the irradiation of the laser light,
The said image generation part is an infrared rays inspection apparatus which produces | generates the image containing distribution of the temperature difference of the several to-be-measured point in the area | region of the two-dimensional surface of the surface of the said target object. - 請求項5~7のいずれか一項に記載の赤外線検査装置において、
更に、前記温度差の分布の画像を用いて欠陥または劣化の部分を判定して抽出する欠陥抽出部を有する、赤外線検査装置。 The infrared inspection apparatus according to any one of claims 5 to 7,
The infrared inspection apparatus further includes a defect extraction unit that determines and extracts a defect or a deteriorated portion using an image of the temperature difference distribution. - 移動体に搭載される赤外線検査装置であって、
前記移動体の移動量または位置を検出するセンサ部と、
固定の対象物の表面の被計測点に対してレーザ光を少なくとも照射有無の2つの状態で照射するレーザ部と、
前記レーザ光の照射に関して前記対象物の表面の複数の各々の被計測点に対して照射するために少なくとも第1方向に走査するための走査ミラーを含む光学系と、
前記レーザ光の照射により前記対象物の表面の被計測点から生じる赤外線を少なくとも1点で検出する赤外線センサと、
前記レーザ光の照射有無の2つの状態の時に前記赤外線センサの赤外線の検出を行い、かつ前記対象物の表面の複数の各々の被計測点ごとに前記走査ミラーの角度を切り替えながら前記2つの状態の時の赤外線の検出の信号の差分である温度差の計測を複数回行うように、前記センサ部の検出、前記レーザ部のレーザ光の照射有無、前記走査ミラーの角度、及び前記赤外線センサの赤外線の検出のタイミングを制御する制御部と、
前記センサ部の検出情報と、前記温度差の計測値とに基づき、前記対象物の表面の複数の各々の被計測点に関する温度差の分布を算出する算出部と、
を有する、赤外線検査装置。 An infrared inspection device mounted on a moving body,
A sensor unit for detecting a moving amount or position of the moving body;
A laser unit that irradiates a measurement point on the surface of a fixed object with laser light in at least two states;
An optical system including a scanning mirror for scanning in at least a first direction in order to irradiate a plurality of measurement points on the surface of the object with respect to irradiation of the laser light;
An infrared sensor for detecting at least one infrared ray generated from a measurement point on the surface of the object by irradiation with the laser beam;
The two states while detecting the infrared rays of the infrared sensor in the two states of presence / absence of irradiation of the laser light and switching the angle of the scanning mirror for each of a plurality of measurement points on the surface of the object The detection of the sensor unit, the presence or absence of laser light irradiation of the laser unit, the angle of the scanning mirror, and the infrared sensor A control unit that controls the timing of infrared detection;
Based on the detection information of the sensor unit and the measured value of the temperature difference, a calculation unit that calculates a temperature difference distribution for each of a plurality of measurement points on the surface of the object;
An infrared inspection apparatus. - 請求項9記載の赤外線検査装置において、
前記対象物の被計測点に前記レーザ光を集光する対物レンズと、
前記対物レンズとの組合せで前記赤外線センサと前記対象物の被計測点とを共役の関係に結像する結像レンズと、
前記対象物へ照射するためのレーザ光と前記対象物からの赤外線とを波長分離する波長分離ミラーと、
を有し、
前記制御部は、前記センサ部による移動量または位置の検出の信号のパルスを基準として、前記レーザ部のレーザ光の発振、前記走査ミラーの角度、及び前記赤外線センサの検出のタイミングを制御する、赤外線検査装置。 The infrared inspection apparatus according to claim 9, wherein
An objective lens for condensing the laser beam at a measurement point of the object;
An imaging lens that forms an image of the infrared sensor and the measurement point of the object in a conjugate relationship in combination with the objective lens;
A wavelength separation mirror for wavelength-separating laser light for irradiating the object and infrared light from the object;
Have
The control unit controls the oscillation of the laser beam of the laser unit, the angle of the scanning mirror, and the detection timing of the infrared sensor, based on the pulse of the detection signal of the movement amount or position by the sensor unit. Infrared inspection device. - 請求項9または10に記載の赤外線検査装置において、
更に、前記温度差の分布を用いて欠陥または劣化の部分を判定して抽出する欠陥抽出部を有する、赤外線検査装置。 In the infrared inspection apparatus according to claim 9 or 10,
The infrared inspection apparatus further includes a defect extraction unit that determines and extracts a defect or a deteriorated portion using the temperature difference distribution.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013123696A JP2014240801A (en) | 2013-06-12 | 2013-06-12 | Infrared inspection apparatus |
JP2013-123696 | 2013-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014199869A1 true WO2014199869A1 (en) | 2014-12-18 |
Family
ID=52022167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/064688 WO2014199869A1 (en) | 2013-06-12 | 2014-06-03 | Infrared inspection device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014240801A (en) |
WO (1) | WO2014199869A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2580411C1 (en) * | 2015-01-12 | 2016-04-10 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" | Thermal imaging flaw detector |
JP2016217727A (en) * | 2015-05-14 | 2016-12-22 | 富士電機株式会社 | Inspection device and inspection method |
JP2017146290A (en) * | 2016-05-16 | 2017-08-24 | 株式会社アツデン | Fluid temperature measuring device for flowmeter |
CN108627813A (en) * | 2018-08-13 | 2018-10-09 | 北京经纬恒润科技有限公司 | A kind of laser radar |
CN109060146A (en) * | 2018-06-28 | 2018-12-21 | 湖北久之洋红外系统股份有限公司 | A kind of scanning galvanometer control system for the infrared wide area imaging of face battle array |
CN110361393A (en) * | 2018-04-10 | 2019-10-22 | 维蒂克影像国际无限责任公司 | For detecting the oriented energy and sensing of the repugnancy in laminated product |
CN110487803A (en) * | 2019-08-20 | 2019-11-22 | Oppo(重庆)智能科技有限公司 | The defect inspection method and device of infrared light-emitting component |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3020678B1 (en) * | 2014-04-30 | 2021-06-25 | Areva Np | PHOTOTHERMAL EXAMINATION PROCESS AND CORRESPONDING EXAMINATION SET |
JP6309557B2 (en) * | 2016-02-29 | 2018-04-11 | 国立大学法人九州大学 | Apparatus and method for measuring temperature and velocity of space movement group |
KR101809504B1 (en) * | 2016-05-10 | 2017-12-15 | 세종대학교산학협력단 | Continuous wave line laser scanning thermography apparatus and method for nondestructive test |
FR3053469B1 (en) * | 2016-06-30 | 2018-08-17 | Areva Np | METHOD FOR INSPECTING A METAL SURFACE AND DEVICE THEREFOR |
KR101838190B1 (en) * | 2016-07-19 | 2018-03-13 | 주식회사 템퍼스 | Intergrated Infrared module and smart device having the same |
KR101912434B1 (en) * | 2017-07-12 | 2018-10-26 | 세종대학교산학협력단 | Continuous wave line laser thermography apparatus and method for rotating structure monitoring |
WO2021261293A1 (en) * | 2020-06-23 | 2021-12-30 | 国立大学法人 東京大学 | Information processing system |
WO2022168191A1 (en) * | 2021-02-03 | 2022-08-11 | 三菱電機株式会社 | Defect inspection device |
JP2023161250A (en) * | 2022-04-25 | 2023-11-07 | 北海道電力株式会社 | Inspection device and inspection method for internal reinforcing-bars of reinforced concrete structure |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6298243A (en) * | 1985-10-25 | 1987-05-07 | Jeol Ltd | Inspection method for external wall of building and the like |
JPS62126339A (en) * | 1985-11-28 | 1987-06-08 | Komatsu Ltd | Method and apparatus for detecting internal flaw |
JPH034151A (en) * | 1989-04-24 | 1991-01-10 | Siemens Ag | Light and heat type inspection method and device for executing said method |
JPH0694660A (en) * | 1992-09-16 | 1994-04-08 | Kawasaki Steel Corp | Method and device for surface defect inspection |
JPH09311029A (en) * | 1996-05-24 | 1997-12-02 | Mitsubishi Heavy Ind Ltd | Detector for peeling of wall face in tunnel |
-
2013
- 2013-06-12 JP JP2013123696A patent/JP2014240801A/en active Pending
-
2014
- 2014-06-03 WO PCT/JP2014/064688 patent/WO2014199869A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6298243A (en) * | 1985-10-25 | 1987-05-07 | Jeol Ltd | Inspection method for external wall of building and the like |
JPS62126339A (en) * | 1985-11-28 | 1987-06-08 | Komatsu Ltd | Method and apparatus for detecting internal flaw |
JPH034151A (en) * | 1989-04-24 | 1991-01-10 | Siemens Ag | Light and heat type inspection method and device for executing said method |
JPH0694660A (en) * | 1992-09-16 | 1994-04-08 | Kawasaki Steel Corp | Method and device for surface defect inspection |
JPH09311029A (en) * | 1996-05-24 | 1997-12-02 | Mitsubishi Heavy Ind Ltd | Detector for peeling of wall face in tunnel |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2580411C1 (en) * | 2015-01-12 | 2016-04-10 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" | Thermal imaging flaw detector |
JP2016217727A (en) * | 2015-05-14 | 2016-12-22 | 富士電機株式会社 | Inspection device and inspection method |
JP2017146290A (en) * | 2016-05-16 | 2017-08-24 | 株式会社アツデン | Fluid temperature measuring device for flowmeter |
CN110361393A (en) * | 2018-04-10 | 2019-10-22 | 维蒂克影像国际无限责任公司 | For detecting the oriented energy and sensing of the repugnancy in laminated product |
CN109060146A (en) * | 2018-06-28 | 2018-12-21 | 湖北久之洋红外系统股份有限公司 | A kind of scanning galvanometer control system for the infrared wide area imaging of face battle array |
CN108627813A (en) * | 2018-08-13 | 2018-10-09 | 北京经纬恒润科技有限公司 | A kind of laser radar |
CN110487803A (en) * | 2019-08-20 | 2019-11-22 | Oppo(重庆)智能科技有限公司 | The defect inspection method and device of infrared light-emitting component |
Also Published As
Publication number | Publication date |
---|---|
JP2014240801A (en) | 2014-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014199869A1 (en) | Infrared inspection device | |
JP6805930B2 (en) | Vibration measuring device | |
JP6451695B2 (en) | Defect inspection method and defect inspection apparatus | |
JP2010512509A (en) | Improved laser and ultrasonic inspection using infrared thermography | |
JP2004012301A (en) | Method and apparatus for detecting pattern defect | |
JP2008261679A (en) | Shape inspection device | |
JP4412180B2 (en) | Laser ultrasonic inspection method and laser ultrasonic inspection device | |
JP2019190951A (en) | Mobile body scanner | |
JP4427632B2 (en) | High-precision 3D shape measuring device | |
JP2014062940A (en) | Checking device | |
CN110849884A (en) | Method and system for detecting bonding defects inside composite insulator | |
TW201425863A (en) | Curvature measurement system and method thereof | |
JP5880957B2 (en) | A device that detects surface changes using laser light | |
JP2019211310A (en) | Surface property inspection method and surface property inspection device | |
JP2008145368A (en) | Fuel rod spacing measuring method and device | |
KR101664470B1 (en) | Multiple beam path optical system using rear surface reflection of beam splitter | |
JP5367292B2 (en) | Surface inspection apparatus and surface inspection method | |
KR101881752B1 (en) | defect sensing module based on line-beam and defect sensing device using its arrays for detection of the defects on surface | |
KR101423276B1 (en) | Surface shape measuring equipment | |
JP2011161492A (en) | Apparatus and method for inspecting laser beam-machined condition and apparatus and method for laser beam machining, and method of manufacturing solar panel | |
TWI470299B (en) | Method and apparatus for auto-focusing | |
JP2009244226A (en) | Pattern projection shape measuring device | |
JP2016102776A (en) | Inspection device and method for inspection | |
US20240230601A1 (en) | Defect inspection apparatus and defect inspection method | |
JP5362368B2 (en) | Appearance inspection apparatus and appearance inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14810591 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14810591 Country of ref document: EP Kind code of ref document: A1 |