JP2007138882A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2007138882A
JP2007138882A JP2005336474A JP2005336474A JP2007138882A JP 2007138882 A JP2007138882 A JP 2007138882A JP 2005336474 A JP2005336474 A JP 2005336474A JP 2005336474 A JP2005336474 A JP 2005336474A JP 2007138882 A JP2007138882 A JP 2007138882A
Authority
JP
Japan
Prior art keywords
secondary air
catalyst
exhaust gas
downstream side
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005336474A
Other languages
Japanese (ja)
Inventor
Katsuhiko Nakabayashi
勝彦 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005336474A priority Critical patent/JP2007138882A/en
Publication of JP2007138882A publication Critical patent/JP2007138882A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce emission by secondary air while preventing an excessive temperature rise in a catalyst regardless of an operation condition in an internal combustion engine mounted with a secondary air supply system. <P>SOLUTION: This exhaust emission control device is provided with an upstream side secondary air supply nozzle 17 for supplying the secondary air 13 delivered from an air pump 16 to the upstream side of the catalyst 13, a downstream side secondary air supply nozzle 18 for supplying the secondary air to the downstream side of the catalyst 13 and a supply destination switching valve 19 for switching a supply destination of the secondary air. When the temperature of the catalyst 13 is not raised to the active temperature, the secondary air is supplied to the upstream side of the catalyst 13. After the temperature of the catalyst 13 rises to the active temperature, the excessive temperature rise in the catalyst 13 is prevented by stopping supply of the secondary air to the upstream side of the catalyst 13. When increasing a quantity of high load fuel, a rich component unpurified by the catalyst 13 is purified by reacting with oxygen of the secondary air by oxidation on the downstream side of the catalyst 13 by supplying the secondary air to the downstream side of the catalyst 13. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の排気通路に触媒を設置すると共に、排出ガスに二次空気を供給して排出ガスの浄化や触媒の暖機を促進するようにした内燃機関の排出ガス浄化装置に関する発明である。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine in which a catalyst is installed in an exhaust passage of the internal combustion engine and secondary air is supplied to the exhaust gas to promote exhaust gas purification and catalyst warm-up. It is.

近年、内燃機関を動力源とする車両においては、特許文献1(特開2004−11585号公報)に示すように、排気通路のうちの排出ガス浄化用の触媒よりも上流側にエアポンプにより二次空気を供給して排出ガスのHC、COの浄化(酸化反応)を促進したり、その反応熱で触媒の暖機を促進する技術が知られている。   In recent years, in a vehicle using an internal combustion engine as a power source, as shown in Patent Document 1 (Japanese Patent Laid-Open No. 2004-11585), a secondary air pump is provided upstream of the exhaust gas purification catalyst in the exhaust passage. There are known techniques for supplying air to promote the purification (oxidation reaction) of exhaust gas HC and CO, and to promote the warm-up of the catalyst by the reaction heat.

また、排気通路に2個の触媒を直列に設置したシステムでは、特許文献2(実公昭63−16825号公報)に示すように、上流側の触媒の上流側に二次空気を供給すると共に、上流側の触媒と下流側の触媒との間に二次空気を供給して、下流側の触媒にも二次空気を供給するようにしたものがある。
特開2004−11585号公報 実公昭63−16825号公報
Further, in a system in which two catalysts are installed in series in the exhaust passage, as shown in Patent Document 2 (Japanese Utility Model Publication No. 63-16825), secondary air is supplied to the upstream side of the upstream side catalyst, There is a type in which secondary air is supplied between an upstream catalyst and a downstream catalyst, and secondary air is also supplied to the downstream catalyst.
JP 2004-11585 A Japanese Utility Model Publication No. 63-16825

上述した従来の二次空気供給システムは、いずれも、触媒に流入する排出ガスに二次空気を供給することで、触媒に流入する排出ガス中のHC、COの浄化(酸化反応)を促進したり、その反応熱で触媒の暖機を促進するものである。   All of the conventional secondary air supply systems described above promote the purification (oxidation reaction) of HC and CO in the exhaust gas flowing into the catalyst by supplying secondary air to the exhaust gas flowing into the catalyst. Or the heat of reaction promotes warming up of the catalyst.

しかし、例えば、高負荷運転時には、排出ガスの温度が高くなって触媒の温度が上昇するため、触媒の過昇温防止(触媒溶損防止)の観点から燃料噴射量を増量して空燃比をリッチ化することで排出ガスの温度上昇を抑制するようにしているが、高負荷運転時に、二次空気を触媒の上流側に供給すると、排出ガスのリッチ成分(HC、CO)と二次空気の酸素との酸化反応により排出ガスの温度が上昇して触媒が過昇温する可能性があるため、高負荷運転時には、触媒の上流側への二次空気の供給を停止するようにしている。従って、高負荷運転時には、空燃比のリッチ化により増加する排出ガスのリッチ成分を二次空気で浄化することができないため、触媒に流入する排出ガスのリッチ成分濃度が触媒の浄化能力(酸化処理能力)を超えてしまい、エミッションが悪化するという問題があった。   However, for example, during high-load operation, the temperature of the exhaust gas increases and the temperature of the catalyst rises, so the fuel injection amount is increased to reduce the air-fuel ratio from the viewpoint of preventing excessive catalyst temperature rise (catalyst melting damage prevention). Although the enrichment suppresses the temperature rise of the exhaust gas, when the secondary air is supplied to the upstream side of the catalyst during high load operation, the exhaust gas rich component (HC, CO) and the secondary air Since the exhaust gas temperature rises due to the oxidation reaction with oxygen and the catalyst may overheat, the secondary air supply to the upstream side of the catalyst is stopped during high-load operation . Therefore, during high load operation, the rich component of the exhaust gas that increases due to the enrichment of the air-fuel ratio cannot be purified by secondary air, so the rich component concentration of the exhaust gas flowing into the catalyst is the purification capacity (oxidation treatment) There was a problem that the emissions deteriorated.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、内燃機関の運転条件によらず、触媒の過昇温を防止しながら二次空気によってエミッションを低減することができる内燃機関の排出ガス浄化装置を提供することにある。   The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to reduce emissions by secondary air while preventing overheating of the catalyst regardless of the operating conditions of the internal combustion engine. An object of the present invention is to provide an exhaust gas purification device for an internal combustion engine.

上記目的を達成するために、請求項1に係る発明は、内燃機関の排気通路に1個又は複数個の触媒を設置して排出ガスを浄化するようにした内燃機関の排出ガス浄化装置において、前記排気通路のうちの前記1個又は複数個の触媒の上流側(以下単に「触媒上流側」という)に二次空気を供給する上流側二次空気供給部と、前記排気通路のうちの前記1個又は複数個の触媒の下流側(以下単に「触媒下流側」という)に二次空気を供給する下流側二次空気供給部とを備え、内燃機関の運転条件に応じて前記上流側二次空気供給部による触媒上流側への二次空気の供給と前記下流側二次空気供給部による触媒下流側への二次空気の供給とを二次空気供給制御手段によって切り換えるか又は二次空気の供給量を制御するようにしたものである。   In order to achieve the above object, an invention according to claim 1 is directed to an exhaust gas purification apparatus for an internal combustion engine in which one or a plurality of catalysts are installed in an exhaust passage of the internal combustion engine to purify exhaust gas. An upstream secondary air supply section for supplying secondary air to the upstream side of the one or more catalysts in the exhaust passage (hereinafter simply referred to as “catalyst upstream side”); A downstream secondary air supply unit that supplies secondary air downstream of one or a plurality of catalysts (hereinafter simply referred to as “catalyst downstream side”), and the upstream side secondary air supply unit according to operating conditions of the internal combustion engine. The secondary air supply unit switches the supply of secondary air to the upstream side of the catalyst and the supply of secondary air to the downstream side of the catalyst by the downstream side secondary air supply unit by the secondary air supply control means or the secondary air The supply amount is controlled.

要するに、内燃機関の運転条件に応じてによっては、触媒の上流側に二次空気を供給すると、触媒の過昇温を招く可能性があるため、このような運転条件では、触媒下流側に二次空気を供給することで、触媒を通過した排出ガスのリッチ成分を触媒下流側で酸化反応させて浄化するものである。このようにすれば、内燃機関の運転条件によらず、触媒の過昇温を防止しながら二次空気によってエミッションを低減することができる。   In short, depending on the operating conditions of the internal combustion engine, if secondary air is supplied to the upstream side of the catalyst, it may lead to excessive temperature rise of the catalyst. By supplying the secondary air, the rich component of the exhaust gas that has passed through the catalyst is purified by oxidizing the downstream side of the catalyst. In this way, the emission can be reduced by the secondary air while preventing excessive temperature rise of the catalyst regardless of the operating conditions of the internal combustion engine.

具体的には、請求項2のように、内燃機関に供給する燃料量を増量して空燃比をリッチ化する運転条件のときに、下流側二次空気供給部による触媒下流側への二次空気の供給に切り換えるようにすると良い。これは、空燃比をリッチ化する運転条件では、触媒に流入する排出ガスのリッチ成分濃度が触媒の浄化能力(酸化処理能力)を超える可能性があるため、触媒で浄化しきれなかったリッチ成分を触媒下流側で二次空気の酸素と酸化反応させて浄化するものである。   Specifically, as in claim 2, when the operating condition is that the amount of fuel supplied to the internal combustion engine is increased to enrich the air-fuel ratio, the downstream side secondary air supply unit provides the secondary downstream to the catalyst. It is better to switch to air supply. This is because the rich component concentration of the exhaust gas flowing into the catalyst may exceed the purification capacity (oxidation capacity) of the catalyst under the operating conditions that enrich the air-fuel ratio, so the rich component that could not be purified by the catalyst Is purified by oxidizing the secondary air with oxygen in the downstream side of the catalyst.

また、請求項3のように、高負荷運転条件のときに、下流側二次空気供給部による触媒下流側への二次空気の供給に切り換えるようにすると良い。これは、高負荷運転条件では、排出ガスの温度が高くなることから、二次空気を触媒の上流側に供給すると、排出ガスのリッチ成分と二次空気の酸素との酸化反応により排出ガスの温度が益々上昇して触媒が過昇温する可能性があるため、触媒で浄化しきれなかったリッチ成分を触媒下流側で二次空気の酸素と酸化反応させて浄化するものである。   Further, as in the third aspect, it is preferable to switch to the supply of secondary air to the downstream side of the catalyst by the downstream side secondary air supply unit under the high load operation condition. This is because, under high load operating conditions, the temperature of the exhaust gas becomes high, so when the secondary air is supplied to the upstream side of the catalyst, the exhaust gas is oxidized by the oxidation reaction between the rich component of the exhaust gas and the oxygen of the secondary air. Since the temperature may increase further and the catalyst may overheat, the rich component that could not be purified by the catalyst is purified by oxidizing it with the oxygen in the secondary air on the downstream side of the catalyst.

また、請求項4のように、触媒に流入する排出ガスのリッチ成分濃度が触媒の浄化能力(酸化処理能力)を超えているか否かを判定する手段を備え、触媒に流入する排出ガスのリッチ成分濃度が触媒の浄化能力を超えていると判定したときに、下流側二次空気供給部による触媒下流側への二次空気の供給に切り換えるようにしても良い。これにより、触媒で浄化しきれなかったリッチ成分を触媒下流側で二次空気の酸素と酸化反応させて確実に浄化することができる。   Further, as claimed in claim 4, there is provided means for determining whether or not the rich component concentration of the exhaust gas flowing into the catalyst exceeds the purification capacity (oxidation processing capacity) of the catalyst, and the rich exhaust gas flowing into the catalyst When it is determined that the component concentration exceeds the purification capacity of the catalyst, switching to secondary air supply to the catalyst downstream side by the downstream secondary air supply unit may be performed. Thereby, the rich component that could not be purified by the catalyst can be reliably purified by oxidizing the secondary component with oxygen in the downstream side of the catalyst.

ところで、触媒下流側の排出ガスの温度が低すぎると、触媒下流側に二次空気を供給しても、排出ガスのリッチ成分と二次空気の酸素との酸化反応が促進されないばかりか、触媒下流側の排出ガスが二次空気により益々冷却されて、触媒下流側で排出ガスの浄化反応(酸化・還元反応)を生じさせるのに必要な排出ガス温度を確保できなくなってしまい、却ってエミッションが増加する懸念がある。   By the way, if the temperature of the exhaust gas on the downstream side of the catalyst is too low, even if the secondary air is supplied to the downstream side of the catalyst, the oxidation reaction between the rich component of the exhaust gas and the oxygen of the secondary air is not promoted. The exhaust gas on the downstream side is increasingly cooled by the secondary air, and the exhaust gas temperature required to cause the exhaust gas purification reaction (oxidation / reduction reaction) cannot be secured on the downstream side of the catalyst. There is an increasing concern.

そこで、請求項5のように、触媒下流側の排出ガス温度を検出又は推定する排出ガス温度判定手段を備え、この排出ガス温度判定手段で検出又は推定した触媒下流側の排出ガス温度が所定温度以上のときに、下流側二次空気供給部による触媒下流側への二次空気の供給に切り換えるようにしても良い。このようにすれば、触媒下流側の排出ガス温度がリッチ成分と二次空気の酸素との酸化反応を促進できる温度領域にあるときには、触媒下流側に二次空気を供給してエミッションを低減し、それよりも低い温度領域では、触媒下流側への二次空気の供給を停止して、二次空気の冷却効果によるエミッション増加を回避するという制御が可能となる。   Accordingly, as in claim 5, the exhaust gas temperature determining means for detecting or estimating the exhaust gas temperature on the downstream side of the catalyst is provided, and the exhaust gas temperature on the downstream side of the catalyst detected or estimated by the exhaust gas temperature determining means is a predetermined temperature. At the time described above, switching to the supply of secondary air to the downstream side of the catalyst by the downstream side secondary air supply unit may be performed. In this way, when the exhaust gas temperature on the downstream side of the catalyst is in a temperature range that can promote the oxidation reaction between the rich component and the oxygen of the secondary air, the secondary air is supplied to the downstream side of the catalyst to reduce emissions. In a lower temperature range, it is possible to control to stop the supply of secondary air to the downstream side of the catalyst and avoid an increase in emission due to the cooling effect of the secondary air.

また、請求項6のように、触媒の温度を検出又は推定する触媒温度判定手段を備え、この触媒温度判定手段で検出又は推定した触媒温度が所定温度以上のときに、下流側二次空気供給部による触媒下流側への二次空気の供給に切り換えるようにしても良い。このようにすれば、触媒上流側の排出ガスのリッチ成分と二次空気の酸素との酸化反応の熱により触媒の過昇温が懸念される触媒温度領域では、触媒下流側に二次空気を供給することで、触媒の過昇温を防止しながらエミッションを低減し、それよりも低い触媒温度領域では、触媒上流側に二次空気を供給して触媒の暖機を促進するという制御が可能となる。   Further, as in claim 6, there is provided catalyst temperature determination means for detecting or estimating the temperature of the catalyst, and when the catalyst temperature detected or estimated by the catalyst temperature determination means is equal to or higher than a predetermined temperature, downstream secondary air supply It may be switched to supply secondary air to the downstream side of the catalyst by the unit. In this way, in the catalyst temperature range where there is a concern about the excessive temperature rise of the catalyst due to the heat of the oxidation reaction between the rich component of the exhaust gas upstream of the catalyst and the oxygen of the secondary air, the secondary air is supplied downstream of the catalyst. By supplying it, emission can be reduced while preventing excessive temperature rise of the catalyst. In the lower catalyst temperature range, secondary air can be supplied upstream of the catalyst to promote warming up of the catalyst. It becomes.

また、触媒下流側の排出ガス流量に対して二次空気を供給量が多くなり過ぎると、触媒下流側の排出ガスが過剰な二次空気により冷却されて、触媒下流側で排出ガスの浄化反応(酸化・還元反応)を生じさせるのに必要な排出ガス温度を確保できなくなってしまい、却ってエミッションが増加する懸念がある。   In addition, if the supply amount of secondary air is excessive with respect to the exhaust gas flow rate on the downstream side of the catalyst, the exhaust gas on the downstream side of the catalyst is cooled by the excess secondary air, and the purification reaction of the exhaust gas on the downstream side of the catalyst There is a concern that the exhaust gas temperature necessary to cause (oxidation / reduction reaction) cannot be secured, and the emission increases on the contrary.

そこで、請求項7のように、下流側二次空気供給部により触媒下流側へ供給する二次空気の流量を排出ガス流量又はそれに相関するパラメータに応じて変化させるようにしても良い。このようにすれば、排出ガス流量に応じた適正量の二次空気を触媒下流側に供給することができ、二次空気による排出ガスの冷却を抑制しつつ、二次空気によるエミッション低減効果を確実に得ることができる。   Therefore, as described in claim 7, the flow rate of the secondary air supplied to the downstream side of the catalyst by the downstream side secondary air supply unit may be changed according to the exhaust gas flow rate or a parameter correlated therewith. In this way, an appropriate amount of secondary air corresponding to the exhaust gas flow rate can be supplied to the downstream side of the catalyst, and cooling of the exhaust gas by the secondary air is suppressed, while the effect of reducing emissions by the secondary air is achieved. You can definitely get it.

以下、本発明を実施するための最良の形態を具体化した2つの実施例1,2を説明する。   Hereinafter, two Examples 1 and 2, which embody the best mode for carrying out the present invention, will be described.

本発明の実施例1を図1及び図2に基づいて説明する。まず、図1に基づいてシステム全体の構成を説明する。
内燃機関であるエンジン11の排気通路12には、排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒13が設置されている。触媒13は、1個の触媒であっても良いし、複数個の触媒を直列に接続したものであっても良い。この触媒13の上流側に、排出ガスの空燃比(又はリッチ/リーン)を検出する空燃比センサ14(又は酸素センサ)が設けられている。
A first embodiment of the present invention will be described with reference to FIGS. First, the configuration of the entire system will be described with reference to FIG.
A catalyst 13 such as a three-way catalyst for purifying CO, HC, NOx and the like in the exhaust gas is installed in the exhaust passage 12 of the engine 11 which is an internal combustion engine. The catalyst 13 may be a single catalyst, or a plurality of catalysts connected in series. An air-fuel ratio sensor 14 (or oxygen sensor) for detecting the air-fuel ratio (or rich / lean) of the exhaust gas is provided upstream of the catalyst 13.

更に、排気通路12には、二次空気を供給する二次空気供給システム15が設けられている。この二次空気供給システム15は、電動モータで駆動されるエアポンプ16と、このエアポンプ16から吐出される二次空気を排気通路12のうちの触媒13の上流側(複数の触媒の場合は最上流の触媒の上流側)に供給する上流側二次空気供給ノズル17(上流側二次空気供給部)と、エアポンプ16から吐出される二次空気を排気通路12のうちの触媒13の下流側(複数の触媒の場合は最下流の触媒の下流側)に供給する下流側二次空気供給ノズル18(下流側二次空気供給部)と、エアポンプ16から吐出される二次空気の供給先を上流側二次空気供給ノズル17と下流側二次空気供給ノズル18との間で切り換える供給先切換え弁19とから構成されている。この二次空気供給システム15のエアポンプ16と供給先切換え弁19は、エンジン制御回路(以下「ECU」という)20によって制御される。このECU20は、エンジン運転状態を検出する各種センサ(例えばクランク角センサ、吸気圧センサ、水温センサ、空燃比センサ14等)の出力信号を読み込んでエンジン運転状態を検出して、エンジン運転状態に応じて燃料噴射量や点火時期を制御する。   Further, the exhaust passage 12 is provided with a secondary air supply system 15 for supplying secondary air. The secondary air supply system 15 includes an air pump 16 driven by an electric motor and secondary air discharged from the air pump 16 upstream of the catalyst 13 in the exhaust passage 12 (in the case of a plurality of catalysts, the most upstream). An upstream secondary air supply nozzle 17 (upstream secondary air supply unit) for supplying to the upstream side of the catalyst and secondary air discharged from the air pump 16 downstream of the catalyst 13 in the exhaust passage 12 ( In the case of a plurality of catalysts, the downstream secondary air supply nozzle 18 (downstream secondary air supply unit) that supplies to the downstream side of the most downstream catalyst and the supply destination of the secondary air discharged from the air pump 16 are upstream. It comprises a supply destination switching valve 19 that switches between the side secondary air supply nozzle 17 and the downstream side secondary air supply nozzle 18. The air pump 16 and the supply destination switching valve 19 of the secondary air supply system 15 are controlled by an engine control circuit (hereinafter referred to as “ECU”) 20. The ECU 20 reads output signals of various sensors (for example, a crank angle sensor, an intake pressure sensor, a water temperature sensor, an air-fuel ratio sensor 14 and the like) that detect the engine operating state, detects the engine operating state, and responds to the engine operating state. To control the fuel injection amount and ignition timing.

更に、このECU23は、図2の二次空気供給制御ルーチンを実行することで、二次空気供給システム15による二次空気の供給動作を制御する。以下、図2の二次空気供給制御ルーチンの処理内容を説明する。   Further, the ECU 23 controls the secondary air supply operation by the secondary air supply system 15 by executing the secondary air supply control routine of FIG. Hereinafter, the processing content of the secondary air supply control routine of FIG. 2 will be described.

図2の二次空気供給制御ルーチンは、エンジン運転中に所定周期で繰り返し実行され、特許請求の範囲でいう二次空気供給制御手段としての役割を果たす。本ルーチンが起動されると、まずステップ101で、触媒13の温度が活性判定温度に相当する所定温度T1よりも高いか否かを判定する。この際、触媒13の温度は、触媒13に設置した温度センサ(触媒温度判定手段)で検出しても良いし、エンジン始動後の経過時間やエンジン始動後の排気熱量積算値、燃料噴射量積算値等に基づいて推定するようにしても良い。或は、触媒13の上流側及び/又は下流側に設置した温度センサで検出した排出ガスの温度に基づいて触媒13の温度を推定するようにしても良い。   The secondary air supply control routine of FIG. 2 is repeatedly executed at a predetermined cycle during engine operation, and serves as secondary air supply control means in the claims. When this routine is started, first, at step 101, it is determined whether or not the temperature of the catalyst 13 is higher than a predetermined temperature T1 corresponding to the activity determination temperature. At this time, the temperature of the catalyst 13 may be detected by a temperature sensor (catalyst temperature determination means) installed in the catalyst 13, or the elapsed time after the engine start, the exhaust heat amount integrated value after the engine start, the fuel injection amount integrated You may make it estimate based on a value etc. Or you may make it estimate the temperature of the catalyst 13 based on the temperature of the exhaust gas detected with the temperature sensor installed in the upstream of the catalyst 13, and / or the downstream.

このステップ101で、触媒13の温度が所定温度T1以下と判定されれば、触媒13が活性温度に昇温していないと判断して、ステップ104に進み、供給先切換え弁19を上流側二次空気供給ノズル17側に切り換えて、エアポンプ16から吐出される二次空気を触媒13の上流側に供給する。これにより、触媒13に流入する排出ガス中のリッチ成分(HC、CO)と二次空気の酸素とを酸化反応させ、その反応熱で触媒13の暖機を促進する。   If it is determined in step 101 that the temperature of the catalyst 13 is equal to or lower than the predetermined temperature T1, it is determined that the catalyst 13 has not risen to the activation temperature, the process proceeds to step 104, and the supply destination switching valve 19 is turned on the upstream side. Switching to the secondary air supply nozzle 17 side, secondary air discharged from the air pump 16 is supplied to the upstream side of the catalyst 13. Thereby, the rich components (HC, CO) in the exhaust gas flowing into the catalyst 13 and the oxygen in the secondary air are oxidized and the warming of the catalyst 13 is promoted by the reaction heat.

これに対して、上記ステップ101で、触媒13の温度が所定温度T1よりも高いと判定されれば、触媒13が活性温度に昇温していると判断して、ステップ102に進み、高負荷で燃料噴射量を増量して空燃比をリッチ化してエンジン11を運転する高負荷燃料増量中であるか否かを判定し、高負荷燃料増量中であれば、触媒13に流入する排出ガスのリッチ成分濃度が触媒13の浄化能力(酸化処理能力)を超え、且つ、触媒13の下流側の排出ガス温度が二次空気の酸素とリッチ成分との酸化反応を生じさせる温度領域であると判断して、ステップ103に進み、供給先切換え弁19を下流側二次空気供給ノズル18側に切り換えて、エアポンプ16から吐出される二次空気を触媒13の下流側に供給する。これにより、触媒13で浄化しきれなかったリッチ成分を触媒13の下流側で二次空気の酸素と酸化反応させて浄化する。   On the other hand, if it is determined in step 101 that the temperature of the catalyst 13 is higher than the predetermined temperature T1, it is determined that the catalyst 13 has been heated to the activation temperature, the process proceeds to step 102, and a high load is applied. The fuel injection amount is increased to enrich the air-fuel ratio, and it is determined whether or not the high-load fuel increase for operating the engine 11 is in progress. If the high-load fuel increase is in progress, the exhaust gas flowing into the catalyst 13 is determined. It is determined that the rich component concentration exceeds the purification capability (oxidation treatment capability) of the catalyst 13 and the exhaust gas temperature downstream of the catalyst 13 is a temperature region in which an oxidation reaction between oxygen in the secondary air and the rich component occurs. In step 103, the supply destination switching valve 19 is switched to the downstream secondary air supply nozzle 18 side to supply the secondary air discharged from the air pump 16 to the downstream side of the catalyst 13. As a result, the rich component that could not be purified by the catalyst 13 is purified by oxidizing it with oxygen in the secondary air on the downstream side of the catalyst 13.

尚、上記ステップ102で、高負荷燃料増量中でないと判定されれば、排出ガスに含まれるリッチ成分を十分に触媒13で浄化できると判断して、そのまま本ルーチンを終了する。この場合は、エアポンプ16を停止して二次空気の供給を全て停止する。   If it is determined in step 102 that the amount of high load fuel is not increasing, it is determined that the rich component contained in the exhaust gas can be sufficiently purified by the catalyst 13, and this routine is immediately terminated. In this case, the air pump 16 is stopped and all the supply of secondary air is stopped.

以上説明した本実施例1によれば、二次空気を触媒13の上流側に供給する上流側二次空気供給ノズル17に加えて、二次空気を触媒13の下流側に供給する下流側二次空気供給ノズル18を設け、触媒13の温度が触媒13が活性温度に昇温していないときには、二次空気を触媒13の上流側に供給するようにしたので、触媒13に流入する排出ガス中のリッチ成分と二次空気の酸素とを酸化反応させ、その反応熱で触媒13の暖機を促進することができる。   According to the first embodiment described above, in addition to the upstream secondary air supply nozzle 17 that supplies the secondary air to the upstream side of the catalyst 13, the downstream side secondary air that supplies the secondary air to the downstream side of the catalyst 13. The secondary air supply nozzle 18 is provided, and when the temperature of the catalyst 13 is not raised to the activation temperature, the secondary air is supplied to the upstream side of the catalyst 13, so that the exhaust gas flowing into the catalyst 13 It is possible to oxidize the rich component therein and the oxygen in the secondary air, and promote the warm-up of the catalyst 13 by the reaction heat.

そして、触媒13の温度が所定温度T1(活性判定温度)以上に昇温した後は、触媒13の上流側への二次空気の供給を停止して触媒13の過昇温を防止し、更に、高負荷燃料増量中のときには、二次空気を触媒13の下流側に供給するようにしたので、触媒13で浄化しきれなかったリッチ成分を触媒13の下流側で二次空気の酸素と酸化反応させて浄化することができる。これにより、エンジン運転条件によらず、触媒13の過昇温を防止しながら二次空気によってエミッションを低減することができる。   Then, after the temperature of the catalyst 13 has risen above the predetermined temperature T1 (activity determination temperature), the supply of secondary air to the upstream side of the catalyst 13 is stopped to prevent the catalyst 13 from being overheated. Since the secondary air is supplied to the downstream side of the catalyst 13 during the increase of the high-load fuel, the rich components that could not be purified by the catalyst 13 are oxidized and oxidized in the downstream air on the downstream side of the catalyst 13. It can be purified by reaction. Thereby, the emission can be reduced by the secondary air while preventing the catalyst 13 from being overheated regardless of the engine operating conditions.

ところで、触媒13の下流側の排出ガスの温度が低すぎると、触媒13の下流側に二次空気を供給しても、排出ガスのリッチ成分と二次空気の酸素との酸化反応が促進されないばかりか、触媒13の下流側の排出ガスが二次空気により益々冷却されて、触媒13の下流側で排出ガスの浄化反応(酸化・還元反応)を生じさせるのに必要な排出ガス温度を確保できなくなってしまい、却ってエミッションが増加する懸念がある。   By the way, if the temperature of the exhaust gas on the downstream side of the catalyst 13 is too low, the oxidation reaction between the rich component of the exhaust gas and the oxygen of the secondary air is not promoted even if the secondary air is supplied to the downstream side of the catalyst 13. In addition, the exhaust gas downstream of the catalyst 13 is gradually cooled by the secondary air, and the exhaust gas temperature necessary to cause a purification reaction (oxidation / reduction reaction) of the exhaust gas downstream of the catalyst 13 is secured. There is a concern that it will be impossible to do so and the emission will increase.

また、触媒13の下流側の排出ガス流量に対して二次空気を供給量が多くなり過ぎると、触媒13の下流側の排出ガスが過剰な二次空気により冷却されて、触媒13の下流側で排出ガスの浄化反応(酸化・還元反応)を生じさせるのに必要な排出ガス温度を確保できなくなってしまい、却ってエミッションが増加する懸念がある。   Further, if the supply amount of secondary air is excessive with respect to the exhaust gas flow rate on the downstream side of the catalyst 13, the exhaust gas on the downstream side of the catalyst 13 is cooled by excess secondary air, and the downstream side of the catalyst 13 As a result, the exhaust gas temperature necessary to cause the exhaust gas purification reaction (oxidation / reduction reaction) cannot be secured, and there is a concern that the emission increases.

そこで、本発明の実施例2では、図3の二次空気供給制御ルーチンを実行することで、触媒13の下流側の排出ガス温度と排出ガス流量も考慮して二次空気供給システム15を制御する。   Therefore, in the second embodiment of the present invention, the secondary air supply control routine of FIG. 3 is executed to control the secondary air supply system 15 in consideration of the exhaust gas temperature and the exhaust gas flow rate downstream of the catalyst 13. To do.

この図3の二次空気供給制御ルーチンも、エンジン運転中に所定周期で繰り返し実行され、まずステップ201で、触媒13の温度が活性判定温度に相当する所定温度T1よりも高いか否かを判定し、触媒13の温度が所定温度T1以下であれば、ステップ206に進み、二次空気を触媒13の上流側に供給して、二次空気を触媒13の上流側に供給して触媒13の暖機を促進する。   The secondary air supply control routine of FIG. 3 is also repeatedly executed at predetermined intervals during engine operation. First, in step 201, it is determined whether or not the temperature of the catalyst 13 is higher than a predetermined temperature T1 corresponding to the activity determination temperature. If the temperature of the catalyst 13 is equal to or lower than the predetermined temperature T1, the process proceeds to step 206 where secondary air is supplied to the upstream side of the catalyst 13 and secondary air is supplied to the upstream side of the catalyst 13 to Promote warm-up.

その後、触媒13の温度が所定温度T1(活性判定温度)以上に昇温した後は、触媒13の上流側への二次空気の供給を停止して触媒13の過昇温を防止し、ステップ202に進んで、燃料増量中(空燃比をリッチ化するリッチ制御中)であるか否かを判定し、燃料増量中でなければ、触媒13に流入する排出ガスのリッチ成分を十分に触媒13で浄化できると判断して、そのまま本ルーチンを終了する。この場合は、エアポンプ16を停止して二次空気の供給を全て停止する。   Thereafter, after the temperature of the catalyst 13 has risen to a predetermined temperature T1 (activity determination temperature) or higher, the supply of secondary air to the upstream side of the catalyst 13 is stopped to prevent the catalyst 13 from being overheated. Proceeding to 202, it is determined whether or not the fuel is being increased (during rich control for enriching the air-fuel ratio). If not, the rich component of the exhaust gas flowing into the catalyst 13 is sufficiently removed. This routine is finished as it is. In this case, the air pump 16 is stopped and all the supply of secondary air is stopped.

これに対して、上記ステップ202で燃料増量中と判定されれば、触媒13に流入する排出ガスのリッチ成分濃度が触媒13の浄化能力(酸化処理能力)を超えていると判断して、ステップ203に進み、触媒13の下流側の排出ガス温度が所定温度T2よりも高いか否かを判定する。この際、触媒13の下流側の排出ガス温度は、触媒13の下流側に設置した温度センサ(排出ガス温度判定手段)で検出するようにしても良いし、触媒13に設置した温度センサで検出した触媒13の温度に基づいて触媒13の下流側の排出ガス温度を推定するようにしても良い。また、所定温度T2は、触媒13の下流側の排出ガスのリッチ成分と二次空気の酸素とを酸化反応させるのに必要な排出ガス温度に設定されている。   On the other hand, if it is determined in step 202 that the amount of fuel is being increased, it is determined that the rich component concentration of the exhaust gas flowing into the catalyst 13 exceeds the purification capacity (oxidation capacity) of the catalyst 13, and the step Proceeding to 203, it is determined whether or not the exhaust gas temperature downstream of the catalyst 13 is higher than the predetermined temperature T2. At this time, the exhaust gas temperature on the downstream side of the catalyst 13 may be detected by a temperature sensor (exhaust gas temperature determining means) installed on the downstream side of the catalyst 13 or detected by a temperature sensor installed on the catalyst 13. The exhaust gas temperature on the downstream side of the catalyst 13 may be estimated based on the temperature of the catalyst 13 that has been performed. Further, the predetermined temperature T2 is set to an exhaust gas temperature necessary for oxidizing the rich component of the exhaust gas downstream of the catalyst 13 and the oxygen of the secondary air.

このステップ203で、触媒13の下流側の排出ガス温度が所定温度T2以下と判定されれば、触媒13の下流側に二次空気を供給しても排出ガスのリッチ成分を浄化できないと判断して、そのまま本ルーチンを終了する。この場合は、エアポンプ16を停止して二次空気の供給を全て停止する。   If it is determined in step 203 that the exhaust gas temperature downstream of the catalyst 13 is equal to or lower than the predetermined temperature T2, it is determined that the rich component of the exhaust gas cannot be purified even if secondary air is supplied to the downstream side of the catalyst 13. Then, this routine is finished as it is. In this case, the air pump 16 is stopped and all the supply of secondary air is stopped.

これに対して、上記ステップ203で、触媒13の下流側の排出ガス温度が所定温度T2よりも高いと判定されれば、触媒13の下流側に二次空気を供給することで排出ガスのリッチ成分を浄化できると判断して、ステップ204に進み、現在の排出ガス流量(又はそれに相関するパラメータ)に応じて目標二次空気流量を設定する。この際、排出ガス流量は、エンジン運転条件(エンジン回転速度、燃料噴射量、空燃比等)に基づいて算出すれば良い。目標二次空気流量は、現在の排出ガス流量が多くなるほど多くなるように設定される。   On the other hand, if it is determined in step 203 that the exhaust gas temperature on the downstream side of the catalyst 13 is higher than the predetermined temperature T2, the secondary air is supplied to the downstream side of the catalyst 13 to enrich the exhaust gas. It is determined that the component can be purified, and the process proceeds to step 204, where the target secondary air flow rate is set according to the current exhaust gas flow rate (or a parameter correlated therewith). At this time, the exhaust gas flow rate may be calculated based on engine operating conditions (engine speed, fuel injection amount, air-fuel ratio, etc.). The target secondary air flow rate is set so as to increase as the current exhaust gas flow rate increases.

この後、ステップ205に進み、供給先切換え弁19を下流側二次空気供給ノズル18側に切り換えると共に、目標二次空気流量に応じてエアポンプ16の回転速度を制御して、エアポンプ16から二次空気を目標二次空気流量に相当する流量で触媒13の下流側に供給する。これにより、触媒13で浄化しきれなかったリッチ成分を排出ガス流量に応じた適正量の二次空気の酸素と酸化反応させて浄化する。
尚、触媒13の上流側に供給する二次空気流量についても、排出ガス流量に応じて設定するようにしても良い。
Thereafter, the process proceeds to step 205 where the supply destination switching valve 19 is switched to the downstream side secondary air supply nozzle 18 side, and the rotational speed of the air pump 16 is controlled according to the target secondary air flow rate. Air is supplied to the downstream side of the catalyst 13 at a flow rate corresponding to the target secondary air flow rate. As a result, the rich component that could not be purified by the catalyst 13 is purified by oxidizing it with the appropriate amount of secondary air oxygen corresponding to the exhaust gas flow rate.
The secondary air flow rate supplied to the upstream side of the catalyst 13 may also be set according to the exhaust gas flow rate.

以上説明した本実施例2では、触媒13の下流側の排出ガス温度がリッチ成分と二次空気の酸素との酸化反応を促進できる所定温度T2以上の温度領域にあるときには、触媒13の下流側に二次空気を供給してエミッションを低減し、それよりも低い温度領域では、触媒13の下流側への二次空気の供給を停止して、二次空気の冷却効果によるエミッション増加を回避することができる。しかも、触媒13の下流側へ供給する二次空気の流量を排出ガス流量(又はそれに相関するパラメータ)に応じて変化させるようにしたので、排出ガス流量に応じた適正量の二次空気を触媒13の下流側に供給することができ、二次空気による排出ガスの冷却を抑制しつつ、二次空気によるエミッション低減効果を確実に得ることができる。   In the second embodiment described above, when the exhaust gas temperature on the downstream side of the catalyst 13 is in a temperature range equal to or higher than the predetermined temperature T2 that can promote the oxidation reaction between the rich component and the oxygen of the secondary air, the downstream side of the catalyst 13. The secondary air is supplied to reduce the emission, and in the lower temperature range, the supply of the secondary air to the downstream side of the catalyst 13 is stopped to avoid an increase in the emission due to the cooling effect of the secondary air. be able to. Moreover, since the flow rate of the secondary air supplied to the downstream side of the catalyst 13 is changed according to the exhaust gas flow rate (or a parameter correlated therewith), an appropriate amount of secondary air corresponding to the exhaust gas flow rate is converted to the catalyst. 13 can be supplied downstream, and the emission reduction effect by the secondary air can be reliably obtained while suppressing the cooling of the exhaust gas by the secondary air.

尚、図2のステップ101(図3のステップ201)の処理に代えて、触媒13の暖機制御完了後か否かを判定し、触媒13の暖機制御完了前(暖機制御実行中)であれば、図2のステップ104(図3のステップ206)に進み、触媒13の上流側に二次空気を供給して触媒13の暖機を促進するようにしても良い。   In place of the process of step 101 of FIG. 2 (step 201 of FIG. 3), it is determined whether or not the warm-up control of the catalyst 13 is completed, and before the warm-up control of the catalyst 13 is completed (during the warm-up control being executed). If so, the process may proceed to step 104 in FIG. 2 (step 206 in FIG. 3), and secondary air may be supplied to the upstream side of the catalyst 13 to promote warming up of the catalyst 13.

また、図2のステップ102(図3のステップ202)の処理に代えて、触媒13の上流側の空燃比センサ14で検出した触媒13の上流側の空燃比(又は触媒13の下流側の空燃比センサで検出した触媒13の下流側の空燃比)が所定のリッチ度合を超えてリッチになったか否かを判定し、当該空燃比が所定のリッチ度合を超えてリッチになったときに、触媒13に流入する排出ガスのリッチ成分濃度が触媒13の浄化能力(酸化処理能力)を超えていると判断するようにしても良い。そして、この判断結果のみで二次空気を触媒13の下流側に供給するようにしても良いし、図3のステップ203のように、触媒13の下流側の排出ガス温度が所定温度T2よりも高い場合に限り、二次空気を触媒13の下流側に供給するようにしても良い。   Further, instead of the process of step 102 in FIG. 2 (step 202 in FIG. 3), the air-fuel ratio on the upstream side of the catalyst 13 detected by the air-fuel ratio sensor 14 on the upstream side of the catalyst 13 (or the air on the downstream side of the catalyst 13). It is determined whether or not the air-fuel ratio downstream of the catalyst 13 detected by the fuel ratio sensor has become rich beyond a predetermined rich degree, and when the air-fuel ratio has become rich beyond a predetermined rich degree, It may be determined that the rich component concentration of the exhaust gas flowing into the catalyst 13 exceeds the purification ability (oxidation treatment ability) of the catalyst 13. Then, the secondary air may be supplied to the downstream side of the catalyst 13 only based on this determination result, or the exhaust gas temperature on the downstream side of the catalyst 13 is higher than the predetermined temperature T2 as in step 203 of FIG. Only when it is high, secondary air may be supplied to the downstream side of the catalyst 13.

また、上記実施例1,2では、エアポンプ16から吐出される二次空気の供給先を供給先切換え弁19によって上流側二次空気供給ノズル17と下流側二次空気供給ノズル18との間で切り換えるようにしたが、触媒13の上流側と下流側にそれぞれ供給する二次空気流量の比率をエンジン運転条件に応じて変化させるようにしても良い。   In the first and second embodiments, the supply destination of the secondary air discharged from the air pump 16 is set between the upstream side secondary air supply nozzle 17 and the downstream side secondary air supply nozzle 18 by the supply destination switching valve 19. Although switched, the ratio of the secondary air flow rate supplied to the upstream side and the downstream side of the catalyst 13 may be changed according to the engine operating conditions.

本発明の実施例1を示す二次空気供給システム全体の構成を示す図である。It is a figure which shows the structure of the whole secondary air supply system which shows Example 1 of this invention. 実施例1の二次空気供給制御ルーチンの処理の流れを示すフローチャートである。4 is a flowchart illustrating a process flow of a secondary air supply control routine according to the first embodiment. 実施例2の二次空気供給制御ルーチンの処理の流れを示すフローチャートである。6 is a flowchart showing a flow of processing of a secondary air supply control routine of Embodiment 2.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…排気通路、13…触媒、14…空燃比センサ、15…二次空気供給システム、16…エアポンプ、17…上流側二次空気供給ノズル(上流側二次空気供給部)、18…下流側二次空気供給ノズル(下流側二次空気供給部)、19…供給先切換え弁、20…ECU(二次空気供給制御手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Exhaust passage, 13 ... Catalyst, 14 ... Air-fuel ratio sensor, 15 ... Secondary air supply system, 16 ... Air pump, 17 ... Upstream secondary air supply nozzle (Upstream secondary air) Supply part), 18 ... downstream side secondary air supply nozzle (downstream side secondary air supply part), 19 ... supply destination switching valve, 20 ... ECU (secondary air supply control means)

Claims (7)

内燃機関の排気通路に1個又は複数個の触媒を設置して排出ガスを浄化するようにした内燃機関の排出ガス浄化装置において、
前記排気通路のうちの前記1個又は複数個の触媒の上流側(以下単に「触媒上流側」という)に二次空気を供給する上流側二次空気供給部と、
前記排気通路のうちの前記1個又は複数個の触媒の下流側(以下単に「触媒下流側」という)に二次空気を供給する下流側二次空気供給部と、
内燃機関の運転条件に応じて前記上流側二次空気供給部による触媒上流側への二次空気の供給と前記下流側二次空気供給部による触媒下流側への二次空気の供給とを切り換えるか又は二次空気の供給量を制御する二次空気供給制御手段と
を備えていることを特徴とする内燃機関の排出ガス浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine in which one or a plurality of catalysts are installed in an exhaust passage of the internal combustion engine to purify exhaust gas,
An upstream secondary air supply section for supplying secondary air to the upstream side of the one or more catalysts in the exhaust passage (hereinafter simply referred to as “catalyst upstream side”);
A downstream secondary air supply section for supplying secondary air to the downstream side of the one or more catalysts in the exhaust passage (hereinafter simply referred to as “catalyst downstream side”);
Switching between the supply of secondary air to the upstream side of the catalyst by the upstream side secondary air supply unit and the supply of secondary air to the downstream side of the catalyst by the downstream side secondary air supply unit according to the operating conditions of the internal combustion engine Or a secondary air supply control means for controlling the supply amount of the secondary air.
前記二次空気供給制御手段は、内燃機関に供給する燃料量を増量して空燃比をリッチ化する運転条件のときに、前記下流側二次空気供給部による触媒下流側への二次空気の供給に切り換えることを特徴とする請求項1に記載の内燃機関の排出ガス浄化装置。   The secondary air supply control means is configured to increase the amount of fuel supplied to the internal combustion engine and to enrich the air-fuel ratio, so that the secondary air supplied to the downstream side of the catalyst by the downstream secondary air supply unit 2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the apparatus is switched to supply. 前記二次空気供給制御手段は、高負荷運転条件のときに、前記下流側二次空気供給部による触媒下流側への二次空気の供給に切り換えることを特徴とする請求項1又は2に記載の内燃機関の排出ガス浄化装置。   The said secondary air supply control means switches to the supply of the secondary air to the catalyst downstream by the said downstream secondary air supply part at the time of high load operation conditions, The Claim 1 or 2 characterized by the above-mentioned. Exhaust gas purification device for internal combustion engine. 前記二次空気供給制御手段は、前記触媒に流入する排出ガスのリッチ成分濃度が前記触媒の浄化能力を超えているか否かを判定する手段を備え、前記触媒に流入する排出ガスのリッチ成分濃度が前記触媒の浄化能力を超えていると判定したときに、前記下流側二次空気供給部による触媒下流側への二次空気の供給に切り換えることを特徴とする請求項1乃至3のいずれかに記載の内燃機関の排出ガス浄化装置。   The secondary air supply control means comprises means for determining whether or not the rich component concentration of the exhaust gas flowing into the catalyst exceeds the purification capacity of the catalyst, and the rich component concentration of the exhaust gas flowing into the catalyst 4 is switched to supply of secondary air to the downstream side of the catalyst by the downstream side secondary air supply unit when it is determined that the amount exceeds the purification capacity of the catalyst. 2. An exhaust gas purifying device for an internal combustion engine according to 1. 触媒下流側の排出ガス温度を検出又は推定する排出ガス温度判定手段を備え、
前記二次空気供給制御手段は、前記排出ガス温度判定手段で検出又は推定した触媒下流側の排出ガス温度が所定温度以上のときに、前記下流側二次空気供給部による触媒下流側への二次空気の供給に切り換えることを特徴とする請求項1乃至4のいずれかに記載の内燃機関の排出ガス浄化装置。
An exhaust gas temperature determining means for detecting or estimating the exhaust gas temperature downstream of the catalyst,
When the exhaust gas temperature detected or estimated by the exhaust gas temperature determination means is equal to or higher than a predetermined temperature, the secondary air supply control means is connected to the downstream side of the catalyst by the downstream secondary air supply unit. 5. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the apparatus is switched to supply of secondary air.
前記触媒の温度を検出又は推定する触媒温度判定手段を備え、
前記二次空気供給制御手段は、前記触媒温度判定手段で検出又は推定した触媒温度が所定温度以上のときに、前記下流側二次空気供給部による触媒下流側への二次空気の供給に切り換えることを特徴とする請求項1乃至5のいずれかに記載の内燃機関の排出ガス浄化装置。
Comprising a catalyst temperature determining means for detecting or estimating the temperature of the catalyst;
The secondary air supply control means switches to the supply of secondary air to the downstream side of the catalyst by the downstream side secondary air supply unit when the catalyst temperature detected or estimated by the catalyst temperature determination means is equal to or higher than a predetermined temperature. 6. An exhaust gas purifying device for an internal combustion engine according to claim 1, wherein the exhaust gas purifying device is an internal combustion engine.
前記二次空気供給制御手段は、前記下流側二次空気供給部により触媒下流側へ供給する二次空気の流量を排出ガス流量又はそれに相関するパラメータに応じて変化させることを特徴とする請求項1乃至6のいずれかに記載の内燃機関の排出ガス浄化装置。   The secondary air supply control means changes the flow rate of secondary air supplied to the downstream side of the catalyst by the downstream secondary air supply unit in accordance with an exhaust gas flow rate or a parameter correlated therewith. The exhaust gas purifying device for an internal combustion engine according to any one of 1 to 6.
JP2005336474A 2005-11-22 2005-11-22 Exhaust emission control device of internal combustion engine Pending JP2007138882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005336474A JP2007138882A (en) 2005-11-22 2005-11-22 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005336474A JP2007138882A (en) 2005-11-22 2005-11-22 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007138882A true JP2007138882A (en) 2007-06-07

Family

ID=38202061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005336474A Pending JP2007138882A (en) 2005-11-22 2005-11-22 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007138882A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116456A (en) * 2002-09-27 2004-04-15 Toyota Motor Corp Internal combustion engine equipped with secondary air supply device
JP2005002852A (en) * 2003-06-11 2005-01-06 Nissan Motor Co Ltd Exhaust emission cleaning device for engine
JP2005264735A (en) * 2004-03-16 2005-09-29 Yamaha Marine Co Ltd Engine with supercharger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116456A (en) * 2002-09-27 2004-04-15 Toyota Motor Corp Internal combustion engine equipped with secondary air supply device
JP2005002852A (en) * 2003-06-11 2005-01-06 Nissan Motor Co Ltd Exhaust emission cleaning device for engine
JP2005264735A (en) * 2004-03-16 2005-09-29 Yamaha Marine Co Ltd Engine with supercharger

Similar Documents

Publication Publication Date Title
CA2987566C (en) Exhaust gas control apparatus for internal combustion engine
JP2009197728A (en) Exhaust emission control device of internal combustion engine
KR101442391B1 (en) Emission control system for internal combustion engine
JP4557176B2 (en) Catalyst early warm-up control device for internal combustion engine
JP2006037964A (en) SYSTEM FOR CONTROLLING NOx EXHAUST QUANTITY IN RESTARTING
JP2009092001A (en) Control device for internal combustion engine, control method, program for materializing method, and record medium recording program
JP2010019092A (en) Exhaust emission control device for internal combustion engine
JP2009299580A (en) Exhaust emission purifier of internal combustion engine
JP3774910B2 (en) Exhaust gas purification device for internal combustion engine
JP4026576B2 (en) Exhaust gas purification system for internal combustion engine
JP2007321590A (en) Catalyst early warming-up control device of internal combustion engine
JP2008002376A (en) Engine system for hybrid vehicle
JP2007138882A (en) Exhaust emission control device of internal combustion engine
JP2004060564A (en) Exhaust emission control device for internal combustion engine
JP2005009412A (en) Secondary air supplying device
JP2010031737A (en) Air-fuel ratio control device and hybrid vehicle
JP2006037967A (en) Secondary air controller of engine
JP2008069737A (en) Exhaust emission control system for internal combustion engine
JP3006367B2 (en) Exhaust gas purification device for internal combustion engine
JP2004293426A (en) Abnormality judging device for secondary air supply system in internal combustion engine
JP2007032396A (en) Exhaust emission control device for internal combustion engine
JP2006274934A (en) Exhaust emission control system
JP2000205010A (en) Fuel injection control apparatus of internal combustion engine
JPH0763046A (en) Catalytic warm-up device of internal combustion engine
JP2007138768A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100519